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Abstract

Most of the existing methods for estimating the
local intrinsic dimension of a data distribution do
not scale well to high dimensional data. Many of
them rely on a non-parametric nearest neighbours
approach which suffers from the curse of dimen-
sionality. We attempt to address that challenge by
proposing a novel approach to the problem: Lo-
cal Intrinsic Dimension estimation using approxi-
mate Likelihood (LIDL). Our method relies on an
arbitrary density estimation method as its subrou-
tine, and hence tries to sidestep the dimensionality
challenge by making use of the recent progress in
parametric neural methods for likelihood estima-
tion. We carefully investigate the empirical prop-
erties of the proposed method, compare them with
our theoretical predictions, show that LIDL yields
competitive results on the standard benchmarks
for this problem, and that it scales to thousands
of dimensions. What is more, we anticipate this
approach to improve further with the continuing
advances in the density estimation literature.

1. Introduction
In this paper, we consider the problem of local intrinsic
dimension (LID) estimation of a lower-dimensional data
manifold embedded in a higher-dimensional ambient space.

Intrinsic dimension estimation is an established problem
in data analysis and representation learning (Ansuini et al.,
2019; Li et al., 2018; Rubenstein et al., 2018). It was stud-
ied in the context of dimensionality reduction, clustering,
and classification problems (Vapnik, 2013; Kleindessner
& Luxburg, 2015; Camastra & Staiano, 2016) and some
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Figure 1: Illustration of LIDL’s core insight. [Top] Three
uniform distributions pS supported respectively on a square,
interval, and a point, with intrinsic dimensions 2, 1, 0. [Mid-
dle/bottom] Perturbed densities ρδ and ρ2δ resulting from
addition of Gaussian noise with different noise magnitudes:
δ and 2δ. Our core insight is that the difference between the
densities ρδ(x) and ρ2δ(x) at any point x depends on the
local intrinsic dimension (LID) at that point. Consider point
x=(0, 0). For the left column, that difference is zero; for
the middle one, the density is halved; for the right one, it is
quartered. We leverage this mechanism to estimate LID.

prototype-based clustering algorithms (Claussen & Vill-
mann, 2005; Struski et al., 2018), among others. It is also
a powerful analytical tool to study the process of training
and representation learning in deep neural networks (Li
et al., 2018; Ansuini et al., 2019). Rubenstein et al. (2018)
shows how the mismatch between the latent space dimen-
sionality and the dataset’s ID may hurt the performance
of auto-encoder generative models like VAE (Kingma &
Welling, 2014), WAE (Tolstikhin et al., 2018), or CWAE
(Knop et al., 2020). Recent results of Pope et al. (2020)
show that the global ID of the dataset impacts the training
process of a machine learning model, sample efficiency, and
its ability to generalize.

Recently, there has also been a rise of interest in methods
for simultaneous manifold learning and density estimation
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(Brehmer & Cranmer, 2020; Caterini et al., 2021; Ross &
Cresswell, 2021). Most of these methods require setting
the manifold dimension as a hyperparameter and the stan-
dard practice is to do this heuristically or by performing a
hyperparamater sweep. Intrisic dimensionality estimation
methods offer a principled alternative to this practice.

Outside of machine learning, an area where we hope reli-
able ID estimation might help is in the fields of science and
engineering, where we nowadays collect enormous amounts
of high-dimensional data. The first challenge such mod-
ern datasets present for LID estimation is scalability: we
seek algorithms which yield unbiased estimates in high-
dimensional spaces. Many of the existing methods for es-
timating ID rely on a non-parametric nearest neighbours-
based approach which suffers from the curse of dimension-
ality. They estimate the LID by investigating the distribution
of local distances and they run into the problem of ”bound-
ary effects, which distort the distribution and lead to a nega-
tive bias especially for high dimensions where any manifold
with a boundary has almost all of its volume concentrated
close to the boundary” (Johnsson et al., 2014), which is
a symptom of the curse of dimensionality. ESS method
(Johnsson et al., 2014) itself sidesteps this challenge by us-
ing angular rather than distance information, leading to its
competitive performance in high dimensions, as highlighted
in our evaluations. In contrast, the method we propose uses
a parametric density estimation model which is a different
mechanism to sidestep this challenge.

The second challenge is being able to deal with datasets
that have highly non-isotropic structure (we refer to them
as multiscale). A good example of this kind of dataset are
images of a human face. In those datasets we have many
latent factors of variation and some of them account for
much less ambient-space variance than others. For instance,
let us consider two of them: eye and head rotation. Each of
them induces 2-dimensional manifold in the data space, but
variance coming from the latter factor is much larger.

The third challenge is being able to deal with dataset dimen-
sionality on different scales, which includes dealing with
the ambient-space noise in the data. Most of the data we
use is affected by measurement noise, and all the datasets
are deformed further by being quantized and stored as fi-
nite precision numbers. To understand how it impacts LID
estimation let us imagine a simple physical problem: we
have a particle moving in an electromagnetic field, and our
dataset is the set of 2-dimensional vectors describing its
positions on a plane. Additionally, our measurements are
quantized with some very small quantization step. When
we magnify the dataset to the scale of quantization step,
we see the dataset as a 0-dimensional manifold–it lies on a
finite grid. When we zoom out to the scale of the measure-
ment noise, we observe a 2-dimensional point cloud: one

bigger dimension along the trajectory of the particle, and
the other–smaller one–coming from the imperfect measure-
ment. When we zoom out far enough, we observe only the
1-dimensional trajectory of that particle. It would be very
convenient to be able to easily set an operating scale of an
algorithm, e.g. have a possibility to ignore the dimensions
that are artificially created by the measurement noise.

To address these problems, we propose a new method for
Local Intrinsic Dimension estimation using approximate
Likelihood (LIDL). Instead of using non-parametric meth-
ods based on local samples from the neighbourhood of a
given point, it is based on parametric probability density
estimation, which scales better to higher-dimensional set-
ting. At the core of our method lies the observation that
when we add Gaussian noise N (0, δ2I) to the dataset X
embedded in RD, the rate of change of the log-likelihood at
x ∈ X (at which LID equals d) is approximately linear in
the logarithm of δ. Moreover, the proportionality constant
is β ≈ d−D and we can estimate it using linear regression,
thus estimating d. We may view δ as a scale parameter of
our method, which may be of practical benefit beneficial
when dealing with noisy datasets. Intuitive visualisation of
this concept can be found in Fig. 1, and the formal derivation
can be found in Sec. 2.

To the best of our knowledge, LIDL is the first theoreti-
cally grounded method of LID estimation that uses global
density estimation methods. In our method we relax the
assumptions many algorithms make about uniformity of
the density and the manifold flatness in the neighbour-
hood of x. We show theoretically and experimentally that
we can deal with manifolds consisting of multiple multi-
scale connected components of different dimensions. We
also compare our algorithm with a wide range of other
LID estimation algorithms, and verify that only our algo-
rithm can give unbiased estimates for high-dimensional
datasets. The code to reproduce our results is available at
github.com/opium-sh/lidl.

The empirical success of our method was made possible
by using neural density estimators called normalizing flows
(NF) (Rezende & Mohamed, 2015), which can estimate den-
sities even in high-dimensional spaces as images. Although
in this work we use NF as LIDL’s density estimator, our
method can be used with any density estimation method.
Thus, we anticipate that its capabilities to grow further with
continuing progress in the area of density estimation.

