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Abstract
Despite the empirical success of meta reinforce-
ment learning (meta-RL), there are still a num-
ber poorly-understood discrepancies between the-
ory and practice. Critically, biased gradient esti-
mates are almost always implemented in practice,
whereas prior theory on meta-RL only establishes
convergence under unbiased gradient estimates.
In this work, we investigate such a discrepancy.
In particular, (1) we show that unbiased gradi-
ent estimates have variance Θ(N) which linearly
depends on the sample size N of the inner loop
updates; (2) we propose linearized score func-
tion (LSF) gradient estimates, which have bias
O(1/

√
N) and variance O(1/N); (3) we show

that most empirical prior work in fact implements
variants of the LSF gradient estimates. This im-
plies that practical algorithms "accidentally" intro-
duce bias to achieve better performance; (4) we es-
tablish theoretical guarantees for the LSF gradient
estimates in meta-RL regarding its convergence
to stationary points, showing better dependency
on N than prior work when N is large.

By design, many reinforcement learning (RL) algorithms
learn from scratch. This entails RL to achieve high profile
success in a number of important and challenging applica-
tions (Mnih et al., 2013; Silver et al., 2016; Levine et al.,
2016). However, at the same time, RL is highly inefficient
compared to how humans learn, usually consuming orders
of magnitude more samples to acquire skills at the same
level as humans. One potential source of such inefficiencies
is that unlike humans, RL algorithms do not exploit prior
knowledge on the tasks at hand.

To resolve such an issue, meta-reinforcement learning (meta-
RL) formalizes the learning and transfer of prior knowledge
in RL (Duan et al., 2016; Wang et al., 2016; Finn et al.,
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2017). On a high level, an agent interacts with a distribution
of tasks at meta-training time. The objective is that after
meta-training, the agent can learn significantly faster when
faced with unseen tasks at meta-testing time. If an agent
achieves good performance at meta-testing time, it embodies
the ability to transfer knowledge from prior experiences
during meta-training. There are many concrete formulations
of meta-RL (see, e.g. (Wang et al., 2015; Duan et al., 2016;
Houthooft et al., 2018; Rakelly et al., 2019; Zintgraf et al.,
2019; Fakoor et al., 2019; Ortega et al., 2019; Oh et al., 2020;
Xu et al., 2020)), Our focus is meta-RL through gradient-
based adaptations (Finn et al., 2017), where the agent carries
out policy gradient (PG) inner loop updates (Sutton et al.,
2000) at both meta-training and meta-testing time.

Motivation. Our work is motivated by a number of im-
portant discrepancies between meta-RL theory and practice.
Recently, there is a growing interest in establishing perfor-
mance guarantees for meta-RL algorithms with unbiased
gradient estimates (Fallah et al., 2020a). However, since the
inception of the field, meta-RL practitioners have almost
always implemented biased gradient estimates (Finn et al.,
2017; Al-Shedivat et al., 2017; Rothfuss et al., 2018; Liu
et al., 2019; Tang et al., 2021). It is natural to ask: why are
unbiased gradient estimates potentially undesirable in prac-
tice, and what do we gain by introducing bias into gradient
estimates?

Our focus. We focus on the N-sample meta-RL objective
where the inner loop updates are N -sample PG estimates.
In prior work, this was called the E-MAML objective (Al-
Shedivat et al., 2017; Rothfuss et al., 2018; Fallah et al.,
2020a), as opposed to the MAML objective (Finn et al.,
2017) where the inner loop update is exact PG. This ob-
jective is of practical interest, because at meta-testing time,
inner loop updates can only be implemented with N -sample
PG estimates. See Sec 1 for details.

Summary of this work. We make a number of develop-
ments to bridge meta-RL theory and practice.

• High variance of unbiased estimates. By formulating
the meta-RL problem as optimizing a generic N -sample
additive Monte-Carlo objective, we show that the unbi-



Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning

ased gradient estimates have variance on the order of
Θ(N), rendering the estimates useless when N is large
(see Sec 2).

• Novel derivation of biased estimates. We propose the
linearized score function (LSF) gradient estimate for the
N -sample additive Monte-Carlo objective, which has
variance O(1/N) and bias O(1/

√
N). Its application to

meta-RL enjoys better properties at large N (see Sec 3).

• Prior work implements biased estimates. We observe
that despite their claims of unbiasedness, most prior work
in fact implements variants of LSF gradient estimates.
This implies they are both biased w.r.t. the MAML and
the N -sample meta-RL objective (see Sec 4).

• Performance guarantee with better dependency on
N . We provide performance guarantee of meta-RL algo-
rithms with biased estimates. Such guarantee contrasts
with results of unbiased estimates, where the guarantee
degrades significantly at large N (Fallah et al., 2020a)
(see Sec 5).

1. Background
Consider a Markov decision process (MDP) with state space
S and action space A. At time t ≥ 0, the agent takes action
at ∈ A in state st ∈ S , receives a reward rt and transitions
to a next state st+1 ∼ p(·|st, at). Without loss of generality,
we assume that the at time t = 0 the agent starts at the
same state. We assume the reward rt = r(st, at, g) to be a
deterministic function of state-action pair (st, at) and the
task variable g ∈ G. The task variable g ∼ pG is sampled
for every episode. A policy π : S → P(A) specifies a
distribution over actions at each state. We further assume
that the MDP terminates within a finite horizon of H almost
surely under all policies. In general, we assume the policy
is parameterized πθ with parameter θ ∈ RD.

Value function. Let τ := (st, at, rt)
H−1
t=0 be a trajec-

tory. The policy πθ induces a distribution over trajecto-
ries pθ,g(τ) := ΠH−1

t=0 p(xt+1|st, at)πθ(at|st, g) . We de-
fine R(τ, g) :=

∑H−1
t=0 γtr(st, at, g) as the cumulative re-

turn along trajectory τ under task g. We also define the
value function as the expected returns over trajectories
Vg(πθ) := Eτ∼pθ [R(τ, g)]. We also overload the notations
Vg(θ) := Vg(πθ).

Note that unlike other work in RL, we define the value
function as expected cumulative returns starting from the
initial state, which we assume to be a fixed single state. This
definition will greatly simplify notations in later sections.

Policy gradient and stochastic estimates. Policy gradi-
ent (PG) (Sutton et al., 2000) is the gradient of the value
function with respect to policy parameter ∇θVg(θ) =
Eτ∼pθ,g [R(τ, g)∇θ log pθ,g(τ)]. In practice, it is not fea-

sible to compute PG exactly and it is of interest to construct
stochastic PG estimates given sampled trajectories. Indeed,
∇̂θVg(θ) = R(τ, g)∇θ log pθ,g(τ) with τ ∼ pθ,g is an un-
biased PG estimate in that E[∇̂θVg(θ)] = ∇θVg(θ).

1.1. Meta Reinforcement Learning
Meta-RL aims to maximize the average value function
evaluated at the updated policy parameter θ′N = θ +

η 1
N

∑N
i=1R(τi, g)∇θ log pθ,g(τi) obtained by an ascent

step with N -sample PG estimates. This ascent step is also
called the inner loop update. Here, (τi)

N
i=1 ∼ pθ,g i.i.d.

and η is a fixed stepsize. Formally, consider the following
optimization problem,

max
θ

Eg [FN (θ, g)] ,

FN (θ, g) := E

[
Vg

(
θ + η

1

N

N∑
i=1

R(τi, g)∇θ log pθ,g(τi)

)]
,

(1)

The expectations are over the goal distribution g ∼ pG
and random trajectories (τi)

N
i=1 ∼ pθ,g. The N -sample

PG estimate update from θ to θ′N is called the inner loop
update. We call LN the N -sample meta-RL objective due
to its critical dependency on N . Since the task distribution
pG does not depend on θ, we mostly focus on discussing of
properties of LN as a function of θ in later sections. The
N -sample meta-RL objective was initially proposed in (Al-
Shedivat et al., 2017; Rothfuss et al., 2018) under the name
E-MAML and analyzed in (Fallah et al., 2020a) in more
theoretical contexts.

The limit case N →∞. Under mild conditions, the limit
exists when N →∞ and Eqn 1 converges to the following
problem

max
θ

Eg [F∞(θ, g)] , F∞(θ, g) := Vg (θ + η∇θVg(θ)) .
(2)

In other words, the inner loop update becomes exact PG
ascent. This objective was proposed in the initial MAML
framework (Finn et al., 2017).

Short notes on prior work. Though prior literature
mainly focuses on deriving gradient estimates to the MAML
objective, we show that there is a fundamental challenge in
obtaining unbiased estimates (see Sec 4). Instead, we start
the discussion in Sec 2 on the N -sample meta-RL objective.

1.2. Stochastic Gradient Estimates of Monte-Carlo
Objectives

To facilitate discussions in later sections, we provide a brief
background on optimizing general Monte-Carlo objectives.
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Monte-Carlo (MC) objectives are common in RL, genera-
tive modeling and various probabilistic machine learning
problems (see, e.g., Blei et al. (2017); Mohamed et al. (2020)
for related reviews). In its general form, MC objectives are
defined as L(θ) := EX∼pθ [f(X)] where random variables
X are drawn from a distribution pθ whose density is a differ-
entiable function of θ. For simplicity, we first consider when
f depends explicitly on X only, though it can also depend
on θ, which we will discuss shortly. To optimize L(θ), it is
of interest to construct unbiased estimates to∇θL(θ).

Score function (SF) gradient estimate. Assume f is
bounded1. The SF gradient estimate is defined as follows

∇̂SF
θ L(θ) := f(X)∇θ log pθ(X), X ∼ pθ.

By construction, the estimate is unbiased. However, due to
the gradient of score function ∇θ log pθ(X), the estimate
often has high variance in practice.

Path-wise (PW) gradient estimate. Due to space limit,
we present details on PW gradient estimate in Appendix B.
The PW estimate is not applicable in meta-RL, though it
can be used as a golden baseline for variance comparison.

2. Meta-RL as N -sample Additive
Monte-Carlo Objective

We start by extending the MC objective to N -sample addi-
tive MC objective. This general framework encompasses
meta-RL as a special case. It also allows us to naturally
derive a novel estimate with significant variance reduction.

2.1. N -sample Additive Monte-Carlo Objective
Let (Xi)

N
i=1 ∼ pθ be i.i.d. samples from a parameterized

distribution pθ on domainX . Define φ : X 7→ Rh as feature
mapping function that takes x ∈ X as input and outputs a
h-dimensional feature φ(x). Let f : Rh 7→ R be a scalar
function that maps from the feature space to a scalar value.
We define the N -sample additive MC objective as follows,

L(θ) := E(Xi)Ni=1

[
f

(∑N
i=1 φ(Xi)

N

)]
. (3)

The N -sample additive MC objective can be recovered as a
special case of the MC objective by defining X := (Xi)

N
i=1.

However, we will find it useful to make clear how the prop-
erty of L(θ) explicitly depends on N . Though the objective
defines interactions between φ(Xi) in an additive manner,

1Here, we assume f to be bounded for simplicity, though the
SF gradient estimate is well defined and unbiased under more
general assumptions (Mohamed et al., 2020). This boundedness
assumption is satisfied for the meta-RL application to be discussed
later.

we will see that this seemingly restrictive definition general-
izes the N -sample meta-RL objective FN (θ, g) as a special
case. In the following, we ground the discussion with a toy
example.

Toy N -sample Additive MC Objective. Consider when
pθ is a parameterized Gaussian distributionN (µ, σ2) where
σ > 0 is fixed. The feature mapping φ and objective f are
both identity functions.

2.2. Gradient Estimates for N -sample Additive MC
Objective

The SF gradient estimate to the N -sample additive MC
objective is

∇̂SF
θ L(θ) := f

(∑N
i=1 φ(Xi)

N

)
N∑
i=1

∇θ log pθ(Xi), (4)

where (Xi)
N
i=1 ∼ pθ. Since the SF gradient estimate

changes distributions over N variables at the same time,∑N
i=1∇θ log pθ(Xi) sums over N terms. This implies high

variance, which we calculate exactly for the toy example2.

