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Abstract
We present a robust learning algorithm to detect
and handle collisions in 3D deforming meshes.
We first train a neural network to detect collisions
and then use a numerical optimization algorithm
to resolve penetrations guided by the network.
Our learned collision handler can resolve colli-
sions for unseen, high-dimensional meshes with
thousands of vertices. To obtain stable network
performance in such large and unseen spaces, we
apply active learning by progressively inserting
new collision data based on the network infer-
ences. We automatically label these new data
using an analytical collision detector and progres-
sively fine-tune our detection networks. We evalu-
ate our method for collision handling of complex,
3D meshes coming from several datasets with dif-
ferent shapes and topologies, including datasets
corresponding to dressed and undressed human
poses, cloth simulations, and human hand poses
acquired using multi-view capture systems.

1. Introduction
Learning to model or simulate deformable meshes is be-
coming an important topic in computer vision and computer
graphics, with rich applications in real-time physics simula-
tion (Holden et al., 2019), animation synthesis (Qiao et al.,
2020), and cross-domain model transformation (Cudeiro
et al., 2019). Central to these methods are generative models
that map from high-dimensional deformed 3D meshes with
rich details to low-dimensional latent spaces. These gener-
ative models can be trained from high-quality groundtruth
datasets, and they infer visually or physically plausible
meshes in real time. These 3D datasets can also be gen-
erated using physics simulations (Narain et al., 2012; Tang
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Figure 1. Our method (N-Penetrate) consists of a (learned or ana-
lytic) latent space, a neural collision detector, and an optimization-
based collision handler. We progressively insert data by randomly
sampling in the latent space (sampler). We then use a Newton-
type method to pull unlabeled samples towards the learned deci-
sion boundary (black arrows in the white, feasible domain). The
groundtruth collision labels are generated using an analytic col-
lision detector (penetration computation). Finally, we use three
different loss functions for samples on the positive (orange), nega-
tive side (green), and near (blue) the decision boundaries.

et al., 2012) or reconstructed from the physical world using
multi-view capture systems (Smith et al., 2020). In general,
3D deformable meshes are more costly to acquire, so 3D
mesh datasets typically come in smaller sizes than image
or text datasets. Inference models trained using such small
datasets can suffer from over-fitting and generate meshes
with various visual artifacts. For example, human pose
embedding networks (Tan et al., 2018b; Gao et al., 2018)
can have excessive deformations, and interaction networks
(Battaglia et al., 2016) can result in non-physically-based
object motions.

The goal of our research is to resolve a major source of
visual artifacts: self-collisions. Instead of acquiring more
data, we argue that domain-specific knowledge could also
be utilized to significantly improve the accuracy of inference
models. There have been several prior research works along
this line. For example, (Yang et al., 2020b) exploited the
fact that near articulated meshes can be divided into multiple
components, and they train a recursive autoencoder to stitch
the components together. (Zheng et al., 2021) utilized the
locality of secondary physics motions to learn re-targetable
and scalable real-time dynamics animation. Recently, (Tan
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et al., 2021) studied learning-based collision avoidance for
3D meshes corresponding to human poses. They proposed
a deep architecture to detect collisions and used numerical
optimizations to resolve detected collisions. However, (Tan
et al., 2021) used a large mesh dataset to obtain stable per-
formance of neural collision detection. Indeed, a deformed
3D mesh typically involves more than 104 elements (voxels,
points, triangles) where any pair of two elements can have
collisions. Therefore, a huge amount of data is required
to present the inference model with enough examples of
collisions between all possible element pairs.

Main Results: We present a robust method to train a neural
collision handler, N-Penetrate, for complex, 3D deformable
meshes using active learning. Our key observation is that
the distribution of penetrating meshes can have a long tail
and active learning is an effective method for modeling the
tail (Geifman & El-Yaniv, 2017). Unfortunately, most 3D
mesh datasets do not focus on generating samples in the
tail and cannot be used to train stable collision detectors.
In order to overcome these issues, our approach combines
three main ideas:

• We use active learning to progressively insert new sam-
ples into the dataset. Collision labels for the new sam-
ples are automatically generated;

• We use a risk-seeking approach to prioritize samples
near the decision boundary, so that the inserted samples
can best help improve our accuracy;

• We use different loss functions for samples far from
and close to the decision boundary.

Our overall approach, N-Penetrate, is shown in Fig. 1. We
show that our training method is versatile and can learn
to detect collisions for meshes encoded in various low-
dimensional spaces, such as a learned latent-space (Yang
et al., 2020a) and a domain-specific human body deforma-
tion representation (Loper et al., 2015). For either encoding,
we further show that our active learning technique outper-
forms supervised learning in terms of data efficacy and ac-
curacy. We evaluate our method on three types of complex
datasets:

• Dressed and undressed human poses, including SCAPE
(Anguelov et al., 2005), MIT Swing (Vlasic et al.,
2008), MIT Jump (Vlasic et al., 2008), and AMASS-
MPIMosh (Mahmood et al., 2019) containing different
genders and body shapes with 54387 meshes;

• Cloth simulations from (Yang et al., 2020a) with com-
plex deformation and self-collisions;

• Human hands captured by a multi-view camera system.