Contributions. Our main contribution is the introduction
of a novel, accurate and scalable method of LID estimation.
The method is backed up with solid mathematical founda-
tions, and verified both theoretically and experimentally.
The impact of LID itself on neural network performance is
experimentally assessed. Finally, we identified some prob-
lems with existing approaches to LID estimation.

github.com/opium-sh/lidl
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2. Method
In this section, we introduce the problem setting formally
and we lay out the LIDL method theoretically, including
its derivation and pointing out certain predictions about its
behavior that we later verify empirically in Section 3.

It is often known that a particular dataset X is a subset of
some data manifold M equipped with probability measure
µ. However, the manifold M and the dataset X need not be
directly observable. Instead, there may exist an embedding
(or, more generally, an immersion satisfying some regularity
conditions, see Appendix B) j : M → RD into a Euclidean
space of larger dimension, through which we can view X .

The method we propose is based upon the observation, ex-
pressed in Theorem 2.1, that for a probability measure
supported on an embedded submanifold of an Euclidean
space, the dimension of its support can be recovered from
its asymptotic behavior under small normally distributed
perturbations (see Fig. 1 for an intuitive illustration).

2.1. The formal setting

We first define a class of measures we will restrict our consid-
erations to, which we will call smooth measures, including
all measures with continuous positive densities.
Definition 2.1. A positive measure ν on a manifold N will
be called smooth if for any chart ψ : U → V ⊂ Rn of N ,
the pushforward ψ�ν is absolutely continuous with respect
to the Lebesgue measure λ on V , and moreover, its density
is locally bounded away from 0, i.e. any x ∈ V admits a
neighborhood on which dj�ν/dλ > c for some c > 0.

Let S ⊂ RD be a smooth connected d-dimensional embed-
ded submanifold of a high-dimensional Euclidean space RD

(the more general case of a non-connected immersed mani-
fold is dealt with in Appendix B). This is our observable data
manifold, embedded in Euclidean space, i.e. S = j(M).
Furthermore, suppose we are given a smooth (according to
Definition 2.1) probability measure pS on S, representing
the data probability distribution. In our notation, this is the
pushforward of the probability µ on M , i.e. pS = j�µ. We
will implicitly treat pS as a probability distribution on the
whole ambient space RD.

The Gaussian function (i.e. the density of the standard nor-
mal distribution) on a Euclidean space V will be denoted
by ϕV , or ϕn in the case where V is the standard Rn space.
Also, for δ > 0, let

ϕVδ (x) = δ� dimV ϕV (x/δ) (1)

be the density of the normal distribution N (0, δ2I) with
covariance matrix δ2I , where I is the identity matrix on V .

Under the above notation, if X ∼ pS is a random vec-
tor representing the data, and Nδ ∼ N (0, δ2I) a normally

distributed random noise vector, the distribution of the per-
turbed random vector X +Nδ in RD is given by the convo-
lution pS ∗ N (0, δ2I), and has density

ρδ(x) =

Z
S

ϕDδ (x− y) dpS(y). (2)

Finally, let us introduce a notation for uniform multiplicative
estimates. We will write that f(x, y) � g(x, y) uniformly
in x if for every y there exists C > 0 such that for all x

C�1g(x, y) ≤ f(x, y) ≤ Cg(x, y). (3)

This notation extends to any number of variables. We will
use it to declutter the proofs from irrelevant constants.

2.2. The core estimate

At any x ∈ S the tangent space of RD admits a decomposi-
tion TxRD = TxS ⊕NxS into a direct sum of the tangent
and normal spaces of S. Under the natural identification
of TxRD with the underlying RD (mapping the origin of
TxS to x), the tangent and normal spaces of S at x become
two affine subspaces of RD intersecting at x. Denote by
πx : RD → TxS and π?x : RD → NxS be the correspond-
ing orthogonal projections. With this notation, the following
decomposition of the Gaussian density holds

ϕDδ (x− y) = ϕTxS
δ (πx(y))ϕ

NxS
δ (π?x (y)). (4)

By the Inverse Function Theorem applied to the restriction
of πx to S, in a small neighborhood of any x ∈ S, the
manifold S can be represented as the graph of a smooth
map Fx : TxS → NxS. In particular, it follows that in this
neighborhood one has π?x = Fx◦πx. Moreover, Fx(0) = 0,
and since the graph of Fx is tangent to TxS at the origin,
the derivative of Fx at x vanishes. Hence, the Taylor ex-
pansion of Fx at 0 starts with the second-order term, and
consequently, there exists C > 0 such that for small v

‖Fx(v)‖NxS ≤ C‖v‖2TxS . (5)

Denote by B(x, r) the ball of radius r in RD, centered at x.
Subsequent five lemmas are proven in Appendix A. Here
we give only their statements, followed by the proof of our
core estimate.

Lemma 2.1. Let x ∈ S. For sufficiently small δ the projec-
tion πx(S ∩B(x, δ1/2)) contains the ball B(x, δ) ∩ TxS.

Lemma 2.2. For x ∈ S and sufficiently small δ, the estimateZ
S\B(x,δ1=2)

ϕTxS
δ (πx(y)) dpS(y) � 1 (6)

holds uniformly in δ.
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Lemma 2.3. For sufficiently small δ and y ∈ S∩B(x, δ1/2),
where x ∈ S, the estimate ϕNxS

δ (π?x (y)) � δd�D holds
uniformly in δ and y.

Lemma 2.4. For x ∈ S and sufficiently small δ,Z
S\B(x,δ1=2)

ϕDδ (x− y) dpS(y) � δd�D (7)

uniformly in δ.

Lemma 2.5. For every x ∈ S

lim
δ!0+

Z
SnB(x,δ1=2)

ϕDδ (x− y) dpS(y) = 0. (8)

Theorem 2.1 (The core estimate). Assume that S ⊂ RD

is a connected d-dimensional submanifold endowed with
a smooth probability measure pS . Let ρδ be the density of
pS ∗ N (0, δ2I) on RD. Then for x ∈ S and sufficiently
small δ, we have

log ρδ(x) = (d−D) log δ +O(1). (9)

Proof. Since δd�D ≥ 1 for δ ≤ 1, given sufficiently small
δ, from Lemma 2.5 we getZ

SnB(x,δ1=2)

ϕDδ (x− y) dpS(y) < δd�D. (10)

By combining this with eq. (2) and Lemma 2.4, we obtain
ρδ(x) � δd�D, which yields the desired estimate after
taking log.

2.3. The LIDL algorithm

Now, let us consider how to use the core estimate derived
above in practice. The core requirement of LIDL is access
to the approximate densities ρδ(x), which we have to obtain
by fitting a density estimator on the data points from the

Algorithm 1 LIDL algorithm

Require: X ⊂ RD; x1, . . . , xm ∈ RD; δ1, . . . , δn ∈ R+;
for j = 1 to n do
Xj ← X perturbed with N (0, δ2j ID)
Fit the density model ρ̂j to Xj

end for
for i = 1 to m do

for j = 1 to n do
ξj ← log δj
ηj ← log ρ̂j(xi)

end for
β ← regression coefficient for a set of n points (ξj , ηj)
d̂i ← D + β

end for
return (d̂1, . . . , d̂m)

dataset perturbed with a normally distributed noise of an
appropriate magnitude δ. Luckily, these days there exist den-
sity estimators which scale to data even as high-dimensional
as images. For the purpose of empirical evaluation of our
method, in this work we use three models from the family
of NF, however we emphasize that our method could use
absolutely any density estimation method. A viable alter-
native could be, for example, using diffusion models (Song
et al., 2021), which are likely to lead to further improved
accuracy of LIDL estimates.

