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Abstract

Although Convolutional Neural Networks
(CNNs) achieve high accuracy on image
recognition tasks, they lack robustness against
realistic corruptions and fail catastrophically
when deliberately attacked. Previous CNNs
with representations similar to primary visual
cortex (V1) were more robust to adversarial
attacks on images than current adversarial
defense techniques, but they required training
on large-scale neural recordings or handcrafting
neuroscientific models. Motivated by evidence
that neural activity in V1 is sparse, we develop a
class of hybrid CNNs, called LCANets, which
feature a frontend that performs sparse coding via
local lateral competition. We demonstrate that
LCANets achieve competitive clean accuracy to
standard CNNSs on action and image recognition
tasks and significantly greater accuracy under
various image corruptions. We also perform the
first adversarial attacks with full knowledge of a
sparse coding CNN layer by attacking LCANets
with white-box and black-box attacks, and we
show that, contrary to previous hypotheses, sparse
coding layers are not very robust to white-box
attacks. Finally, we propose a way to use sparse
coding layers as a plug-and-play robust frontend
by showing that they significantly increase the
robustness of adversarially-trained CNNs over
corruptions and attacks.

1. Introduction

Convolutional Neural Networks (CNNSs) are often consid-
ered a rough model of the ventral visual stream (Kubilius
et al., 2019), where object recognition is thought to occur in
primates. However, CNNs and biological visual systems be-
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have very differently in practical performance. For instance,
adversarial examples (Szegedy et al., 2014; Goodfellow
et al., 2015) are very effective at causing a CNN to fail
catastrophically while they remain indistinguishable from
unperturbed images to humans (Elsayed et al., 2018).

Mounting research suggests that CNN image classifiers with
representations similar to those in the primary visual cortex
(V1) exhibit increased robustness to image corruptions and
adversarial attacks (Li et al., 2019; Dapello et al., 2020; Sa-
farani et al., 2021). These V1-like CNNs have been shown
to be more robust than those trained with state-of-the-art
adversarial defense techniques (Rusak et al., 2020). Current
methods to develop V1-like CNNs involve replacing specific
layers with hand-crafted neuroscientific models (Dapello
et al., 2020) or jointly training with V1 responses to images
(Liet al., 2019; Safarani et al., 2021). It is unclear how these
techniques can be adapted to arbitrary datasets or used as
a general purpose adversarial defense method, since neu-
ral datasets and knowledge of receptive field properties of
sensory neurons to stimuli other than still images is limited.

In contrast, we develop a CNN frontend based on biologi-
cally plausible sparse coding models, such as the Locally
Competitive Algorithm (LCA) (Rozell et al., 2008). Sparse
coding models are a class of data-agnostic unsupervised
models that have been shown to model neural responses in
visual, auditory, and olfactory cortices (Rozell et al., 2008;
Zylberberg et al., 2011; Terashima et al., 2013; Dodds &
DeWeese, 2019; Jortner et al., 2007; Jiirgensen et al., 2021).
These models were originally developed based on longstand-
ing neurophysiological evidence that the neural activity in
V1 and other sensory areas is sparse, unlike the activations
in a CNN (Barlow et al., 1961; Olshausen & Field, 1997,
Vinje & Gallant, 2000; Foldiak, 2003; Poo & Isaacson, 2009;
Hromadka et al., 2008; Yoshida & Ohki, 2020). LCA finds a
faithful but sparse representation (i.e. few active neurons) of
a given input by modeling the recurrent lateral competition
observed in V1 (Blakemore et al., 1970), whereby neurons
compete to represent an input by inhibiting neighboring neu-
rons with similar receptive fields (Chettih & Harvey, 2019).
LCA is unlike the classical model developed by Dapello et
al. (Dapello et al., 2020), in which each neuron’s response is
entirely determined by the extent to which its preferred fea-
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ture is present in the input (plus added stochasticity whichunder both corruptions and adversarial attacks.
is independent at each neuron). Instead, it is a non-classical

model of V1, where a neuron's response is highly dependen@_ Background and Related Work
ondynamic lateral competition with surrounding neurons