Compared to prior supervised learning approaches, our
method exhibits much higher data efficacy and accuracy (up
to 98.1%) and uses fewer training samples (up to 48.12%
less). Given a training dataset of the same size, our method

reduces the false negative rate by 14.27% on average, and
we are able to resolve more self-colliding meshes. For a
test size with 1 × 104 meshes, our method only costs 1.32s
on the GPU. Overall, ours is the first practical method for
neural collision handling of general, 3D complex meshes.

2. Related Work
We review related works in mesh embedding, collision han-
dling, and active learning.

Generative Model of Dense 3D Shapes: Categorized by
shape representations, generative models can be based on
point clouds (Qi et al., 2017), volumetric grids (Wu et al.,
2015), multi-charts (Groueix et al., 2018), surface meshes
(Tan et al., 2018a), or semantic data structures (Liu et al.,
2019). We use mesh-based representations with fixed topolo-
gies, as most collision detection libraries are designed for
meshes. Some generative models can learn to represent gen-
eral meshes of changing topology, e.g., for modeling meshes
of hierarchical structure (Yu et al., 2019) or modeling scenes
with many objects (Ritchie et al., 2019). However, these ap-
plications typically involve only static meshes with no need
for collision detection. There is a separate research direction
on domain-specific mesh deformation representation, e.g.,
SMPL/STAR human models (Loper et al., 2015; Osman
et al., 2020), wrinkle-enhanced cloth meshes (Lahner et al.,
2018), and skeletal skinning meshes (Xu et al., 2020). Our
method is versatile and can be combined with both a learned
embedding (Tan et al., 2018a) and a SMPL representation
(Loper et al., 2015; Osman et al., 2020).

Collision Prediction & Handling: Although collision han-
dling is a well-studied area, there can still be a non-trivial
computational burden. Prior methods (Pan et al., 2012; Kim
et al., 2018; Govindaraju et al., 2005) use spatial hashing,
bounding volume hierarchies, and the GPU to accelerate
the computation by pruning non-colliding primitives, but
they are incompatible with meshes represented in latent
space. Handling collisions is even more challenging, and
prior methods either use penalty forces coupled with dis-
crete collision detectors (Tang et al., 2012) or hard con-
straints coupled with continuous collision detectors (Narain
et al., 2012). All these methods rely on physics-based con-
straints to handle collisions. To speedup collision handling
in human reconstruction, in (Bogo et al., 2016), the authors
used capsules and Gaussian distributions to approximate the
body shape and the collision penalty function. However,
this method could result in unnecessarily large deformations
in resolving collisions, while our method uses constrained
optimizations to maximize shape consistency. Recently,
many learning methods such as (Gundogdu et al., 2019;
Patel et al., 2020) have been designed to predict the cloth
movement or deformation in 3D, but they do not perform
collision handling explicitly.
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Variable Definition

G = ⟨V,E⟩ graph with vertices and edges
E, D encoder, decoder
θE,D,C learnable parameters
Zall = (Z0 Z1 ⋯Z∣Z0∣ ) autoencoder latent code
Z latent region of sampling
PD penetration depth
CSE global collision state encoder
CP local collision state predictor
MLPc collision classifier
S0, S1,⋯, S∣Z0∣ neural collision indicator

Variable Definition

ACAP feature transform function
θC neural collision network parameters
Ic collision state label
E collision handler objective function
D dataset for learning θE,D

Dd,p,n,c dataset for learning θC
ϵ threshold for boundary samples
CE cross-entropy loss
L● neural network losses
w● weights for each loss

Active Learning: An active learner alternates between
drawing new samples and exploiting existing samples.
These samples can be drawn guided by an acquisition func-
tion in Bayesian optimization (Niculescu et al., 2006) or
from an expert algorithm (De Raedt et al., 2018). Active
learning has been applied to approximate the boundary of
the configuration space (Pan et al., 2013; Tian et al., 2016;
Das et al., 2017), where the feasible domain of collision
constraints is parameterized using a kernel SVM. However,
these methods are limited to rigid or articulated deforma-
tions and are not applicable to general 3D deformations.
More broadly, active learning has been adopted in various
prior works to accelerate data labeling in image classifica-
tion (Gal et al., 2017) and object detection (Aghdam et al.,
2019) tasks. These methods progressively identify unla-
beled images to be forwarded to experts for labelling. An
alternative method for selecting the samples is identifying
a coreset (Paul et al., 2014), and the authors of (Sener &
Savarese, 2018) propose a practical algorithm for coreset
identification via k-center clustering. These methods con-
sider a discrete dataset, while we assume a continuous latent
space of samples for training generative models and use a
risk-seeking method to identify critical new samples.

3. Neural Collision Handler
We introduce our neural collision handling architecture,
based on which we build our active learning method. All
notations are summarized in the symbol table.