Lemma 1. In the toy N -sample MC objective example,
V
[
∇̂SF
θ L(θ)

]
= Θ(N).

The variance depends linearly on N ! This makes the
estimate very hard to use in applications with large N .
Compared to the SF gradient estimate, when the PW gra-
dient estimate ∇̂PW

θ L(θ) is available, it has much lower
variance. In the toy example, it is indeed the case since
X = σ · ζ + µ, ζ ∼ N (0, 1),

Lemma 2. In the toy N -sample MC objective example,
V
[
∇̂PW
θ L(θ)

]
= 0.

The zero variance is specialized to the toy example, though
in general the PW gradient estimate also tends to achieve
very small variance, making it a golden standard for unbi-
ased gradient estimates. However, PW gradient estimates
are not generally applicable, e.g., to RL and meta-RL objec-
tives.

2.3. Gradient Estimates for Generalized N -sample
Additive MC Objective

Next, we discuss the case where the functions f, φ depend
also on the parameter θ. Define the generalized N -sample
additive MC objective as follows

G(θ) := E(Xi)Ni=1

[
f

(∑N
i=1 φ(Xi, θ)

N
, θ

)]
. (5)

2Throughout the presentation, we will use the "Big O" nota-
tions. See Appendix A for their detailed definitions.
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We start by deriving exact gradient to the objective

Lemma 3. Let φ̄N := 1
N

∑N
i=1 φ(Xi, θ). The generalized

N -sample additive MC objective has gradient ∇θG(θ) as
follows, where (Xi)

N
i=1 ∼ pθ i.i.d.,

E(Xi)Ni=1

f (φ̄N , θ)
N∑
i=1

∇θ log pθ(Xi)︸ ︷︷ ︸
term (i)



+ E

∇θf (φ̄N , θ)+

(
1

N

N∑
i=1

∇θφ(θ,Xi)

)
∇φ̄N f(φ̄N , θ)︸ ︷︷ ︸

term (ii)

 .

Generalized SF gradient estimate. With access to sam-
ples (Xi)i=1 ∼ pθ, we define the generalized SF gradient
estimate ∇̂SF

θ G(θ) as follows

f
(
φ̄N , θ

) N∑
i=1

∇θ log pθ(Xi)︸ ︷︷ ︸
term (i)

+∇θf
(
φ̄N , θ

)
+

(
1

N

N∑
i=1

∇θφ(Xi, θ)

)
∇φ̄N f(φ̄N , θ)︸ ︷︷ ︸

term (ii)

.

(6)

The two terms in the estimate echo the two terms in the
exact gradient in Lemma 3. Term (i) corresponds to the
SF gradient estimate in Eqn 4. Term (ii) is a direct result
of how f, φ depends on θ. We provide a full derivation in
Appendix C. Examining term (i) and term (ii), we argue
that the variance of the overall estimate mainly comes from
term (i). This is because term (ii) averages over N terms
(e.g., with φ̄N ) whereas term (i) sums overN score function
gradients ∇θ log pθ(Xi).

2.4. Meta-RL as Generalized N -sample Additive MC
Objective

With the conversion: Xi := τi, φ(Xi, θ) :=
R(τi, g)∇θ log pθ,g(τi) and f(φ̄N , θ) = Vg(θ + ηφ̄N ), we
cast meta-RL as a special instance of the generalized N -
sample additive MC objective. We compute gradient of the
N -sample objective JN (θ, g) := ∇θFN (θ, g) as a direct
result of Lemma 3.

Lemma 4. Let θ′N := θ +

η 1
N

∑N
i=1R(τi, g)∇θ log pθ,g(τi) be the (random)

updated parameter. Let τi ∼ pθ,g i.i.d. and let ∇Vg(θ′N )

denotes [∇θVg(θ)]θ=θ′N . Then JN (θ, g) := ∇θFN (θ, g) is

E

[
Vg(θ

′
N )

N∑
i=1

∇θ log pθ,g(τi)

]
︸ ︷︷ ︸

=:J
(i)
N (θ,g)

+ E

[(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇Vg(θ′N )

]
︸ ︷︷ ︸

=:J
(ii)
N (θ,g)

.

(7)

We omit the notation that the expectation is with respect to
N random trajectories (τi)

N
i=1. We now reiterate intuitions

about the two gradient terms in the context of meta-RL.
The parameter θ influences the objective FN (θ, g) in two
different ways. The first term arises from the fact that the N
random trajectories are sampled from pθ,g, which depends
on θ. The second term is a result of how θ impacts FN (θ, g)
explicitly through the inner loop N -sample PG estimate.

Unbiased meta-RL gradient estimate. In the following,
we specify an algorithmic procedure to construct unbiased
estimates to JN (θ, g). This is a direct instantiation of the
generalized SF gradient estimate in Eqn 6 in the context of
meta-RL.

Corollary 5. First, sample (τi)
N
i=1 ∼ pθ,g and compute the

updated parameter θ′N . Then, construct unbiased estimates
to ∇Vg(θ′N ) and Vg(θ′N ), e.g. with trajectories sampled
under πθ′N . Let these estimates be ∇V̂g(θ′N ) and V̂g(θ′N )

respectively3. The final estimate is

V̂g(θ
′
N )

N∑
i=1

∇θ log pθ,g(τi)︸ ︷︷ ︸
=:Ĵ

(i)
N,SF(θ,g)

+

(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇V̂g(θ′N )︸ ︷︷ ︸

=:Ĵ
(ii)
N,SF(θ,g)

.

(8)

Both terms are unbiased E[Ĵ
(i)
N,SF(θ, g)] =

J
(i)
N (θ, g),E[Ĵ

(ii)
N,SF(θ, g)] = J

(ii)
N (θ, g) with respect

to the two terms in Eqn 7. This implies that the overall
estimate is also unbiased.

Variance of unbiased gradient estimate. As direct im-
plications of the properties of SF gradient estimate and gen-
eralized SF gradient estimate, ĴN has very high variance.

3For now, we just require the estimates to be unbiased. In Sec 5,
we make these estimates concrete for refined convergence analysis.
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In fact, building on the N -sample additive MC objective toy
example, we can construct meta-RL examples where unbi-
ased estimates have variance Θ(N). See Appendix D for
more details. Our objective now is to develop new estimates
which bypass the high variance of the unbiased estimate.

3. Linearized Score Function Gradient
Estimate

We now introduce a major development in this paper: a new
gradient estimate for the N -sample additive MC objective.
This estimate is in general biased but has significantly lower
variance (O(1/N)) compared to the SF gradient estimate
(Θ(N)), making it attractive in practice when N is large.

3.1. Linearized Score Function Gradient Estimate for
N -sample additive MC Objective.

When the PW gradient estimate is applicable, it often has
lower variance than the SF gradient estimate. Previously,
we argue that this is because PW leverages gradient infor-
mation in the objective f while SF does not. Building on
this intuition, we propose a new gradient estimate called
linearized score function (LSF) gradient estimate as follows,

∇̂LSF
θ L(θ) :=

1

N

N∑
i=1

[
∇f

(
φ̄N
)]T

φ(Xi)∇θ log pθ(Xi).

(9)

In the above, we define ∇f(φ̄N ) := [∇xf(x)]x=φ̄N . The
naming linearized comes from how the estimate was derived
in the first place, which we show in detail in Appendix C.

Variance of the estimate. The following result shows
LSF achieves significant variance reduction.

Lemma 6. In the toy N -sample MC objective example,
V
[
∇̂LSF
θ L(θ)

]
= O(1/N).

In the toy example, the PW gradient estimate is the gold stan-
dard unbiased estimate with zero variance. Yet, as discussed
before, it is not generally applicable. The LSF gradient esti-
mate has variance O(1/N), which decays as N increases.
This makes LSF applicable in large N regimes. However,
unlike the SF gradient estimate which is by design unbiased,
the LSF gradient estimate is in general biased. Nevertheless,
when applying the LSF gradient estimate to the N -sample
meta-RL objective, we can characterize the bias to be of
order O(1/N) (see Proposition 11).

3.2. Gradient Estimate for Generalized N -sample
Additive MC Objective

We extend the LSF gradient estimate to the generalized
N -sample additive MC objective in Eqn 5. We do so by
replacing the term (i) SF gradient estimate by LSF gradi-

ent estimate in Eqn 6. This produces the generalized LSF
gradient estimate ∇̂LSF

θ G(θ) as follows,

1

N

N∑
i=1

[
∇φ̄N f

(
φ̄N , θ

)]T
φ(Xi, θ)∇θ log pθ(Xi, θ)︸ ︷︷ ︸

term (i)

+∇θf
(
φ̄N , θ

)
+

(
1

N

N∑
i=1

∇θφ(Xi, θ)

)
∇φ̄N f(φ̄N , θ)︸ ︷︷ ︸

term (ii)

.

(10)

Due to the bias in the LSF gradient estimate, the generalized
LSF gradient estimate is also biased. However, the key
trade-off is that the new term (i) in Eqn 10 averages over
N samples and achieves significantly smaller variance than
the generalized SF gradient estimate.

3.3. Biased Gradient Estimate to Meta-RL Objective
We next apply the generalized LSF gradient estimate to the
N -sample meta-RL objective.

Corollary 7. Let ui := ∇θ log pθ,g(τi). The generalized
LSF gradient estimate ĴN,LSF(θ, g) to FN (θ, g) can be ex-
pressed as follows,(
η

1

N

N∑
i=1

R(τi, g)uiu
T
i

)
∇Vg(θ′N ) (I + ηHθ)∇Vg(θ′N ),

where Hθ = 1
N

∑N
i=1R(τi, g)∇2

θ log pθ,g(τi). Define
∇V̂g, V̂g as unbiased estimates to ∇Vg, Vg. The following
estimate has the same expectation as ĴN,LSF(θ, g),(

η
1

N

N∑
i=1

R(τi, g)uiu
T
i

)
∇V̂g(θ′N )︸ ︷︷ ︸

=:Ĵ
(i)
N,LSF(θ,g)

+

(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇V̂g(θ′N )︸ ︷︷ ︸

=:Ĵ
(ii)
N,LSF(θ,g)

,

(11)

Since Eqn 11 can be computed via a similar procedure as
Lemma 5, we call it the generalized LSF gradient estimate
to the meta-RL objective. While the unbiased SF gradient
estimate Ĵ (ii)

N,SF has high variance when N is large, the LSF

gradient estimate Ĵ (i)
N,LSF achieves a good trade-off between

bias and variance. We will show how such trade-off impacts
the convergence analysis in Sec 5.
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Connections to Hessian estimation. We can
rewrite the LSF gradient estimate in Eqn 11
as (I + ηĤN (θ))∇V̂g(θ′N ), where ĤN (θ) =
1
N

∑N
i=1R(τi, g)

(
uiu

T
i +∇2

θ log pθ,g(τi)
)
. It is straight-

forward to verify that the matrix I+ηĤN (θ) is an unbiased
estimate to the Hessian matrix E[ĤN (θ)] = ∇2Vg(θ).
Most prior work focus on variance reduction for estimating
this function (Foerster et al., 2018; Mao et al., 2019;
Rothfuss et al., 2018; Tang et al., 2021).

Connections to exact gradient for meta-RL objective
F∞(θ, g). It is now worthwhile to contrast the general-
ized LSF gradient estimate to the gradient of J∞(θ, g) :=
∇θF∞(θ, g).