Lateral inhibition/competition is thought to contribute to 2.1. V1-Like CNNs

bottom-up attention, feature selectivity, contrast-invariantin a landmark study, Li et al. (Li et al., 2019) trained a
tuning, and noise ltering in V1 (Gajewska-Dendek et al.,V1-like ResNet-18 (He et al., 2016) to classify ImageNet
2015; Crook et al., 1998; Sompolinsky & Shapley, 1997;by regularizing the network to be similar to experimentally
Stemmler et al., 1995; Deneve et al., 1999; Mao & Masmeasured neural activity in mouse V1. Their model was
saquoi, 2007). Additionally, previous studies have reportedointly trained to perform image classi cation and approxi-
that time-limited humans are fooled by adversarial examplesnate the neural representational similarity between image
but humans with unlimited viewing time are not (Elsayed pairs. This model was more robust to random noise and Pro-
et al., 2018). Taken together, these ndings have led tgected Gradient Descent attacks (Madry et al., 2018b) than
speculation that recurrent lateral competition plays an iman undefended VGG-16 (Simonyan & Zisserman, 2015) on
portant role in the robustness of biological visual systemsgrayscale Cifar-10 images. Similarly, Safarani et al. (Sa-
as it takes time to unfold relative to feed-forward excitationfarani et al., 2021) trained a VGG-19 network to both predict
It is not presently clear what role recurrent lateral comperesponses of monkey V1 neurons to and classify Tiny Ima-
tition might play in a CNN or how it would impact clean geNet images, and they found this CNN was more robust to
or adversarial performance on standard classi cation task$mage corruptions than an undefended VGG-19 network.
Previous results indicate that LCA/sparse coding layers ar
able to Iter out noise added to images (Springer et al.
2018; Kim et al., 2019; Ahmad & Scheinkman, 2019) and
adversarial perturbations from attacks on standard CNI\(I)g
(Springer et al., 2018; Sun et al., 2019; Nguyen et al., 202

Slternatively, Dapello et al. incorporated a Linear-
Nonlinear-Poisson (LNP) model of primate V1 into the
st layer of a ResNet-50 (He et al., 2016) by adding a
iologically-constrained gabor lter bank, simple and com-
: - : blex cell nonlinearities, and V1 stochasticity (Dapello et al.,

Kim et al., 2020) by encoding and then reconstructing the’ ; o "
) by 9 9 20). Their VOneNet exhibited competitive performance

input image, but instances in which a sparse code was us | : Net | d inally bett bust
as input to a neural network classi er and/or an attack wag)" clean Imagelvet exampies and marginatly better robust-

performed with full knowledge of the sparse coding Iayerness than an adversarially trained ResNet-50 on average un-

are rare. In a recent work, Paiton et al. (Paiton et al., 20222“ ‘”?age corrupt_ions (Hendrycks & Dietterich, 2018) and
observed that shallow fully-connected classi ers which use Projected Gradient Descent attack (Madry et al., 2018b).

LCA codes as input were more robust to white-box attackén a f°”°W.‘“p study, Dapello et al. |Ilustratgd how the V1
than comparable networks, but they did not compare again&tochastmlty component could be used to increase robust-

any other defense methods. To our knowledge, this worlgets.st'.n an aludlorc]: Iasstlhcauon n'et'wor\ljéDap')\tlellto etal, 20213’
introduces the rst deep CNN classi ers with embedded utitis unclear how the remaining vioneiet components

recurrent, feature-speci c lateral competition designed to-an be applied to audio classi cation networks, for example.

implement convex sparse coding and an analysis of its ro- )
bustness relative to standard robust CNNs. 2.2. Sparse Coding Defenses

Our Contributions. Here we develop LCANets, a class LCA/sparse coding has previously been used to increa}se
of hybrid CNNs which consist of a frontend with lateral the performance of CNNs under corrupted or adversarial
competition implemented by the LCA sparse coding a|goexamples (Springer et_al., 2018; Sun et al., 2019; Kim et al.,
rithm followed by a standard CNN architecture. First, we2019; Ahmad & Scheinkman, 2019; Nguyen et al., 2020;
show that LCANets achieve competitive clean accuracy td<im et al., 2020). Most of these previous methods involved
current state-of-the-art defense methods on the UCF-10ncoding and then reconstructing the input image prior to
and HMDB-51 action recognition datasets, as well as th&lassi cation by the CNN, which denoises much of the
CIFAR-10 image recognition dataset. We then show thaPerturbation in some cases. As aresult, most previous meth-
LCANets are more robust to different image corruptions@ds studied théransferability of attacks to LCA/sparse
and a modern black-box attack with limited queries thanc0ding from CNNs, rather than performing attacks against
state-of-the-art defense methods. Since the LCA layer i§CA/sparse coding directly. In the study that is closest to
differentiable, we also attack LCANets in the rst direct, OUrs. (Paiton et al., 2020) observed that two and three-layer
white-box attack on sparse coding CNN layers, and wdetworks composed of fuIIy-connepted layers on top of an
show that they are much less robust than previously thoughtCA code were more robust to Projected Gradient Descent
Finally, we show that lateral competition can be used tdPGD) (Madry etal., 2018D) attacks than comparable unde-
augment the robustness of adversarially-trained network&nded networks on MNIST and grayscale Cifar-10. To the
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Figure 1.LCANet architecture. LCANets consist of an LCA block, which performs sparse coding via lateral competition, followed by a
standard CNN. Since we rst highlight the abilities of LCANets on action recognition, we depict an LCANet operating on spatiotemporal
inputs with spatiotemporal features.

best of our knowledge, we are the rst to perform a directSparse coding models, in general, aim to nd a faithful rep-
attack on an LCA/sparse coding-based network embeddemsentation (code) of a given input using as few features (in
in a standard deep CNN architecture, and we are also rsthe form of active neurons) as possible. This is a reconstruc-

to compare to other defense methods. tion minimization problem which can be de ned as follows.
We begin with an inpuk 2 R® " W and an overcomplete
2.3. Divisive Normalization Networks dictionary of convolutional features 2 RM C ku kw