A mesh is represented by the graph G = ⟨V,E⟩, where V is
a set of vertices, and E is a set of edges. We assume that all
the meshes have the same topology, that is, all the meshes
differ in V while the connectivity E stays the same. We
further limit ourselves to manifold triangle meshes, i.e., each
edge is incident to at most two triangles, and two triangles
are adjacent if and only if they share an edge. No other
assumptions are made on the mesh deformation and our
method can handle high-resolution meshes consisting of
thousands of vertices via efficient embedding. As a result,
our method can represent general, complex meshes from
various domains of applications. We denote a mesh as self-
collision-free if and only if any pair of two non-adjacent
triangles are not intersecting each other. Our goal is to
design a mesh-based generative neural architecture where
we take an input as a coordinate in the latent space and
output a 3D mesh without self-collisions. The latent space

is defined as a low-dimensional space that can be mapped
to high-dimensional meshes injectively using a learned or
analytic decoder function. Furthermore, the latent-to-mesh
mapping is differentiable and supports multiple downstream
applications explained in Sec. 3.3. We have experimented
with two latent-spaces, a learned bilevel autoencoder (Yang
et al., 2020a) and the SMPL human body representation
(Loper et al., 2015), which we briefly review below.

3.1. Bilevel Autoencoder

The bilevel autoencoder architecture maps a deformed mesh
to two levels of latent codes. We only want to encode
intrinsic mesh information such as curvatures instead of
extrinsic rigid transformations because mesh shapes are
invariant to extrinsic transformation. Therefore, we first use
the as-consistent-as-possible (ACAP) feature transformation
(Gao et al., 2019) to factor out rigid transformations. The
ACAP feature vector is first brought through the level-1
autoencoder and mapped to a latent code Z0. We further
hypothesize that the error is sparsely distributed throughout
the mesh vertices. Therefore, we then use an attention
mechanism trained with a sparsity prior to decompose the
mesh into sub-domains. The sparsity prior is designed such
that each domain can be mapped to a single axis of the
latent space, i.e., a single entry of Z0. Afterwards, a set of
∣Z0∣ level-2 autoencoders is introduced to further reduce the
error, with each autoencoder dedicated to one entry of Z0.
Their latent codes are denoted as Z1,⋯, Z∣Z0∣. The ultimate
mesh is reconstructed from Zall by combining level-1 and
level-2 latent codes:

Zall = (Z0 Z1 ⋯Z∣Z0∣ )

D(Zall, θD) =
∣Z0∣
∑
i=0

Di(Zi, θDi)

V =ACAP−1(D(Zall, θD)),

where Di is the ith decoder, with θDi being the learnable
parameters. The mesh vertices V are reconstructed by invert-
ing the ACAP transformation. Correspondingly, we have the
encoder defined as E(ACAP(V ), θE) = Zall, which maps
the vertices of a mesh to the latent space, with θE being the
learnable parameters.

Mesh A

Mesh B

Figure 2. PD (red arrow)
is the locally minimal
translation for mesh B (or-
ange) to be collision-free
from mesh A.

Our neural collision detector pre-
dicts whether the mesh V is sub-
ject to self-collisions using latent
information Zall. The extent to
which two meshes collide can be
measured by the notion of Pene-
tration Depth (PD) (Zhang et al.,
2014), defined by the norm of
the smallest configuration change
needed for a mesh to be self-
collision-free, as illustrated in
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Fig. 2. It is well-known that PD is a non-smooth function
of V (esp. at the boundaries), thereby making it difficult to
resolve collisions by minimizing PD. By choosing appropri-
ate activation functions (tanh and CELU in our case), we
design the neural collision detector to be a differentiable
approximation of PD. As a result, gradient information can
be propagated to a collision handler to minimize PD.

Since collisions can happen between any pairs of geometric
mesh primitives, a collision detector should consider pos-
sible contacts between any pair of sub-domains, leading to
a quadratic complexity O(∣Z0∣2). We use a global-local
detection architecture that effectively reduces the number
of learnable parameters. Specifically, we introduce a global
collision state encoder S0 = CSE(Zall, θC) and a set of local
collision predictors Si = CP(S0, Zi, θC), with i = 1,⋯, ∣Z0∣,
which predicts whether the ith sub-domain is in collision
with the rest of the mesh. Finally, the collision information
for all local collision predictors is summarized using a clas-
sifier network MLPc(S1,⋯, S∣Z0∣) to derive a single overall
collision classifier:

S0 ≜CSE(Zall, θC)
Si ≜CP(S0, Zi, θC)

Ic(Zall) ≜I(MLPc(S1,⋯, S∣Z0∣, θC) ≥ 0.5),

where θC is the learnable parameters. The feasible space
boundary of collision-free constraints corresponds to the
0.5-levelset of MLPc. We refer readers to (Tan et al., 2021)
for more details.

3.2. SMPL Human Pose Representation

The SMPL model represents a human body shape using two
kinds of parameters: body pose and body shape. In order to
determine mesh vertices V , SMPL uses a template mesh of
a reference body shape and pose V 0. The variation in body
shape is addressed by adding a linear perturbation: V 0

s =
V 0 +∑iZβiBi, where Bi is a set of shape variation bases
and Zβi are the corresponding shape coefficients. From
V 0
s , SMPL derives the final V using standard linear blend

skinning: V = D(Zθ, V
0
s ), where we unify the notations

for both mesh embedding methods and reuse the symbol
D for the linear blend skinning function. Here Zθ is the
pose parameters. The overall latent information for the
SMPL model is Zall = (Zβ Zθ). We refer readers to (Loper
et al., 2015) for more details. We use the collision detector
offered by (Muller et al., 2021) on the bodies generated
by the SMPL model to neglect natural intersections around
nearby tissues. Nevertheless, we still use PD to represent
the energy measuring the collision extent. Since no domain
decomposition is involved, we predict a single collision
value S and use a standard MLP as our collision detector

taking S as input, i.e.,:

S ≜CP(Zall, θC)
Ic(Zall) ≜I(MLPc(S, θC) ≥ 0.5).