Corollary 8. Let ui := ∇θ log pθ,g(τi) and θ′ = θ +
ηEτ∼pθ,g [R(τ, g)∇θ log pθ,g(τ)] be the updated parameter
with exact PG ascent. In the following, let (τi)

N
i=1 ∼ pθ,g

i.i.d., then J∞(θ, g) is

E

[
η

1

N

N∑
i=1

R(τi, g)uiu
T
i ∇Vg(θ′)

]
︸ ︷︷ ︸

=:J
(i)
∞ (θ,g)

+ E

[(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇Vg(θ′)

]
︸ ︷︷ ︸

=:J
(ii)
∞ (θ,g)

,

(12)

Here, since θ′ is the updated parameter resulting from exact
PG ascent, it is not easy to construct unbiased estimate
to J∞(θ, g). This is because even if we can compute θ′N
as N -sample unbiased estimate to θ′, in general we still
have∇Vg(θ′) 6= E[∇Vg(θ′N )]. However, note that there are
similarities between the parametric forms of ĴN,LSF(θ, g)

and J∞(θ, g). We can interpret ĴN,LSF(θ, g) as also a biased
estimate to ĴN,LSF(θ, g), obtained by replacing θ′ with θ′N .

4. Discussion on prior work
We provide a briefly discussion on prior work. See Ap-
pendix E for an extended discussion.

Unbiased gradient to J∞(θ, g). In the original imple-
mentation of the MAML gradient estimate (Finn et al.,
2017), a term equivalent to J (i)

∞ (θ, g) was dropped, resulting
in a biased estimate. This motivates a number of follow-up
work to derive unbiased gradients (Foerster et al., 2018; Liu
et al., 2019). However, such follow-up estimates are also bi-
ased in general. This is mainly because practical algorithms
can only estimate ∇gVg(θ′N ) instead of ∇gVg(θ′), while
the latter is required to estimate J∞(θ, g) in an unbiased

way. This observation was also hinted at recently in (Tang
et al., 2021).

Prior work constructs de-facto LSF estimate. Since
most prior work derive meta-RL gradient estimates based
on J∞(θ, g) (Foerster et al., 2018; Rothfuss et al., 2018; Liu
et al., 2019; Tang et al., 2021), and due to the accidental
replacement of θ′ by θ′N , we conclude that they in fact con-
struct variants of the LSF gradient estimate (see comments
following Corollary 8). In particular, they construct Ĵ such
that E[Ĵ ] = E[ĴN,LSF(θ, g)] but with potentially lower vari-
ance. All of them focus on reducing variance of ĤN (θ).
Though in theory reducing the variance of ĤN (θ) does not
necessarily guarantee improvements, in practice, this seems
to be very critical.

Unbiased gradient estimate to N -sample meta-RL ob-
jective. The exact gradient and unbiased gradient estimate
toN -sample meta-RL objective was derived in (Al-Shedivat
et al., 2017; Rothfuss et al., 2018; Fallah et al., 2020a). A
comprehensive derivation was carried out in (Rothfuss et al.,
2018), where they contrasted J∞(θ, g) with JN (θ, g). How-
ever, they claimed that J (ii)

∞ (θ, g) = J
(ii)
N (θ, g), which is

not true. Our derivation shows that J (ii)
∞ (θ, g) 6= J

(ii)
N (θ, g)

in general because E[∇Vg(θ′N )] 6= ∇Vg(θ′).

5. Convergence Analysis with Linearized
Score Function Gradient Estimate

We start by presenting the meta-RL full algorithm with gen-
eralized LSF gradient estimate. Note that the pseudocode
also closely relates to how practical algorithms are imple-
mented (see more in Appendix H).

5.1. Full Algorithm and Key Assumptions
The full meta-RL algorithm is in Algorithm 1. There are
two important notes on the details: (1) We instantiate the
unbiased gradient estimate∇Vg(θ′N ) by M -sample PG esti-
mates with trajectories collected under the updated param-
eter θ′N ; (2) So far we have focused on presenting gradi-
ent estimate for a single task g. In practice, we sample
a batch of B tasks (gi)

B
i=1 and compute gradient estimate

for each ĴN,LSF(θ, gi). The overall gradient ĴN,LSF is aver-
aged across tasks, which is then used for the final update
θt+1 = θt + αĴN,LSF at each iteration.

We need a few common assumptions (Fallah et al., 2020a)
for theoretical analysis.

Assumption 9. (Smooth parameterization) For all s ∈
S, a ∈ A, g ∈ G and θ ∈ RD, ‖∇θ log πθ(a|s, g)‖2 ≤ G1

and
∥∥∇2

θ log πθ(a|s, g)
∥∥

2
≤ G2

4.

4See Appendix F for definitions of tensor norms and variance.
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Algorithm 1 N -sample meta-RL algorithm with lin-
earized SF gradient estimate
Require: Inputs: Hyper-parameters: batch sizes

(B,N,M). Step size η. Initial parameter θ1 = θ.
for t = 1, 2... do

Inner loop sampling. Sample B task variables gi and
N trajectories under (τi,j)

N
j=1 ∼ pθ,gi .

Inner update. Compute inner loop update θ′i,N =

θt + η 1
N

∑N
j=1R(τi,j , gi)∇θ log pθ,gi(τi,j).

Outer sampling at adapted parameters. Col-
lect M trajectories (τ ′i,k)Mk=1 ∼ pθ′i,N ,gi for

the outer loop PG estimate ∇θV̂gi(θ′i,N ) =
1
M

∑M
k=1R(τ ′i,k, gi)∇θ log pθ,gi(τ

′
i,k).

Gradient estimate and update. Compute
ĴN,LSF(θ, gi) based on Eqn 11. Then compute
ĴN,LSF = 1

B

∑B
i=1 ĴN,LSF(θ, gi) as the full estimate.

Update outer loop θt+1 = θt + αĴN,LSF.
end for
Output trained meta-RL policy πθ.

In addition, we impose a smoothness condition on the value
function. This could be converted into an equivalent as-
sumption on the parameterization.

Assumption 10. (Smooth value function) For all g ∈
G, θ ∈ RD,

∥∥∇3Vg(θ)
∥∥

2
≤ L.

All the above assumptions can be conveniently verified for
e.g., tabular MDP (finite X ,A and G) with soft-max param-
eterization of the policy, where πθ(a|s, g) ∝ exp(θ(s, a, g))
with parameter θ = {θ(s, a, g)}.

5.2. Performance Guarantee
We now provide performance guarantees of the LSF gradient
estimate. It is worth noting that since we are interested in the
dependency on N , the analysis does not necessarily obtain
the optimal dependency on other problem parameters (such
as the parameter dimension D or horizon H). We leave
potential improvements to future work.

The meta-RL objective takes an average over the
parameter-independent distribution and hence its gradient
JN (θ) := Eg[JN (θ, g)]. As previously discussed, since
E[ĴN,LSF(θ, g)] 6= JN (θ, g), the generalized LSF gradient
estimate ĴN,LSF(θ) is biased in general. We start by charac-
terizing its bias against JN (θ). Our results below character-
ize the dependency of various quantities on N , and folding
other constants into O(1). See Appendix G for concrete
dependencies on other constants in our analysis.

Proposition 11. For all values of the parameter θ ∈ RD,∥∥∥E[ĴN,LSF(θ)]− JN (θ)
∥∥∥

2
= O(1/

√
N).

The bias is benign as it vanishes when N is large. We next
characterize the variance of the estimate.

Proposition 12. For all θ ∈ RD, V
[
ĴN,LSF(θ)

]
=

O(1/M) +O(1/B)︸ ︷︷ ︸
O(1)

+O(1/N).

The bound O(1/M) +O(1/B) means to show the depen-
dency on the sample size B and M . When numerical quan-
tities do not depend on N , they are considered O(1). The
three terms on the upper bound above indicate sources of
randomness that contribute the variance of the generalized
LSF gradient estimate ĴN,LSF(θ): the batch of B tasks, the
batch of N inner loop trajectories τij per task and the batch
of M trajectories τ ′ik for estimating outer loop PG.

The bound is in general O(1) when N is large. This is
because in general it is not possible to get rid of the vari-
ance induced by a finite B and M . However, when we let
B,M →∞, the total variance is of order O(1/N). This is
consistent with the variance of the LSF gradient estimate
for the N -sample MC objective (see Lemma 6). Now we
are ready present the convergence guarantee of Algorithm
1. We show its convergence to a stationary point of the
objective JN (θ).

Proposition 13. With a properly chosen learning rate
in Algorithm 1, for any ε > 0, with TLSF =

2 max{ 1
ε2+O(1/N) ,

O(1)+O(1/N)
ε4+O(1/N2) } iterations of the algo-

rithm, we have

min
1≤t≤TLSF

E[‖JN (θt)‖22] = ε2 +O(1/N) =: δLSF.

It is insightful to contrast with the result of Fal-
lah et al. (2020a), where they they analyze the gen-
eralized SF gradient estimate. They show TSF =
O(1) 1

α min{ε−2,Θ(N−2)} and δSF = ε2 + Θ(N3α),
where recall that α is the learning rate.

To see that the generalized LSF gradient estimate achieves a
better dependency on N than the generalized SF gradient es-
timate, we fix ε and N , and adjust the learning rate α of the
SF gradient estimate. First, we require the asymptotic error
to have the same dependency on N by setting α = 1/N4, in
which case δSF = ε2 +Θ(1/N) while δLSF = ε2 +O(1/N).
This implies TSF = O(1)N4 min{ε−2,Θ(N−2)}, which is
significantly worse than TLSF when N is large. Intuitively,
this is because the generalized SF gradient estimate has
much higher variance, which requires a very small α to
achieve the same level of asymptotic error as the LSF gra-
dient estimate. As a result, this takes the algorithm many
more iterations to converge.

Equivalently, we can require both estimates to converge
with the same number of iterations. Assuming ε is small
enough such that N is the dominating factor in the asymp-
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(a) Bias-variance trade-off (b) 1-D Optimization (c) Meta-RL HalfCheetah (d) Meta-RL Walker2D

Figure 1. (a) 1-D problem bias and variance trade-off: The MSE is computed at the initial update. At small N , LSF has higher MSE
than SF. However, the MSE of SF increases with N due to variance; (b) 1-D problem learning curves: LSF outperforms SF. PW is the
best when available. Each curve averages over 100 runs; (c)-(d) High-dimensional meta-RL problems: LSF outperforms SF consistently
across all tasks. Each curve averages over 5 runs. See Appendix H for more results.

totic error, this means we should choose α = 1/N . In this
case, we have δSF = ε2 + Θ(N2), which is significantly
worse than δLSF = ε2 +O(1/N). This is because in order
to converge with the same number of iterations, SF gradi-
ent estimate requires a relatively large learning rate. Large
learning rates prevent the algorithm from dissipating the
high variance in the gradient estimate, which ultimately lead
to high asymptotic errors.

Convergence to stationary point of F∞(θ). Since
‖JN (θ)− J∞(θ)‖2 ≤ O(1/N) (Proposition 24), the above
result also implies that with TLSF, the algorithm also obtains
the stationary point of J∞(θ) up to error ε2 +O(1/N). As
such, we can interpret the optimization of FN (θ) as a proxy
to F∞(θ) when N is large.

6. Experiments
We carry out experiments to illustrate theoretical insights.
We briefly discuss the results, see Appendix H for further
details on the experiments.

6.1. 1-D optimization problem
To better understand the connection between the vari-
ance of the estimate and the optimization performance,
we maximize a 1-D problem with objective L(θ) =
E(Xi)Ni=1∼pθ [−(X̄N − 1)2] where X̄N is the average over
N samples and pθ = N (θ, 12). Fig 1(a) shows the bias-
variance trade-off of different gradient estimates.