S . . . whereC is the number of input channeld, is the image
Divisive normalization (DN) is a somewhat similar meCh'height W is the image widthM is the number of convolu-
anism to lateral competition in that a given neuron's outyjgng features, ankl , andky represent the spatial dimen-

put can be in uenced by other neurons in the same layegjqng of pach feature. We wish to obtain a representation
(Carandini & Heeger, 2012). In contrast to the recurrent H w

feature-speci ¢ competition in LCAs (and in V1 (Chettih & @2 R" wo =@, where stride indicates the convo-
Harvey, 2019)), the weighting in DN is often learned anglutional stride.a is a sparse code that represents the learned
is not recurrent (Cornford et al., 2020; Burg et al., 2021)_spatiotemporal reconstruction that is closest to the ixput
While DN has also been theorized as a model of V1 likeThe sparse coding problem (under thgnorm) involves
LCA/sparse coding, there is not as much evidence to sugge§P|V'n9 the following penalized reconstruction problem:
that DN networks are robust in machine learning tasks as

there is for LCA. min %kx a~ KB+ kak 1)
3. LCANet: A CNN with Recurrent Lateral where~ indicates the transpose convolutionrepresents
Competition the previously learned dictionary elements, andeter-

. . . mines the trade-off between reconstruction performance
Inspired by the sparse, robust representations present in ttéq,]d the sparsity of the code

visual cortex, we developed the LCANet architecture (Fig-

ure 1). The key differences that distinguish LCANets from To solve Equation 1, LCA implements leaky integrate-and-
standard and previous V1-like robust CNNs are recurrent’® neurons with recurrent lateral competition (Rozell et al.,
lateral competition and the ability to learn unsupervised fea2008). Mathematically, the membrane potential dynamics
tures from data. LCANets consist of a locally-competitive Of & neuron can be described by the following ordinary
algorithm (LCA) module at the input (i.e. a frontend) fol- differential equation:

lowed by standard CNN layers that generate a classi cation h i
output. The LCA frontend is trained in an unsupervised 1

manner to perform image reconstruction, and then frozen uy= - bty u(® al) G+al) @
during the backpropagation training of the subsequent net- ) o )

work layers. We chose LCA because it is a well-establishedvnereu(t) is the neuron's membrane potentialis a time
implementation of Hop eld-style sparse coding, and be-constant(t) = x is the neuron's input drive from
cause the thresholding mechanism provides exible modeithe stimulus computed by taking the the convolution of the

ing choices that correspond to differdni norms to induce  NPUt with the dictionaryG = represents the pair-
sparsity. wise feature similarity between each feature and every other

feature, and(t) =  (u(t)) is the neuron's instantaneous
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ring rate computed by applying a soft threshold activation dictionary is initialized with random values from a Gaus-
T () with threshold tou(t). Through this threshold, we sian distribution. Table 1 shows the LCA hyperparameters
also enforce that the ring ratea(t)) are nonnegative, asin used to learn the LCA dictionary. These hyperparameters
biological neurons. A desirable property of sparse coding isare selectethefore any models were trainéd match the
that Equation 1 is convex imand in individually (Garcia-  known characteristics of V1 spatio-temporal receptive elds
Cardona & Wohlberg, 2018). We learn the dictionary (STRFs) and increase computational ef ciency while main-
by coordinate ascent, solving fargiven a batch of inputs taining overcompleteness of the dictionary.

using LCA and then updating via SGD. Next, the rst layer of a 3D-ResNet50 (Kataoka et al., 2020)
Rozell et al. (Rozell et al., 2008) showed that LCA systemsis replaced with the LCA layer to create the LCANet, and
satisfy the criterion for local asymptotic stability, i.e. that the the LCA dictionary is xed. The LCANet is then trained
system is inherently robust to perturbations up to somed  on the classi cation tasks like all other models as described
will return to the equilibrium pointin the limitas! 1 .  in Section 4.1.3. We learn one dictionary with= 0:5,
Rozell further shows that as a consequence of this propertigut we train three separate LCANets using this dictionary:
LCA systems will have unique equilibrium points, and anLCANet0.1, LCANet0.5, and LCANet1.0 corresponding
extremely high likelihood for each equilibrium point to be to  values of 0.1 (97% sparse), 0.5 (99% sparse), and
locally asymptotic in itself. This implies that for a given 1.0 (99.5% sparse), respectively. By increasingve are
input, the system will trend to a distinct and stable solutiondecreasing the number of active neurons contributing to the
This is an extremely desirable property for a feature learningepresentation of a given input, or equivalently, increasing
method, particularly one where the representation, or cod¢he sparsity of the code inferred by LCA.

will be used to perform inference in a downstream task.