3.3. Optimization-Based Collision Response

Following (Tan et al., 2021), we design our collision detec-
tor MLPc to be differentiable. Suppose we take as input a
randomly sampled latent code Zuser

all , which might not sat-
isfy the collision-free constraints, we project that latent code
back to the feasible domain by solving the following op-
timization problem under neural collision-free constraints
using the Augmented Lagrangian Method (ALM):

argmin
Zall

E(Zall) s.t. MLPc(S1,⋯, S∣Z0∣, θC) ≤ 0.5, (1)

where E(●) is some objective function, which can take
multiple forms, as specified by downstream applications. In
the simplest case, we take as input a desired Zuser

all , and we
can define E(Zall) = ∥Zall−Zuser

all ∥2/2, which is only related
to latent space variables. As a more intuitive interface, the
user might want to change meshes in the Cartesian space
instead of the of latent space. For example, if the user wants
a human hand to be at a certain position V user, we could
define E(Zall) = ∥D(Zall) − V user∥2/2. A desirable feature
of Eq. 1 is an invariant problem size. However many vertices
a mesh has, there is only one constraint, which guarantees
high test-time performance. Moreover, it has been shown
in Theorem 10.4.3 of (Sun & Yuan, 2006) that ALM either
finds a feasible solution or returns an infeasible solution
that is closest to the boundary of the feasible domain. In
other words, ALM always makes a best effort to resolve
collisions, even if feasible solutions are not available.

4. Active Learning Algorithm
The goal of active learning is to iteratively improve the ac-
curacy of the neural collision detector. We assume the avail-
ability of an existing dataset D of “high-quality” meshes
with deformed vertices D = {V 1,2,⋯,∣D∣}, which is used to
train the mesh embedding component. (Note that SMPL
also requires a dataset D to learn the linear blend skinning
weights). We assume that meshes in D are collision-free
but the meshes reconstructed using function D can still suf-
fer from collisions due to embedding error after training,
and users might explore the latent space in regions that are
not well covered by the training dataset. As a result, our
neural collision detector cannot be trained with D alone.
This is because D only contains negative (collision-free)
samples, while the neural collision detector must learn the
decision boundary between positive and negative samples.
In other words, the neural detector must be presented with
enough samples to cover all possible latent codes with both
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self-penetrating and collision-free meshes. We denote the
training dataset of neural collision detectors as another set:
Dc = {⟨Zi

all, I
∗
c (Zi

all)⟩ ∣i = 1,2,⋯, ∣Dc∣}, where I∗c (●) is the
groundtruth 0 − 1 collision state label.

The groundtruth collision state label can be generated au-
tomatically using a robust algorithm such as (Pan et al.,
2012), to compute PD, where a positive PD indicates self-
collisions, so we can define I∗c (Zall) ≜ I(PD(Zall) > 0),
where PD(Zall) > 0 means first recovering the mesh V from
Zall and then compute PD via (Pan et al., 2012). However,
the cost to compute penetration depth, PD(●), is superlinear
in the number of mesh vertices, and computing PD for an
entire dataset can still be a computational bottleneck. More-
over, we are considering a continuous space of possible
training data that cannot be enumerated. To alleviate the
computational burden, we design a three-stage method, as
illustrated in Fig. 1. During the first stage of bootstrap, we
sample an initial boundary set, by which we train MLPc

to approximate the true decision boundary. At the second
stage of data augmentation, new training data is selected
and progressively injected into a dataset. Finally, for the
third stage, our neural collision detector is updated to fit the
augmented dataset. The criterion for selecting the subset
is critical to the performance of active learning. Since our
neural collision predictor provides constraints for a nonlin-
ear optimization method, we observe that samples far from
the boundary are not used by the optimizer and only the
boundary of the feasible domain (gray area in Fig. 1 right)
is useful. Therefore, we propose using a Newton-type risk-
seeking method to push the samples towards the decision
boundary. We provide more details for each step below.

4.1. Bootstrap

Active learning would progressively populate Dc, so prior
work (Aghdam et al., 2019) simply initializes the dataset
to an empty set. However, we find that a good initial guess
can significantly improve the convergence of training. This
is because we select new data by moving (randomly sam-
pled) latent codes towards the decision boundary of the PD
function using a risk-seeking method. However, the true
boundary of the collision-free constraints corresponds to
the boundary of C-Obstacles, which is high-dimensional
and unknown to us (PD is a non-smooth function, so we
cannot even use gradient information to project a mesh to
the zero level-set of PD). Instead, we propose using the
learned neural decision boundary, i.e., the 0.5-levelset of
MLPc, as an approximation. If we initialize Dc = ∅, the
surrogate decision boundary is undefined, and the training
might diverge or suffer from slow convergence. For our
bootstrap training, we uniformly sample a small set of Ninit
latent codes Zall at random positions from the latent space
and compute PD for each of them. We define a valid space
of sampling by mapping all the data Zi

all ∈ D to their latent

codes and compute a bounded box in the latent space:

Z =
∣Z0∣
∏
j=0
[ min
i=1,⋯,∣D∣

[eTj Zi
all] , max

i=1,⋯,∣D∣
[eTj Zi

all]] .

