
SQ-VAE: Variational Bayes on Discrete Representation with
Self-annealed Stochastic Quantization

Yuhta Takida 1 Takashi Shibuya 1 WeiHsiang Liao 1 Chieh-Hsin Lai 1 Junki Ohmura 1

Toshimitsu Uesaka 1 Naoki Murata 1 Shusuke Takahashi 1 Toshiyuki Kumakura 2 Yuki Mitsufuji 1

Abstract
One noted issue of vector-quantized variational
autoencoder (VQ-VAE) is that the learned
discrete representation uses only a fraction of
the full capacity of the codebook, also known
as codebook collapse. We hypothesize that the
training scheme of VQ-VAE, which involves
some carefully designed heuristics, underlies this
issue. In this paper, we propose a new training
scheme that extends the standard VAE via novel
stochastic dequantization and quantization, called
stochastically quantized variational autoencoder
(SQ-VAE). In SQ-VAE, we observe a trend
that the quantization is stochastic at the initial
stage of the training but gradually converges
toward a deterministic quantization, which we
call self-annealing. Our experiments show that
SQ-VAE improves codebook utilization without
using common heuristics. Furthermore, we
empirically show that SQ-VAE is superior to VAE
and VQ-VAE in vision- and speech-related tasks.

1. Introduction
The use of a variational autoencoder (VAE) (Kingma &
Welling, 2014; Higgins et al., 2017; Zhao et al., 2019) is
one of the popular approaches to generative modeling. VAE
consists of a pair of an encoder and a decoder, which are
jointly trained by maximizing the evidence lower bound
(ELBO) of the observed data (Jordan et al., 1999). The
encoder maps the input data to a variable in a latent space,
whereas the decoder converts the latent variable back into a
sample of data space. A new sample is generated by decoding
a latent variable that was sampled from a prior distribution.

Apart from VAE, a variant called Vector Quantized VAE
(VQ-VAE) (van den Oord et al., 2017), shows its superiority
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in several sample generation tasks (Dhariwal et al., 2020;
Ramesh et al., 2021; Esser et al., 2021). In VQ-VAE, the
encoded latent variables are quantized to their nearest
neighbors in a learnable codebook, and the data samples are
decoded from the quantized latent variables. Samples are
generated by first sampling the discrete latent variables from
an approximated prior, then the sampled latent variables are
decoded into synthetic samples. The approximated prior can
be, for example, a PixelCNN (van den Oord et al., 2016) that
is trained on the latent space of training samples. Although
VQ-VAE shares some similarities with VAE, its training does
not follow the standard variational Bayes framework (Ghosh
et al., 2020). Instead, it relies on carefully designed
heuristics such as the use of a stop-gradient operator and the
straight-through estimation of gradients. Even so, VQ-VAE
often suffers from codebook collapse, which means that
most of the codebook elements are not being used at all. This
results in the deterioration of reconstruction accuracy (Kaiser
et al., 2018). To address this problem, techniques such as
the exponential moving average (EMA) (Polyak & Juditsky,
1992) update scheme, codebook reset (Dhariwal et al., 2020;
Williams et al., 2020), and hyperparameter tuning are often
employed (Roy et al., 2018).

We suspect that deterministic quantization is the cause of
codebook collapse. Although the original approach with
straight-through estimation is intuitive and elegant, some
codebook elements can never be selected in cases of bad
initialization. Therefore, we propose a framework that
combines stochastic quantization and VAE, called stochas-
tically quantized VAE (SQ-VAE)1. It can address the low
codebook utilization issue of VQ-VAE and can be explained
within the scope of the usual variational Bayes framework.
Moreover, its training requires no exhaustive hyperparameter
tuning and does not rely on heuristic techniques such as
stop-gradient, codebook reset, or EMA update.

SQ-VAE introduces a pair of stochastic dequantization and
quantization processes in the latent space. These processes
are characterized by probability distributions with trainable
parameters. This setup allows us to train the model within
the usual variational Bayes framework without the need of
conventional heuristics. Training the model requires only

1Our code is available at https://github.com/sony/
sqvae.

https://github.com/sony/sqvae
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one hyperparameter, which can be treated in straightforward
ways as in (Jang et al., 2017). Optimizing the ELBO
gradually reduces the stochasticity of the quantization
process during the training, which we call self-annealing.
In general, SQ-VAE does not impose any assumption on
the data distribution; hence, we can model the stochastic
quantization and dequantization processes via Gaussian
distributions for example. However, we found that when the
data distribution is categorical and cross entropy (CE) loss is
used, this setup often yields an unsatisfactory performance.
As a remedy, we propose the use of the von Mises–Fisher
(vMF) distribution (see Appendix A) in place of the Gaussian
distribution and show its effectiveness in Section 3.4.

We summarize our contributions below.

1. We propose SQ-VAE, which is variational autoencoder
equipped with stochastic quantization and trainable pos-
terior categorical distribution. SQ-VAE can be explained
within an ordinary variational Bayes framework and may
serve as a drop-in replacement of conventional VQ-VAE.

2. In SQ-VAE, the annealing of the stochasticity of
the quantization process leads to a greater codebook
utilization. We provide a theoretical insight into this
self-annealing and validate it with an empirical study.

3. We design two instances of SQ-VAE: Gaussian SQ-VAE
for general cases and vMF SQ-VAE specialized for
categorical data distribution.

4. We evaluate SQ-VAE in vision- and speech-related gener-
ation tasks. The evaluation shows that SQ-VAE achieves
better reconstruction than VQ-VAE. Furthermore, the per-
formance of SQ-VAE can be improved by simply increas-
ing the codebook size, which is not the case for VQ-VAE.

Throughout this paper, we use {bj}Jj=1 to denote a set of
elements bj ; [N ] denotes the set of positive integers less
than or equal to N ; the capital letters P and Q denote the
probability mass functions, whereas the lower case letters
p and q denote the probability density functions.

2. Background
VAE Consider an observation x ∈ RD and a target data
distribution pdata(x), which models finite samples. The
standard VAE consists of a stochastic encoder–decoder pair:
a decoder pθ(x|z) and an approximated posterior qϕ(z|x),
where θ and ϕ are trainable parameters. The latent variables
z ∈ Rdz are assumed to follow a prior distribution p(z). Data
are generated by first sampling z from the prior p(z) then
obtainingx by feeding z into the stochastic decoder, pθ(x|z).
The negative ELBO per sample x is expressed asLVAE =

Eqϕ(z|x) [− log pθ(x|z)] +DKL(qϕ(z|x) ∥ p(z)). (1)

To compute the ELBO of likelihood of samplesx analytically,
the approximated posterior is usually modeled with con-
ditional Gaussian as qϕ(z|x) = N (gϕ(x),diag(σϕ(x)))
with two mappings gϕ : RD → Rdz and σϕ : RD → Rdz .

If the target data distribution is continuous, the stochastic
decoder can be modeled by a Gaussian distribution with a
mapping fθ : Rdz → RD as

pθ(x|z) = N (fθ(z), σ
2I), (2)

which reduces the first term in (1) into the mean squared error
(MSE). In contrast, if the data distribution is discrete and has
Call categories, the stochastic decoder for the dth element
of x, xd, can be modeled as a categorical distribution with
f c
θ,d : Rdz → R (c ∈ [Call]) as

Pθ(xd = c|z) = softmaxc({f c′

θ,d(z)}
Call

c′=1), (3)

where the softmax is operated among c′ (see Appendix A).
In this case, the first term in (1) becomes the CE loss.

VQ-VAE In contrast to VAE, VQ-VAE consists of a deter-
ministic encoder–decoder path and a trainable codebook. The
codebook is a set B, which contains K db-dimensional vec-
tors {bk}Kk=1. A dz-dimensional discrete latent space related
to the codebook can be interpreted as the dz-ary Cartesian
power of B, Bdz ⊂ Rdb×dz . We denote a latent variable in
Bdz and its ith column vector as Zq ∈ Bdz and zq,i ∈ B, re-
spectively. The deterministic encoding process from x to Zq

includes a mapping Ẑq = gϕ(x) with gϕ : RD → Rdb×dz

and the quantization process of Ẑq onto Bdz . The quan-
tization process is modeled as a deterministic categorical
posterior distribution, in which ẑq,i is always mapped to its
nearest neighbor zq,i, i.e., zq,i = argminbk

∥ẑq,i − bk∥2.
The objective function of VQ-VAE is

LVQ =− log pθ(x|Zq) + ∥sg[gϕ(x)]− Zq∥2F
+ β∥gϕ(x)− sg[Zq]∥2F , (4)

where sg[·] denotes the stop-gradient operator and β is set
between 0.1 and 2.0 (van den Oord et al., 2017). To improve
performance and convergence rate, EMA update is often
applied only to the second term, which corresponds to the
update of the codebook.

Note that the objective functions of VAE and VQ-VAE can
both be interpreted as the sum of the reconstruction error and
the latent regularization penalty.

3. Stochastically Quantized VAE
In this section, we propose SQ-VAE and its two instances,
which are Gaussian SQ-VAE and vMF SQ-VAE. This frame-
work bridges the training schemes of VAE and VQ-VAE. It
relieves VQ-VAE from the heuristic techniques and reduces
the difficulty of hyperparameter tuning. Moreover, it incor-
porates the self-annealing of a trainable categorical posterior
distribution, which gradually approaches the deterministic
quantization of VQ-VAE during the training. Furthermore,
we provide theoretical and empirical support about the
benefit of the self-annealing mechanism. The pseudo-codes
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Figure 1. Encoding and generative processes of SQ-VAE. The encoding path from x to Zq consists of (E1) deterministic encoding, (E2)
stochastic dequantization, and (E3) quantization processes. For generation, in (G1) we first sample Zq ∈ Bdz from the prior p(Zq). Then,
in (G2) we feed Zq into the stochastic decoder to generate data samples.

of the two instances can be found in Appendix C.