Given a dataset X ⊂ RD, and a point x ∈ RD, at which we
want to estimate LID (usually x ∈ D, as we want to take a
point from the image of the data manifold in RD), we pro-
ceed as follows. First, we choose n > 1 values δ1, . . . , δn
of perturbation magnitude. We discuss how to choose δ in
the following section. Then, we fit n probability densities
ρ̂i, which will be our approximations of ρδi . Having esti-
mated the densities ρ̂i, we consider the sequence of points
of the form (log δi, log ρ̂i(x)). Using linear regression to
fit eq. (9), we get an estimate β for d−D, from which we
obtain d̂ = D + β, an estimate for d. To estimate LID for
multiple points, we can fit the densities once, and then loop
over the points. Full algorithm is presented in Algorithm 1.

It is worth noting that our method fits nicely into the LID
estimation framework presented in (Amsaleg et al., 2019).
Roughly speaking, it is based on two observations. Firstly,
the dimension of an Euclidean space can be recovered from
the degree of the polynomial growth rate of its ball volume
as a function of its radius. Secondly, this idea can be applied
to discrete datasets by replacing the notion of ball volume
with the likelihood function of finding a point of the dataset
within a given distance from a fixed base point.

In our notation, this likelihood function is r 7→ pS(B(x, r)),
where x is the base point. With reasonable assumptions on
the measure pS , it can be shown that for small r this function
behaves like a polynomial of degree d, so the LID value we
are estimating is the same as what is defined in (Amsaleg
et al., 2019), which can be consulted for more details.
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Figure 2: LIDL and hard estimates for different values of δ
for 10D non-isotripic Gaussian. Notice how LIDL ignores
dimensions smaller than δ, as predicted theoretically.
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Figure 3: LIDL estimates for points fromU(0; 1) for differ-
ent values of� marked with different colors, as explained in
the legend of the plot.

2.4. Viewing� as a scale parameter

In the previous section, we glossed over the fact that we
have to choose the values of� . From Sec. 2.2 we know that
the core estimate is exact for in�nitesimally small� , so the
�rst pressure is for the� to be small, possibly as small as
the numerical precision allows.

However,� can also be viewed as a length-scale parameter
that allows users to choose a certain minimum `thickness'
to be considered, such that dimensions `thinner' than the
threshold will be ignored. Consider an illustrative example:
suppose that the probability distributionpS is concentrated
in a tubular neighborhood of another submanifoldS0 of
dimensiond0 < d . In this case, it can be approximated by a
probability distributionpS0 supported onS0.

Now, if this approximation is `good', in the sense that the
thickness of the considered neighborhood is much smaller
than the values of� used, then intuitively the LIDL estimate
should actually re�ect the dimensiond0 of the submanifold
S0 instead of the true dimensiond.

Continuing this example, we present the described behavior
empirically. LetS = RD , andpS = N (0; �) , where� is
a diagonal matrix with entries� 2

1 � � 2
2 � � � � � � 2

D . In
Fig. 2, we plot the LIDL estimates for caseD = 10 and
for � equally distributed on the logarithmic scale. We also
plot thehard estimatewhich is simply counting the number
of entries in� that are larger than� . The LIDL estimate
follows the hard estimate, and this behavior is predicted
theoretically in Appendix D. We further investigate the role
of the scale parameter in the case of imperfect density esti-
mates in Sec. 5.2.

As mentioned earlier, having an explicit length-scale param-
eter can be considered LIDL's feature as compared to other
methods. Is allows the user to easily set an operating scale
such that to ignore certain amplitude of noise in the original
data, e.g. the observation noise if we are able to estimate its
magnitude apriori. The empirically observed rule of thumb

Figure 4: LIDL estimates for points fromN (0; 1) for differ-
ent values of� marked with different colors, as explained in
the legend of the plot.

is to take at least� & 10� , where� is standard deviation of
the noise to be ignored.

Setting such operating scale characteristic can be dif�cult in
many other non-parametric algorithms that calculate statis-
tics based on nearest neighbors. In those approach, there
is either of the two natural scale parameters: number of
nearest neighboursk or radiusr around the point where we
search for neighbours.

When usingk, our effective operating range depends on a
combination of local density and the total number of samples
used to run the algorithm. Usingr allows to set an operating
range. In this case, however, we expose ourselves to the risk
of having not enough samples to estimate the local density.
Most implementations of those methods set a defaultk.

3. Empirical Behavior of the Proposed Method

In this section we examine the behaviour of our method
when confronted with certain isolated dif�culties. Instead
of relying on a computed approximation̂� � , we assume we
are given the actual perturbed density� � explicitly or we
compute it through numerical integration. This ensures that
any error observed during this analysis is caused directly by
our LIDL method and not the density estimator. However,
it comes at a price of restricting us to relatively simple
examples where we can ef�ciently compute� � .

3.1. Uniform density on an interval

We assume, that in the neighborhood ofx the density is
bounded from below by a positive constant. But for some
real-world cases, this assumption is not ful�lled. To investi-
gate how LIDL behaves in this case we ran it onU(0; 1). It
can be seen as a distribution on the real line, whose density
vanishes outside[0; 1] interval, violating this assumption.
Alternatively, in the vicinity of the interval endpoints, the
size of the neighborhood admitting the parametrization re-
quired for the proof of the core estimate decreases to0.
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Figure 5: LIDL estimate as a function of� for a uniform
density on a unit circle. Vertical line at� = 0 :2.

We analytically calculated the convolution ofU(0; 1) with
N (0; � 2) and used it to estimate LID at 1000 points between
0 and 1. We used just two points for linear regression,
corresponding to� 1 = � and� 2 = 1 :05� . The estimates for
different values of� are plotted in Fig. 3. We can see that
an error is introduced near the boundary as expected. In this
case, its maximum value does not depend on the value of
� , and points affected by this problem lie in the part closer
than� 4� to the endpoints of the distribution support.

3.2. Normal distribution on a line

In this example, we study the LID estimates at different
points of a line embedded inRD . In Fig. 4 we can see the
estimates computed as per the previous example, for a few
values of� . At �rst glance, it is worrying that the error seems
to explode with distance from the mean of the distribution.
In Appendix D, we show that the error is quadratic in this
distance, and, reassuringly, that its expected value over the
whole distribution can be controlled. The reason for this
behavior can be traced back to the proof of Lemma 2.2
(more speci�cally eq.(13) in the appendix), which depends
on the positive constant locally bounding the density from
below. In our example, the density decreases ase� t 2 =2,
which produces the quadratic error term (the �nal error is
bounded by

P
i jlogCi j, whereCi are the multiplicative

estimate constants appearing in all the steps of the proof).

3.3. Uniform density on a curved manifold

The LIDL estimate is affected by the curvature of the mani-
fold, which manifests in the constantC appearing in eq.(5),
subsequently used in the proofs of Lemmas 2.1 and 2.3.
To see empirically how the curvature in�uences the LIDL
estimate, we numerically computed the convolution of the
uniform density on the unit circle embedded inR2 with the
noise distributionN (0; � 2I ) for 2 values of� similarly as
in the previous examples. We calculated LIDL for the range
of � 2 (0:05; 10). We plot the estimate dependence on� in
Fig. 5.

Figure 6: LIDL estimate as a function of� for 2 long 1-
dimensional manifolds parallel to each other.

We can see that for� . 0:2 the estimate error is relatively
small. After the positive bias for� < 1 we can observe
a monotonic drop in the estimate until it reaches nearly 0.
This is by the effect described in Section 2.4 where LIDL
was observed to ignore the directions in which the standard
deviations were lower than� .