We hypothesize that all the meshes can be embedded us-
ing our autoencoder or the SMPL model with small error
corresponding to latent codes in Z , so we can initialize
Dc = {Z1,⋯,Ninit

all ∣Zi
all ∼ U(Z)}. We then divide the data

points into three subsets (Dc = Dp⋃Dn⋃Db, illustrated in
Fig. 1 right):

Dp ≜{⟨Zi
all, Ic(Zi

all)⟩ ∣PD(Zall) > ϵ}
Dn ≜{⟨Zi

all, Ic(Zi
all)⟩ ∣PD(Zall) = 0}

Db ≜{⟨Zi
all, Ic(Zi

all)⟩ ∣PD(Zall) ∈ (0, ϵ]}.
(2)

Here, Dp is the positive set consisting of samples with pen-
etrations deeper than a threshold ϵ, Dn is the negative set
consisting of collision-free samples, and Db is a boundary
set where samples are nearly collision-free and lie on the
decision boundary. We will introduce our new loss term for
the boundary set in Sec. 4.3.

4.2. Data Aggregation

The accuracy of our neural collision detector can be mea-
sured by the discrepancy between the surrogate decision
boundary deemed by MLPc and the true decision boundary
of PD, formulated as:

E{Zall∼Z ∣PD(Zall)=0} [CE(Ic(Zall), I∗c (Zall))] ,
which is an expectation over the true decision boundary.
Here CE is the cross-entropy loss. However, it is very diffi-
cult to derive a sampled approximation of the above metric
because PD is a non-smooth function whose level-set is
measure-zero, which corresponds to the boundaries of C-
obstacles. Instead, we propose to take the expectation over
the surrogate decision boundary:

E{Zall∼Z ∣MLPc(Zall,θC)=0.5} [CE(Ic(Zall), I∗c (Zall))] .
Generally speaking, the 0.5-level-set of MLPc can also be
measure-zero, but we have designed our neural networks
D,CSE,CP,MLPc to be differentiable functions. As a re-
sult, we could always project samples onto the 0.5-level-set
by solving the following risk-seeking unconstrained opti-
mization:

argmin
Zall

1

2
∥MLPc(Zall, θC) − 0.5∥2.

We adopt the quasi-Newton method and update Zall using
the following recursion:

Zall − H̄−1∇MLPc(MLPc − 0.5), (3)
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Figure 3. We plot the accuracy of the neural collision detector against the dataset size. The baselines are trained using the same amount of
data. On average, ours achieves 1.62% higher accuracy than Supv. From left to right: SCAPE, Swing, Jump, Skirt, Hand, and AMASS.
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Figure 4. We plot the false negative rate against the dataset size. The baselines are trained using the same amount of data. On average,
ours achieves a 13.59% lower false negative rate than Supv. From left to right: SCAPE, Swing, Jump, Skirt, Hand, and AMASS.

where H̄ is some first-order approximation of the Hessian
matrix, which is much faster to compute than the exact
Hessian, which requires the second-order term ∇2MLPc. In
summary, we would sample a new set of size Naug/2 from
previous Dc during each iteration of data augmentation. For
each sampled Zall, we project Zall to the surrogate decision
boundary using Eq. 3 recursively until the relative change
within Zall is smaller than ϵz between consecutive iterations.
For datasets based on the SMPL model, we randomly choose
to fix Zβ or not. We also sample Naug/2 directly from U(Z),
using random samples to discover uncovered regions, which
achieves a balance between exploitation and exploration.
Finally, we classify Zall into either one of Dp,n,b, according
to Eq. 2 using the penetration depth.

4.3. Model Update

AfterDc has been updated, we fine-tune CSE,CP,MLPc by
updating θC using the following loss functions:

L = wPDLPD +wrLr +wceLce +wbLb,

where w● are weights corresponding to each type of loss.
Our first term LPD is a regularization that enforces consis-
tency between Si and true PD, defined as:

LPD = E{Zall∈DC}

⎡⎢⎢⎢⎢⎣

∣Z0∣
∑
i=1
∥Si − PDi∥2 +wPDsum∥

∣Z0∣
∑
i=1

Si − PD∥2
⎤⎥⎥⎥⎥⎦
,

where we penalize both the domain-decomposed penetra-
tion depth PDi defined in (Tan et al., 2021) and the total
penetration depth with weight wPDsum. Our second term Lr

is a marginal ranking loss that enforces the correct ordering
of penetration depth to avoid over-fitting, defined as:

Lr = E{Za,b
all ∈DC ∣PDa<PDb}

⎡⎢⎢⎢⎢⎣
max(0, α − (

∣Z0∣
∑
i=1

Sa
i −

∣Z0∣
∑
i=1

Sb
i )
⎤⎥⎥⎥⎥⎦
,

where α is the maximal allowable order violation. We use su-
perscripts to distinguish two samples drawn from DC . Note
that the domain-decomposition is only used for bilevel au-
toencoders and omitted in the SMPL representation. There-
fore, for SMPL, we only use the overall collision value S
in the regression loss LPD and the marginal ranking loss Lr.
There are no other terms for sub-domains. Our third term
measures the discrepancy between MLPc and PD over the
entire latent space:

Lce = E{Zall∈Dp⋃Dn} [CE(Ic(Zall), I∗c (Zall))] .