3.1. Overview of SQ-VAE

The outline of SQ-VAE is shown in Figure 1. Identical to VQ-
VAE, SQ-VAE also has a trainable codebookB := {bk}Kk=1.
As a generative model, the goal of SQ-VAE is to learn
a generative process x ∼ pθ(x|Zq) with Zq ∼ P (Zq)
to generate samples that belong to the data distribution
pdata(x), where P (Zq) denotes the prior distribution of the
discrete latent space Bdz . The prior P (Zq) is assumed to be
an i.i.d. uniform distribution in the main training stage as in
VQ-VAE, i.e., P (zq,i = bk) = 1/K for k ∈ [K]. A second
training will take place to learnP (Zq) after the main training
stage. Since the exact evaluation of pθ(Zq|x) is intractable,
the approximated posterior qϕ(Zq|x) is used instead.

In this setup, although we can establish the generative process
following that in VQ-VAE, the construction of the encoding
process from x to Zq is not straightforward owing to the dis-
crete property of Zq. Therefore, we introduce two auxiliary
variables to ease the explanation: Z and Ẑq. Z is the con-
tinuous variable converted from Zq via the dequantization
processpφ(Z|Zq), whereφ indicates its parameters. Further-
more, we may derive the inverse process of pφ(Z|Zq), i.e.,
the stochastic quantization process P̂φ(Zq|Z), from Bayes’
theorem P̂φ(Zq|Z) ∝ pφ(Z|Zq)P (Zq). On the other hand,
Ẑq is defined as Ẑq = gϕ(x), which is the output of the deter-
ministic encoder gϕ : RD → Rdb×dz given a sample x. Ide-
ally, Ẑq should be close to Zq. Similarly, the dequantization
process of Ẑq can be written asZ|Ẑq ∼ pφ(Z|Ẑq). As in Fig-
ure 1, stacking the processes pφ(Z|Ẑq) and P̂φ(Zq|Z) con-
nects Ẑq andZq, and thus establishes the stochastic encoding
process fromx toZq asQω(Zq|x) := Eqω(Z|x)[P̂φ(Zq|Z)],
where ω := {ϕ,φ} and qω(Z|x) := pφ(Z|gϕ(x)).

At this point, we can derive the ELBO for SQ-VAE as

log pθ(x) ≥ −LSQ(x;θ,ω,B) :=

Eqω(Z|x)P̂φ(Zq|Z)

[
log

pθ(x|Zq)pφ(Z|Zq)P (Zq)

qω(Z|x)P̂φ(Zq|Z)

]

= Eqω(Z|x)P̂φ(Zq|Z)

[
log

pθ(x|Zq)pφ(Z|Zq)

qω(Z|x)

]
+ Eqω(Z|x)H(P̂φ(Zq|Z)) + const., (5)

where H(P ) denotes the entropy of P . In (5), since P (Zq)
is assumed to follow a uniform distribution, it results into
a constant term and is thus omitted. We hereafter omit the pa-
rameters ofLSQ for simplicity. In the end, the main training is
carried out by minimizingEpdata(x)LSQ(x). The encoder, the
decoder, and the codebook are all optimized simultaneously
during the process. In this way, the codebook optimization no
longer requires heuristic techniques such as the stop-gradient,
EMA, and codebook reset (Dhariwal et al., 2020; Williams
et al., 2020). The expectation in the first term of (5) involves
the categorical distribution P̂φ(Zq|Z), which can be
approximated by the Gumbel–softmax relaxation (Jang et al.,
2017; Maddison et al., 2017) to use the reparameterization
trick in the backward pass of conventional VAE.

3.2. Gaussian SQ-VAE

We design Gaussian SQ-VAE by assuming that the dequanti-
zation process follows a Gaussian distribution. On the basis
of the assumption, the dequantization process is modeled as

pφ(zi|Zq) = N (zq,i,Σφ), (6)

in which Σφ is trainable. From Bayes’ theorem, we may
recover Zq with the inverse of (6), i.e., the stochastic
quantization process, as P̂φ(zq,i = bk|Z) =

softmaxk

{− (bj − zi)
⊤Σ−1

φ (bj − zi)

2

}K

j=1

 , (7)



SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization

Table 1. Different parameterizations of the variance Σφ in Gaussian SQ-VAE.

Variance Σφ Unnormalized log-probability Regularization objective RN
φ (Z,Zq)

(I) σ2
φI ∥bk − zi(x)∥22/2σ2

φ ∥Z− Zq∥2F /2σ2
φ

(II) σ2
φ(x)I ∥bk − zi(x)∥22/2σ2

φ(x) ∥Z− Zq∥2F /2σ2
φ(x)

(III) σ2
φ,i(x)I ∥bk − zi(x)∥22/2σ2

φ,i(x)
∑dz

i=1 ∥zi(x)− zq,i∥22/2σ2
φ,i(x)

(IV) diag(σ2
φ,i(x))

∑db
j=1(bk,j − zi,j(x))

2/2σ2
φ,i,j(x)

∑dz
i=1

∑db
j=1(zi,j(x)− zq,i,j)

2/2σ2
φ,i,j(x)

where the unnormalized log-probabilities for bk in (7)
correspond to Mahalanobis’ distance from zi with the
variance Σφ. We further consider several parameterizations
ofΣφ and summarize them in Table 1 with the corresponding
unnormalized negative log-probabilities2. We examine
their effectiveness in Section 5. The decoding and encoding
setups of Gaussian SQ-VAE are described as follows.

Decoding The usual Gaussian setup is adopted in the
decoding such that pθ(x|Zq) = N (fθ(Zq), σ

2I), where
σ2 ∈ R+ and θ are trainable parameters.

Encoding The encoding follows the process depicted in
Figure 1, and the dequantization process applied to Ẑq is
pφ(zi|Ẑq) = N (ẑq,i,Σφ).

Objective Function The substitution of the encoding and
decoding processes above into (5) givesLN -SQ =

Eqω(Z|x)P̂φ(Zq|Z)

[
1

2σ2
∥x− fθ(Z)∥22 +RN

φ (Z,Zq)

]
− Eqω(Z|x)H

(
P̂φ(Zq|Z)

)
+

D

2
log σ2 + const., (8)

where RN
φ (Z,Zq) denotes the regularization objective in

Table 1, depending on the parameterization of Σφ. The
derivation detail can be found in Appendix B.1.

3.3. Self-annealed Quantization

Before proposing the next SQ-VAE instance, we would like
to demonstrate the effectiveness of trainable parameters in
(de)quantization processes. In this subsection, we adopt the
parameterizationΣφ = σ2

φI (type I in Table 1) for simplicity.

According to (7), Σφ controls the degree of stochasticity of
the quantization during the training. We first consider two
extreme cases, σ2 → ∞ and σ2 → 0, with the following
proposition whose proof is given in Appendix D.2.

Proposition 1. Assume that pdata(x) has finite support,
whereas gϕ and {bk}Kk=1 are bounded. Let ω∗ = {ϕ∗,φ∗}
be a minimizer of Epdata(x)DKL(Qω(Zq|x) ∥ Pθ(Zq|x))
with fixed θ, σ2 and {bk}Kk=1. If σ2 → 0, then σ2

φ∗ → 0.

When σ2 → ∞, the first term in (8) diminishes. It is mini-
2Although more complicated parameterizations exist, they

often lead to an unstable optimization in our experiments.

mized when σ2
φ →∞, where Pφ(zq,i = bk|Z) approaches

a uniform distribution. On the other hand, according to
Proposition 1, when σ2 → 0, it leads to σ2

φ → 0. This
means that Pφ(zq,i = bk|Z) converges to the Kronecker
delta function δk,k̂, where k̂ = argmink ∥zi − bk∥2. This
deterministic quantization is exactly the posterior categorical
distribution of VQ-VAE. According to the two cases above, if
σ2 decreases gradually during the training, the quantization
process will also gradually decrease its stochasticity and
approach the deterministic quantization. We refer to this as
self-annealing.

Dynamics of the variance parameter To verify whether
self-annealing happens during the training, we conduct
an experiment on MNIST (LeCun et al., 1998). We train
Gaussian SQ-VAE with Σφ = σ2

φI. As targets for com-
parison, we also train models with σ2

φ fixed to a designated
σ2
q. The details of the experimental setup can be found in

Appendix D.3. The results are summarized in Figure 2.

In Figure 2(a), as the epoch grows, σ2
φ decreases along with

σ2, which agrees with Proposition 1 and our expectation. As
shown in Figure 2(b), with trainable σ2

φ, the average entropy
decreases as the training progresses. These two results
suggest that self-annealing occurs in practical situations.
On the other hand, Figure 2(b) indicates that with a fixed σ2

q,
the average entropy stays relatively constant. Moreover, as
shown in Figure 2(c), the MSE is greatly affected by the σ2

q

selected. Although there is an optimum for the fixed σ2
q, the

trainable σ2
φ, which is indicated by the blue line, achieves the

lowest MSE among all cases. Therefore, we showed that the
stochastic quantization and self-annealing together yields a
codebook that effectively covers a larger support in the latent
space, especially in the beginning of the training stage. This
leads to the improvement of reconstruction accuracy, which
will be demonstrated further in Section 5.

3.4. vMF SQ-VAE for Categorical Distributions

An intuitive way to adapting SQ-VAE for categorical data
distribution is to model the decoder output as a categorical dis-
tribution as (3). Consider a typical classification scenario that
the last layer of a decoder is a linear layer followed by a soft-
max. The decoder can be represented as the combination of
the linear layerwlast,c ∈ RF and the rest f̃ rest

θ−,d : Bdz → RF .