3.4. Manifolds with neighboring components

In a real-world setting, it is possible for some connected
components of the data manifoldS to be close to each other
in the observable data spaceRD , especially when some fea-
tures in the dataset have discrete distribution (e.g. height
and sex in a medical dataset). In those settings, for values of
� comparable to the distance between the components, addi-
tional bias may be introduced to the estimate. To investigate
this we ran an experiment similar to the previous example,
but with a uniform distribution supported on the union of
two long parallel segments. We then calculated LIDL esti-
mates for the midpoints of those segments, to minimize the
error caused by proximity to the boundary. We present the
results in Fig. 6. We can see positive bias in LIDL estimate
appearing as� is close to the distance between the segments,
while for � much larger than this distance, LIDL seems to
view those two segments as a single line.

3.5. Impact of linear regression on LIDL estimate

Because our estimate depends on linear regression algorithm
in order to estimate� , it may suffer from the same issues as
any regression coef�cient estimation algorithm (Li, 1985),
so in the future, more robust algorithm for linear regression
estimation may be considered. Because we estimate only the
rate of change, and not the constant from linear regression
equation, LIDL is prone to biased log-likelihood estimates,
and noise added to log-likelihood estimate only affects the
variance of the estimate.
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Figure 7: LID estimates ford dimensional uniform distri-
bution on a hypercube. More results and abbreviation ex-
planations can be found in Tables 1, 2 and 3 in Appendix F.
The dimensionalityd of the distribution is plotted on the
horizontal axis and the estimates for different algorithms on
the vertical axis.

3.6. Synthetic datasets

We ran evaluations of LIDL with density estimates com-
puted using numerical integration on Swiss roll, uniform
distribution on a helix, and Gaussians from 10 up to 4000
dimensions. We got almost exact estimates with mean abso-
lute error (MAE) lower than10� 4 for every dataset. More
information about these results is included in Appendix F.

4. Related Work

ID estimation methods can be divided into two broad cate-
gories: global and local (Camastra & Staiano, 2016). Global
methods aim to give a single estimate of the dimensionality
of the entire dataset, which however discards the nuanced
manifold structure when the data lies on a union of different
manifolds (which is often the case for real-world datasets).

On the contrary, the local methods (Carter et al., 2009;
Kleindessner & Luxburg, 2015; Levina & Bickel, 2004;
Hino et al., 2017; Camastra & Staiano, 2016; Rozza et al.,
2012; Ceruti et al., 2014; Camastra & Vinciarelli, 2002) try
to estimate the local ID of the data manifold at an arbitrary
point. This approach gives more insight into the nature of
the dataset, and provides more options to summarize the
dimensionality of the manifold than the global perspective.
A detailed overview of the methods used for global and local
ID estimation is provided by Camastra & Staiano (2016),
and for a good review of the local ID estimation methods
we refer the reader to Johnsson et al. (2014). We list all the
algorithms we compare to in Table 3 in the appendices.

Figure 8: LID estimates for uniform distribution on a rect-
angle with edge lengths equal to 0.1 and 0.01. The size of
the dataset is plotted on the horizontal axis and the estimate
(with respective 95% con�dence intervals) on the vertical
axis. For most algorithms (except LIDL, KNN and MIN),
we can see a disturbing phenomenon: the estimate depends
on the sample size. LIDL-� stands for LIDL with MAF
density estimator and scale parameter� .Other abbreviations
are explained in appendix in Table 3.

5. Experiments

In this section, we compare LIDL with other algorithms, in-
vestigate its behavior with imperfect density estimators, and
run it on real-world datasets. Details of training procedure
can be found in Appendix F and in Sec. F.1 we describe how
to reduce an error of our estimate.

5.1. Comparison on synthetic datasets

We collated LIDL with other LID estimation algorithms
from scikit-dimension Python library (Bac et al.,
2021), which covers all of the important algorithms for LID
estimation, and compared them in three different aspects:
1. Scalability,2. Multidimensional and curved manifolds,
3. Multiscale manifolds.

We excluded FisherS and DANCo algorithms because they
do not scale well to higher-dimensional settings. FisherS
suffered from memory problems on medium datasets, and
DANCo had unfeasibly long runtimes (multiple weeks) on
the thousand-dimensional datasets. According to the con-
vention in the �eld, we choose to make comparison only on
synthetic datasets, because we have ground truth for them.

Scalability To test scalability we ran all algorithms on
standard multidimensional uniform and normal distributions
up to 4K dimensions. Detailed results of the comparison
are gathered in Appendix F in Tables 1 and 2 (starting from
the 7-th row). Each dataset consisted of 10K data points
and each algorithm was run 5 times on different samples
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Figure 9: Points from the lollipop benchmark dataset and
LIDL (with MAF) estimates for those points.

from the distribution. For each run, we calculated differ-
ences between true LID and estimate and averaged it over 5
runs. Then we divided the result by the average manifold di-
mensionality for each dataset, getting a relative bias of each
algorithm. In subsequent tables, we report relative MAE and
estimate standard deviation for the same procedure. From
those tables, we can clearly see, that although in many cases
LIDL does not have the lowest error and bias, for almost
all datasets the results are in the� 5% range. Other algo-
rithms fail to accurately estimate dimensions exceeding 100.
One exception is ESS, which stands out from the rest but
remains inferior to LIDL. We plot LID estimates for some
of the algorithms (we omitted few for the sake of clarity)
for multidimensional uniform distributions in Fig. 7. All the
abbreviations used in the plot are explained in Appendix F.

Multiscale manifolds In the Introduction, we postulated
that a useful LID estimation algorithm should operate prop-
erly on multiscale manifolds. In this section, we compare
existing LID methods and LIDL on highly non-isotropic
datasets. We observed that most of the algorithms with
the same scale parameters (or those without such parame-
ters, like ESS) give different results for different sizes of the
dataset. We hypothesize that this may be caused by violating
assumptions about the local uniformity of the distribution,
but we did not investigate it further. Only LIDL, MiND-
ML, DANCo, and KNN give stable estimates for different
dataset sizes. We plot those results for selected algorithms
in Fig. 8. For both scale parameter values, LIDL gives stable
estimates for different dataset sizes. The rest of the unplot-
ted algorithms also give unstable estimates, and we omitted
them only to make the plot more readable.

Figure 10: Images from the FMNIST dataset, for which the
LID estimate is close to 0. This effect occurred when we
used to high� s for this thin data manifold.

Curved manifolds and unions of manifolds We tested
LIDL and other algorithms on some smaller but more
complicated manifolds. We used three classical bench-
marks from (Kleindessner & Luxburg, 2015): the Swiss
roll dataset, uniform density on a helix, and uniform den-
sity on a sphere. These datasets lie on a curved manifolds
(2-, 1- and 7-dimensional respectively) which may cause
dif�culties with �tting density estimators. Results of those
experiments can be found in rows 4-7 of Tables 1 and 2. The
results for LIDL are decent (Relative bias less than 0.05 and
relative MAE less than 0.06), but lPCA and ESS gave esti-
mates with relative bias and MAE less than 0.01. For perfect
density estimates LIDL gives almost perfect estimates on
those datasets, as presented in Sec. 3.6.

None of the above datasets however consisted of compo-
nents of different dimensions, which may be the case for
many real-world datasets. We used alollipop dataset, which
is composed of 0, 1, and 2-dimensional components. The
dataset and its corresponding LIDL estimates are plotted in
Fig. 9. On the 2- and 1-dimensional parts, many algorithms
achieved good results, some even better than LIDL, but the
0-dimensional component, which consisted of replicas of
the same point, caused most problems for other algorithms.