To complete the construction of the LCANet, the cade 4.1.2. BASELINES

is then passed as the input to a standard CNN (see SectiwCANet-F) To quantify the contribution of lateral competi-
4.1.1). Unlike previous approaches in whiglwas com- tion relative to the unsupervised LCA features in producing
puted froma and then used as input to the CNN (Springerrobust representations, we also train one nal LCANet with-
etal., 2018; Kim et al., 2019; Sun et al., 2019; Nguyen et al.put lateral competition but with the LCA features (LCANet-
2020; Kim et al., 2020)we never go back to the input space F). In this model, we replace the rst convolutional layer of
from the codeln summary, the LCANet takes in a standard 3D-ResNet50 with the LCA dictionary followed by a recti-
input and outputs a vector of class probabilities just like ed linear activation, but no lateral competition is performed.
any standard CNN architecture. This construction gives th&his LCANet-F model is comparable to the VOneNet with-
LCANet the bene t of robust description of inputs, as found out complex cells or stochasticity, except the features are
in LCA applications, as well as the discriminative power of learned from the data.

deeper CNNs. 3D-ResNet50)This model is a standard 3D-ResNet50,
] which we refer to as ResNet50. The 3D indicates that 3D

4. Experiments and Results convolutions are used in every convolutional layer as op-

rposed to 2D convolutions. This model matches the previous

We perform experiments on action and image recognitio
. : ) .state-of-the-art performance on the UCF-101 and HMDB-51
datasets using common image corruptions and adversan%ﬁatasets (Kataoka et al., 2020).

attacks to test the robustness of LCANets. For baselines,
we compare against standard ResNet models, adversariallb-ResNet50-AT)To train the 3D-ResNet50-AT, which we
trained ResNet models, and VOneResNet models. In adefer to as ResNet50-AT, we perform standard adversarial
dition, we compare to a variant of LCANets (LCANet-F) training (Madry et al., 2018a) with g jj; = ~= =0:05

255
which uses the convolutional features learned by LCANetonstraint and 200 queries using the same attack used to

without the lateral competition. test the models. All other training parameters were shared
among all models and described in detail in Section 4.1.3.
4.1. Action Recognition on UCF-101 and HMDB-51 We observe that adversarial training was successful on this

attack because the attack effectiveness dropped from about
75% to 5% over training.

To construct an LCANet, we use the LCA-PyTorch packageéyoneRresNet50)although the creation of arbitrary spatio-

We rst perform unsupervised dictionary learning, as deyemporal Gabor Iter banks has been demonstrated in the
scribed in Section 3, for 10,000 steps to learn a dictionary ofjierature (Adelson & Bergen, 1985), knowledge of the pa-
convolutional features on the Kinetics-700 dataset (Carreirdgmeters governing experimentally determined V1 STRFs

etal, 2019). Since the data is spatio-temporal, we learfy jimited, as is the availability of V1 electrophysiologi-
a spatio-temporal dictionary using 3D convolutions. The

4.1.1. LCANET DETAILS
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cal responses to spatio-temporal stimuli. As a result, thavith clip-level accuracy for all models under all attacks, we
creation of biologically veri able V1-like spatio-temporal report only the clip-level accuracy for simplicity. For both
convolution blocks for the purpose of increased robustnesattacks and corruptions, we randomly down-select a test set
is very dif cult. VOneNets (Dapello et al., 2020) repre- of 1,500 video clips from each dataset to use as inputs to
sent the current successful implementation of this biologicathe models. We repeat this procedure three times with three
inspiration for spatial-only data, in which a VOneBlock fron- random seeds (the same random seed was shared across
tend is programmed to match known biological receptivemodels).

elds. While this method is not spatio-temporal, it provides

an excellent point of comparison with state-of-the-art for4.1.4. LCANETS ARE MORE ROBUST TOIMAGE

our spatio-temporal LCANets. To isolate the contributions CORRUPTIONS

of the VOneBlock in our comparisons, we constructed
new VOneNet by replacing the rst convolutional layer in a
(2+1)D-ResNet50 (Tran et al., 2018) with the VOneBlock.

We experimented with kernel sizes fram 71025 25, ring, and random erasure. These speci ¢ corruptions were
and we observed very small differences between them in 9, ' P P

terms of clean and adversarial accuracy. As a result, Wg:gtsr?enr t;i%agzghttg E;ecgi;egdogcfgmde'f;er:gga f:rc:m ch]ncsai_
report the best model with kernel sizé 11. We chose ' y ying pny

(2+1)D-ResNets because 3D convolutions are decompose?%l process or sensor noise at some point d_uring acquisition.
into a spatial convolution followed by a temporal convolu-f ey \(/jvere also cr:josl,en before.ané/ e;lgl)erlment§ were per-
tion, thus allowing the spatial architecture of the VOneBlock ormed or any models were trained. All corruptions were
to be used without con ating temporal effects. Con guring performed before image normalization.

the VOneNet to handle spatiotemporal information in thisAdditive Gaussian Noise)The most striking observation
way enables comparison with LCANets that natively exhibitin the presence of additive Gaussian noise is the approxi-
V1-like representations learned from features of the datanately 20% gain in performance of LCANet1.0 relative to

q\lo image augmentation was performed during training. We
evaluate the robustness of LCANets against three common
image corruptions:additive Gaussian noise, Gaussian blur-

(including true spatiotemporal information). all other models for both UCF-101 and HMDB-51 (Figure
2). Across both datasets, LCANet0.5 also displays signi -
4.1.3. TRAINING AND TESTING DETAILS cant robustness after LCANet1.0, followed by ResNet50-AT.