The mean-square error (MSE) of SF increases with N due
to variance (because SF is unbiased), whereas the MSE of
LSF decreases with N due to both decreasing variance and
bias. Consistent with Lemma 2 and many empirical observa-
tions in prior work, PW achieves the lowest MSE due to low
variance. Fig 1(b) compares the final objective after a fixed
number of ascent updates. It shows as N increases, SF de-

grades significantly in performance whereas LSF improves.
The performance of different estimates correlate strongly
with the MSE: when N is small, LSF is outperformed by SF
due to the bias; when N is large, LSF catches up with PW
while the performance of SF degrades significantly. These
observations are also consistent with discussions in Sec 5.

6.2. High-dimensional meta-RL problems
We contrast the SF and LSF gradient estimates in meta-RL.
To implement both SF and LSF, we use the Markov struc-
ture to reduce variance compared to the original "trajectory-
based" estimates. This turns out to be quite critical in prac-
tice. Fig 1(b)-(d) shows that the LSF gradient estimate out-
performs the SF gradient estimate, where the high variance
of the unbiased SF gradient estimate consistently hinders
learning across all tasks we tested on.

At a first glance from results in Fig 1(d), the LSF estimate ap-
pears to exhibit higher variance than the SF estimate across
different runs. We speculate that this is because under the
SF estimate the algorithm barely learns, and consequently
the difference of performance across independent runs is
small, leading to small variance. On the other hand, the
LSF estimate does provide better performance due to better
stochastic gradient estimate with smaller variance per run.
However, the optimization process overall is still fairly com-
plicated, and different runs can achieve very different levels
of performance (even though per-run they are all better than
the SF estimate), leading to high variance across seeds.

Finally, we note that though the LSF estimate attempts to
capture the variance reduction benefits of many practical
algorithms with biased estimates (see also Sec 4 for further
discussions), in practice it is common to introduce bisa to
the estimates, to further improve empirical performance
(Finn et al., 2017; Rothfuss et al., 2018; Tang et al., 2020).
We leave the study of such observations to future work.
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7. Conclusion
By formulating the N -sample meta-RL objective as a spe-
cial case of N -sample additive MC objective, we identify
the high variance (Θ(N)) of naive SF gradient estimate. The
LSF gradient estimate, which is biased but has low variance
(O(1/N)), achieves theoretical guarantees with much more
benign dependency on N . As a result, our analysis sug-
gests the necessity of employing biased gradient estimates
in practice. Meanwhile, we also make the observation that
many prior work turned out to implement variants of the
LSF gradient estimate. This implies that despite their claim
of unbiasedness, the practical gradient estimates are almost
always biased. This is consistent with the empirical results.
Overall, we believe our results help better understand the
subtle design choices in meta-RL practice, and might entail
the design of new algorithms in future work.
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APPENDICES: Biased Gradient Estimate with Drastic Variance Reduction
for Meta Reinforcement Learning

A. Definitions of "Big O" Notations
For non-negative functions f, g, the notation f(N) = O (g(N)) implies that when N is large enough, there exists constant
C ≥ 0 such that f(N) ≤ Cg(N).

The notation f(N) = Θ (g(N)) implies that N is large enough, there exists constant C ≥ c ≥ 0 such that cg(N) ≤
f(N) ≤ Cg(N).

B. Reparameterized Gradient Estimate
If X is reparameterizable (RE), there exists an elementary distribution ζ ∼ pζ (e.g. gaussian N (0, 1)) and a function Tθ
such that Tθ(ζ) is equal in distribution to X .

When X is RE and f is differentiable, the PW gradient estimate is defined as

∇̂PW
θ L(θ) := [∇Xf(X)]X=Tθ(ζ)∇θTθ(ζ), ζ ∼ pζ .

The PW gradient estimate is also unbiased. Intuitively, since PW gradient estimate makes use of the gradient ∇Xf(X), it
enjoys lower variance compared to the SF gradient estimate in many applications (Kingma and Welling, 2013). However,
the PW gradient estimate is less generally applicable due to assumptions on X and f . For example, those assumptions are
not satisfied for important applications such as RL and meta-RL.

C. Derivation of the Linearized Score Function Gradient Estimate
Since Xis are i.i.d., we expect the average φ̄N = 1

N

∑N
i=1 φ(Xi) to approach φ̄ := E [φ(Xi)] as N →∞. This provides a

direct motivation to consider the behavior of f(φ̄N ) near the constant φ̄. In particular, consider the Taylor expansion of
f
(
φ̄N
)

with φ̄ as its reference point. We decompose f
(
φ̄N
)

into three parts,

f
(
φ̄N
)

= f
(
φ̄
)︸ ︷︷ ︸

constant term

+
[
∇f

(
φ̄
)]T [

φ̄N − φ̄
]︸ ︷︷ ︸

linear term

+O
(∥∥φ̄− φ̄N∥∥2

2

)
︸ ︷︷ ︸

residual term

If we multiply the above with
∑N
i=1∇θ log pθ(Xi), we recover the original SF gradient estimate on the LHS. Examining,

the LHS, if we drop the residual term of the Taylor expansion, this yields a new estimate,

f
(
φ̄
) N∑
i=1

∇θ log pθ(Xi)︸ ︷︷ ︸
constant term

+
[
∇f

(
φ̄
)]T [

φ̄N − φ̄
]( N∑

i=1

∇θ log pθ(Xi)

)
︸ ︷︷ ︸

linear term

.

We will see that removing the residual term leads to a bias of order O(1/
√
N) under some mild conditions on f .

Note now that the constant term has mean zero, but is nonzero in general. This implies that this term contributes a large
portion of the total variance of this new estimate. It is therefore tempting to remove this term from the estimate. In
fact, removing the constant term is equivalent to augmenting the original estimate with a baseline (or control variate)(
f(φ̄N )− f(φ̄)

)∑N
i=1∇ log pθ(Xi) (Ross, 2002). We should expect the control variate to achieve significant variance

reduction when N is large.

We now are left with the linear term alone as the new estimate. Note that if we count each ∇θ log pθ(Xi) as a single term,
there are a total of N2 terms in the linear term. This is because we can write

linear term =
1

N

N∑
i=1

N∑
j=1

[
∇f(φ̄)

]T (
φ(Xj)− φ̄

)
∇θ log p(Xj).

It is worth noting that the "off-diagonal" terms have mean zero. In other words,

E
[[
∇f(φ̄)

]T (
φ(Xi)− φ̄

)
∇θ log p(Xj)

]
= 0, i 6= j.
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We can remove all such terms, reducing the computations to only N "diagonal terms". We expect this removal step to reduce
variance in practice as well, because it reduces the number of summations from N2 to N . This produces a new estimate,

1

N

N∑
i=1

[
∇f(φ̄)

]T (
φ(Xi)− φ̄

)
∇θ log p(Xi).

There are two places where φ̄ appears. Since φ̄ is not known in practice, we make two modifications to the above estimate:
(1) We replace f(φ̄) by f(φ̄N ). This will introduce further bias into the estimate; (2) We remove the second φ̄ for simplicity,
as it will not impact the dependency of final estimates’ bias and variance on N . Importantly, note that since φ̄∇θ log p(Xi)
has mean zero, it does not change the mean of the overall estimate. However, since φ̄ can be seen as a control variate, its
removal can potentially increase the variance of the estimate. Combining the above modifications, we arrive at the LSF
gradient estimate,

1

N

N∑
i=1

[
∇f(φ̄N )

]T
φ(Xi)∇θ log p(Xi).

D. Toy Example for Meta-RL
We construct a toy meta-RL example that illustrates the variance property of the SF gradient estimate vs. LSF gradient
estimate. We consider a MDP where the value function Vg(θ) := V0 is a constant for all θ. We also set the adaptation
step size η = 0. We also assume a single starting state x0, and that the trajectory terminates after H = 1 step. As a
result, the trajectory consists of a single action τi ≡ ai. We can assume a 1-D action space A = R, and the policy
π(a|θ, g) = N (θ, σ2) is a Gaussian distribution with learnable mean θ and fixed σ. In this case, the effective objective is
L(θ, g) = E(ai)Ni=1∼N (θ,σ2)[Vg(θ)].

SF gradient estimate. In this case, the estimate is Vg(θ)
∑N
i=1∇θ log pθ,g(τi) = V0

∑N
i=1∇θ log pθ,g(τi). The SF

gradient estimate bears close resemblance to the SF gradient estimate in the N -sample MC estimate. Its variance is of order
Θ(N).

LSF gradient estimate. In this case, we can show that the LSF gradient estimate is effectively the PG estimate at the
adapted parameter ∇̂Vg(θ′) where θ′ = θ. It then depends on how we construct the PG estimate. For example, since θ′ = θ,
we can use the N samples generated under θ to estimate the PG estimate. It then naturally follows that the variance is of
order O(1/N).

E. Discussion on Prior Work
Here, we provide a more extended discussion on prior work.

N -sample meta-RL objective. As noted earlier, the N -sample meta-RL objective was considered in both empirical
(Al-Shedivat et al., 2017; Rothfuss et al., 2018) and theoretical contexts (Fallah et al., 2020a). This objective is of practical
interest because of budget on inner loop samples. The limit case N =∞ was considered in the original MAML formulation
of meta-RL (Finn et al., 2017).

Unbiased gradient to the limit case J∞(θ, g). In the author’s original implementation of the MAML gradient estimate
(Finn et al., 2017), a term equivalent to J (i)

∞ (θ, g) was unintentionally dropped, resulting in a biased estimate. This fuels the
motivation for a number of follow-up work to derive unbiased gradients (Foerster et al., 2018; Liu et al., 2019). However,
they are biased in general. This is mainly because practical algorithms can only estimate∇gVg(θ′N ) instead of∇gVg(θ′),
while the latter is required to estimate J∞(θ, g) in an unbiased way. This observation was also hinted at recently in (Tang
et al., 2021).

Prior work in fact constructs the LSF gradient estimate. Since most prior work derive meta-RL gradient estimates
based on J∞(θ, g) (Foerster et al., 2018; Rothfuss et al., 2018; Liu et al., 2019; Tang et al., 2021), and due to the accidental
replacement of θ′ by θ′N , we conclude that they in fact construct variants of the LSF gradient estimate (see comments
following Corollary 8). In particular, they construct Ĵ such that E[Ĵ ] = E[ĴN,LSF(θ, g)] but with potentially lower variance.
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All of them focus on reducing variance of ĤN (θ). Though in theory reducing the variance of ĤN (θ) does not necessarily
guarantee improvements, in practice, this seems to be very critical. Variance reduction methods include control variates (Liu
et al., 2019), as well as introducing further bias to the estimate of ĤN (θ) (Rothfuss et al., 2018; Tang et al., 2021).

Unbiased gradient estimate to N -sample meta-RL objective. The exact gradient and unbiased gradient estimate
to N -sample meta-RL objective was derived in (Al-Shedivat et al., 2017; Rothfuss et al., 2018; Fallah et al., 2020a). A
comprehensive derivation was carried out in (Rothfuss et al., 2018), where they contrasted J∞(θ, g) with JN (θ, g). However,
they claimed that J (ii)

∞ (θ, g) = J
(ii)
N (θ, g), which is not true. Our derivation shows that J (ii)

∞ (θ, g) 6= J
(ii)
N (θ, g) in general

because E[∇Vg(θ′N )] 6= ∇Vg(θ′).

Convergence analysis of gradient-based meta-learning and meta-RL. Due to the highly complex objective landscape
of meta learning, most theoretical analysis focuses on convergence to stationary points. Recently, (Fallah et al., 2020b)
established generic convergence guarantees for gradient-based meta-learning algorithms for supervised learning with one
inner loop update. Recently, (Ji et al., 2020) extended the analysis to multi-step inner loop updates. For meta-RL, (Fallah
et al., 2020a) established convergence for theN -sample meta-RL objective. They motivated the objective in a similar manner
as (Al-Shedivat et al., 2017; Rothfuss et al., 2018) and constructed unbiased estimates exactly as the generalized SF gradient
estimate ĴN,SF(θ, g). However, since the estimate has variance linear in N , the final guarantee becomes less applicable in
practice. Contrast to this work, we show how the biased generalized LSF gradient estimate achieves performance guarantee
with more desirable dependency on N .