When algorithms tried to estimate LID for this 0-
dimensional part, only lPCA and LIDL were able to estimate
its dimensionality properly, and almost all other algorithms
failed to converge. When we jittered those points a little
with N (0; 10� 6), almost all of the algorithms converged
but all of them yielded estimates close to 2. Thanks to the
possibility of setting operating scale in LIDL, we could esti-
mate the latter dimension correctly, regardless of noise in
the data. Results for each component of the manifold treated
separately can be found in the �rst 3 rows of Tables 1 and 2.

5.2. Operating range

As stated in Sec. 2.4,� can be seen as a scale parameter. We
introduced some numerical and theoretical results to support
this hypothesis, and in this section, we are going to present
some experiments investigating this topic. In Fig. 13 we
present a similar experiment to that from Fig. 2, but this
time with 4-dimensional uniform density. Results seem
quite similar to previous theoretical results. For similar
Gaussian distribution, we get an almost identical relation
between dimension variance, LIDL estimate and� .
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Figure 11: Samples from different image datasets (MNIST,
Celab-A, FMNIST from left to right) presented according
to their LIDL estimates (top to bottom). Those results are
highly correlated with the complexity of an image.

We also tuned a� range on image MNIST and FMNIST to
reduce dequantization noise in�uence on the LIDL estimate.
More on those experiments can be found in Appendix F.
Although this scale parameter has to be used with care. In
one experiment on FMNIST (normalized to have values
between -0.5 and 0.5) for values of� > 0:1 we observed
that the whole cluster of darker clothes had been estimated
as being 0-dimensional. We present some samples from this
cluster in Fig. 10.

5.3. Experiments on image datasets

We ran LIDL on MNIST, FMNIST, and Celeb-A (D = 1K,
1K, 12K respectively) datasets using Glow as a density esti-
mator. We sorted those datasets according to LIDL estimates
and observed that visually more complex examples have
higher LID. Some small, medium, and high dimensional
images from those datasets are shown in Fig. 11 and Fig. 20,
21, 22 from Appendix F. In the aforementioned section we
plot a distribution of LIDL estimates for different classes
from MNIST and FMNIST, and show how the estimate is
affected by the dequantization used in NF training.

In Appendix F.3 we used LIDL to show, that LID negatively
correlates with local (per image) accuracy of the classi�ca-
tion model for images and that LID is positively correlated
with image reconstruction error of VAE.

6. Conclusions

We identi�ed three challenges in LID estimation and ex-
plained how the existing methods do satisfy those desiderata.
To overcome those limitations we introduced an algorithm
for LID estimation which relies on powerful neural para-
metric density estimators, and provided solid theoretical
justi�cation for the method. Our experiments showed that it
can scale to datasets of thousands of dimensions and give
accurate estimates on complicated manifolds. We inves-
tigated its strengths and limitations and showed that LID
is connected with local model performance, especially in
unsupervised learning and classi�cation settings.

There is a number of future research directions stemming
from this work. The �rst one is a more theoretically
grounded and experimentally tested procedure for choos-

ing � in the presence of observation noise, which might
be important for practitioners. Another one is further in-
vestigating the connection of LID estimates and classi�er
performance: LID estimates could be used in active learning,
semi supervised learning or curriculum learning.
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Supplementary material

A. Proofs

Proof of Lemma 2.1.Assume that� is suf�ciently small forFx to be de�ned onB (x; � ) \ Tx S. Let v 2 B (x; � ) \ Tx S.
Under our identi�cations,y = ( v; Fx (v)) 2 Tx S � Nx S is a point ofS such thatv = � x (y). Moreover, by eq.(5), for
suf�ciently small �

kvk2
Tx S + kFx (v)k2

N x S � � 2(1 + C� 2) < �; (11)

soy 2 B (x; � 1=2), andv 2 � x (S \ B (x; � 1=2)) .

Proof of Lemma 2.2.DenoteB = S \ B (x; � 1=2). Integrating by substitution, we obtain
Z

B
� Tx S

� (� x (y)) dpS =
Z

� x (B )
� Tx S

� (v) d(� x ) � pS ; (12)

where the pushforward(� x ) � pS is a smooth measure onTx S. Hence, for suf�ciently small�
Z

� x (B )
� Tx S

� (v) d(� x ) � pS (v) �
Z

� x (B )
� Tx S

� (v) dv (13)

uniformly in � . The integral on the right is at most1, and simultaneously, by Lemma 2.1 we have
Z

� x (B )
� Tx S

� (v) dv �
Z

B (x;� ) \ Tx S
� Tx S

� (v) dv: (14)

The last integral is the probability that a normal random variable falls within one standard deviation from the mean, which is
a constant independent of� .

Proof of Lemma 2.3.By eq. (1),
� N x S

� (� ?
x (y)) = � d� D � N x S (� � 1� ?

x (y)) : (15)

Since� x is a contraction, we havek� x (y)k � � 1=2. It follows from eq. (5), that for suf�ciently small�

k� ?
x (y)k = kFx (� x (y))k � C� (16)

for someC > 0. Therefore� � 1� ?
x (y) lies inside a �xed ball independent of� , and in consequence

� N x S (� � 1� ?
x (y)) � 1 (17)

uniformly in � , concluding the proof.

Proof of Lemma 2.4.DenoteB = S \ B (x; � 1=2). By eq.(4) and Lemma 2.3, for suf�ciently small� andy 2 B , we have

� D
� (x � y) � � d� D � Tx S

� (� x (y)) (18)

uniformly in � . It follows that the original integral can be estimated as
Z

B
� D

� (x � y) dpS � � d� D
Z

B
� Tx S

� (� x (y)) dpS : (19)

The proof concludes by applying Lemma 2.2 to the last integral.

Proof of Lemma 2.5.Observe that ifkvk � � 1=2, we have

� D
� (v) � � � D exp

�
�

kvk2

2� 2

�
� � � D exp

�
�

1
2�

�
(20)

uniformly in v. This bound on the integrand converges to0 as� ! 0, and the measurepS is �nite, proving the convergence
of the considered integral.
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B. Non-connected data manifolds and intersections

Earlier we assumed that the data comes from a connected manifoldM , whose local dimension is constant. Moreover, it
was embedded inRD , precluding self-intersections. These restrictions can be relaxed as follows. Firstly, we may allow
M to contain multiple connected components. Secondly, instead of an embedding, we may consider agoodimmersion
j : M ! RD , satisfying the following �niteness condition.

De�nition B.1. We will call an immersionj : M ! N good, if M admits an open coverCsuch that for everyU 2 C the
restriction ofj to U is an embedding, and moreover, everyx 2 N has an open neighborhood whose preimage intersects
only �nitely many sets inC.

In the non-connected case, the dimension is no longer constant on the manifold, but can differ between its components. We
will denote bydimx M the dimension ofM at a pointx 2 M .

Before we proceed, we will prove a simple technical lemma.

Lemma B.1. Let j : M ! N be a good immersion. Then everyx 2 N has a neighborhood whose preimage intersects only
�nitely many connected components ofM .

Proof. Let Cbe an open cover ofM satisfying conditions of De�nition B.1. Takex 2 N , and letV � N be a neighborhood
of x such thatj � 1(V ) intersects only �nitely many setsU1; : : : ; Un 2 C. On eachUi the restriction ofj is an embedding,
so there exists a neighborhoodVi � V of x whose preimage is contained in a single connected component ofUi , and hence
in a single connected componentM i of M .

The intersection
T

i Vi is the required neighborhood ofx, as its preimage is contained in the �nite union of connected
components

S
i M i .

This more general case reduces to the one studied in Section 2.2, as the following reasoning shows.