It becomes f c
θ,d(Zq) = w⊤

last,cf̃
rest
θ−,d(Zq), where θ− denotes

the trainable parameters excluding wlast,c. We may represent
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the ELBO of this model in terms of the decomposition as

Lnaı̈ve
CE-SQ = Eqω(Z|x)P̂φ(Zq|Z)

[
−

D∑
d=1

log(Pθ(xd = c|Zq))

+RN
φ (Z,Zq)

]
− Eqω(Z|x)H

(
P̂φ(Zq|Z)

)
+ const.

with (9a)

Pθ(xd = c|Zq) = softmaxc
(
{w⊤

last,c′ f̃
rest
θ−,d(Zq)}Call

c′=1

)
.

(9b)

However, we found that the performance of this Naı̈ve
categorical (NC) SQ-VAE is often unsatisfactory, as shown
in Section 5.2. A possible cause can be found by observing
the difference between (8) and (9a). In (9a), owing to
the replacement of Gaussian with categorical distribution,
trainable parameters such as σ2 no longer exist in the
objective function. This means that the model cannot be
benefited from the self-annealing effect.

To gain the advantage from self-annealing, we introduce the
vMF distribution to refine the model as in Figure 3, and we
call it vMF SQ-VAE. Consider a hypersphere SF−1 that is
embedded in an F -dimensional space. Let wc denote the
projection vector3 of the cth data category on the surface of

3In the current implementation, {wc}Call
c=1 are predefined and dis-

tributed on SF−1. We will explore its optimization in future work.
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Figure 4. Comparison between vMF and NC decoders: (a) The
concentration parameter of vMF decoder κφ increases with κ,
whereas the growth of κφ of the NC decoder is relatively small.
Here, κ0 and κφ,0 indicate initial values. (b) Average entropy of
probabilities of quantization processes.

SF−1. Next, we represent the projection of data xd on the
hypersphere as vd ∈ {wc}Call

c=1. If xd belongs to a category
c, that is, xd = c, then vd = wc and vice versa.

Decoding The first step is to decode Zq into
V := {vd}Dd=1 with the decoder f̃θ,d : Bdz → SF−1.
Then, determine the probability of vd = wc with a trainable
scalar κ ∈ R+ by using

Pθ(vd = wc|Zq) = softmaxc

({
κw⊤

c′ f̃θ,d(Zq)
}Call

c′=1

)
,

(10)

which resembles the categorical decoder in (9b) except
for the normalization onto SF−1 and the scaling factor κ.
Therefore, we may represent the categorical probabilities
for the decoded Zq as

pθ(vd|Zq) ∝ exp
(
κv⊤

d f̃θ,d(Zq)
)
. (11)

By normalizing (11) w.r.t. vd over SF−1, we obtain
pθ(vd|Zq) = vMF(f̃θ,d(Zq), κ), where f̃θ,d(Zq) and κ
correspond to the mean direction and the concentration
parameter of the vMF distribution, respectively.
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Encoding Accordingly, we model the stochastic dequan-
tization process of the encoder with the vMF distribution:

pφ(zi|Zq) = vMF(zq,i, κφ), (12)

where κφ is the trainable concentration parameter4. Simi-
larly to Gaussian SQ-VAE in Section 3.2, the discrete Zq

is recovered using Bayes’ theorem as

P̂φ(zq,i = bk|Z) = softmaxk

(
{κφb

⊤
j zi}Kj=1

)
, (13)

where the unnormalized log-probabilities of bk in (13) corre-
spond to the κφ-scaled cosine similarity between bk and zi.

Objective Function Substituting the encoding and
decoding processes into (5) leads toLvMF-SQ =

Eqω(Z|x)P̂φ(Zq|Z)

[
−κ

D∑
d=1

v⊤
d f̃θ,d(Zq) +RvMF

φ (Z,Zq)

]
− Eqω(Z|V)H

(
P̂φ(Zq|Z)

)
− logCF (κ) + const.,

(14)

whereRvMF
φ (x,Zq) is a regularization objective defined by

RvMF
φ (Z,Zq) =

∑dz

i=1 κφ,i(1− z⊤q,izi) (see Appendix B.2
for details). Here, CF (κ) denotes the normalizing constant
of the vMF distribution (see Appendix A).

Comparing vMF SQ-VAE with Naı̈ve Categorical
SQ-VAE In (14), the first two terms are scaled with κ
and κφ. Furthermore, vMF SQ-VAE has a property that,
if κ → ∞, then κφ∗ → ∞. Its proof can be done similarly
to Proposition 1 via setting κ = 1/σ2 and κφ∗ = 1/σ2

φ∗ .
As a result, vMF SQ-VAE can also achieve self-annealing
as described in Section 3.3 if κ → ∞. In the experiment
on CelebAHQ-Mask (Lee et al., 2020) in Section 5.2, κφ

increases together with κ as training progresses, as shown
in Figure 4. On the other hand, self-annealing is impossible
for NC SQ-VAE owing to the lack of scaling parameters.

4. Related Work
Latent Vector Quantization This is a common approach
in VQ-VAE, end-to-end image compression (Toderici et al.,
2016; Theis et al., 2017) and many other studies. van den
Oord et al. (2017) trained VQ-VAE with deterministic
quantization. They approximated the gradient of the quan-
tization process with the straight-through estimator (Bengio
et al., 2013) and utilized the stop-gradient operator.
Some VQ-VAE-based models also adopted deterministic
quantization (Razavi et al., 2019; Dhariwal et al., 2020).

The common form of stochastic quantization
Q(zq,i = bk) ∝ exp(−∥bk−zi∥22) has been applied in sev-

4κφ can be dependent on either x or i. However, we choose κφ

to be the independent variable.

eral VQ-VAE-based models (Roy et al., 2018; Williams et al.,
2020). Roy et al. (2018) connected the EMA update of the
codebook with an expectation maximization (EM) algorithm
and softened the EM algorithm with a stochastic posterior.
Williams et al. (2020) adopted a hierarchical VQ-VAE with a
stochastic posterior to compress images at extremely low bit
rates. The stochastic quantization schemes in previous liter-
ature did not involve trainable parameters in their categorical
posterior, which correspond to the schemes with fixed σ2

q

in Section 3.3. We emphasize the fact that our categorical
posterior including trainable parameters achieves a higher
reconstruction accuracy with the help of self-annealing.

Agustsson et al. (2017) proposed a controllable quantization
scheme for image compression. In their work, annealing
is achieved with a predefined hyperparameter scheduling.
However, they mentioned that the annealing rate must be
controlled carefully, otherwise, either the annealing cannot
progress or the gradient will vanish in the early stage. In
contrast, our proposed method does not rely on such tuning.

Wu & Flierl (2020) proposed a bottleneck regularizer of the
latent space in VAE to extract meaningful representations
for downstream tasks. Although the regularizer is inspired
from the stochastic quantization of latent variables, how the
method relates continuous latent features with a discrete
codebook is beyond the scope of this work.

Learning Categorical Distributions with VAE Kingma
& Welling (2014) first proposed a VAE with the Bernoulli
decoder for binary data. The Bernoulli decoder can be easily
generalized into a multi-class categorical decoder as in (3).
This categorical decoder has been adopted to the VQ-VAE
by Chorowski et al. (2019).

Polykovskiy & Vetrov (2020) proposed a deterministic de-
coding scheme for discrete data. The categorical probability
of its decoder has been limited to be one-hot by applying
an argmax operator. The non-differentiability of argmax is
solved by the smooth relaxation of the argmax operator with
a temperature parameter. In practice, the hyperparameter is
manually annealed to 0 in the training phase. By comparing
vMF SQ-VAE with this work, we found that the scaling pa-
rameterκ is self-annealed in the training without a predefined
scheduling scheme.

5. Experiments
We apply SQ-VAE in several vision- and speech-related
tasks to demonstrate its improvement over the conventional
VQ-VAE and VAE. All the experiments are repeated with
three different random seeds, unless otherwise stated. More-
over, all the models including VAE are adapted to ensure that
they all use the same amount of bits to represent an encoded
input. In our experiments, we approximate the categorical
distributions P̂φ(Zq|Z) included in the expectation operator
of (1) with Gumbel–softmax distributions. The gap between
the two distributions is gradually reduced by annealing
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M
S

E
P

er
pl

ex
it

y

Dimension of codebook
8 16 32 64 128 256

28

25

0.003

0.01

0.004

0.006

(f) CIFAR10 (K = 512)
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Figure 5. Empirical studies on the impact of codebook capacity examined on MNIST Fashion-MNIST and CIFAR10. (a)–(c) The size
K is swept with the dimension db fixed to 64. (d)–(f) Various db values are tested with the size K fixed as 128, 256, and 512, respectively.
The black lines with “+” marks indicate the upper bounds of the perplexities, i.e., K. All the y-axes are in log-scale.

the temperature parameter of Gumbel–softmax using the
predefined schedule in Jang et al. (2017). This temperature
parameter does not affect the categorical probabilities of the
original distribution. The effect of σ2

φ (or κφ) is definitely
different from that of this temperature parameter (see
Section 3.3). We refer to Appendix E for the detailed setup
of evaluation and supplemental experiments.