All models were implemented in PyTorch 1.10.1 on a high_The LCANet-F model was also relatively robust to the three

performance computing node with eight NVIDIA GeForce levels of noise. On the other hand, VOneNet's performance

. decreased sharply with increasing noise levels, only sur-
RTX 2080 Ti GPUs, 80 CPU cores, and 754GB of mem assing the undefended ResNet50. The relative success of

ory. We slightly adapt the code developed by Hara et al. tcﬁCANet-F over VOneNet highlights the robustness of V1-
train and test 3D-CNNSs on large action recognition dataset - .
- Tike features learned through sparse dictionary learning on

(Hara et al., 2017; 2018a;b; Kataoka et al., 2020). The in-
. . . data.
put to each model consists of 12 consecutive color video
frames of spatial dimensiogl 64. Input video clips were  Gaussian Blur) It has been shown that CNNs commonly
augmented during training with random cropping and hori€exploit the high frequency information in images, which lim-
zontal ipping. Classi cation models were rst pre-trained its their robustness (Wang et al., 2020). Blurring the image
on the Kinetics-700 dataset (Carreira et al., 2019). Theyemoves much of this high frequency information. As as re-
were then ne-tuned and tested on the UCF-101 (Soomrault, we would expect the performance of non-robust CNNs
et al., 2012) and HMDB-51 (Kuehne et al., 2011) dataset$o decrease more rapidly than robust CNNs as the blurring
using the standard, train, validation, and test splits. All trainbecomes more severe. Under this corruption, the perfor-
ing hyperparameters, such as the batch size and learnimgance of all models decreases relatively uniformly (Figure
rate were set to the values used in (Kataoka et al., 2020). 3). At more severe levels of blurring, however, LCANets
. . : . still maintain a small advantage over the robust models and a
During testing, each 10 second video was cut into 12-framé. .
input clips with a stride across time of 12, and center crop:':‘Ignl cant advantf:m.ge over the base 3D-ResNet50, followed
. L S y VOneNet. This indicates that LCANets and VOneNets
ping was used. In preliminary experiments, we compute i1y relving | h high f
video-level predictions by averaging probabilities across alf'e potenﬂa y relying less on the non-robust high frequency
information than standard CNNs. On the other hand, the rel-

clips within a single video. We observed that video Ievelf%ﬁver poor performance of the ResNet50-AT suggests that
accuracy for all models across clean and attacked datase 9 . . . L

. ; . adversarially trained CNNs may still exploit high-frequency
remains about 6% higher on UCF-101 and 9% higher Ol formation that is removed by blurring. Similar to the
HMDB-51 than clip-level accuracy, which is consistent with y 9:

the state-of-the-art (Kataoka et al., 2020). Since we also 'See supplementary material for examples of corrupted video

observe that video-level accuracy increased monotonicallframes.
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Figure 2.LCANets are signi cantly more robust to Gaussian noise than state-of-the-art robust modelsLCANets signi cantly
outperform all other models under additive Gaussian noise on both the UCF-101 (left) and HMDB-51 (right) datasets. The unsupervised
LCA features appear to contribute signi cantly to this robustness, as indicated by the moderate robustness exhibited by LCANet-F.

Figure 3.LCANets are more robust to Gaussian blurring than state-of-the-art robust models.Although accuracy decreases uni-

formly over all models on the UCF-101 (left) and HMDB-51 (right) datasets, LCANets maintain a small gain in accuracy over robust
models under increased blurring. Strikingly, the unsupervised LCA features exhibit the most robustness of all models tested, as the
LCANet-F model outperforms or matches the second most robust model on this corruption.

Gaussian noise corruption, the LCANet-F model outper4.1.5. LCANETS AREROBUST TOHIGH-STRENGTH
forms the VOneNet (and all other models on HMDB-51) BLACK-BOX ATTACKS

again suggesting that unsupervised V1-like features Iearneﬁ luate th bust f LCANet inst ad
on data via sparse dictionary learning are more robust thaj O evaluate ine robusiness o 1€1S against adversar-
1al examples, we employ a query-ef cient black-box attack

input-layer features learned by standard CNN training. (Ilyas et al.. 2018). We chose fo evaluate against a untar-
Random Erasure) The nal corruption we consider is ran- geted black-box attack because it has previously been shown
dom erasure which was rst formulated as a data augmerthat the majority of state-of-the-art CNN defense methods
tation technique (Zhong et al., 2017). Erasure can be intradeveloped on white-box attacks give a false sense of security
duced through occlusion or sensor error. At each level ofthrough gradient obfuscation (Athalye et al., 2018), and they
corruption, there does not appear to be any striking differmay be susceptible to certain black-box attacks (Mahmood
ences in model performance. LCANets achieve moderatet al., 2021). Black-box attacks also represent a more realis-
robustness, lagging behind the top performing models byic threat, as it is unlikely that an adversary would have full
only a few percentage points. Their decreased performancaccess to a deployed model's parameters and structure.