The last term is performed on the new boundary set Db. We
propose using the l1-loss function for Db to approximate
the decision boundary:

Lb = E{Zall∈Db} [∥MLPc(Zall, θC) − 0.5∥] . (4)

We update our neural collision detector with objective func-
tionL by running a fixed number of training epochs, denoted
as Nepoch, with θC warm-started from the last iteration of
the model update.

5. Evaluation
Datasets: We evaluate our method on six datasets. The first
three (SCAPE (Anguelov et al., 2005) with N = 71 meshes
each having 2161 vertices, MIT Swing (Vlasic et al., 2008)
with N = 150 meshes each having 9971 vertices, and MIT
Jump (Vlasic et al., 2008) with N = 150 meshes each having
10002 vertices) contain human bodies with different sets of
actions and poses. The forth one is a skirt dataset introduced
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Figure 5. We plot the success rate of the neural collision handler against the dataset size. Our method resolves 22.73% more collisions
than Supv+bd. From left to right: SCAPE, Swing, Jump, Skirt, Hand, and AMASS.
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Figure 6. Representative examples of collision handling on the five datasets: (a) SCAPE; (b) MIT Swing; (c) MIT Jump; (d) Skirt; (e)
Hand; (f) AMASS. For each example, we show the given self-penetrating mesh (left), our result (middle, Active+bd), and Supv+bd (right).
In comparison, our method can resolve more collisions, while we keep the output model closer to the input and reduce unnecessary
deformations in Supv+bd.

by (Yang et al., 2020a) that contains N = 201 simulated
skirt meshes synthesized by NVIDIA clothing tools, each
of which has 2830 vertices. The skirt is deformable ev-
erywhere, and the dataset is rather small. Obtaining stable
performance in this case is challenging and we observe rea-
sonably good results using active learning. Our fifth one is
a custom dataset of human hand poses. We captured various
hand poses and transitions between the poses in a multi-view
capture system. We ran 3D reconstruction (Galliani et al.,
2015) and 3D keypoint detection (Simon et al., 2017) for
the captured images and registered a linear blend skinning
model consisting of 2825 vertices for each frame of the
data (Gall et al., 2009), resulting in N = 7314 meshes. The
first five datasets use the bilevel autoencoder for embedding.
Our sixth dataset comes from the captured motion model
repository AMASS (Mahmood et al., 2019), which uses
SMPL to embed human body shapes. We choose one subset
MPIMosh covering 19 subjects with different genders and

body shapes. Suggested by (Muller et al., 2021), we sample
at half of its original frame rate and get N = 54387 meshes
each having 6890 vertices.

SCAPE Swing Jump Skirt Hand AMASS

Ninit 200000 10000 10000 5000 200000 15000
Naug 50000 5000 5000 5000 50000 5000

Table 1. Ninit and Naug used by each dataset.

Implementation: We implement our method using Py-
Torch and perform experiments on a desktop machine with
an NVIDIA RTX 2080Ti GPU. If the bilevel autoencoder
is used, we begin by training ⟨θE , θD⟩ using Adam with
a learning rate of 0.01 and a batch size of 128 over 3000
epochs. When we train the embedding network, we empiri-
cally use 10 sub-domains for the SCAPE and Skirt datasets,
and 12 for the Swing, Jump, and Hand datasets. For neural
collision detector training, we choose the following hyper-
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parameters: ϵ = 1 × 10−4,wPD = 5,wPDsum = 0.2,wr =
2,wce = 2,wb = 0.5. We bootstrap by supervised learning
θC on Ninit data points. We progressively inject data points
into Ninit until the “elbow point” of accuracy vs. sample size
is reached, which is detected using (Satopaa et al., 2011).
Please check the appendix for detailed figures. For each
experiment, we train θC using Adam with a learning rate of
0.001 and a batch size of 512 over Nepoch = 100 epochs. We
choose suitable Naug according to Ninit. The Ninit and Naug
used for each dataset are summarized in Table 1. During
data aggregation, we terminate Newton’s method when the
relative changes of Zall are less than ϵz = 10−7. For each
subsequent iteration of active data augmentation, we fine-
tune θC using Adam and adjust the learning rate, batch size,
and Nepoch using the performance on the validation set. For
collision handling, we run ALM until Eq. 1 is satisfied.