Proposition B.1. Supposej : M ! N is an immersion of manifolds. Moreover, let� be a smooth measure onM . Then
there exists a manifold~M endowed with a measure~� and a local diffeomorphismf : ~M ! M , such that

1. the measure~� is smooth

2. the pushforwardf � ~� equals� ;

3. ~| = j � f : ~M ! N restricted to every connected component of~M is an embedding.

4. if j is good, then so is~| ;

Proof. Sincej is an immersion, there exists an open coverC of M such that on everyU 2 C the restriction ofj is an
embedding. Letf  U : U 2 Cgbe a partition of unity subordinate toC. DenoteM U = f x 2 M : � U (x) > 0g, and let
f U : M U ! M be the corresponding inclusion map. Finally, let~M be the disjoint union off M U : U 2 Cg, and de�ne
f : ~M ! M by gluing together the inclusionsf U .

The measure~� can be de�ned as
~� =

X

U 2C

(f � 1
U ) � ( U � ); (21)

i.e. for everyU 2 C we multiply � by density function U , restrict it toM U and pull it to ~M throughf U . Since by de�nition
 U is continuous and positive onM U , the measure~� is smooth. Moreover, by construction we havef � ~� = � , and the
restriction of~| to everyM U (and therefore every to every connected component) is an embedding.

To show the last assertion, assume thatj is good. In this case, the coverCde�ned above can be chosen in such a way that
for everyx 2 N there exists a neighborhoodV � N whose preimagej � 1(V ) intersects only �nitely many sets inC. It is
then easy to see that the coverf M U : U 2 Cgof ~M satis�es the conditions of De�nition B.1, so~| is good.

Now, suppose that in Theorem 2.1, instead of an embedded submanifoldS, we are dealing with the image of a proper
immersionj : M ! RD , and thatpS is the pushforward of a probability measure� on M . Thanks to Proposition B.1, this
reduces to the situation wherej restricted to every connected component ofM is an embedding.
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Proposition B.2. Supposej : M ! RD is a good immersion, and its restriction to every connected component ofM is an
embedding. Let� be a smooth probability measure onM , andpS = j � � . For x 2 S = j (M ) and suf�ciently small� we
have

log � � (x) = ( d � D ) log � + O(1); (22)

where
d = min

j (y )= x
dimy M: (23)

Proof. By Lemma B.1, for suf�ciently smallr the preimagej � 1(B ) of the ballB = B (x; r ) centered atx intersects
only �nitely many connected components ofM . Denote them byM 1; : : : ; M k , and letM 0 be the union of the remaining
components. The measure� can be decomposed as

� =
kX

i =0

� (M i )� i ; (24)

where� i is the restriction of� to M i , normalized to a probability measure. If we putpi = j � � i , a similar decomposition
holds forpS .

If we apply Theorem 2.1 toj (M i ) endowed with the measurepi , for i > 0, the corresponding perturbed density� i
� satis�es

� i
� (x) � � dim M i � D (25)

for suf�ciently small � . Moreover, for� < r 2, we havej (M 0) = j (M 0) n B (x; � 1=2), so by Lemma 2.5

lim
� ! 0+

� 0
� (x) = 0 : (26)

Consequently, for small� < 1

� � (x) =
kX

i =0

� (M i )� i
� (x) �

kX

i =1

� dim M i � D ; (27)

and the term with the lowest exponent dominates.

C. Examples with explicit derivations

C.1. A motivating example

Consider the standard embeddingRd � RD . Take forS a bounded open subset ofRd, endowed with the uniform probability
measurepS with constant density� � vol(S) � 1 on S. If we denote byx1 andx2 the components of a vectorx 2 RD

corresponding to the standard decompositionRD = Rd � RD � d, it follows from (2) and properties of the Gaussian function,
that

� � (x) =
� D � d

� (x2)
vol(S)

Z

S
� d

� (x1 � y1) dy1: (28)

Now, if x is an interior point ofS, thenx2 = 0 . Moreover, for suf�ciently small� , the integral above is arbitrarily close
to 1, as most of the mass of the integrand falls into a small neighborhood ofx1, which is contained inS. Therefore, for
suf�ciently small �

� � (x) � � D � d
� (0) = � d� D � D � d(0) � � d� D (29)

uniformly in � .

It follows that
log � � (x) = ( d � D ) log � + O(1); (30)

and hence

d � D = lim
� ! 0

log � � (x)
log �

: (31)

In practice,d � D , and in consequenced, can be estimated by considering� � (x) for multiple small values of� , and using
linear regression.
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C.2. Normal distribution in RD

Suppose thatS = RD , andpS = N (0; �) , where� is a diagonal matrix with entries� 2
1 � � 2

2 � � � � � � 2
D . In this case,

the perturbation withN (0; � 2I ) yields another normal distributionN (0; � + � 2I ), whose density at0 is

� � (0) = (2 � ) � D= 2
DY

k=1

(� 2
k + � 2) � 1=2: (32)

Proposition C.1. Let1 � d < D , and denote� = ( � d � d+1 )1=2. For � � 1 and� 2 [� � 1�; �� ] we have

log � � (0) = ( d � D ) log � + M � C� ; (33)

whereM is independent of� , and0 � C� � D� d +1

2� d
� 2.

In other words, the above proposition states that for� between two consecutive deviations� d and� d+1 , our LID estimate is
approximately the numberd of dimensions in which the Gaussian distribution is `thicker' than� , and the approximation
error decreases with the growth of the ratio� d=� d+1 and the distance of� from � d and� d+1 .

Proof. Let us denote� = � (� d+1 =� d)1=2. The, fork � d we may compute�� = �� d � �� k , which leads to

� 2
k + � 2 � (1 + � 2)� 2

k : (34)

On the other hand, fork � d + 1 , we have� � 1� = � � 1� d+1 � � � 1� k , and similarly to the previous case, we have

� 2
k + � 2 � (1 + � 2)� 2: (35)

By applying these two estimates to the formula (32) for� � (0) we are able to obtain a two-sided estimate

M (1 + � 2) � D= 2� d� D � � � (0) � M� d� D ; (36)

with M = (2 � ) � D= 2 Q d
k=1 � � 1

k independent of� . Finally, after takinglog we can see that

log � � (0) = ( d � D ) log � + log M �
D
2

log(1 + � 2); (37)

and the last term is positive and bounded from above byD� 2=2, yielding the desired estimate by substituting� .

From the above Proposition we can see that if there is a large gap between� d and� d+1 , then for� in the neighborhood of
their geometric mean, the LID estimate obtained through linear regression should be approximatelyd, with approximation
error decreasing, and the range of viable� increasing with the growth of the gap size, expressed by the ratio� d+1 =� d.

C.3. Points along a line

Consider a zero-dimensional manifoldM , consisting ofN points, endowed with uniform probability measure. Suppose
M is embedded intoRD in such a way that its imagef x1; : : : ; xN g is actually contained inR � RD , and has the form
xk = ( � k ; 0; : : : ; 0), where� k+1 � � k + � for some� > 0, i.e. the indexing is chosen in such a way that the pointsxk are
ordered alongR, and the distances between them are at least� .

In this setting, we will study the quantity� � (xn ) more closely, and attempt to understand its relationship with the perturbation
magnitude for any� , not just suf�ciently small ones. We have

� � (x0) =
1
N

NX

k=1

� D
� (xn � xk ) =

� D
� (0)
N

 

1 +
NX

k=1
k6= n

� D
� (xn � xk )

� D
� (0)

!

= M� � D (1 + � � ) ; (38)

whereM = ( N (2� )D= 2) � 1, and

� � =
NX

k=1
k6= n

� D
� (xn � xk )

� D
� (0)

=
NX

k=1
k6= n

exp

"

�
1
2

�
� n � � k

�

� 2
#

: (39)
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After takinglog, we get
log � � (x0) = � D log � + log M + log(1 + � � ); (40)

where the termlogM is independent of� , and0 � log(1 + � � ) � � � .