5.1. Continuous Data Distribution

Vision First, we compare the reconstruction accuracy and
codebook utilization of SQ-VAE (I) with VQ-VAEs (van den
Oord et al., 2017) under different codebook capacity
settings, i.e., the codebook dimension db and the codebook
size K. The reconstruction accuracy is measured by
MSE, and the codebook utilization is measured by the
perplexity of latent variables. This experiment is performed
on MNIST, Fashion-MNIST (Xiao et al., 2017) and CI-
FAR10 (Krizhevsky et al., 2009). As a target for comparison,
we also train models with fixed stochastic quantization
Pφ(zq,i = bk) ∝ exp(−∥bk − zi∥22/2σ2

q) (Roy et al.,
2018; Williams et al., 2020). We choose σ2

q = 1.0, which
achieves the best MSE with K = 64 in our preliminary
results (see Section 3.3). In Figure 5, SQ-VAE achieved
the lowest MSE with the highest perplexity in most of
settings. Moreover, its performance is proportional to the
size and dimension of the codebook. On the other hand,
the performance of VQ-VAE is less correlated with the
codebook settings and therefore suggests the need for careful
tuning. Moreover, even when all the heuristic techniques are
applied to VQ-VAE, SQ-VAE still outperforms VQ-VAE in

terms of MSE, especially when the codebook size is small.

We also test SQ-VAE with various parameterizations
on CelebA 64×64 (Liu et al., 2015) with the codebook
capacity set to (nb,K) = (64, 512).5 A separately trained
PixelCNN (van den Oord et al., 2016) is used for each model.
To keep a fair comparison, these PixelCNNs are trained
such that they have the same test log-likelihood. MSE and
Fréchet Inception (FID) (Heusel et al., 2017) are used as the
metrics for quality assessment. To examine the feasibility
of the latent space, in addition to the reconstruction and the
generation, we apply latent manipulations to latent variables
and evaluate the FID of the images reconstructed with
modified latent variables. The first manipulation is replacing
latent vector elements by the kth nearest codebook elements,
recorded as Neighbor-k. The second manipulation is that
we apply linear interpolation of pairs of encoded points then
project the interpolated vectors to their nearest codes. Their
mixing ratios are randomly distributed within [0, 1]. If the
codebook elements are evenly distributed within the support
of the dataset in the latent space, the resulting FID would
be less affected by these manipulations.

From Table 2, SQ-VAE achieves the best performance against
all the baselines. It also shows that the training of SQ-VAE is
stable even for complicated parameterization such as Gaus-
sian SQ-VAE (III). On the other hand, the simplest Gaussian
SQ-VAE (I) still yields performance improvement over the
fixed stochastic quantization scheme. In addition, the result

5We test SQ-VAE (I–III) models in this experiment because the
training of SQ-VAE (IV) model is unstable on the CelebA dataset.
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Table 2. Evaluation on CelebA. The MSE (×103) and reconstructed FID (rFID) are evaluated using the test set. The codebook capacity
for the discrete latent space is set to (nb, k) = (64, 512). The Roman numerals for Gaussian SQ-VAEs correspond to those in Table 1.
We also show the FID of samples generated with a prior learned with PixelCNN.

Model Reconstruction Generation Latent manipulation (FID)
MSE rFID (FID) Neighbor-3 Neighbor-5 Neighbor-10 Interp.

VAE 4.79 ± 0.01 40.3 ± 0.3 – – – – –
VQ-VAE (EMA) 1.33 ± 0.41 18.5 ± 5.1 42.0 ± 11.5 31.9 ± 14.8 42.8 ± 20.7 70.7 ± 35.4 28.2 ± 6.4
VQ-VAE (EMA+code reset) 1.62 ± 0.36 22.0 ± 5.9 51.8 ± 10.8 39.7 ± 12.0 52.7 ± 14.7 83.2 ± 20.4 32.6 ± 7.1
Quantization w/ fixed σ2

q 1.09 ± 0.01 15.9 ± 0.1 38.2 ± 0.9 20.0 ± 0.4 26.4 ± 0.8 41.5 ± 2.1 18.6 ± 0.3
Gaussian SQ-VAE (I) 0.96 ± 0.01 14.8 ± 0.3 28.2 ± 0.9 17.8 ± 0.1 21.9 ± 0.1 33.1 ± 0.3 17.6 ± 0.6
Gaussian SQ-VAE (II) 0.98 ± 0.01 14.3 ± 0.2 27.7 ± 1.1 17.8 ± 0.2 22.2 ± 0.4 34.0 ± 0.9 17.6 ± 0.1
Gaussian SQ-VAE (III) 0.96 ± 0.00 13.9 ± 0.1 28.1 ± 0.3 17.3 ± 0.2 21.6 ± 0.3 33.5 ± 0.6 18.5 ± 0.4

Table 3. Evaluation on VCTK and ZeroSpeech 2019. The MSE
(dB2) of sample reconstruction is evaluated using the test set. We
do not apply SQ-VAE (II) in this evaluation because of the variable
length property of speech data and the different manipulations of
speech signals between training and inference (see Appendix E.2).

Model MSE (dB2)
VCTK ZeroSpeech 2019

VQ-VAE w/ EMA 29.59 ± 0.25 34.33 ± 1.57
Gaussian SQ-VAE (I) 25.52 ± 0.08 33.17 ± 1.11
Gaussian SQ-VAE (III) 25.94 ± 0.22 34.35 ± 1.07
Gaussian SQ-VAE (IV) 24.68 ± 0.21 32.32 ± 0.88

of applying Gaussian SQ-VAE to the CelebA HQ 256×256
dataset (Karras et al., 2018) is shown in Appendix F.

Speech In this experiment, we test SQ-VAE and VQ-VAE
by the reconstruction of the normalized log-Mel spectrogram
using two speech datasets: VCTK version 0.80 (Veaux et al.,
2017) and ZeroSpeech 2019 English (Dunbar et al., 2019).
We adopt the VQ-VAE model of van Niekerk et al. (2020) as
the baseline and replace its RNN-based vocoder with a projec-
tion layer. The codebook dimension db and the codebook size
K are set to 64 and 512, respectively. For VQ-VAE, the first
term of (4), − log pθ(x|Zq), is set as ∥x − fθ(Zq)∥22/2σ2,
following Eloff et al. (2019). The hyperparameter σ2 is deter-
mined by a grid search with σ2 = {10−2, 10−1, 100, 101}.
In this experiment, we run each experiment with five
different random seeds and report the average and standard
deviation of MSE values. As shown in Table 3, SQ-VAE
achieves better average MSE than VQ-VAE even though
VQ-VAE has been tuned with the hyperparameter σ2.

Although SQ-VAE improves log-Mel spectrogram recon-
struction, we observed no significant improvement when
we applied SQ-VAE to a downstream task called acoustic
unit discovery. Further exploration would be conducted
to investigate the cause. The details about the experiment
and the samples of reconstructed log-Mel spectrograms are
described in Appendix E.2.

Table 4. Evaluation on CelebA-Mask. The pixel error (%), mIoU,
and perplexity are evaluated using the test set.

Model Pixel error mIoU Perplexity
VAE 8.79 ± 0.01 55.8 ± 0.3 –
VQ-VAE w/ EMA 6.95 ± 0.14 59.7 ± 0.7 46.2 ± 2.0
NC SQ-VAE 6.63 ± 1.38 64.1 ± 5.4 12.6 ± 5.2
vMF SQ-VAE 3.51 ± 0.17 74.6 ± 0.0 52.4 ± 0.8

Table 5. Evaluation on MNIST and gray-scaled CelebA. The MSE
(×103) is evaluated using the test set.

Model MNIST Gray-CelebA
VAE 22.80 ± 0.32 17.73 ± 0.23
VQ-VAE w/ EMA 6.24 ± 0.18 5.19 ± 0.06
NC SQ-VAE 10.89 ± 0.47 3.88 ± 0.02
vMF SQ-VAE 1.63 ± 0.21 2.37 ± 0.01

5.2. Categorical Distributions

We test vMF SQ-VAE using CelebAHQ-Mask, which is a
categorical image dataset with L = 19 categories. In this
experiment, the segmentation maps are rescaled to 64×64
with the nearest neighbor interpolation. We compare vMF
SQ-VAE with VAE, VQ-VAE, and NC SQ-VAE (9a). For
VAE and VQ-VAE, softmax is applied to the output of
the decoders, and CE loss is adopted as the reconstruction
objective. The reconstruction quality is measured using the
pixel error and the mean of the class-wise intersection over
union (mIoU) (Cordts et al., 2016).

The result is shown in Table 4. As expected, the codebook
perplexity in NC SQ-VAE significantly deteriorates, whereas
it still achieves better pixel error and mIoU than VQ-VAE.
On the other hand, vMF SQ-VAE outperforms all the
baselines with the highest codebook perplexity.

Next, we apply these methods to gray-scaled (256 categories)
image datasets: MNIST and gray-scaled CelebA. The
reconstruction accuracy is shown in Table 5. Again, vMF
SQ-VAE outperforms the baselines, whereas NC SQ-VAE
performs worse than VQ-VAE on MNIST. The result shows
that vMF SQ-VAE is applicable even when the dataset has
a large number of categories.
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6. Conclusion
We proposed SQ-VAE, a VAE-based framework with dis-
cretized latent space and combined with a pair of stochastic
dequantization and quantization processes that includes a
trainable categorical posterior. This framework bridges the
training schemes of VAE and VQ-VAE, and the trainable
categorical posterior yields the self-annealing effect, which
improves the reconstruction quality. Both Gaussian SQ-VAE
and vMF SQ-VAE outperform the conventional approaches
through experiments using vision and speech tasks. More-
over, SQ-VAE requires only a predefined scheduling of the
temperature parameter of Gumbel–softmax. This hints a
potential application of SQ-VAE on data compression.

Exploring the best parameterization of the trainable categor-
ical posterior for different datasets and model architectures
would be a direction of our future work.
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Supplementary Material

A. Notations and Definitions
Here, we introduce several notations and definitions we used in the article. Notations used in formulation of SQ-VAE is
listed in Table 6.

