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Abstract

We introduce a method for policy improvement
that interpolates between the greedy approach of
value-based reinforcement learning (RL) and the
full planning approach typical of model-based
RL. The new method builds on the concept of a
geometric horizon model (GHM, also known as
a y-model), which models the discounted state-
visitation distribution of a given policy. We show
that we can evaluate any non-Markov policy that
switches between a set of base Markov policies
with fixed probability by a careful composition
of the base policy GHMs, without any additional
learning. We can then apply generalised policy
improvement (GPI) to collections of such non-
Markov policies to obtain a new Markov policy
that will in general outperform its precursors. We
provide a thorough theoretical analysis of this
approach, develop applications to transfer and
standard RL, and empirically demonstrate its ef-
fectiveness over standard GPI on a challenging
deep RL continuous control task. We also provide
an analysis of GHM training methods, proving
a novel convergence result regarding previously
proposed methods and showing how to train these
models stably in deep RL settings.

1. Introduction

Policy improvement is at the heart of reinforcement learning
(RL). The prototypical approach to policy improvement in
value-based RL is to take the Q-function of a policy and
act greedily with respect to it. In contrast, in model-based
RL, planning with a model in principle aims to derive a
(near-)optimal policy directly. Choosing between these two
extremes involves some trade-offs. While greedy improve-
ment requires estimating only a Q-function, from which it is
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Figure 1. A spectrum of trade-offs in policy improvement. Barreto
et al. (2017) propose generalised policy improvement (GPI) as a
means of simultaneously improving over several policies (illus-
trated with blue and red trajectories), a step from greedy improve-
ment of a single policy towards planning. The central contribution
of this paper, GPI with geometric switching policies, moves a
step further in this direction, allowing for improvement over non-
Markov GSPs (illustrated as trajectories that switch between blue
and red base policies).

computationally trivial to derive the greedy policy, this may
result in only a weak improvement over the existing policy.
Planning, on the other hand, is a computationally intensive
process, yet can yield extremely high-quality policies. In
this paper, we introduce an approach to policy improvement
that interpolates between these two extremes.

Barreto et al. (2017) propose generalised policy improve-
ment (GPI), a method that allows for improvement over a
collection of policies {1, ..., } simultaneously, gener-
alising the notion of greedy improvement of an individual
policy. We show that GPI can be extended to a much wider
class of non-Markov policies. These policies, which we call
geometric switching policies (GSPs), switch between exe-
cuting a base set of Markov policies {71, . .., 7 } with fixed
probability. In general, these policies do not ever need to be
executed, and can instead be evaluated using information
learnt about the base policies, without any further learning
required, leading to a stronger improvement guarantee in
GPI. This approach to policy improvement makes statisti-
cal and computational trade-offs that interpolate between
greedy improvement and full model-based planning, poten-
tially providing benefits of both worlds; Figure 1 shows
where the proposed approach lies along the spectrum of
methods between the conventional model-free and model-
based extremes.
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Central to our approach is the notion of a geometric horizon
model (GHM) (Janner et al., 2020), which models the dis-
counted future state-visitation distribution of a given Markov
policy. Janner et al. (2020) introduced GHMs mainly as a
mechanism to compute the value function of a single policy.
In this paper we show that GHMs of distinct policies can be
composed to evaluate a potentially large number of GSPs
with no additional learning required. We can then apply
GPI over this collection of non-Markov policies to obtain a
new Markov policy that will in general outperform all of its
precursors (base policies and switching policies).

In carrying out the above, we address several technical ques-
tions which are contributions in their own right. Specifically,
our central technical contributions include:
e GSP evaluation with GHMs, a method for evaluating
geometric switching policies that only requires learning
GHMs for a base class of Markov policies (Section 3).

o Geometric generalised policy improvement (GGPI), a
method for deriving a Markov policy that improves over
a collection of geometric switching policies, interpolat-
ing between greedy improvement and full model-based
planning (Section 4).

e Convergence analysis of cross-entropy temporal-
difference learning, an algorithm introduced by Janner
et al. (2020) for learning GHMs (Section 6).

e New practical methods and insights for training GHMs
at scale, including cross-entropy temporal-difference
learning with VAE-GHMs (Section 7).

e Applications of GHM evaluation and GGPI to both trans-
fer and standard RL settings (Section 5), with successful
implementation in combination with deep learning in
continuous control tasks (Section 7).

2. Background

A Markov decision process (MDP) is specified by a state
space X, action space .4, transition probabilities P : X x
A — P (X), reward distributions R : X x A — P1(R),
and corresponding expected reward functionr : X x A —
R, defined by r(z,a) = Er R(z,q)[R]. For ease of pre-
sentation, we focus on the case where &’ is finite, although
much of the material of the paper extends to more general
state spaces. An agent interacting with the environment
using a policy 7w : X — P (A) generates a trajectory of
states, actions, and rewards (X, A;, R;) 4, and the agent’s
return along this trajectory is defined by, ,~'R;, where
~ € [0, 1) is the discount factor. The agent’s expected re-
turn under 7 when beginning g3 state « and initially taking
action a is Q7 (z,a) = EL ,[ , (7'Ri], where E] , and
P, denote the expectation operator and probability distri-
bution of a trajectory beginning at state-action pair (x, a)
and following 7 thereafter. The goal of policy evaluation is
to estimate )7 for a policy 7 of interest, while the goal of

policy optimisation is to obtain a policy 7 with Q7 > QF
component-wise for all other policies 7 € P (A)* (Sut-
ton & Barto, 2018; Puterman, 2014; Bertsekas & Tsitsiklis,
1996; Szepesvari, 2010; Meyn, 2022). A fundamental opera-
tion in this process is policy improvement, described below.