Proposition C.2. Let � � 1. If � < �= (
p

2� ) then� � � 4e� � 2
. In particular, for � > 0, we have� � < � provided that

� <
�

(� 2 log(�=4))1=2
; (41)

i.e. the threshold value for� depends logarithmically on� .

Proof. We havej� i � � j j � � ji � j j, and therefore

� � �
NX

k=1
k6= n

exp

"

�
1
2

�
� (n � k)

�

� 2
#

�
NX

k=1
k6= n

e� � 2 (n � k )2
: (42)

For an upper estimate, we may also extend the summation over all integers exceptn, obtaining

� � �
X

k6= n

e� � 2 (n � k )2
= 2

1X

j =1

e� � 2 j 2
� 2

1X

j =1

e� � 2 j =
2

1 � e� � 2 e� � 2
: (43)

For� � 1 we have(1� e� � 2
) � 1 � 2, so in the end� � � 4e� � 2

. By solving� = 4e� � 2
for � we obtain� = ( � log(�=4))1=2,

yielding the last assertion.

D. Ideal LIDL for normal distribution on a line

Suppose our submanifoldS is the image of the standard embeddingR � RD , and letpS = N (0; 1). In this case, the
perturbed distribution isN (0; �) , where� is a diagonal matrix with entries(1 + � 2; � 2; : : : ; � 2). The density� � at a point
x = ( t; 0; : : : ; 0) 2 S is therefore

� � (x) =
� 1� D

(2� )D= 2(1 + � 2)1=2
exp

�
�

t2

2(1 + � 2)

�
; (44)

and its logarithm can be decomposed into the following sum

log � � (x) = (1 � D ) log � �
D
2

log(2� ) �
1
2

log(1 + � 2) �
t2

2(1 + � 2)
: (45)

Let us now apply the trivial case of linear regression involving only two points, amounting to computing the slope of the line
passing through two points. We have

log � � 1 (x) � log � � 2 (x)
log � 1 � log � 2

= 1 � D � � (t); (46)

where the error term expands to

� (t) =
1

2(log � 1 � log � 2)

�
log

1 + � 2
1

1 + � 2
2

� t2
�

1
1 + � 2

1
�

1
1 + � 2

2

��
; (47)

yielding a LID estimatêdx = 1 � � (t) at x. We can see that the error� decomposes into two terms of opposite signs. The
�rst term depends only on� , and the second one, grows quadratically witht.

If we put � 1 = �� , and� 2 = � , the coef�cient oft2 can be further rewritten as

1
2(log � 1 � log � 2)

�
1

1 + � 2
1

�
1

1 + � 2
2

�
=

� 2(1 � � 2)
2 log� (1 + � 2)(1 + ( �� )2)

�
� 2(1 � � 2)

2 log�
; (48)
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where the estimate holds uniformly in� if � is bounded� from above. Although for �xed� and� the error is unbounded as
a function oft, if we were allowed to adjust� based ont (with �xed � ), for the error� (t) to be bounded int it is necessary
and suf�cient that� � C=t for some constantC.

Finally, the expected error for the LID estimate (computed in the above manner) at a randomx drawn from our distribution
can be computed

Z

R
� (t)� 1(t) dt =

1
2(log � 1 � log � 2)

�
log

1 + � 2
1

1 + � 2
2

�
Z

R
t2� 1(t) dt

�
1

1 + � 2
1

�
1

1 + � 2
2

��
=

=
1

2(log � 1 � log � 2)

�
log

1 + � 2
1

1 + � 2
2

�
�

1
1 + � 2

1
�

1
1 + � 2

2

��
= � (1);

(49)

where the last integral is just the variance ofN (0; 1), i.e.1.

E. Normalizing Flows

NF are very �exible tools for approximating probability distributions. They use parametrized nonlinear invertible transfor-
mationf � and change of variable formula to transform a simple density� (z) into a more complicated one. NF are trained
using gradient-based methods (e.g. SGD) to maximize log-likelihood of the data

max
�

X

i

logq(x i )

where

q(x) = � (f � (x))

�
�
�
�det

@f� (x)
@x

�
�
�
� :

We used MAF (Papamakarios et al., 2017), RQ-NSF (Durkan et al., 2019) and Glow (Kingma & Dhariwal, 2018) models in
our experiments. More detailed introduction to normalizing �ows can be found in (Dinh et al., 2014).
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Table 1: Relative bias of LID estimates. All algorithm names explained in Table 3

Distribution LID LIDL M LIDL R COR ESS KNN LPC MAD MIN MLE MOM TLE TWO

Lollipop in R2 0 0.00 0.00 1.67 1.67 1.60 1.67 1.82 1.67 1.80 1.74 - 1.65
Lollipop in R2 1 0.00 0.01 0.00 0.00 0.58 0.01 0.10 0.00 0.05 0.00 - 0.00
Lollipop in R2 2 -0.00 -0.00 -0.01 -0.00 -0.07 0.00 0.10 -0.00 0.08 0.01 - -0.03

U on helix inR3 1 0.01 0.00 0.00 0.00 0.68 0.00 0.12 0.00 0.06 0.00 0.00 0.00
U onS7 � R8 7 -0.00 0.00 -0.28 0.00 -0.37 0.00 0.03 -0.18 0.02 -0.04 0.08 -0.13

Swiss roll inR3 2 0.04 0.01 -0.00 0.00 -0.05 0.00 0.06 0.00 0.05 0.00 0.05 -0.01
N10 � R10 10 0.00 0.00 -0.40 -0.00 -0.47 0.00 0.02 -0.25 0.01 -0.07 0.01 -0.16

N100 � R100 100 -0.00 0.00 -0.78 -0.01 -0.66 -0.28 -0.51 -0.90 -0.50 -0.57 -0.56 -0.60
N1000 � R1000 1000 0.00 0.00 -0.93 -0.09 -0.74 -0.90 -0.83 -0.99 -0.82 -0.85 -0.85 -0.86
N4000 � R4000 4000 -0.00 - -0.96 -0.29 -0.77 -0.98 -0.91 -1.00 -0.91 -0.92 -0.93 -0.93

N10 � R20 10 0.00 0.01 -0.40 -0.00 -0.25 0.00 0.02 -0.25 0.01 -0.07 0.01 -0.16
N100 � R200 100 0.04 0.03 -0.78 -0.01 -0.46 -0.28 -0.51 -0.90 -0.50 -0.57 -0.56 -0.60

N1000 � R2000 1000 0.11 0.30 -0.93 -0.09 -0.52 -0.90 -0.83 -0.99 -0.82 -0.85 -0.85 -0.86
N2000 � R4000 2000 0.11 - -0.95 -0.17 -0.55 -0.95 -0.88 -0.99 -0.87 -0.89 -0.90 -0.90

U10 � R10 10 -0.04 -0.04 -0.39 -0.07 -0.47 0.00 -0.10 -0.29 -0.11 -0.17 -0.07 -0.22
U100 � R100 100 0.00 0.01 -0.75 -0.02 -0.67 -0.28 -0.50 -0.90 -0.49 -0.56 -0.53 -0.59

U1000 � R1000 1000 -0.00 0.00 -0.92 -0.09 -0.76 -0.90 -0.81 -0.99 -0.81 -0.84 -0.84 -0.85
U4000 � R4000 4000 -0.00 - -0.96 -0.29 -0.78 -0.98 -0.90 -1.00 -0.90 -0.92 -0.92 -0.92