Softmax function We use the following notation to represent the k-th component of a softmax function that operates among
the elements indexed by k. It can also be regarded as a function that maps RK to (0, 1)K .

softmaxk({zj}Kj=1) =
exp(zk)∑K
j=1 exp(zj)

. (15)

von Mises-Fisher distribution The von Mises-Fischer distribution is parameterized with mean direction and concentration
(m, κ), which is represented as

vMF(m, κ) = CF (κ) exp(κm
⊤v), (16)

where CF (κ) is the normalizing constant obtained by using

CF (κ) =

∫
v∈SF−1

exp(κm⊤v)dv. (17)

The normalizing constant can also be expressed with the modified Bessel function of the first kind Iν(·)6 as

logCF (κ) =

(
F

2
− 1

)
log κ− log IF/2−1(κ)−

F

2
log(2π). (18)

B. Derivation Details
The ELBO of SQ-VAE can be calculated using the Bayes’ theorem Pθ(Zq|x)pθ(x) = pθ(x|Zq)P (Zq) as

log pθ(x) ≥ log pθ(x)−DKL(qω(Z|x)P̂φ(Zq|Z) ∥ Pθ(Zq|x)pφ(Z|Zq))

= Eqω(Z|x)P̂φ(Zq|Z)

[
log

pθ(x)Pθ(Zq|x)pφ(Z|Zq)

qω(Z|x)P̂φ(Zq|Z)

]

= Eqω(Z|x)P̂φ(Zq|Z)

[
log

pθ(x|Zq)pφ(Z|Zq)

qω(Z|x)
− log

P̂φ(Zq|Z)
P (Zq)

]

= Eqω(Z|x)P̂φ(Zq|Z)

[
log

pθ(x|Zq)pφ(Z|Zq)

qω(Z|x)

]
+ Eqω(Z|x)H(P̂φ(Zq|Z))− dz logK. (19)

6In our experiments, we use the following implementation provided by Davidson et al. (2018) to evaluate the modified Bessel function:
https://github.com/nicola-decao/s-vae-pytorch/tree/master/hyperspherical_vae

https://github.com/nicola-decao/s-vae-pytorch/tree/master/hyperspherical_vae
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B.1. Gaussian SQ-VAE

By applying the Gaussian assumption as mentioned in Section 3.2 into (19), we obtain the first two terms as

log pθ(x|Zq) = logN (fθ(Zq), σ
2I)

= − 1

2σ2
∥x− fθ(Zq)∥22 +

D

2
log(2πσ2), (20)

Eqω(Z|x)P̂φ(Zq|Z)

[
log

pφ(Z|Zq)

qω(Z|x)

]
= Eqω(Z|x)P̂φ(Zq|Z)

[
log

∏dz

i=1 pφ(zi|Zq)∏dz

i=1 qω(zi|x)

]

=

dz∑
i=1

Eqω(Z|x)P̂φ(Zq|Z)

[
log

pφ(zi|Zq)

pφ(zi|gϕ(x))

]
(21)

=
1

2

dz∑
i=1

(
−Eqω(Z|x)P̂φ(Zq|Z)

[
(zi − zq,i)

⊤Σ−1
φ (zi − zq,i)

]
+ Epφ(Z|gϕ(x))

[
(zi − gϕ,i(x))

⊤Σ−1
φ (zi − gϕ,i(x))

])
= −Eqω(Z|x)P̂φ(Zq|Z)

dz∑
i=1

[
1

2
(zi − zq,i)

⊤Σ−1
φ (zi − zq,i)

]
+

dbdz
2

. (22)

This leads to the objective function of Gaussian SQ-VAELN -SQ as (8).

B.2. vMF SQ-VAE

The ELBO for vMF SQ-VAE is obtained by replacing x with V as

log pθ(V) ≥ Eqω(Z|V)P̂φ(Zq|Z)

[
log

pθ(V|Zq)pφ(Z|Zq)

qω(Z|V)

]
− Eqω(Z|V)H(P̂φ(Zq|Z))− dz logK. (23)

By applying the von Mises-Fischer distribution as mentioned in 3.4 into (19), we obtain the first two terms as

log pθ(x|Zq) =

D∑
d=1

log vMF(f̃θ,d(Zq), κ)

= κ

D∑
d=1

v⊤
d f̃θ,d(Zq) + logCF (κ), (24)

Eqω(Z|x)P̂φ(Zq|Z)

[
log

pφ(Z|Zq)

qω(Z|x)

]
= Eqω(Z|x)P̂φ(Zq|Z)

[
log

∏dz

i=1 pφ(zi|Zq)∏dz

i=1 qω(zi|x)

]

=

dz∑
i=1

Eqω(Z|x)P̂φ(Zq|Z)

[
log

pφ(zi|Zq)

pφ(zi|gϕ,i(x))

]

=

dz∑
i=1

(
Eqω(Z|x)P̂φ(Zq|Z)

[
κφz

⊤
q,izi

]
− Epφ(Z|gϕ(x))

[
κφgϕ,i(x)

⊤zi
])

=

dz∑
i=1

(
Eqω(Z|x)P̂φ(Zq|Z)

[
κφz

⊤
q,izi

]
− κφ∥gϕ,i(x))∥22

)
= Eqω(Z|x)P̂φ(Zq|Z)

[
dz∑
i=1

κφ(z
⊤
q,izi − 1)

]
. (25)

This leads to the objective function of vMF SQ-VAELvMF-SQ as (14).



SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization

Table 6. Notations used in our formulation of SQ-VAE.

Trainable parameters
B A trainable codebook that consists of K codebook elements, {bk}Kk=1.
θ A trainable parameter for the decoder. The decoding function is denoted as fθ : Rdb×dz → RD .
ϕ A trainable parameter for the encoder. The encoding function is denoted as gϕ : RD → Rdb×dz .
φ A trainable parameter for probabilistic dequantization and quantization processes in the latent space.
ω A tuple of ϕ and φ, which is used in the probabilistic encoding process.

Latent variables
Zq A latent variable that consists of dz codebook elements, i.e., Zq ∈ Bdz , whose ith vector is denoted as zi ∈ B.
Ẑq A latent variable encoded directly from the encoder, i.e., Ẑq = gϕ(x), which approximates Zq.
Z A continuous latent variable obtained by dequantization of Zq or Ẑq.

Probabilistic processes
pθ(x|Zq) A decoder distribution whose mean is given by fθ(Zq) (e.g., Gaussian and vMF distribution).
pφ(Z|Zq) A probability distribution for the dequantization of Zq (e.g., Gaussian and vMF distribution).
qω(Z|x) A distribution for the encoding from x to Z, which consists of deterministic encoding and stochastic dequantization.
P̂φ(Zq|Z) A categorical distribution for the quantization of Z, which is inverse process of pφ(Z|Zq).

C. Training Procedures of SQ-VAEs
The training procedures of Gaussian SQ-VAE and vMF SQ-VAE are described here in Algorithms 1 and 2, respectively.
[t] indicates the index of training steps.

Algorithm 1 Gaussian SQ-VAE
Input: Dataset xdata

Initialize the codebook and parameters:
B[0], θ[0] and ω[0] := {ϕ[0],φ[0]}

for t = 1, 2, . . . , T do
x←Random minibatch from xdata

Ẑq ← gϕ[t−1](x)

Zq ∼ P̂φ[t−1](Zq|Ẑq)

g← ∇θ,ω,BLN -SQ(θ
[t−1],ω[t−1],B[t−1])

with sampled x and Zq

θ[t],ω[t],B[t] ←Update parameters using g
end for

Algorithm 2 vMF SQ-VAE
Input: Dataset xdata

Initialize the codebook and parameters:
B[0], θ[0] and ω[0] := {ϕ[0],φ[0]}
Determine a vector set W := {wl|wl ∈ SF−1}Ll=1
for t = 1, 2, . . . , T do

x←Random minibatch from xdata

V← Project x onto SF−1

Ẑq ← gϕ[t−1](V)

Zq ∼ P̂φ[t−1](Zq|Ẑq)

g← ∇θ,ω,BLvMF-SQ(θ
[t−1],ω[t−1],B[t−1])

with sampled x and Zq

θ[t],ω[t],B[t] ←Update parameters using g
end for

D. Self-Annealed Quantization
D.1. Similarity between SQ-VAE and conventional VAE

A property that is similar to Proposition 1 can be observed in Gaussian VAE with the posterior qϕ(z|x) = N (gϕ(x), s
2I).

In this case, the latent variables are perturbed by adding Gaussian noises with their variance s2I to the encoded points. When
s2 is trained, it approaches zero (Takida et al., 2021) as the training progresses, which means that the stochastic encoding
becomes almost deterministic, i.e., no perturbation.

D.2. Proof of Proposition 1

Proposition 1. Assume that pdata(x) has finite support, whereas gϕ and {bk}Kk=1 are bounded. Let ω∗ = {ϕ∗,φ∗} be
a minimizer of Epdata(x)DKL(Qω(Zq|x) ∥ Pθ(Zq|x)) with fixed θ, σ2, and {bk}Kk=1. If σ2 → 0, then σ2

φ∗ → 0.

Proof. We denote the number of samples included in the support of pdata(x) as Ndata. Let Zk
q ∈ Bdz with a set k ∈ [K]dz
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be a discrete tensor with its ith elements bki
, where ki indicates the ith coordinate of k for i ∈ [dz]. Among fθ(Z

k
q) with

all the possible k ∈ [K]dz , the set of indices corresponding to the nearest neighbor of x(n) is denoted as k̂(n) for n ∈ [Ndata],
i.e., k̂(n) = argmink∈[K]dz

∥∥x(n) − fθ(Z
k
q)
∥∥
2
. Now, Pθ(Zq|x(n)) can be evaluated by

Pθ(Zq|x(n)) ∝ Pθ(x
(n)|Zq)P (Zq)

∝ exp

(
− 1

2σ2

∥∥∥x(n) − fθ(Zq)
∥∥∥2
2

)
. (26)

Here, if σ2 → 0, then Pθ(Zq|x(n)) becomes the Kronecker delta function δk,k̂(n) .