likely results from the inability of the LCA neurons to charge . .

up enough to get over threshold under lateral competitioﬁAS reported n (Dapgllo etal., 2020) for yvh|te-box attacks,

since they are receiving zero excitation from large portionsvc.)ne'\let exh|b_|ts h|gh rort?usrt]ness to this black-box attack

of the input. Future work should address this corruption b Figure 4), maintaining the highest accuracy on average

modeling it as a missing data problem. across all values of. Although not the most robust_acros_s
all attack strengths, LCANets perform well against this
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Figure 4.LCANets are as robust to high strength black-box attack as state-of-the-art defense methodalthough VOneNets are

the most robust on average over all three attack strengths df thisonstrained black-box attack (llyas et al., 2018), LCANets perform
about the same or only a few percentage points worse while also outperforming adversarially trained ResNets on UCF-101 (left) and
HMDB-51 (right).

attack, lagging behind VOneNet at loweby only a few
percentage points and matching VOneNet accuracy under
high . LCANet0.1 is competitive until reaches the value

of it uses, at which point the accuracy plummets. This
is expected, and likely results from the attack being able to
drive many weakly active or inactive neurons over threshold.
Not surprisingly, the ResNet50-AT is relatively competitive
for values of at or below the value used during adversarial
training. Finally, we can see that for adversarial robustness,
lateral competition plays a larger role than robust features,
indicated by the poor performance of LCANet-F relative to
LCANet1.0 and LCANet0.5.

4.1.6. LCANETS ARE SUSCEPTIBLE TOWHITE-BOX Figure 5.LCANets are susceptible to white-box attacksHere,
ADVERSARIAL ATTACKS we see that the adversarially-trained CNN (ResNet50-AT) per-

forms signi cantly better under a PGD attack than all other models
Since the LCA layer is differentiable, we are able to per-on the UCF-101 dataset, which is to be expected. Although the
form white-box attacks directly through the entire LCANet. LCANets are not nearly as robust as the adversarially-trained CNN,
Speci cally, we use the projected gradient descent (PGD}hey are still signi cantly more robust than a standard CNN.
attack (Madry et al., 2018a), which is a standard white-
box attack used to perform adversarial training and test i
network's robustness. We use the Adversarial Robustneéﬂtaset (Figure 13).
Toolbox to implement the attack with &n constraint on .
the UCF-101 dataset. Following (Dapello et al., 2020), we*-2- Image Recognition on CIFAR-10
set the number of attack iterations to 64 and the step size t@ 5 1 TRAINING AND TESTING DETAILS
=32. Since the VOneNet has a stochastic layer, we follow
(Athalye et al., 2018) and take the average gradient ovelMuch of the training details and model parameters are the

10 passes through the model to compute the update at ea8BMme as in Section 4.1. In this image recognition task we use
attack iteration when attacking this model. ResNet18 as the CNN backbone and train each model for

] ) 60 epochs on the standard training set with a batch size of
We nd that the adversarially-trained CNN performs much g the one cycle learning rate scheduler with max learning

better than all other CNNs tested (Figure 5). The VOneNet 410 of 0.12 (Dong et al., 2015), and horizontal ipping and

exhibited 'the next best performance, followed by the.zngom cropping augmentation. The LCA hyperparameters
LCANets in order from highest to lowest Although = ,qeq for this task are in Table 2. We also compare against

the LCANets are not nearly as robust as the adversariallypee adversarially-trained CNNs on this task by performing
trained ResNet, they are still more robust than the standargyersarial training with = 0:25, = 0:5,and = 1:0

ResNet50. We observe a similar trend on the CIFAR-1Q,,qer a1 , constraint by following the procedure outlined
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here. In most of the following experiments, we will only extremely robust to both white-box adversarial attacks and
display results from the ResNet18 adversarially-trained withimage corruptions. To train this joint model, we initialize the
= 0:5 (which we term ResNet18-AT0.5) since that was theCNN layers with the weights from an adversarially-trained
best-performing of the three based on the average accura€NN, in this case ResNet18-AT0.5. The rst convolution
over the clean and adversarial test sets. The performandayer is then removed and replaced with a new one which
of all three adversarially-trained models undlerandL ; will take in the LCA feature maps and produce a representa-
PGD attacks is displayed in Figure 11. Overall, we nd tion that is useful to the adversarially-trained backbone. All
that these results con rm the nding observed in the actionlayers in this hybrid model except for the LCA layer are then

recognition experiments. netuned with adversarial training for 20 epochs to obtain
competitive accuracy. Since the LCA layer is not updated,
4.2.2. LCANETSARE VERY ROBUST TOIMAGE the network is still afforded robustness on corruptions, but
CORRUPTIONS it is also robust to white-box adversarial attacks (Figure 6).