F. Notations for Norms and Useful Inequalities
For any tensor (vector or matrix) X , we define its 2-norm as

‖X‖2 :=

√∑
i

X2
i ,

where i sums over components of X . The variance is defined as the sum of the variance of its components,

V[X] :=
∑
i

V [Xi] .

We now introduce a number of useful inequalities, which will be heavily used in the proof section.

Operator norm and 2-norm for matrix. The oprator norm of a matrix X is defined as: ‖X‖op,2 := max‖u‖2=1 ‖Xu‖2.
It is known that ‖X‖op,2 ≤ ‖X‖2.

Exchange of norm and expectation. For any random tensor X , ‖E [X]‖2 ≤ E [‖X‖2]. The proof is based on Jensen’s
inequality and the fact that 2-norm is a convex function of its argument.

Cauchy–Schwarz (CS) inequality for random variables. For any two random variables X,Y ,

E [|X||Y |] ≤
√

E[X2]
√
E[Y 2].

CS inequality for random matrix and vector. For any random matrix X ∈ RH×H and random vector Y ∈ RH , then

‖E [XY ]‖2 ≤ E [‖XY ‖2] ≤ E
[
‖X‖op,2 ‖Y ‖2

]
≤ E [‖X‖2 ‖Y ‖2] ≤

√
E
[
‖X‖22

]√
E
[
‖Y ‖22

]
.

The last inequality comes from the CS inequality of scalar random variables.

Expected norm inequality. For any random tensor X , we have

E[‖X‖2] ≤
√

E[‖X‖22].

The result follows by considering Y := ‖X‖2 as a single random variable, we have E[Y ] ≤
√
E[Y 2].
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G. Proof
Lemma 14. In the toy N -sample MC objective example,

V
[
∇̂SF
θ L(θ)

]
= Θ(N),V

[
∇̂LSF
θ L(θ)

]
= O(1/N),V

[
∇̂PW
θ L(θ)

]
= 0.

Proof. We first reparameterize the random variable Xi = µ+ σ · εi where εi ∼ N (0, 1). With some calculations, we can
show,

∇̂SF
θ L(θ) =

1

N

(
N∑
i=1

εi

)2

+
µ

σ

1

N

N∑
i=1

εi, ∇̂LSF
θ L(θ) =

1

N

N∑
i=1

ε2i +
µ

σ

N∑
i=1

εi, ∇̂PW
θ L(θ) = 1.

It then follows that

V
[
∇̂SF
θ L(θ)

]
=
µ2

σ2
N +

2

N
= Θ(N), V

[
∇̂LSF
θ L(θ)

]
=
µ2

σ2

1

N
+

2

N
= O(1/N), V

[
∇̂PW
θ L(θ)

]
= 0.

Lemma 15. In the toy N -sample MC objective example, V
[
∇̂SF
θ L(θ)

]
= Θ(N).

Proof. See the proof for Lemma 14.

Lemma 16. In the toy N -sample MC objective example, V
[
∇̂PW
θ L(θ)

]
= 0.

Proof. See the proof for Lemma 14.

Lemma 17. Let φ̄N := 1
N

∑N
i=1 φ(Xi, θ). The generalized N -sample additive MC objective has gradient ∇θG(θ) as

follows, where (Xi)
N
i=1 ∼ pθ i.i.d.,

E(Xi)Ni=1

f (φ̄N , θ)
N∑
i=1

∇θ log pθ(Xi)︸ ︷︷ ︸
term (i)



+ E

∇θf (φ̄N , θ)+

(
1

N

N∑
i=1

∇θφ(θ,Xi)

)
∇φ̄N f(φ̄N , θ)︸ ︷︷ ︸

term (ii)

 .

Proof. Recall the definition of G(θ),

G(θ) := E(Xi)Ni=1

[
f

(∑N
i=1 φ(Xi, θ)

N
, θ

)]
.

The objective depends on θ in a few ways. It is straightforward to see that term (i) results from the fact that Xi ∼ pθ.
Another source of dependency is through the argument φ(X, θ) and f(φ̄N , θ). Fixing Xis, taking partial gradient of f with
respect to θ, we get from chain rule,

∇f(φ̄N , θ) = ∇θf(φ̄N , θ) +∇θφ̄N∇φ̄N f(φ̄N , θ).

Expanding ∇θφ̄N , we get the desired expression.
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Lemma 18. Let θ′N := θ + η 1
N

∑N
i=1R(τi, g)∇θ log pθ,g(τi) be the (random) updated parameter. Let τi ∼ pθ,g i.i.d. and

let∇Vg(θ′N ) denotes [∇θVg(θ)]θ=θ′N . Then JN (θ, g) := ∇θFN (θ, g) is

E

[
Vg(θ

′
N )

N∑
i=1

∇θ log pθ,g(τi)

]
︸ ︷︷ ︸

=:J
(i)
N (θ,g)

+ E

[(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇Vg(θ′N )

]
︸ ︷︷ ︸

=:J
(ii)
N (θ,g)

. (7)

Proof. As discussed in the main text, with the conversion: Xi := τi, φ(Xi, θ) := R(τi, g)∇θ log pθ,g(τi) and f(φ̄N , θ) =
Vg(θ + ηφ̄N ), we can cast meta-RL as a special instance of the generalized N -sample additive MC objective. By using the
gradient of the N -sample additive MC objective shown in Lemma 3, we get the desired result.

Corollary 19. First, sample (τi)
N
i=1 ∼ pθ,g and compute the updated parameter θ′N . Then, construct unbiased estimates to

∇Vg(θ′N ) and Vg(θ′N ), e.g. with trajectories sampled under πθ′N . Let these estimates be∇V̂g(θ′N ) and V̂g(θ′N ) respectively5.
The final estimate is

V̂g(θ
′
N )

N∑
i=1

∇θ log pθ,g(τi)︸ ︷︷ ︸
=:Ĵ

(i)
N,SF(θ,g)

+

(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇V̂g(θ′N )︸ ︷︷ ︸

=:Ĵ
(ii)
N,SF(θ,g)

. (8)

Both terms are unbiased E[Ĵ
(i)
N,SF(θ, g)] = J

(i)
N (θ, g),E[Ĵ

(ii)
N,SF(θ, g)] = J

(ii)
N (θ, g) with respect to the two terms in Eqn 7.

This implies that the overall estimate is also unbiased.

Proof. Given θ′N , as assumed, we can construct unbiased estimates∇V̂g(θ′N ) and V̂g(θ′N ) to∇Vg(θ′N ) and Vg(θ′N ). This is
equivalent to the following statement,

E
[
∇V̂g(θ′N )

∣∣∣ θ′N] = ∇Vg(θ′N ),E
[
V̂g(θ

′
N )
∣∣∣ θ′N] = Vg(θ

′
N ).

We now have the following

E

[
V̂g(θ

′
N )

N∑
i=1

∇θ log pθ,g(τi)

(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇V̂g(θ′N )

]

= E

[
E

[
V̂g(θ

′
N )

N∑
i=1

∇θ log pθ,g(τi)

(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇V̂g(θ′N )

∣∣∣∣∣ θ′N
]]

= E

[
Vg(θ

′
N )

N∑
i=1

∇θ log pθ,g(τi)

(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇Vg(θ′N )

]
= JN (θ, g).

This shows that the finale estimate is unbiased.

Lemma 20. In the toy N -sample MC objective example, V
[
∇̂LSF
θ L(θ)

]
= O(1/N).

5For now, we just require the estimates to be unbiased. In Sec 5, we make these estimates concrete for refined convergence analysis.
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Proof. See the proof for Lemma 14.

Corollary 21. Let ui := ∇θ log pθ,g(τi). The generalized LSF gradient estimate ĴN,LSF(θ, g) to FN (θ, g) can be expressed
as follows, (

η
1

N

N∑
i=1

R(τi, g)uiu
T
i

)
∇Vg(θ′N ) (I + ηHθ)∇Vg(θ′N ),

where Hθ = 1
N

∑N
i=1R(τi, g)∇2

θ log pθ,g(τi). Define ∇V̂g, V̂g as unbiased estimates to ∇Vg, Vg. The following estimate
has the same expectation as ĴN,LSF(θ, g),(

η
1

N

N∑
i=1

R(τi, g)uiu
T
i

)
∇V̂g(θ′N )︸ ︷︷ ︸

=:Ĵ
(i)
N,LSF(θ,g)

+

(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇V̂g(θ′N )︸ ︷︷ ︸

=:Ĵ
(ii)
N,LSF(θ,g)

, (11)

Proof. With the conversion Xi := τi, φ(Xi, θ) := R(τi, g)∇θ log pθ,g(τi) and f(φ̄N , θ) = Vg(θ + ηφ̄N ), we can derive
the generalized LSF gradient estimate to the meta-RL objective as a special instance of Eqn 10,(

η
1

N

N∑
i=1

R(τi, g)uiu
T
i

)
∇Vg(θ′N )

(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇Vg(θ′N ).

For the second part of the result, by replacing Vg and ∇Vg by their unbiased estimate, we can show that the overall estimate
has the same expectation. This is because E[V̂g(θ

′
N )|θ′N ] = Vg(θ

′
N ) and E[∇V̂g(θ′N )|θ′N ] = ∇Vg(θ′N ), we can show the

desired result via the law of total expectation as in the proof of Lemma 5.

Corollary 22. Let ui := ∇θ log pθ,g(τi) and θ′ = θ + ηEτ∼pθ,g [R(τ, g)∇θ log pθ,g(τ)] be the updated parameter with
exact PG ascent. In the following, let (τi)

N
i=1 ∼ pθ,g i.i.d., then J∞(θ, g) is

E

[
η

1

N

N∑
i=1

R(τi, g)uiu
T
i ∇Vg(θ′)

]
︸ ︷︷ ︸

=:J
(i)
∞ (θ,g)

+ E

[(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi)

)
∇Vg(θ′)

]
︸ ︷︷ ︸

=:J
(ii)
∞ (θ,g)

, (12)

Proof. We directly compute the gradient J∞(θ, g) = ∇θL(θ, g) via chain rule,

J∞(θ, g) =
(
I + η∇2Vg(θ)

)
∇V (θ′).

Now, if we write Vg(θ) = Eτ [R(τ, g)] with τ ∼ pθ,g. We can compute its Hessian,

∇2Vg(θ) = Eτ
[
R(τ, g)∇2

θ log pθ,g(τ) +R(τ, g)∇θ log pθ,g(τ) (∇θ log pθ,g(τ))
T
]

= E(τi)Ni=1

[
1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi) +

1

N

N∑
i=1

R(τi, g)∇θ log pθ,g(τi) (∇θ log pθ,g(τi))
T

]
.

Rearranging Eqn 12, we get the desired result.
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Proposition 23. For all θ, θ′ and g, the value function satisfies the smoothness condition
∥∥∇2Vg(θ)

∥∥
2
≤ L1. The following

variances are bounded,

V [R(τ, g)∇θ log pθ,g(τ)] ≤ σ2
1 ,V

[
R(τ, g)∇2

θ log pθ,g(τ)
]
≤ σ2

21,

V
[
R(τ, g)∇θ log pθ,g(τ) (∇θ log pθ,g(τ))

T
]
≤ σ2

22,

E
[
‖R(τi)∇θ log pθ,g(τi)− E [R(τi)∇θ log pθ,g(τi)]‖32

]
≤ σ3

3 .

All quantities above L1, σ
2
1 , σ

2
21, σ

2
22, σ

2
3 can be expressed as functions of (R, γ,H,G1, G2, D).