Next, define Bk ⊂ Rdb to be a region such that k = argmink′ ∥z − bk′∥2 for z ∈ Bk. With the arbitrarily complex gϕ,
gϕ,i(x

(n)) ∈ Bk can be achieved for all n ∈ [Ndata], i ∈ [dz] and k ∈ [K], where gϕ,i(x
(n)) indicates the ith coordinates

of gϕ(x(n)). The divergence Epdata(x)DKL(Qω(Zq|x) ∥ Pθ(Zq|x)) can be minimized to 0 with

σ2
φ∗ → 0 and (27a)

gϕ∗,i(x
(n)) ∈ B

k̂
(n)
i

for all i ∈ [dz] and n ∈ [Ndata] (27b)

since (27a) and (27b) lead to Qω(Zq|x) = δk,k̂(n) . Here, k̂(n)i denotes the ith coordinates of k̂(n).

Finally, we prove that if σ2 → 0 and Epdata(x)DKL(Qω∗(Zq|x) ∥ Pθ(Zq|x)) = 0, then σ2
φ∗ → 0. Define p

(n)
1 and q

(n)
1

to be p1 = Pθ(Z
k̂(n)

q |x(n)) and q1 = Qω(Z
k̂(n)

q |x(n)), respectively. Now, consider σ2
φ∗ ̸→ 0 as σ2 → 0. It immediately

follows that p1 → 1 as σ2 → 0. Moreover, according to the assumption that pdata(x) has finite support and gϕ is bounded,
the distribution that Z = gϕ(x) follows with x ∼ pdata(x) has finite support as well, which leads to q1 ̸= 1. Here, the KL
divergence for x(n) is bounded as

DKL(Qω∗(Zq|x(n)) ∥ Pθ(Zq|x(n))) =
∑

k∈[K]dz

Qω∗(Zk
q |x(n))

[
logQω∗(Zk

q |x(n))− logPθ(Z
k
q |x(n))

]
(28)

= −H[Qω∗(Zq|x(n))]−
∑

k∈[K]dz

Qω∗(Zk
q |x) logPθ(Z

k
q |x(n))

≥ − logK − (1− q1) log(1− p1) (29)

from

H[Qω∗(Zq|x(n))] ≤ logK and (30)∑
k∈[K]dz

Qω∗(Zk
q |x(n)) logPθ(Z

k
q |x) = Qω∗(Zk̂(n)

q |x(n)) logPθ(Z
k̂(n)

q |x(n)) +
∑

k∈[K]dz

k̸=k̂(n)

Qω∗(Zk
q |x(n)) logPθ(Z

k
q |x(n))

(31)

≤ q1 log p1 + (1− q1) log(1− p1) (32)
≤ (1− q1) log(1− p1) (33)

The first term in (29) is finite since K is assumed to be finite. On the other hand, from 1 − p1 → 0 (σ2 → 0) and q1 ̸= 1,
it follows that the second term in (29) diverges to infinity as σ2 → 0. This leads to the infinite KL divergence and contradicts
to the fact that σφ∗ is a minimizer of Epdata(x)DKL(Qω(Zq|x) ∥ Pθ(Zq|x)). Thus, we must have σφ∗ → 0 as σ2 → 0.
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D.3. Details of Section 3.3

We set the codebook capacity to (db,K) = (64, 128) for all the models. We implement the decoder and encoder using the
following standard two-layer ConvNet architectures:

x ∈ R28×28×1 → Conv
(4×4)
32 → BatchNorm→ ReLU size: (32, 14, 14)

→ Conv
(4×4)
64 size: (64, 7, 7)

Zq ∈ B7×7 ⊂ R64×7×7 → ConvT
(4×4)
32 → BatchNorm→ ReLU size: (32, 14, 14)

→ ConvT
(4×4)
1 → Sigmoid size: (1, 28, 28),

where the notations for the architecture parts are listed in Table 7.

The Adam optimizer is used with the initial learning rate of 0.001. The temperature parameter in Gumbel–softmax is annealed
with the same preset schedule as that in Appendix E.

D.4. Case of vMF SQ-VAE

As for vMF SQ-VAE, we have the following proposition:

Proposition 2. Assuming that pdata(x) has finite support, whereas gϕ and {bk}Kk=1 are bounded. Let ω∗ = {ϕ∗,φ∗} be
a minimizer of Epdata(x)DKL(Qω(Zq|x) ∥ Pθ(Zq|x)) with fixed θ, κ, and {bk}Kk=1. If κ→∞, then κφ∗ →∞.

This proposition is similar to Proposition 1. Thus, it can be proved similarly to the proof of Proposition 1 while noting the
following:

Pθ(Zq|x(n)) ∝ Pθ(V
(n)|Zq)P (Zq)

∝ exp

(
κ

D∑
d=1

v
(n)⊤
d f̃θ,d(Zq)

)
, (34)

where −1 ≤ v
(n)⊤
d f̃θ,d(Zq) ≤ 1 since the vectors live on SF−1. Here, if the concentration κ approaches to∞, then

Pθ(Zq|x(n)) becomes the Kronecker delta function δk,k̂(n) .

E. Experimental Details
Throughout all the experiments, we apply the same annealing schedule as that used by Jang et al. (2017) for the temperature
parameter of Gumbel–softmax, which is τ = exp(10−5 · t), where t denotes the global training step. We set the VQ-VAE
hyperparameter β in (4) and weight decay γ in EMA to 0.25 and 0.99, respectively, as suggested in van den Oord et al. (2017).
For SQ-VAEs, we use Z = Zq instead of sampling Z ∼ pφ(Z|Ẑq) in the Monte Carlo estimate of the expectations in (5)
as in Algorithms 1 and 2, which stabilizes the estimation of Monte Carlo.

E.1. Gaussian SQ-VAE on Image Datasets

E.1.1. DATASETS AND PREPROCESSING

MNIST and Fashion-MNIST They contain 28×28 grayscale images, which are categorized into 10 classes. We use the
default train/test split (60,000/10,000 samples) and further split 10,000 samples from the training set as the validation set.

CIFAR10 CIFAR10 contains 10 classes of 32×32 RGB images. We use the default train/test split (50,000/10,000 samples)
and further split 10,000 samples from the training set as the validation set.

CelebA CelebA consists of 202,599 colored face images. We use the default train/valid/test split. We preprocess the
images with a center cropping of 140×140 and resize them to 64×64 using the bilinear interpolation following these previous
studies (Tolstikhin et al., 2018; Ghosh et al., 2020).
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Table 7. Notations of network layers used on image datasets.

Notation Description
Conv

(4×4)
n 2D Convolutional layer (channel= n, kernel= 4× 4, stride= 2)

Conv
(3×3)
n 2D Convolutional layer (channel= n, kernel= 3× 3, stride= 1)

Conv
(1×1)
n 2D Convolutional layer (channel= n, kernel= 1× 1, stride= 1)

ConvT
(4×4)
n 2D Transpose convolutional layer (channel= n, kernel= 4× 4, stride= 2)

ConvT
(3×3)
n 2D Transpose convolutional layer (channel= n, kernel= 3× 3, stride= 1)

ResBlockn Resblock (ReLU → Conv
(3×3)
n → BatchBorm → ReLU → Conv

(1×1)
n → BatchBorm+ identity mapping)

E.1.2. MODEL DESCRIPTION AND TRAINING

We adopt the ConvResNets from the GitHub repository of DeepMind sonnet/examples/vqvae example.ipynb7.
These networks include convolutional layers, transpose convolutional layers, and ResBlocks. Their notations are listed in
Table 7. We use the following network architectures for the encoders and decoders on MNIST and Fashion-MNIST:

x ∈ R28×28 → Conv
(4×4)
db/2

→ BatchNorm→ ReLU size: (db/2, 14, 14)

→ Conv
(4×4)
db

size of (db, 7, 7)

→ [ResBlockdb
]×Nresblock

size of (db, 7, 7)

Zq ∈ B7×7 ⊂ Rdb×7×7 → [ResBlockdb
]×Nresblock

size of (db, 7, 7)

→ ConvT
(4×4)
db/2

→ BatchNorm→ ReLU size: (db/2, 14, 14)

→ ConvT
(4×4)
1 → Sigmoid size: (1, 28, 28),

where Nresblock is set to 2 and 6 for MNIST and Fashion-MNIST, respectively. We use the following network architectures
for CIFAR10 and CelebA:

x ∈ R32×32×3 → Conv
(4×4)
db/2

→ BatchNorm→ ReLU size: (db/2, w/2, h/2)

→ Conv
(4×4)
db

→ BatchNorm→ ReLU size: (db, w/4, h/4)

→ Conv
(3×3)
db

size of (db, w/4, h/4)

→ [ResBlockdb
]×6 size of (db, w/4, h/4)

Zq ∈ Bw/4×h/4 ⊂ Rdb×w/4×h/4 → [ResBlockdb
]×6 size of (db, w/4, h/4)

→ ConvT
(3×3)
db/2

→ BatchNorm→ ReLU size: (db, w/4, h/4)

→ ConvT
(4×4)
db/2

→ BatchNorm→ ReLU size: (db/2, w/2, h/2)

→ ConvT
(4×4)
3 → Sigmoid size: (3, w, h),

where w and h denote the width and height of the target images, respectively.