Collision Detection: We compare our method with two
baseline algorithms. The first one (Tan et al., 2021) (de-
noted as Supv) trains θC using supervised learning, where
Dc is constructed by randomly sampled poses from U(Z)
and boundary set Db where the associated loss Eq. 4 men-
tioned in Sec. 4.1 is not used, i.e., wb = 0. Our second
baseline (denoted as Supv + bd) also uses supervised learn-
ing, but the boundary set and loss in Eq. 4 are used. Our
proposed method, N-Penetrate, is denoted as Active + bd.
After k iterations of active data augmentations, we have
a dataset with Ninit + kNaug points for training θC . For
fairness, we train our two baselines using Ninit + kNaug

points randomly sampled from U(Z) for each iteration. For
all the methods, we use 80% of the data for training and the
rest are used as a validation set for hyperparameter tuning
(learning rate, batch size, and Nepoch). For each dataset, we
create a test set with 7.5 × 105 samples from U(Z), which
is unseen in the training stage, to evaluate the performances.
The performances of neural collision detectors are evaluated
based on two metrics: the fraction of successful predicates
(accuracy) and the fraction of times a self-penetrating mesh
is erroneously predicted as collision-free (false negative
rate). False negatives are more detrimental to our applica-
tions than false positives as we want to detect and eliminate
colliding samples using our collision handler, while we can
tolerate a few false positive samples. As illustrated in Fig. 3
and Fig. 4, our method effectively improves both metrics.
The performance after active learning is summarized in Ta-
ble 2. We reach an accuracy of 85.6−98.1% compared with
the groundtruth generated by the exact method (Pan et al.,
2012; Muller et al., 2021). On average, our method achieves
1.62% higher accuracy and a 13.59% lower false negative
rate than Supv. In the last row of Table 2, we measure an
equivalent dataset size, which is defined as the size of the
dataset needed by Supv+bd to achieve the same accuracy
as our method. We derive this number by interpolating on
experimental results of Supv+bd. The results show that our

metric SCAPE Swing Jump Skirt Hand AMASS

final dataset size 5.5 × 105 4.5 × 104 4.5 × 104 4 × 104 5.5 × 105 5 × 104

accuracy (Ours (Active+bd)) 0.9383 0.9638 0.9552 0.9817 0.9692 0.8563
accuracy (Supv+bd) 0.9282 0.9609 0.9500 0.9795 0.9650 0.8551

accuracy (Supv) 0.9181 0.9460 0.9347 0.9660 0.9558 0.8526

false neg. (Ours (Active+bd)) 0.05151 0.01485 0.02573 0.01808 0.03582 0.17656
false neg. (Supv+bd) 0.05576 0.01766 0.02644 0.01956 0.03652 0.18422

false neg. (Supv) 0.06914 0.01969 0.02713 0.02056 0.03727 0.19654

equi. dataset size (Supv+bd) 6.63 × 105 7.64 × 104 7.02 × 104 7.71 × 104 7.30 × 105 7.40 × 104

Table 2. We summarize the accuracy and false negative rate of
three methods under comparison. We also include the equivalent
dataset size for the baseline to reach the same performance as our
method.

method achieves a similar accuracy using a 34.6% smaller
dataset than Supv+bd on average.

Cross-dataset validation: We can use a pre-trained col-
lision detector module, if the representation is compatible
with our mesh embedding module (i.e. use the same autoen-
coder architecture or SMPL/LBS models). For example,
we use the AMASS-MPIMosh subset to initialize the sam-
pling range for our augmented dataset and train the collision
predictor for SMPL. We evaluate the performance of the
trained predictor on the AMASS-HDM05 dataset for cross-
dataset validation and summarize the results in Table 3. This
new test set has a total of 520276 models, of which 49879
have self-collisions. This is 10× larger than the AMASS-
MPIMosh dataset. Overall, our method can explore the
entire latent space and obtain good prediction accuracy on
challenging unseen datasets through active learning.

Metric Supv Supv+bd Ours (Active+bd)

Accuracy 0.7235 0.7622 0.7950

False Negative Rate 0.3018 0.2803 0.2706

Table 3. Cross-dataset Validation on the AMASS-HDM05 dataset
using pre-trained model for AMASS-MPIMosh.

Running Time: We have compared our neural collision
detector with the BVH-based exact method provided as
part of the FCL library (Pan et al., 2012) on a dataset with
1 × 104 meshes, which is unseen by our learning method.
We compared the CPU-based implementations on an Intel
Xeon Silver 4208 CPU (32 cores). Our neural method is
implemented using PyTorch and we evaluate both the CPU
and GPU versions. We compare to a parallel and tuned ver-
sion of the BVH-based algorithm in FCL using 15 threads.
We can achieve a 29 − 124× speedup over the BVH-based
collision detection (Table 4).

Collision Handling: We plug the trained neural collision
detectors into ALM and compare our method, Supv, against
Supv+bd in terms of resolving self-penetrating meshes. To
this end, we randomly sample 10000 self-penetrating, un-
seen Zuser

all from U(Z), and use Eq. 1 to derive Zall. For
the SMPL model, we will fix Zβ in the optimization to
maintain the body shape for each sample. We compare the
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SCAPE Swing Jump Skirt Hand

FCL (parallel BVH-based collision checker) 37.84s 134.1s 135.7s 43.82s 42.7s

Ours (CPU) 1.05s 1.20s 1.16s 1.13s 1.46s
Ours (GPU) 0.922s 1.14s 1.09s 0.956s 1.32s

Speedup (CPU) 36.03 111.75 116.98 38.78 29.25
Speedup (GPU) 41.04 117.62 124.50 45.84 32.35

Table 4. Comparing our neural method with exact collision check-
ing in FCL. Our method achieves up to a 124× speedup.
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Figure 7. We plot the joint distribution of relative PD reduction
(Y -axis) and embedding difference (X-axis) over successfully
collision-handled test meshes in the SCAPE dataset for our method
and Supv+bd. Our method resolves more collisions (average PD
reduction 94.81% vs. 88.76%) while remaining closer to the input
(average embedding difference 56.17 vs. 66.11) as compared with
Supv+bd.

performance based on relative PD reduction defined as:

PD(ACAP−1(Zuser
all , θD)) − PD(ACAP−1(Zall, θD))

PD(ACAP−1(Zuser
all , θD))

.