Proof. First, consider L1. To express L1 as a function of (R, γ,H,G1, G2, D), note that we can derive an upper bound for
all θ, g and τ ,∥∥∥R(τ, g)∇2

θ log pθ,g(τ) +R(τ, g) (∇θ log pθ,g(τ)) (∇θ log pθ,g(τ))
T
∥∥∥

2
≤ RG2H

1− γH

1− γ
+RG2

1H
2 1− γH

1− γ
.

This implies ∥∥∇2Vg(θ)
∥∥

2
=
∥∥∥Eτ [R(τ, g)∇2

θ log pθ,g(τ) +R(τ, g) (∇θ log pθ,g(τ)) (∇θ log pθ,g(τ))
T
]∥∥∥

2

≤ Eτ
[∥∥∥R(τ, g)∇2

θ log pθ,g(τ) +R(τ, g) (∇θ log pθ,g(τ)) (∇θ log pθ,g(τ))
T
∥∥∥

2

]
≤ RG2H

1− γH

1− γ
+RG2

1H
2 1− γH

1− γ
.

Then we can write

‖∇Vg(θ)− Vg(θ′)‖2 =
∥∥∥∇2Vg(θ̃)(θ − θ′)

∥∥∥
2
≤
∥∥∥∇2Vg(θ̃)

∥∥∥
op,2
‖θ − θ′‖2 ≤

∥∥∥∇2Vg(θ̃)
∥∥∥

2
‖θ − θ′‖2 ≤ L1 ‖θ − θ′‖2 .

Hence, we can set L1 = RG2H
1−γH
1−γ +RG2

1H
2 1−γH

1−γ .

Regarding the variances, note that since all the random variables

R(τ, g)∇θ log pθ,g(τ), R(τ, g)∇2
θ log pθ,g(τ), R(τ, g)∇θ log pθ,g(τ) (∇θ log pθ,g(τ))

T
,

are bounded almost surely (the bounds are a function of (R, γ,H,G1, G2, D)), their variances are also bounded, and can be
expressed as a function of such bounds. As one way to derive such bounds, we can upper bound each entry of the random
tensor. For example, take R(τ, g)∇θ log pθ,g(τ) as an example, we can write

∣∣[R(τ, g)∇θ log pθ,g(τ)]i
∣∣ ≤ RG1H

1−γH
1−γ

for all component i. For any random variable X such that |X| ≤ C, we have V[X] ≤ C2 (Popoviciu, 1965). This implies

V [R(τ, g)∇θ log pθ,g(τ)] ≤ D ·
(
RG1H

1−γH
1−γ

)2

and we can set σ1 =
√
D ·RG1H

1−γH
1−γ . We refer to such bounds as the

loose bounds.

Such bounds might not have an optimal dependency on (R, γ,H,G1, G2, D). For example, since for all θ, g and τ , we can
bound

‖R(τ, g)∇θ log pθ,g(τ)‖2 ≤ RG1H
1− γH

1− γ
.

This implies that the random vector R(τ, g)∇θ log pθ,g(τ) has bounded norm almost surely. By definition of the vector
variance, this also implies that σ2

1 is bounded. We can bound

V [R(τ, g)∇θ log pθ,g(τ)] ≤ E
[
‖R(τ, g)∇θ log pθ,g(τ)‖22

]
≤
(
RG1H

1− γH

1− γ

)2

.

We can hence set σ1 = RG1H
1−γH
1−γ , which is an improvement over the naive approach with a factor of

√
D. Nevertheless,

it is straightforward to derive the loose bounds for σ2
21, σ

2
22 and σ2

3 and conclude the result, though tighter bounds require
more refined analysis.
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Proposition 24. For all θ ∈ RD,
∥∥∥E [ĴN,LSF(θ)

]
− J∞(θ)

∥∥∥
2
≤ O(1/

√
N).

Proof. Since E
[
ĴN,LSF(θ)

]
− J∞(θ) = Eg

[
E
[
ĴN,LSF(θ, g)

]
− J∞(θ, g)

]
, we focus on the bias of the task-conditioned

bias E
[
ĴN,LSF(θ, g)

]
− J∞(θ, g). Henceforth we will suppress the dependency of the trajectories on the task variable, still

denoting the N trajectories as (τi)
N
i=1. We write E

[
ĴN,LSF(θ, g)

]
− J∞(θ, g) as follows,

E(τi)Ni=1

[(
I + η

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi) + η

1

N

N∑
i=1

R(τi, g)uiu
T
i

)
(∇Vg(θ′N )−∇Vg(θ′))

]
.

For notational simplicity, we define the following

XN := η
1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi) + η

1

N

N∑
i=1

R(τi, g)uiu
T
i

YN := ∇Vg(θ′N )−∇Vg(θ′).

Note that X := E[XN ] = η∇2
θVg(θ). We write the above difference as

E [(I +XN )YN ] = E [(I +X)YN ]︸ ︷︷ ︸
part (i)

+E[(XN −X)YN ]︸ ︷︷ ︸
part (ii)

.

To bound the norms of each term, note that we have due to the Lipschitz smoothness of the value function parameterization,

E
[
‖YN‖22

]
≤ L2

1E
[
‖θ′N − θ′‖

2
2

]
≤ L2

1

η2σ2
1

N
.

The Lipschitz smoothness also implies ‖X‖2 = η
∥∥∇2

θVg(θ)
∥∥

2
≤ ηL1. This entails a bound on part (i) of the difference,

‖part (i)‖2 ≤ ‖(I +X)E[YN ]‖2 ≤ ‖I +X‖op,2 ‖E[YN ]‖2 ≤ (1 + ηL1)

√
E
[
‖YN‖22

]
≤ (1 + ηL1)L1

ησ1√
N
.

We have exchanged the norms and expectation, and applied the expected norm inequality.

To bound the second part, first note that for any two random variables X,Y , the sum of the variance is upper bounded as:
V[X + Y ] ≤ 2V[X] + 2V[Y ]. This inequality extends to general random tensor X,Y . This implies

V
[
R(τi, g)∇2

θ log pθ,g(τi) +R(τi, g)∇θ log pθ,g(τi) (∇θ log pθ,g(τi))
T
]
≤ σ2

21 + σ2
22

This further implies,

E
[
‖XN −X‖22

]
= V [XN ] ≤ η2

N
(σ2

21 + σ2
22).

Before bounding the norm of part (ii), we recall that that for any matrix X and vector Y , we have ‖XY ‖2 ≤ ‖X‖op,2 ‖Y ‖2,
and that ‖X‖op,2 ≤ ‖X‖2. Now, we can upper bound part (ii) as follows,

‖part (ii)‖2 ≤ E [‖(XN −X)YN‖2] ≤ E
[
‖(XN −X)‖op,2 ‖YN‖2

]
≤ E [‖(XN −X)‖2 ‖YN‖2] .

The final RHS is upper bounded by the following due to Cauchy–Schwarz inequality, which implies

‖part (ii)‖2 ≤ ... ≤
√
E
[
‖(XN −X)‖22

]√
E
[
‖YN‖22

]
≤ η√

N

√
σ2

21 + σ2
22 · L1

ησ1√
N
.

Combining the two results above with a triangle inequality due to the vector 2-norm, we have∥∥∥E [ĴN,LSF(θ, g)
]
− J∞(θ, g)

∥∥∥
2
≤ (1 + ηL1)

L1ησ1√
N

+
√
σ2

21 + σ2
22

L1η
2σ1

N
.
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This induces the final result,∥∥∥E[ĴN,LSF(θ)]− J∞(θ)
∥∥∥

2
≤ Eg

[∥∥∥E [ĴN,LSF(θ, g)
]
− J∞(θ, g)

∥∥∥
2

]
≤ (1 + ηL1)

L1ησ1√
N

+
√
σ2

21 + σ2
22

L1η
2σ1

N
.

Proposition 25. For all θ ∈ RD, ‖J∞(θ)− JN (θ)‖2 ≤ O(1/
√
N).

Proof. We seek to bound the difference
∥∥∥E [ĴN,LSF(θ)

]
− JN (θ)

∥∥∥
2
. We first focus on bounding task-conditional gradient∥∥∥E [ĴN,LSF(θ, g)

]
− JN (θ, g)

∥∥∥
2
. To this end, recall that ui := ∇θ log pθ,g(τi), then we can write

E
[
ĴN,LSF(θ, g)

]
− JN (θ, g) = E(τi)Ni=1

[(
η

1

N

N∑
i=1

R(τi, g)uiu
T
i

)
∇Vg(θ′N )

]
− E(τi)Ni=1

[(
η

N∑
i=1

ui

)
Vg(θ

′
N )

]
.

We start with Taylor expansion of Vg(θ′N ) with respect to the reference point θ′ := θ + ηE[R(τ, g)∇ log pθ,g(τ)].

Vg(θ
′
N ) = Vg(θ

′) + (∇Vg(θ′))
T

(θ′N − θ′) + 1/2 · (θ′N − θ′)T∇2Vg(θ)(θ
′
N − θ′)T + 1/6 · ∇3Vg(θ̃)(θ

′
N − θ′)3,

where θ̃ is a random vector between θ′N and θ′. Here, for A ∈ RH×H×H and x ∈ RH we define the notation Ax3 :=∑
ijk Aijkxixjxk. Plugging in the expansion, E

[
ĴN,LSF(θ, g)

]
− JN (θ, g) evaluates to

= E

[(
η

1

N

N∑
i=1

R(τi, g)uiu
T
i

)
∇Vg(θ′N )

]
− E

[(
η

N∑
i=1

ui

)
Vg(θ

′)

]
︸ ︷︷ ︸

=0

− E

[(
η

N∑
i=1

ui

)
(∇Vg(θ′))

T
(θ′N − θ′)

]
− E

[(
η

N∑
i=1

ui

)
1/2 · (θ′N − θ′)T∇2Vg(θ̃)(θ

′
N − θ′)T

]

= E

[(
η

1

N

N∑
i=1

R(τi, g)uiu
T
i

)
(∇Vg(θ′N )−∇Vg(θ′))

]
︸ ︷︷ ︸

part (i)

−E

[(
η

N∑
i=1

ui

)
1/2 · (θ′N − θ′)T∇2Vg(θ

′)(θ′N − θ′)T
]

︸ ︷︷ ︸
part (ii)

− E

[(
η

N∑
i=1

ui

)
1/6 · ∇3Vg(θ̃)(θ

′
N − θ′)3

]
︸ ︷︷ ︸

part (iii)

.

Below, we bound each of the three parts above. For part (i), let XN = η 1
N

∑N
i=1R(τi, g)uiu

T
i and YN = ∇Vg(θ′N ) −

∇Vg(θ′). Let X = E[XN ]. Then,

E[‖XN‖22] = ‖E[XN ]‖22 + V[XN ].

To obtain a bound of the norm on E[XN ], let u = ∇θ log pθ,g(τ) (∇θ log pθ,g(τ))
T for any τ , then

∥∥R(τ, g)uuT
∥∥

2
≤ R1− γH

1− γ
∥∥uuT∥∥

2
= R

1− γH

1− γ

√
Trace(uuTuuT ) = R

1− γH

1− γ
(uTu) ≤ H2G2R

1− γH

1− γ
.

In the above we used the assumption that ‖∇θ log πθ(a|s, g)‖2 ≤ G. This implies

‖E[XN ]‖2 = η
∥∥E[R(τ, g)uuT ]

∥∥
2
≤ ηE

[∥∥R(τ, g)uuT
∥∥

2

]
≤ ηH2G2R

1− γH

1− γ
.
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We hence conclude

E[‖XN‖22] ≤ η2H4G4R2

(
1− γH

1− γ

)2

+
η2σ2

22

N
.

Combining with the previous result on the norm bound of E[‖YN‖22], we get via the CS inequality,

‖part (i)‖2 ≤
√
E[‖XN‖22]

√
E[‖YN‖22] ≤

√
η2H4G4R2

(
1− γH
1− γ

)2

+
η2σ2

22

N
· L1

ησ1

N
.