We use the Adam optimizer (Kingma & Ba, 2015) with initial learning rates of 0.0003 and 0.001 for VQ-VAE and the other
models, respectively. The learning rate will be halved every 3 epochs if the validation loss is not improving. We train 100
epochs with the minibatch size of 32 for MNIST, Fashion-MNIST, and CIFAR10 and 70 epochs for CelebA.

Regarding the codebook reset applied in Figure 5 with EMA, we adopt the same procedure as that adopted by Williams
et al. (2020). At every 20th batch, the two codes that are most and least used in the recent 20 batches are found, which are
denoted as bmost and bleast, respectively. If the usage of bleast is less than 3% of that of bmost, the position of bleast is reset
to breset

least ∼ N (bmost, s
2
resetI) with s2reset = 0.01.

We set the dimension of the latent space for the VAE on CelebA to 72 such that the number of bits used to represent the latent
space is the same as that of the other models, i.e., 32 bits × 72 = 9 bits × 16 × 16. We use the same architecture for VAE
as that of the other models except appending a linear layer at the end of the encoder and doing the same at the beginning

7https://github.com/deepmind/sonnet/blob/v2/examples/vqvae_example.ipynb

https://github.com/deepmind/sonnet/blob/v2/examples/vqvae_example.ipynb
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VQ-VAE w/ EMA
(occasional poor initialization)

VQ-VAE w/ EMA

VQ-VAE w/ EMA
+ codebook reset

SQ-VAE (I)

SQ-VAE (II)

SQ-VAE (III)

Quantization w/ fixed

Source

Figure 6. Reconstructed samples of CelebA 64×64.

of the decoder. This is to adjust the dimension of latent variables.

E.1.3. RECONSTRUCTED AND GENERATED SAMPLES ON CELEBA 64×64

We show examples of reconstructed images and images generated with the learned approximated prior in Figures 6 and 7.
We adopt PixelCNN (van den Oord et al., 2016) as the estimator of the prior while we believe the quality of synthetic samples
of SQ-VAE can be improved by using other stronger autoregressive estimators (Child et al., 2019). We observe that the quality
of the samples from VQ-VAE varies depending on random seeds, as shown in Figure 6.

E.2. Gaussian SQ-VAE on Speech Dataset

E.2.1. DATASETS AND PREPROCESSING

VCTK VCTK version 0.80 (Veaux et al., 2017) is a speech dataset of 109 English speakers. Each speaker reads out about
400 sentences, which were mostly selected from a newspaper. We use 90% of the samples as the training set, and the remaining
10% as the test set.

We preprocess waveforms following the approach of the GitHub repository kan-bayashi/ParallelWaveGAN8, which
is one of the most popular repositories related to speech generation and provides implementations of several types of vocoder
such as Parallel WaveGAN (Yamamoto et al., 2020) and MelGAN (Kumar et al., 2019). The details of the preprocessing
are as follows.

1. We resample 48000 Hz signals to 24000 Hz.
2. We extract 80-dimensional Mel spectrogram features with a 50.0 ms Hann window, 12.5 ms frame shift, 2048-point FFT,

and 80 Hz and 7600 Hz frequency cutoffs.
3. We convert the amplitude spectrograms to dB-scaled spectrograms and clip the bins below−200.0 dB.
4. We perform dimension-wise standardization.

8https://github.com/kan-bayashi/ParallelWaveGAN

https://github.com/kan-bayashi/ParallelWaveGAN
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Table 8. Notations of network layers on speech datasets.

Notation Description
Conv

(3)
n 1D Convolutional layer (channel= n, kernel= 3, stride= 1)

Conv
(4)
n 1D Convolutional layer (channel= n, kernel= 4, stride= 2)

Jitter Time-jitter regularization (Chorowski et al., 2019) operation
Concat( . . . ) Concatenation operation
Embeddingn Lookup table (dimension= n)
Interpolate Nearest-neighbor interpolation operation
BiGRUn Bidirectional gated recurrent unit (Cho et al., 2014) layer (dimension= n)

ZeroSpeech 2019 ZeroSpeech 2019 English (Dunbar et al., 2019) is a multi-speaker corpus sampled at 16000 Hz.
This corpus was originally made for a speech task called acoustic unit discovery. It consists of four subsets: Train Voice
Dataset (directory train/voice), Train Unit Dataset (directory train/unit), Train Parallel Dataset (directories
train/parallel/source and train/parallel/voice), and Test Dataset (directory test). We use the .wav
files under the directories train/voice and train/unit for training data, following van Niekerk et al. (2020), and
the .wav files under the directory train/parallel/voice for testing.

We preprocess waveforms following the approach of van Niekerk et al. (2020). The details of the preprocessing are as follows:

1. We scale the maximum amplitude of each audio signal to 0.999.
2. We pre-emphasize the scaled audio signals with a first-order autoregressive filter: y[n]− 0.97 ∗ y[n− 1].
3. We extract 80-dimensional Mel-spectrogram features with a 25.0 ms Hann window, 10.0 ms frame shift, 2048-point FFT,

and 50 Hz and 8000 Hz frequency cutoffs.
4. We convert the amplitudes to decibels and clip those bins that are 80.0 dB lower than the maximum.
5. We rescale the dB-scaled Mel-spectrogram by dividing it by 80.0.

E.2.2. MODEL DESCRIPTION AND TRAINING

We adopt the model proposed by van Niekerk et al. (2020)9 as a baseline and replace its RNN-based vocoder with a projection
layer. The encoder consists of a stack of five convolutional layers, which downsamples the input by 2, and the latent
representation is quantized with 512 codes (K = 512). The decoder aims to reconstruct the normalized log-Mel spectrogram,
conditioned on both the quantized latent representation and a speaker embedding. Time-jitter regularization (Chorowski
et al., 2019) is applied with a replacement probability of 0.5.

x ∈ R80×N → Conv
(3)
768 → BatchNorm→ ReLU size: (768, N)

→ Conv
(3)
768 → BatchNorm→ ReLU size: (768, N)

→ Conv
(4)
768 → BatchNorm→ ReLU size: (768, N/2)

→ Conv
(3)
768 → BatchNorm→ ReLU size: (768, N/2)

→ Conv
(3)
768 → BatchNorm→ ReLU size: (768, N/2)

→ FC64 size: (64, N/2),

z ∈ R64×N/2 → Jitter size: (64, N/2)

→ Concat(Embedding64) size: (128, N/2)

→ Interpolate size: (128, N)

→ BiGRU128 size: (256, N)

→ BiGRU128 size: (256, N)

→ FC80 size: (80, N).

The notations of the layers are listed in Table 8, and N denotes the number of frames of an input data.

Following van Niekerk et al. (2020), the model is trained on a minibatch of 52 segments, each 32 frames long. We use the
Adam optimizer with an initial learning rate of 4 · 10−4, and the learning rate is halved after 300k and 400k steps. The network

9https://github.com/bshall/ZeroSpeech

https://github.com/bshall/ZeroSpeech


SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization

Table 9. Evaluation on VCTK and ZeroSpeech 2019. The MSE (dB2) of sample reconstruction is evaluated using the test set.

Model
MSE (dB2)

VCTK ZeroSpeech 2019
VQ-VAE w/ EMA (σ2 = 10−2) 31.25± 0.40 35.20± 1.21
VQ-VAE w/ EMA (σ2 = 10−1) 30.89± 0.46 34.33± 1.57
VQ-VAE w/ EMA (σ2 = 100) 29.59± 0.25 40.40± 1.24
VQ-VAE w/ EMA (σ2 = 101) 36.92± 0.95 79.30± 42.95
Gaussian SQ-VAE (I) 25.52± 0.08 33.17± 1.11
Gaussian SQ-VAE (III) 25.94± 0.22 34.35± 1.07
Gaussian SQ-VAE (IV) 24.68± 0.21 32.32± 0.88

Table 10. Evaluation on ZeroSpeech 2019. The average ABX score is evaluated on the test set.

Model ABX score ↓
VQ-VAE w/ EMA (σ2 = 10−2) 22.36± 0.14
VQ-VAE w/ EMA (σ2 = 10−1) 22.53± 0.33
VQ-VAE w/ EMA (σ2 = 100) 23.78± 0.74
VQ-VAE w/ EMA (σ2 = 101) 35.40± 6.73
Gaussian SQ-VAE (I) 22.11± 0.62
Gaussian SQ-VAE (III) 22.13± 0.29
Gaussian SQ-VAE (IV) 24.46± 0.66

is trained for a total of 500k steps.

We do not apply SQ-VAE (II) in this evaluation because of the variable length property of speech data and the different
manipulations of speech signals between training and inference. SQ-VAE (II) has one parameter σ2

φ(x) for one trimmed
speech signal (32 frames long) in training but has to deal with longer signals in inference. σ2

φ(x) is calculated based on the
content of a trimmed signal during training regardless of the content of the whole signal. That means there is a discrepancy
between training and inference with SQ-VAE (II). This discrepancy does not exist when it is applied to image datasets, where
the size of images is fixed. On the other hand, SQ-VAE (III) has a parameter σ2

φ,i(x) for every 2 consecutive frames regardless
of the signal length. This parameterization is applicable even when signals are trimmed to 32 frames long during training
but are not trimmed during inference. The same is true for SQ-VAE (IV).

E.2.3. DETAILS OF EXPERIMENTAL RESULTS

The MSEs of VQ-VAE models with various σ2 values are shown in Table 9.

E.2.4. RECONSTRUCTED SAMPLES

As a sample of demonstration, we randomly select two speech signals from our test split of VCTK and show their reconstructed
log-Mel spectrograms from VQ-VAE and SQ-VAE in Figures 8 and 9, respectively.