Here, we use the CIFAR-10-C dataset to test the robustness )
of LCANets against different types of noise and corruptions2. DIscussion

The CIFAR-10-C dataset originally has 20 different cor- )y work, we take inspiration from the primary visual

ruptions, each W!th 5 different sevgrlty levels. We Observecortex and develop hybrid CNNs called LCANets, which
that a good portion of the corruptions do not reduce th

e ver frontend with rsity and lateral competition
accuracy of any of our models signi cantly. As a result, we everage a frontend with sparsity and lateral competition to

) oduce robust V1-like representations for downstream clas-
test on only those corruptions that caused the accuracy (g)tr P

the standard ResNet18 model to drop 10% or more frorr?I cation by @ CNN. Through our experiments, we demon-

. . . . Strate competitive clean accuracy and state-of-the-art robust-
clean images to the highest severity le¥&bhich leaves P y

11 corruptions: contrast, defocus blur, fog, gaussian blurness to image corruptions. By performing the rst direct

) L . . atdversarlal attacks on a sparse coding CNN layer, we ob-
gaussian noise, impulse noise, motion blur, saturate, shq )
. . Serve that sparse CNN layers are not as robust to adversarial
noise, speckle noise, and zoom blur.

attacks as previously thought. By combining the LCA fron-
Under most corruptions, LCANets perform at least as welltend with adversarial training, we are able to produce CNNs
as all other models tested here, with the most signi cantthat are very robust to both corruptions and standard adver-
performance increases at the highest severity levels (Sesrial attacks.

Figure 12 in the Appendix). The most striking difference be—(Pne interesting result is the large discrepancy between

tween LCANets and all other models appears in the Contrasi_CANet (and VOneNet) performance on the white-box and
corruption, under which LCANet performance remains unaf;

. . .~ . black-box attacks. One possible explanation for this dif-
fected while all other models suffer dramatic degradation N rence regarding LCANet is that the exploration used in

accuracy. LCANets ?"50 remain the top-performing moqelﬁhis black-box attack is small enough that it may be dif cult
under all of the blurring corruptions and the fog corruptlon,for the attack to break LCA out of an equilibrium point

which is in contrast to the ResNet18-AT0.5 in partlcular.eSIOeCiaIIy with limited queries. It is possible that 1,000

The VO.neNets performanc_e was relatively poor under mO.Stor 10,000 queries, as (llyas et al., 2018) suggest, would be
corruptions we tested, which con rms our action recogni-

tion experiments, and is similar to the results reported inmore effective, although we do see that the attack is rea-
P ’ P onably effective even with the number of queries we used.
(Dapello et al., 2020). Overall, we observe that the mosf: : .

, . . uture work can investigate these hypotheses more closely
robust LCANet's performance is more than 6% higher than :
all other models over the corruptions we considered here and compare other black-box attacks against LEANets to

P "see if these results are speci c to this attack or they apply

4.2 3 AUGMENTING ADVERSARIAL TRAINING WITH more generally to an entire class of black-box attacks.

LCA FRONTENDS Biological visual systems operate seamlessly under a wide
array of environments and conditions, but the same cannot

" d a black-b ttack. but th | b %e said for current CNNSs. Here, we show that by incorpo-
corruptions and a black-box attack, but in€y are 1ess ro u%{tingjust one computational element present in biological

to a white-box attack than adversarially-trained CNNs. On .-\ systems into a single CNN layer, we can greatly in-

thg other hand, anersariaIIy-trained CNNs were Ie§s rPbu%rease the robustness to different image corruptions and
to image corruptions than LCANets. Here, we highlight noise. In particular, we saw that LCANets are not vulner-

the versatility of the robust LCA frontend by combining able at all to changing contrasts, whereas all other models

It V\(/j'th thehrobl:r?t :)tahckbons of adv_elrls atr 'a!ly'ngTNci\legerformed very poorly as more extreme manipulations in
and we show that these adversarially-traine €S ar%ontrast were introduced. This is a well-known character-

2This was determined before any other models were tested. istic of V1 simple cells, which LCA has previously been
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Figure 6.Adversarially-trained LCANets achieve the same robustness as adversarially-trained CNN©ut tting an adversarially-
trained CNN with an LCA frontend does not reduce adversarial robustness under(kft) or anL; (right) constraint.

shown to exhibit as well (Zhu & Rozell, 2013). Future 6. Conclusion

work can focus on adding computational mechanisms which

model other response characteristics of V1 neurons, which '€Vious work has demonstrated the desirability of V1-like
may also lead to increases in robustness properties in CNNs. However, these techniques require the