Now, consider part (ii). For notational simplicity, we denote xi := R(τi, g)∇θ log pθ,g(τi) and yi := ∇θ log pθ,g(τi). Let
A := ∇2Vg(θ + ηµ) be the Hessian.

part (ii) = E

1

2

(
1

N

∑
i

xi − µ

)T
A

(
1

N

∑
i

xi − µ

)∑
i

yi


= E

1

2

1

N2

∑
ijk

xTi Axjyk −
1

2

1

N

∑
ij

xTi Aµyj +
∑
ij

µTAxiyj

 .
Recall that E [yi] = 0. We can simplify the above as follows

E

1

2

1

N2

∑
j 6=i

xTi Axjyi +
∑
j 6=i

xTi Axjyj +
∑
i

xTi Axiyi

− 1

2

1

N

(∑
i

xTi Aµyi +
∑
i

µTAxiyi

) .
Let µ1 := E

[
xTi Aµyi

]
, µ2 := E

[
µTAxiyi

]
and µ3 := E[xTi Axiyi]. Then∥∥∥∥∥∥E

 1

N2

∑
j 6=i

xTi Axjyi

− 1

N

∑
i

xTi Axjyi

∥∥∥∥∥∥
2

=
1

N
‖µ1‖2∥∥∥∥∥∥E

 1

N2

∑
j 6=i

xTi Axjyj

− 1

N

∑
i

µTAxiyi

∥∥∥∥∥∥
2

=
1

N
‖µ2‖2 .∥∥∥∥∥ 1

N2

∑
i

xTi Axiyi

∥∥∥∥∥
2

≤ 1

N
‖µ3‖2 .

Overall, we can bound the norm of part (ii) by 1
N (‖µ1‖2 + ‖µ2‖2 + ‖µ3‖2). We now provide bounds to the norms of

µ1, µ2, µ3 above. Take µ1 as an example,

‖µ1‖2 ≤ E
[∥∥xTi Aµyi∥∥2

]
= E

[∣∣xTi Aµ∣∣ ‖yi‖2] ≤ L1E
[∣∣xTi µ∣∣ ‖yi‖2] ≤ L1E [‖xi‖2 ‖µ‖2 ‖yi‖2] .

Finally, note that we have ‖xi‖2 ≤ HGR
1−γH
1−γ , ‖µ‖2 ≤ HGR

1−γH
1−γ and ‖yi‖2 ≤ HG, we can conclude

‖µ1‖2 ≤ L1H
3G3

1R
2

(
1− γH

1− γ

)2

.

We can derive similar bounds

‖µ2‖2 ≤ L1H
3G3

1R
2

(
1− γH

1− γ

)2

, ‖µ3‖2 ≤ L1H
3G3

1R
2

(
1− γH

1− γ

)2

.

Overall, this implies a bound on part (ii).

‖part (ii)‖2 ≤
3

N
· L1H

3G3
1R

2

(
1− γH

1− γ

)2

.
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Now, finally consider part (iii). We first note that Assumption 10 implies that
∣∣∇3Vg(θ)

∣∣ ≤ L. This further implies that for
any vector x ∈ RD,

∇3Vg(θ)x
3 :=

∑
ijk

(
∇3Vg(θ)

)
ijk

xixjxk ≤ D3L︸︷︷︸
=:L2

‖x‖32 .

Recall that µ := E[R(τ, g)∇θ log pθ,g(τ)] is the expected PG at θ. We have the following,

‖part (iii)‖2 ≤ E

∣∣∣∣∣∣∇3Vg(θ̃)

(
1

N

N∑
i=1

R(τi)∇θ log pθ,g(τi)− µ

)3
∣∣∣∣∣∣
∥∥∥∥∥∑

i

∇θ log pθ,g(τi)

∥∥∥∥∥
2


≤ E

L2

∥∥∥∥∥
(

1

N

N∑
i=1

R(τi)∇θ log pθ,g(τi)− µ

)∥∥∥∥∥
3

2

∥∥∥∥∥∑
i

∇θ log pθ,g(τi)

∥∥∥∥∥
2


≤ L2NHGE

∥∥∥∥∥ 1

N

N∑
i=1

R(τi)∇θ log pθ,g(τi)− µ

∥∥∥∥∥
3

2

 ≤ L2NHG1 ·
1

N3/2
σ3

3 =
1√
N
L2HG1σ

3
3 .

By combining the bounds in part (i)-(iii) via a triangle inequality, we arrive at the desired result.

Proposition 26. For all values of the parameter θ ∈ RD,
∥∥∥E[ĴN,LSF(θ)]− JN (θ)

∥∥∥
2

= O(1/
√
N).

Proof. Combining Proposition 24 and Proposition 25 with a triangle inequality, we get the desired result.

Proposition 27. The objective J∞(θ) is Lipschitz with constant (1 + ηL1)RG1H
1−γH
1−γ .

Proof. By construction∇θJ∞(θ) = Eg [∇θJ∞(θ, g)], we can derive

∇θJ∞(θ) = Eg
[(
I + η∇2Vg(θ)

)
∇Vg(θ′g)

]
,

where θ′g := θ + ηE[R(τ, g)∇ log pθ,g(τ)]. Recall that
∥∥∇2Vg(θ)

∥∥
op,2 ≤

∥∥∇2Vg(θ)
∥∥

2
≤ L1 by the assumption and

‖∇Vg(θ)‖2 ≤ RG1H
1−γH
1−γ . We conclude

‖∇θJ∞(θ)‖2 ≤ Eg
[
(1 + ηL1)RG1H

1− γH

1− γ

]
= (1 + ηL1)RG1H

1− γH

1− γ
.

Proposition 28. For all θ ∈ RD, V
[
ĴN,LSF(θ)

]
= O(1/M) +O(1/B)︸ ︷︷ ︸

O(1)

+O(1/N).

Proof. Recall that the LSF gradient estimate is constructed with three sources of randomness: B sampled task variables gi,
N sampled trajectories per task for the inner loop τij and M sampled trajectories per task for the outer loop PG estimate τ ′ik.
The variance of ĴN,LSF comes from these three sources of randomness. Recall that given random variable Z1, Z2, Y , the
variance of Y can be decomposed into three parts,

V[Y ] = E [V[Y |Z1, Z2]]︸ ︷︷ ︸
first

+E [V [E [Y |Z1, Z2] |Z1]]︸ ︷︷ ︸
second

+V [E[Y |Z1]]︸ ︷︷ ︸
third

.
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By definition of the variance of general random tensors, the above formula can be extended to the case where Y is a random
tensor. Recall the LSF gradient estimate

1

B

B∑
i=1

I + η

N∑
j=1

R(τij , gi)∇2
θ log pθ,gi(τij)

∇V̂gi(θ′i,N ) + η
1

N

N∑
j=1

R(τij , gi)uiju
T
ij∇V̂gi(θ′i,N )

 ,

where uij := ∇θ log pθ,gi(τij). Here, recall that V̂gi(θ
′
i,N ) is the M -sample estimate of outer loop PG based on τ ′ik. Using

the variance decomposition formula, we set Y = part (i) and let Z1 = (gi)
B
i=1, Z2 = (τij)

B,N
i=1,j=1.

First part. For notational simplicity, let Ai :=
(
I + η 1

N

∑N
j=1R(τij , gi)∇2

θ log pθ,gi(τij)
)

and let Bi =

η 1
N

∑N
j=1R(τij , gi)uiju

T
ij . Note that both Ai and Bi are random matrices. The first part of the variance is

EZ1,Z2

[
V

[
1

B

B∑
i=1

(Ai +Bi)V̂gi(θ
′
i,N )|Z1, Z2

]]
=

1

B

B∑
i=1

EZ1,Z2

[
‖(Ai +Bi)‖22 V

[
V̂gi(θ

′
i,N )|Z1, Z2

]]
,

where we have used the conditional independence across different i indices and the fact that for any constant matrix A and
zero mean vector x:

V[Ax] ≤ E
[
‖Ax‖22

]
= E

[
xTATAx

]
≤ E

[
xTx ·max

i

∣∣σi (ATA)∣∣]
≤ E[xTx

√∑
i

σ2
i (ATA)] =

∥∥ATA∥∥
2
E
[
xTx

]
≤ ‖A‖22 E[xTx] = ‖A‖22 V[x].

In the above, σi(A) denotes the i-th eigenvalue of matrix A. We have also used the fact that
√∑

i σ
2
i (ATA) =

∥∥ATA∥∥
2
≤

‖A‖22. Since V̂gi(θ
′
i,N ) is M -sample estimate of PG from θ′i,N , from previous proof, we conclude V

[
V̂gi(θ

′
i,N )|Z1, Z2

]
≤

L2
1σ

2
1

M . To bound the norm of each Ai +Bi, note that

E[‖Ai +Bi‖22] ≤ ‖E[Ai +Bi]‖22 + V[Ai +Bi].

Now, note E[Ai + Bi] = I + η∇2Vg(θ) whose 2-norm is bounded as
∥∥I + η∇2Vg(θ)

∥∥
2
≤ ‖I‖2 +

∥∥η∇2Vg(θ)
∥∥

2
≤√

D + ηL1. Next, by recalling V[X + Y ] ≤ 2V[X] + 2V[Y ], we have

V[Ai +Bi] ≤ 2η2σ
2
21 + σ2

22

N
.

Combining all previous results, we have the first part of the variance is upper bounded as follows

EZ1,Z2

[
V

[
1

B

B∑
i=1

(Ai +Bi)V̂gi(θ
′
i,N )|Z1, Z2

]]
≤
(

(
√
D + ηL1)2 + 2η2σ

2
21 + σ2

22

N

)
· L

2
1σ

2
1

M
.

Second part. Using notations above, we first integrate over the randomness in trajectories τ ′ik,

E[Y |Z1, Z2] =
1

B

B∑
i=1

(Ai +Bi)∇Vgi(θ′i,N ).

Using the conditional independence of i given Z1, we deduce

V [E[Y |Z1, Z2]|Z1] =
1

B

B∑
i=1

V[(Ai +Bi)∇Vgi(θ′i,N )|gi]︸ ︷︷ ︸
pi

.
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Now, consider each term pi above. We can let Xi = Ai + Bi, Yi = ∇Vgi(θ′i,N ). We also define X := E[Xi] and
Y := ∇Vgi(θ′i) where θ′ = θ + ηE[R(τ, gi)∇θ log pθ,gi(τ)]. Importantly, note that E[Yi] 6= Y . By using the definition of
variance and Cauchy–Schwarz inequality, we have

pi ≤ E
[
‖XiYi −XY ‖22

]
≤ E

[
‖XiYi −XYi‖22

]
︸ ︷︷ ︸

term (a)

+E
[
‖XYi −XY ‖22

]
︸ ︷︷ ︸

term (b)

+2

√
E
[
‖XiYi −XYi‖22

]√
E
[
‖XYi −XY ‖22

]
.

Consider term (a),

E
[
‖XiYi −XYi‖22

]
≤ E

[
‖Xi −X‖22 ‖Yi‖

2
2

]
≤
(
RHG1

1− γH

1− γ

)2

E
[
‖Xi −X‖22

]
≤
(
RHG1

1− γH

1− γ

)2
2η2(σ2

21 + σ2
22)

N
.

Now we consider term (b)

E
[
‖XYi −XYi‖22

]
≤ E

[
‖X‖22 ‖Yi − Y ‖

2
2

]
≤ (1 + ηL1)

2 E
[
‖YN − Y ‖22

]
≤ (1 + ηL1)

2 L
2
1σ

2
1

N
,

where we have applied a bound on the norm of the PG ≤ RHG1
1−γH
1−γ and on the Hessian operator norm ≤ L1 implied by

the assumptions. We thus conclude the following bound on the second variance term,

E [V [E [Y |Z1, Z2] |Z1]] ≤ E

[
1

B

B∑
i=1

pi

]
≤
(
RHG1

1− γH

1− γ

)2
2η2(σ2

21 + σ2
22)

N
+ (1 + ηL1)

2 L
2
1σ

2
1

N
+

2

(
RHG1

1− γH

1− γ

)
(1 + ηL1)L1ησ1

√
2(σ2

21 + σ2
22)

1

N
.