Table 2: Relative MAE of LID estimates. All algorithm names explained in Table 3

Distribution LID LIDL M LIDL R COR ESS KNN LPC MAD MIN MLE MOM TLE TWO

Lollipop in R2 0 0.00 0.00 1.67 1.67 1.60 1.67 1.82 1.67 1.80 1.74 - 1.65
Lollipop in R2 1 0.00 0.01 0.00 0.00 0.58 0.01 0.12 0.00 0.05 0.00 - 0.00
Lollipop in R2 2 0.01 0.01 0.01 0.00 0.62 0.00 0.43 0.00 0.25 0.03 - 0.05

U on helix inR3 1 0.01 0.00 0.00 0.00 0.68 0.00 0.14 0.00 0.06 0.00 0.00 0.00
U onS7 � R8 7 0.00 0.00 0.28 0.00 0.44 0.00 0.27 0.18 0.18 0.08 0.17 0.15

Swiss roll inR3 2 0.06 0.01 0.00 0.00 0.37 0.00 0.25 0.00 0.14 0.02 0.06 0.03
N10 � R10 10 0.00 0.01 0.40 0.00 0.47 0.00 0.27 0.25 0.19 0.11 0.16 0.17

N100 � R100 100 0.00 0.02 0.78 0.02 0.66 0.28 0.52 0.90 0.50 0.57 0.56 0.60
N1000 � R1000 1000 0.00 0.01 0.93 0.09 0.74 0.90 0.83 0.99 0.82 0.85 0.85 0.86
N4000 � R4000 4000 0.01 - 0.96 0.29 0.77 0.98 0.91 1.00 0.91 0.92 0.93 0.93

N10 � R20 10 0.00 0.01 0.40 0.00 0.68 0.00 0.27 0.25 0.19 0.11 0.16 0.17
N100 � R200 100 0.04 0.03 0.78 0.02 0.87 0.28 0.52 0.90 0.50 0.57 0.56 0.60

N1000 � R2000 1000 0.12 0.30 0.93 0.09 0.95 0.90 0.83 0.99 0.82 0.85 0.85 0.86
N2000 � R4000 2000 0.12 - 0.95 0.17 0.96 0.95 0.88 0.99 0.87 0.89 0.90 0.90

U10 � R10 10 0.04 0.04 0.39 0.07 0.47 0.00 0.27 0.29 0.20 0.18 0.17 0.22
U100 � R100 100 0.00 0.02 0.75 0.02 0.67 0.28 0.50 0.90 0.49 0.56 0.53 0.59

U1000 � R1000 1000 0.00 0.02 0.92 0.09 0.76 0.90 0.81 0.99 0.81 0.84 0.84 0.85
U4000 � R4000 4000 0.01 - 0.96 0.29 0.78 0.98 0.90 1.00 0.90 0.92 0.92 0.92



LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood

Table 3: Algorithms used for comparison. All implementations from scikit-dimension library (Bac et al., 2021).

Name Shortcut citation

CorrInt COR (Gassberger & Procaccia, 1983)
MADA MAD (Farahmand et al., 2007)
MLE MLE (Levina & Bickel, 2004)
lPCA LPC (Cangelosi & Goriely, 2007)
KNN KNN (Carter et al., 2009)

DANCo DAN (Ceruti et al., 2014)
MiND ML MIN (Rozza et al., 2012)

ESS ESS (Johnsson et al., 2014)
MOM MOM (Amsaleg et al., 2018)

FisherS FIS (Albergante et al., 2019)
TwoNN TWO (Facco et al., 2017)

TLE TLE (Amsaleg et al., 2019)
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Figure 12: The dependence of mean-square error (MSE) on the number of models used in LIDL (n from Algorithm1). We
can observe monothonic decrease of the estimate error with the increase of n.

F. Experimental details
In this section we present some results of additional experiments, some details and other observations.

When using LIDL with parametric density estimators on non-synthetic datasets, choosing hyperparameters is a challenge.
We cannot directly estimate the error of the algorithm because we does not have access to ground truth LID. However, we
observed in our experiments that choosing the hyperparameters leading to models minimizing negative log-likelihood on the
validation set is a good strategy for minimizing the error of the LID estimate. We apply this approach in all our experiments;
as density estimators we employ MAF (Papamakarios et al., 2017), RQ-NSF (Durkan et al., 2019) and Glow (Kingma &
Dhariwal, 2018).

In scalability experiments we used 3 types of datasets. Uniform distribution on interval (0, 1) on a hypercube (denoted by
UN , where N is dimensionality of a cube), multivariate Gaussian (NN ⊆ RN ) where N is dimensionality of a distribution
and data space, and (NN ⊆ R2N ), where we embedded N -dimensional Gaussian in 2N -dimensional space by duplicating
each coordinate. In each experiment we used 11 δs between 0.025 and 0.1.

F.1. Reducing the error of the density estimate

Because model ensemble methods (Opitz & Maclin, 1999) often reduces prediction error in many machine learning models,
and most of LIDL error comes from the imperfect density estimators, we applied it to our problem by increasing the number
of models n used in LIDL. We were able to reduce an error of each estimate by simply adding more models between the
same range of δs. An example of this behavior for 10-dimensional Gaussian embedded in 20-dimensional space is plotted in
Fig.12 in Appendix F.
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Figure 13: LIDL and hard estimate for different values of δ for 4-dimensional multiscale uniform distribution. We can see
that LIDL ignores dimensions that are much smaller than δ even with imperfect density estimators.

F.2. Image datasets

We present cumulative distribution function (CDF) for MNIST and FMNIST in Fig. 14 and 15. More samples from MNIST,
FMNIST, Celeb-A sorted by their LID can be found in Fig. 20, 21, and 22.

We can observe, that dimensionality estimates obtained from LIDL on MNIST are higher than those reported in (Pope et al.,
2020) or (Kleindessner & Luxburg, 2015) and obviously depend on choosing the range of δs. We want to present some
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Figure 14: Empirical CDF of 5000 examples from MNIST dataset. Each line represents CDF for separate class in the
dataset. Class number (which also is a represented digit in this case) can be found in the legend.

Figure 15: Empirical CDF of 5000 examples from FMNIST dataset. Each line represents CDF for separate class in the
dataset. Class number can be found in the legend.

argument for our estimates: (Cavallari et al., 2018) used auto-encoder representation of MNIST as an input to SVN digit
classifier and they achieved the best classification results for an auto-encoder with latent space size greater than 100. This
means that we need more than 100 dimensions to encode an average MNIST digit to preserve all the information about it.
Of course the compression with autoencoder is not ideal, but we can argue that true ID lies somewhere between.

Relation between examples for different range of δs We observed that for image dataset LID estimates for two disjoint
sets of 4 δs have similar ranks (they on average differ between 10%-15%), and relations between points in each set (i.e. if
LID estimate for xj is lower than LID estimate for xi) are preserved in 80-90% of cases. This of course depends strongly on
δ range and the dataset.

LID estimate dependence on δ and effect of dequantization We present MNIST and FMNIST LID estimates (averaged
per class) dependence on δ in Fig. 18 and 19. Images present wide range of δs (from 10�4 to 101) for original datasets
and datasets with dequantization used after training. Black dashed line indicates a theoretical δ, above which LIDL should
not calculate dequantization dimensions into LIDL estimate. This is 10 times standard deviation of dequantization noise
U(0, 1/255). We can see that slightly above this threshold estimates for quantized and dequantized datasets aligh with each
other. We can also observe, that for dequantized datasets and very small δ LID estimate is close to the dimensionality of the
space, and for very big δs, LID estimates are close to 0 as expected.