collection of large-scale neural recordings to stimuli that is
By isolating the LCA features from the lateral competition, similar to that in the desired task, or specialized neurosci-
we saw that the features learned by LCA are relatively robusgénti ¢ models based on decades of experimental ndings.
to many of the corruptions used, while the lateral competiwe develop hybrid CNNs called LCANets with a biologi-
tion affords the LCANet additional robustness under certaircally plausible frontend which performs sparse coding via
corruptions an adversarial attacks. Under corruptions, théhe LCA algorithm and learns robust V1-like features via
LCA features were more robust than the current state-of-th@msupervised dictionary learning. Using these LCANets, we
art V1-like CNN (Dapello et al., 2020), but contain less thantest current hypotheses about the role of sparse coding in ro-
half the complexity. In addition, this isolation may provide pustness against corruptions and adversarial attacks, and we
relevant hypotheses for computational neuroscience as wedhow how our LCA frontend can easily be incorporated into
For example, it is possible to use neuro-active chemicalgther robust CNNs for further gains in robustness. Our re-
that can impact lateral connectivity within speci ¢ regions sults present a way of reducing the need for experimentally-
to study the interplay between V1 receptive elds and lateralmeasured data or handcrafted neuroscienti ¢ models while
competition when biological visual systems are subjectegnaintaining a VV1-like representation with state-of-the-art ro-
to corrupted or adversarial stimuli. This could potentially bustness to common corruptions and adversarial attacks. A
further our understanding of visual processing in V1, whichconsequence of this is the potential to apply our techniques
could then be used to produce more robust CNNs. to non-traditional data modalities beyond natural biological

One limitation of our method is the large amount of time andsensing such as vision, for example autonomous driving and

computation required to perform hundreds of LCA iteraticmsautomated medical diagnostics where robustness is critical.
per forward pass of the LCANet. This adds signi cant time
during training and testing compared to standard CNNs oAcknowledgements

VOneNets. It also potentially limits LCANets to datasets _ . :
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A. Supplementary Information

A.1. LCA Hyperparameters

Table 1.LCA Hyperparameters on UCF-101 and HMDB-51.

Hyperparameter | Value

Kn 9
kw 9
kt 5

M 256

0.5

250
stridey 2
stridey 2
strider 1

LCA iterations 600

Table 2.LCA hyperparameters on CIFAR-10.

Hyperparameter | Value

ky 7
kw 7

M 128

0.5

100
stridey 2
stridey 2

LCA iterations 600

A.2. Corruptions on Action Recognition
A.2.1. ADDITIVE GAUSSIAN NOISE

Additive Gaussian noise is typically used to model thermal noise (AKA Johnson-Nyquist noise), which is present in all
electrical circuits. Although current image denoising methods are relatively good at removing this noise, they are not perfect.
As a result, robust models should be able to deal with at least a small amount of Gaussian noise, especially for critical
applications. To test each model's robustness to additive Gaussian noise, we add random values from a Gaussian distribution
to each input video clip while varying the standard deviation (Figure 7).

A.2.2. GAUSSIAN BLUR

To perform this blurring, we use the GaussianBlur function available in torchvision with a kernel size of 5 and varying
values of sigma (Figure 8).

A.2.3. RANDOMERASURE

Random erasure is applied by randomly selecting a rectangle within a frame and changing all pixel values in the rectangle
uniformly such that they have a value of zero after normalization (Figure 9). This was performed on each frame individually.
To perform this corruption, we use the RandomErasing function in torchvision.

A.3. Black-Box Attack Details

For the black-box attack, we use An constraint with the same hyperparameters used in (llyas et al., 2018). In our
preliminary experiments using this attack, we initially set the number of queries to 1,500 but observed that the attack
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Figure 7.Additive Gaussian Noise.Random values taken from a Gaussian distribution are added to each frame. Although we use clips
of 12 consecutive frames to train and test each model, three frames are shown here for illustration.

typically plateaus or reaches 100% effectiveness before 500 model queries for all modelakms. As a result, we set
the maximum number of queries to 400 for all models.
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Figure 8.Gaussian Blur. A Gaussian blur was applied to each frame with kernel size 5. Tip@rameter determines the contribution of
neighboring pixels as a function of distance from the center pixel. Although we use clips of 12 consecutive frames to train and test each
model, three frames are shown here for illustration.

Figure 9.Random Erasure. The random erasure corruption randomly chooses a rectangle from each frame and replaces the pixel values
within that rectangle such that it is zero after normalization. Area refers to the proportion of the image that is erased. Although we use
clips of 12 consecutive frames to train and test each model, three frames are shown here for illustration.
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Figure 10LCANets maintain competitive accuracy under random erasure corruption. Across models, performance decreases
uniformly as a higher proportion of the image is erased on UCF-101 (left) and HMDB-51 (right). Although ResNet50 and ResNet50-AT
exhibit the highest accuracy under varying levels of erasure, LCANet accuracy is only a few percentage points below the top performing
models.

A.4. Adversarially-Trained CNN Performance

Figure 11 illustrates the performance of the three adversarially-trained models under a PGD attack. We follow (Dapello
et al., 2020) and use 20 PGD iterations during adversarial training and 64 PGD iterations during the attacks.

(@L2 (b)L1

Figure 11.The performance of the three adversarially-trained ResNets used in the white-box attacks in Section 4.2 againsta PGD
withan L, andL; constraint.
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A.5. CIFAR-10-C Results

(a) contrast (b) defocus blur

(c) fog (d) gaussian blur

Figure 12.LCANets are signi cantly more robust to different image corruptions.