Third part. Let Xi = I + η
∑N
j=1R(τij , gi)∇2

θ log pθ,gi(τij) + η 1
N

∑N
j=1R(τij , gi)uiju

T
ij and Yi = ∇Vgi(θ′i,N ). Also

let Y = Yi = ∇Vgi(θ′i). We can write

V [E[Y |Z1]] =
1

B
V [E[XiYi]]

where we have used the independence across different i. For clarity, the expectation is w.r.t. all randomness in τij and τ ′ik,
whereas the variance is w.r.t. the randomness in i. Now, for any i, consider the following

‖E [XiYi]‖22 ≤ E
[
‖XiYi‖22

]
≤ E

[
‖Xi‖22G

2
1R

2H2

(
1− γH

1− γ

)2
]

= G2
1R

2H2

(
1− γH

1− γ

)2

·
(
V [Xi] + ‖E [Xi]‖22

)
≤ G2

1R
2H2

(
1− γH

1− γ

)2

·
(

2η2σ
2
21 + σ2

22

N
+ ‖E [Xi]‖22

)
.

We need to upper bound the 2-norm of E[Xi] = I + η∇2Vg(θ). Note that we have
∥∥I + η∇2Vg(θ)

∥∥
2
≤ ‖I‖2 +∥∥η∇2Vg(θ)

∥∥
2

=
√
D + ηL1. We hence have

V ‖E[Y |Z1]‖2 ≤
1

B
E
[
‖E[XiYi]‖22

]
≤ 1

B
G2

1R
2H2

(
1− γH

1− γ

)2

·
(

2η2σ
2
21 + σ2

22

N
+
(√

D + ηL1

)2
)
.
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Combining all parts. Combining all the three parts above, we have

V
[
ĴN,LSF(θ)

]
≤ O(1/M)︸ ︷︷ ︸

first part

+O(1/N)︸ ︷︷ ︸
second part

+O(1/B)︸ ︷︷ ︸
third part

.

Lemma 29. (Adapted from (Ajalloeian and Stich, 2020)) Let F : RH 7→ R be a L-Lipschitz function. Let ĝ(x) be an
estimate to∇F (x). Its bias and variance properties are the following,

‖E [ĝ(x)]−∇F (x)‖22 ≤ ψ
2,V [ĝ(x)] ≤ σ2,

for all x ∈ RH . Now consider the recursion: xt+1 = xt + αĝ(xt). For any ε > 0, if we choose the learning rate
α = min{ 1

L ,
ε+ψ2

2Lσ2 }, then for T = max{ 1
ε+ψ2 ,

σ2

ε2+ψ4 } iterations, we have

min
1≤t≤T

E
[
‖∇F (xt)‖22

]
≤ ε+ ψ2.

Proof. Please refer to (Ajalloeian and Stich, 2020) for detailed proof and the complete result.

Proposition 30. With a properly chosen learning rate in Algorithm 1, for any ε > 0, with TLSF =

2 max{ 1
ε2+O(1/N) ,

O(1)+O(1/N)
ε4+O(1/N2) } iterations of the algorithm, we have

min
1≤t≤TLSF

E[‖JN (θt)‖22] = ε2 +O(1/N) =: δLSF.

Proof. We directly draw results from (Ajalloeian and Stich, 2020) where they establish convergence to stationary point
using biased stochastic gradient estimates. See Lemma 29 for a simplified version of their result which will be useful for our
analysis below.

Instead of directly characterizing the convergence to a stationary point of JN , we consider how fast the algorithm converges
to a stationary point of J∞. Proposition 27 shows that J∞ is Lipschitz-smooth with a Lipschitz constant L independent of
N , hence we can write L = O(1). Proposition 25 shows that the estimate bias ψ is of order O(1/

√
N) such that∥∥∥J∞(θ)− E[ĴNLSF(θ)]

∥∥∥2

2
≤ ψ2.

Proposition 12 shows that the variance V
[
ĴNLSF(θ)

]
≤ σ2 = O(1) + O(1/N) (note that we treat B,M as O(1) here).

Directly using results from Proposition 29, we obtain the following: after TLSF = max{ 1
ε2+O(1/N) ,

O(1)+O(1/N)
ε4+O(1/N2) } iterations,

min
1≤t≤TLSF

E[‖∇θJ∞(θt)‖22] ≤ ε2 +O(1/N).

Finally, recall that Proposition 24 upper bounds the bias between ∇θJ∞(θ) and JN (θ) by O(1/N), we obtain via a CS
inequality ‖a+ b‖22 ≤ 2 ‖a‖22 + 2 ‖b‖22,

min
1≤t≤TLSF

E[‖JN (θt)‖22] ≤ min
1≤t≤TLSF

2E[‖∇θJ∞(θt)‖22] + 2E[‖JN (θt)− J∞(θt)‖22] ≤ 2ε2 +O(1/N).

By properly scaling ε, the above is equivalent to: after TLSF = 2 ·max{ 1
ε2+O(1/N) ,

O(1)+O(1/N)
ε4+O(1/N2) } iterations,

min
1≤t≤TLSF

E[‖JN (θt)‖22] ≤ ε2 +O(1/N).
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H. Additional experiments
H.1. Toy 1-D Optimization Problem
The variable X comes from the distribution pθ = N (θ, 12). This implies a natural reparameterization, X = θ + ζ, ζ ∼
N (0, 1), which we use for the PW gradient estimate.

Bias-variance trade-off. To generate Fig 1(a), we compute the MSE of different gradient estimates against the true
gradient, evaluated at the initial parameter of the algorithm. In particular, given the ground truth gradient g, we generate
M = 100 gradient estimates ĝi for each type, and compute

1

M

M∑
i=1

‖ĝi − g‖22 ,

as an estimate to the MSE. For LSF, the bias is computed as

1

M

M∑
i=1

‖ĝi − ḡ‖22 ,

where ḡ = 1
M

∑M
i=1 ĝi is an estimate of the expected gradient estimate. SF and PW gradient estimates have zero variance,

so that all their MSE consists of variance. Finally, we use the average over 1000 PW gradient estimates as g (because PW
has low variance and zero bias, we expect the approximation to be reasonably accurate).

Optimization. To generate Fig 1(b), for each type of gradient estimate, at each iteration 1 ≤ t ≤ T , we construct an
average gradient estimate ḡ = 1

B

∑B
i=1 ĝi where ĝi is an one-sample gradient estimate of the N -sample MC objective. The

parameter is updated with ĝ at each iteration, with Adam optimizer (Kingma and Ba, 2014) and learning rate 0.1.

At T = 100, we record the objective L(θT ) for each type of gradient estimate. We repeat the same experiment 100 times,
and compare mean± std averaged over such repeated trials.

H.2. High-dimensional Meta-RL Problems
The following specifies details of generating Fig 1(c)-(d).

Environments. The environments of the meta-RL experiments are based on MuJoCo (Todorov et al., 2012), and imported
directly from the open source projects of (Rothfuss et al., 2018). These are robotics control tasks where the states st are
sensory inputs and actions at are controls applied to the robots. Across all three tasks we considered, the task g corresponds
to different directions in which the robot should aim to run. See (Rothfuss et al., 2018) for further details.

Trust region outer loop optimization. After obtaining the gradient estimate Ĵ , Algorithm 1 suggests that we update
θt+1 = θt + αĴ . In practice, we adopt trust region policy optimization (Schulman et al., 2015), which enforces a trust
region constraint between θt and θt+1 when updating the parameter. See the open sourced code base for hyper-parameter
settings of the TRPO optimizer.

Hyper-parameters of algorithms. We use a batch of B = 20 tasks per iteration, N = M = 20 trajectories per task for
both inner loop adaptation and outer loop rollouts for PG estimates. Each trajectory is truncated at H = 100 steps. We adapt
only one step throughout the experiments. Please refer to the open sourced code base for other default hyper-parameters
whose details we omit here.

Important implementation details. Though all algorithms are based on the open source project of (Rothfuss et al., 2018),
it is worth noting a number of important modifications that we make to ensure that the implementation adheres to our
theoretical setups as much as possible.

The unbiased generalized SF gradient estimate is very closely related to the gradient estimate used in E-MAML algorithm.
In fact, when implemented exactly, the E-MAML algorithm utilizes the SF gradient estimate Ĵ (i)

N,SF(θ, g) + Ĵ
(ii)
N,SF(θ, g)

defined in Eqn 8. However, the code base in (Rothfuss et al., 2018) effectively uses the following gradient estimate,

1

N
Ĵ

(i)
N,SF(θ, g) + Ĵ

(ii)
N,SF(θ, g).
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Figure 2. Full results of high-dimensional meta-RL problems: LSF outperforms SF consistently across all tasks. Each curve averages over
5 runs.

The factor 1/N biases the overall estimate, yet reduces the variance introduced by Ĵ (i)
N,SF(θ, g). With this, we see that the

practical implementation of E-MAML already introduces bias for variance reduction, albeit in a more opaque way. To obtain
results of the SF gradient estimate in Fig 1, we remove the 1/N factor and use the unbiased SF gradient estimate.

H.3. Practical (prior) implementations of generalized LSF gradient estimate
To implement the generalized LSF estimate, we need to construct unbiased estimate to value function Hessian ∇2Vg(θ)

evaluated at the initial policy parameter θ. On a high level, one first constructs an estimate ĤN ≈ ∇2Vg(θ) and then
computes the meta-RL gradient estimate as

ĤN∇Vg(θ′N ),

where θ′N is the (random) updated parameter. A number of prior work discusses on how to construct unbiased estimates
(Foerster et al., 2018; Mao et al., 2019; Farquhar et al., 2019) or biased estimates (Rothfuss et al., 2018; Tang et al., 2020) to
the value function Hessian. A major desiderata is that such estimates should lead to variance reduction compared to the
naive "trajectory-based" estimate. Concretely, the "trajectory-based" Hessian estimate is (derived from Eqn 11)

1

N

N∑
i=1

R(τi, g)∇2
θ log pθ,g(τi) +

1

N

N∑
i=1

R(τi, g) (∇θ log pθ,g(τi)) (∇θ log pθ,g(τi))
T
. (13)

Arguably, the variance of the above estimate could be further improved by exploiting the Markov property of trajectories
τi. Taking computing PG estimate as an analogy, when computing "trajectory-based" PG estimate R(τi)∇θ log pθ,g(τi),
we can instead use its "stepwise-based" variant

∑H−1
t=0 γtQ̂t∇θ log πθ(at|st, g), where Q̂ts are unbiased estimates to

Q-functions. The "stepwise-based" estimate usually has much lower variance than the "trajectory-based" estimate, because
it is constructed based on the Markov structure of the trajectory. Constructing variance-reduced estimates for the Hessian is
more complicated, but is better understood through the lens of off-policy evaluation. We refer readers to (Tang et al., 2021)
for further details.

In our experiments, we always use such "stepwise-based" PG and Hessian estimates when computing the meta-RL gradient
estimates. Specifically, we use DiCE (Foerster et al., 2018) to compute the LSF gradient estimate, which can be interpreted
as building an unbiased variant of Eqn 13 with variance reduction via the Markov structure of the trajectory. Please refer to
the code base of (Rothfuss et al., 2018) for further implementation details.

Full results. See Fig 2 for full results on the high-dimensional meta-RL problems. Overall, the LSF estimate achieves
significant performance gains over the SF estimate.