Collision resolution is completely successful if this value
equals one, which may not always happen because ALM
uses soft penalties to relax hard constraints. Thus, we con-
sider a solution successful if the value is greater than 0. We
plot the success rate against the dataset size in Fig. 5, which
shows that our method resolves 22.73% more collisions
than Supv+bd. Thanks to our risk-seeking data aggregation
method, our method monotonically improves the collision
handling success rate when more data points are injected,
while Supv+bd exhibits unstable performance. Since Supv
uses the same randomly sampled dataset as Supv+bd, the
performance exhibits similar instability. Meanwhile, our
novel boundary loss improves the results for Supv+bd, since
it can better approximate the decision boundary. Another

criterion for good collision handling is the embedding differ-
ence – the objective function in Eq. 1. We want the output
to be as close to the input as possible. We plot the relative
PD reduction vs. embedding difference over successfully
collision-handled test meshes in the SCAPE dataset for
our method and Supv+bd in Fig. 7. The mean relative PD
reduction for our method is 94.81% and the mean embed-
ding difference is 56.17, compared to 88.76% and 66.11,
respectively, for Supv+bd. The results show that our method
resolves more collisions while the outputs stay closer to the
input latent codes. Some exemplary results are shown in
Fig. 6.

6. Conclusion & Limitations
We present an active learning method for training a neural
collision detector in which training data are progressively
sampled from the learned latent space using a risk-seeking
approach. Our approach is designed for general 3D de-
formable meshes, and we highlight its benefits on many
complex datasets. In practice, our method outperforms su-
pervised learning in terms of accuracy, false negative rate,
and stability. As a major limitation, our collision handler
does not consider physics models. Physics models can
be incorporated in the future via a learning-based physics
simulation approach such as (Zheng et al., 2021; D. Li
et al., 2022; Pan et al., 2022). The design of an appropriate
mesh embedding module for collision handling is another
challenge. Currently, we empirically choose network archi-
tectures and parameters, e.g., the number of sub-domains
for different mesh types. It would be useful to extend our
method to handle collisions between multi-objects by con-
catenating the representations of all the objects. For exam-
ple, we can predict the collisions for human-environment
interactions (Hassan et al., 2019; Wanga et al., 2019). We
are also interested in extending these ideas to other formu-
lations, e.g., part-based occupancy networks (Mihajlovic
et al., 2021) or SDF networks (Alldieck et al., 2021). It
would also be useful to combine these optimizations with
learning methods (Kolotouros et al., 2019) and design a
combined formulation for predicting high-fidelity human
models, where our learned collision constraints could be
directly used to handle self-collisions.
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A. Long Tail Distribution of Data
We have included a figure (Fig. 8) showing a histogram
of the penetration depth (PD) over the test samples of the
Swing dataset. This forms a long-tail distribution.
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Figure 8. We show a histogram of the test samples of the Swing
dataset according to PD, which illustrates a long-tail characteristic.

B. Selection of Ninit

Ninit for our method is set as the “elbow point” of accuracy
vs. sample size of the baseline method Supv + bd, which is
detected using (Satopaa et al., 2011). We use the following
parameters for (Satopaa et al., 2011): curve as concave,
direction as increasing, sensitivity as 1 and interpolation
method as polynomial. We show an example on the Hand
dataset in Fig. 9.
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Figure 9. We plot the accuracy of Supv + bd against the dataset
size from 2000 to 1.75 × 106. The “elbow point” detected by
(Satopaa et al., 2011) in this plot is 200000 as shown by the dashed
line.

https://arxiv.org/abs/2008.05440


N-Penetrate: Active Learning of Neural Collision Handler for Complex 3D Mesh Deformations

C. Overall Training Algorithm for θC

To help readers get a better understanding how we use active
learning, our overall training method for the parameters θC
of the collision detector is illustrated in Algorithm 1.

Algorithm 1 Learning θC
1: Prepare initial data set D
2: Learn a latent space using an autoencoder or directly use the

SMPL model
3: Initialize DC by drawing Ninit samples from U(Z)
4: for Zall ∈ DC do
5: Compute PD and I∗c (Zall)
6: Update θC using DC

7: while Not converged do
8: ∆DC1 ←Draw Naug/2 samples from DC

9: for Zall ∈∆DC1 do
10: Z last

all ← Zall
11: while True do
12: Update Zall using Eq. 3
13: if ∥Zall −Z last

all ∥∞ sufficiently small then
14: Break
15: Z last

all ← Zall

16: DC ← DC ⋃{⟨Z last
all , I

∗

c (Z last
all )⟩}

17: ∆DC2 ←Draw Naug/2 samples from U(Z)
18: for Zall ∈∆DC2 do
19: DC ← DC ⋃{⟨Zall, I

∗

c (Zall)⟩}
20: Update θC using DC