E.2.5. ACOUSTIC UNIT DISCOVERY

We compare the performance of SQ-VAE with that of VQ-VAE in the acoustic unit discovery task, which evaluates the
feasibility of a representation to discriminate phonetic units. VQ-VAE is a popular approach used for this task (Chorowski
et al., 2019; Eloff et al., 2019; van Niekerk et al., 2020; Tjandra et al., 2020).

We follow the evaluation scheme of ZeroSpeech 2019 (Dunbar et al., 2019) and use the minimal pair ABX discriminability
test (Schatz et al., 2013) for comparison. This test asks whether a triphone X is more similar to triphone A than triphone B.
Here, A and X are instances of the same triphone (e.g., “beg”), whereas B differs in the middle phone (e.g., “bag”). Moreover,
A and B are selected from the same speaker, but X is selected from a different speaker. An ABX score is reported as an
aggregated error rate over all pairs of triphones in the test set. The lower the ABX score, the better the performance. We
compute the ABX scores of the trained models using Test Dataset (the .wav files under the directory test).
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Surprisingly, as shown by the results in Table 10, SQ-VAE is on par with VQ-VAE in this experiment, with no statistically
significant difference. In addition, SQ-VAE (IV) performs slightly worse than SQ-VAE (I) or SQ-VAE (III) here, although
SQ-VAE (IV) is better in terms of MSE as shown in Table 3. We plan to perform further analysis on the learned representations
in our future work.

E.3. vMF SQ-VAE on Vision Dataset

E.3.1. DATASETS AND PREPROCESSING

CelebAHQ-Mask CelebAHQ-Mask is a dataset of colored face images with segmentation maps, which have 19 categories
including all facial components and accessories such as skin, nose, eyes, eyebrows, ears, mouth, lip, hair, hat, eyeglass, earring,
necklace, neck, and cloth.

Gray-CelebA We obtain Gray-CelebA by converting CelebA to grayscale. As in CelebA, we preprocess the grayscaled
images with center cropping of 140×140 and resized to 64×64 using the bilinear interpolation.

E.3.2. SETUP

CelebAHQ-Mask We set the codebook capacity to (db,K) = (64, 64) for all the discrete models. In SQ-VAE, we
introduce a hypersphere S19−1 as a space for projecting data categories. We set the projections of the categories (wl)

L
l=1

to one-hot vectors, where all wl reside on S18 and are orthogonal to each others.

For CIFAR10 and CelebA, we use the following networks for the encoder and decoder, respectively.

x ∈ R64×64×19 → Conv
(4×4)
32 → BatchNorm→ ReLU size: (32, 32, 32)

→ Conv
(4×4)
64 → BatchNorm→ ReLU size: (64, 16, 16)

→ Conv
(4×4)
64 size of (64, 8, 8)

→ [ResBlock64]×2 size of (64, 8, 8)

Zq ∈ B8×8 ⊂ R64×8×8 → [ResBlock64]×2 size of (64, 8, 8)

→ ConvT
(4×4)
64 → BatchNorm→ ReLU size: (64, 16, 16)

→ ConvT
(4×4)
32 → BatchNorm→ ReLU size: (32, 32, 32)

→ ConvT
(4×4)
19 size: (19, 64, 64).

In vMF SQ-VAE, the outputs of the encoder and decoder are normalized along the channel axis so that the normalized vectors
are on the hypersphere S64−1 and S19−1, respectively.

In this experiment, the optimizer, the initial learning rate and the learning rate scheduling are the same as those in Appendix E.1.
We run 70 epochs with a minibatch size of 32.

In VAE, we set the dimension of the latent space to 12 such that the number of bits representing the latent space is the same
as that of the other models, i.e., 32 bit × 12 = 6 bit × 8 × 8. We use the same architecture for VAE as those of the other
models except adding a linear layer to the end of the encoder.

MNIST and Gray-CelebA We set the codebook capacity (db,K) to (64, 128) and (64, 512) on MNIST and Gray-CelebA,
respectively. We introduce a unit circleS1 as a space for projecting data categories and set (wl)

L
l=1 aswl = [cos(αl), sin(αl)]

⊤

with αl =
π
L l, where all wl reside on S1. The common network architecture for MNIST and Gray-CelebA is as follows:

x ∈ R28×28×256 → Conv
(4×4)
32 → BatchNorm→ ReLU size: (32, 14, 14)

→ Conv
(4×4)
64 size of (64, 7, 7)

→ [ResBlock64]×2 size of (64, 7, 7)

Zq ∈ B7×7 ⊂ R64×7×7 → [ResBlock64]×2 size of (64, 7, 7)

→ ConvT
(4×4)
32 → BatchNorm→ ReLU size: (32, 14, 14)

→ ConvT(4×4)
c size: (c, 28, 28),
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and

x ∈ R64×64×256 → Conv
(4×4)
32 → BatchNorm→ ReLU size: (32, 32, 32)

→ Conv
(4×4)
64 → BatchNorm→ ReLU size: (64, 16, 16)

→ Conv
(4×4)
64 size of (64, 8, 8)

→ [ResBlock64]×6 size of (64, 8, 8)

Zq ∈ B8×8 ⊂ R64×8×8 → [ResBlock64]×6 size of (64, 8, 8)

→ ConvT
(4×4)
64 → BatchNorm→ ReLU size: (64, 16, 16)

→ ConvT
(4×4)
32 → BatchNorm→ ReLU size: (32, 32, 32)

→ ConvT(4×4)
c size: (c, 64, 64),

where c is the the number of output channel, which is 2 for vMF SQ-VAE and 256 for other models. In vMF SQ-VAE, the
outputs of the encoder and decoder are normalized along the channel axis so that the normalized vectors are on hyperspheres
S64−1 and S2−1, respectively.

In this experiment, the optimizer, the initial learning rate and the learning rate scheduling are the same as those in Appendix E.1.
We run 100 and 70 epochs on MNIST and Gray-CelebA, respectively, with a minibatch size of 32.

We set the latent space dimension of VAE to 11 on MNIST and 18 on Gray-CelebA. In this way, the number of bits representing
the latent space becomes almost the same as that of the other models, i.e., 32bit×11 ≈ 7bit×7×7 and32bit×18 = 9bit×8×8.

F. Experiments on CelebA HQ 256×256
To demonstrate that our SQ-VAE is applicable to larger scale datasets, we apply Gaussian SQ-VAE (I) to CelebA HQ 256×256.
We train Gaussian SQ-VAE (I) using the following network architecture:

x ∈ R256×256×3 → Conv
(4×4)
16 → BatchNorm→ ReLU size: (16, 128, 128)

→ Conv
(4×4)
32 → BatchNorm→ ReLU size: (32, 64, 64)

→ Conv
(4×4)
64 → BatchNorm→ ReLU size: (64, 32, 32)

→ Conv
(3×3)
64 size of (64, 32, 32)

→ [ResBlock64]×6 size of (64, 32, 32)

Zq ∈ B32×32 ⊂ R64×32×32 → [ResBlock64]×6 size of (64, 32, 32)

→ ConvT
(3×3)
64 → BatchNorm→ ReLU size: (64, 32, 32)

→ ConvT
(4×4)
32 → BatchNorm→ ReLU size: (32, 64, 64)

→ ConvT
(4×4)
16 → BatchNorm→ ReLU size: (16, 128, 128)

→ ConvT
(4×4)
3 → Sigmoid size: (3, 256, 256),

We follow the same experimental setup as that on CelebA 64×64 except for the network architecture. We show examples
of reconstructed images of the models in Figure 10(b).

To ease the difficulty of training a feasible prior, we adapt the hierarchical structure which is popular in the recent
autoencoder-based works (Razavi et al., 2019; Dhariwal et al., 2020; Williams et al., 2020). We follow a similar procedure
to that of Dhariwal et al. (2020) by stacking two SQ-VAE models. The architecture of the first SQ-VAE is described as above.
The second SQ-VAE has two extra Conv(4×4) layers at the end of its encoder and the beginning of its decoder. Also, its latent
space is B8×8. We use two PixelSNAIL (Chen et al., 2018) models to act as the prior and the upsampler between the latent
codes of the two SQ-VAEs. As a result, the second PixelSNAIL is conditioned by the latent code of the first SQ-VAE. We
show images generated with the learned approximated prior in Figure 10(c). As we have demonstrated in Section 5 that
SQ-VAE enables to learn good discrete latent features and produce superior reconstructed samples, we believe the quality
of synthetic samples of SQ-VAE can be improved via other stronger autoregressive estimators.
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(a) VQ-VAE (b) VQ-VAE (with occasional poor initialization)

(c) Quantization w/ fixed σ2
q (d) SQ-VAE (I)

(e) SQ-VAE (II) (f) SQ-VAE (III)

Figure 7. Generated samples of CelebA 64×64.
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(a) Source (b) VQ-VAE w/ EMA (σ2 = 10−2)

(c) VQ-VAE w/ EMA (σ2 = 10−1) (d) VQ-VAE w/ EMA (σ2 = 100)

(e) VQ-VAE w/ EMA (σ2 = 101) (f) SQ-VAE (I)

(g) SQ-VAE (III) (h) SQ-VAE (IV)

Figure 8. Reconstructed log-Mel spectrograms of p323 064 in VCTK.
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(a) Source (b) VQ-VAE w/ EMA (σ2 = 10−2)

(c) VQ-VAE w/ EMA (σ2 = 10−1) (d) VQ-VAE w/ EMA (σ2 = 100)

(e) VQ-VAE w/ EMA (σ2 = 101) (f) SQ-VAE (I)

(g) SQ-VAE (III) (h) SQ-VAE (IV)

Figure 9. Reconstructed log-Mel spectrograms of p341 285 in VCTK.
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(a) Source (b) Reconstructed samples

(c) Generated samples

Figure 10. Samples of CelebAHQ 256×256 from SQ-VAE (I).