2.1. Generalised policy improvement
We first recall a core method for policy improvement in RL.

Greedy policy improvement. The greedy policy improve-
ment map G : R* A = P (A)X is a set-valued function
that maps Q-functions to the corresponding set of greedy
policies. Mathematically, we have 7° € G(Q) if and only if

m(alz) >0 == a € argmaxQ(z,d’).
a’2A
We will overload notation to allow us to pass policies di-
rectly to G, writing G(m) for G(Q7). A classical result
underpinning policy iteration is that if 7' € G(r), then
Q”O > Q™ element-wise, with equality iff 7 is optimal.

Barreto et al. (2017) propose generalised policy improve-
ment, which provides a means of producing a policy that
simultaneously improves over a set of base policies.

Generalised policy improvement. The generalised pol-
icy improvement (GPI) function G (overloading notation)

takes as input a finite set of Q-functions {Q1, ..., Q,}, and
returns G({Q1, ..., Qn}), the set of greedy policies with
respect to this set, defined by 7° € G({Q1, ..., Q,}) if and
only if

m(alz) >0 == a € arg maxm’élei(x,ao). (1)
a'2A =
Proposition 2.1 (Barreto et al. 2017). If =
Gg{Q™,...Q™}), then Q™ > max?, Q™ element-
wise, and equality implies that 7° is optimal.

2.2. Discounted visitation distributions and geometric
horizon models

We begin by recalling a key concept in MDPs.

Definition 2.2. The collection of discounted future state-
visitation distributions ' w7, for a policy 7 and discount
factor «y are indexed by initial state-action pairs (xg, ag) €
X x A, and are defined by

X .
ph(xlro,a0) = (L =)  V'Prg ao(Xk+1 = 1),
k=0

A useful interpretation of these distributions is the following.

"We refer specifically to future state-visitation distributions
to emphasise that the initial state o does not contribute to the
distribution.
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Proposition 2.3. If 7' ~ Geometric(1 — 7), i.e.
P(IT=k)=~" 'A1—~) fork=1,2,...,

and is independent of the random trajectory (X, A;, R): o
generated by 7 beginning at state-action pair (x, a), then
the random state X7 is distributed according to p7(-|, a).

This can also be used as a means of defining GHMs over
more general state spaces X. Janner et al. (2020) introduce
~v-models as generative models of these distributions (in
this paper, we will call these objects geometric horizon
models (GHMs)), and propose to use these models for policy
evaluation. The approach is based on well-known identities
such as the following (Toussaint & Storkey, 2005; 2006).

Proposition 2.4. For any policy 7 € P (A4)X, we have
™ — ’y s
er (iL’, a) - T(QC, CL) + EEXO n (jz,a) [T (XO)] , (2)

where 7™ () = o4 7(x, a)m(alz).

This result then naturally suggests a Monte Carlo estimator
that can be used for policy evaluation, given a generative
model of the distribution 7 (+|z, @), and the reward function

r. Specifically, if X2, ..., X ' u7(-|z, ), then

1 X v
r(z,a)+= ——r7(X)) 3)
na 1

is an unbiased estimator for Q7 (z, a).

Note that this expression requires access to the reward func-
tion r. This function is known in many applications—often
in robotics, for example—and when this is not the case it
can be learned as a supervised learning problem. Through-
out the paper we will assume that r is either given or has
been learned. Note that Janner et al. (2020) implicitly use a
reward function that depends solely on the destination state
20 of the transition, leading to slightly different, less general
expressions than those above.

2.3. Composing geometric horizon models for
evaluation of Markov policies

As Janner et al. (2020) note, a potential disadvantage of
using the identity in Equation (2) as the basis for policy
evaluation is that it requires learning the object p7. When
v =~ 1, this distribution corresponds to predictions over
long time-scales, and is therefore often more difficult to
learn than more local predictions. A central observation
of Janner et al. (2020) is that expressions such as those in
Equation (2) can be re-expressed using a geometric horizon
model corresponding to a smaller discount factor, 5 < -+,
and composing this model with itself.

Proposition 2.5. (Janner et al. (2020)) For any policy 7 €
P (A)X,n > 1,and 0 < 3 <  an unbiased estimator of

Q7 (z, a) is given by

r(r,0) + 1 x ©
. #
M1y 4= "} y=8 "
-~ = ™ (m) R ™ 0
e T OO GO I

m=1

where X(m) ~ ug(.‘X(mQI)’A(mM))’ A(m) -~ 7T(-|X(m)),
(X(O)vA(O)) = (x, a), and X0~ 'LLZYF(.|X(n91)’ A(n91))

According to Proposition 2.5, we can estimate Q7 (z, a)
by sampling the collection of random variables
(X© A0 x®  x0 D gC D X0 in the
proposition, summarised below:

X(O) — X(l) — X(2) — . — X(" 1) — XO
L L o 2

A0 A A®) Alr 1)

and then constructing the estimator in Equation (4), which

the proposition guarantees to be unbiased for Q7 (x, a); in-

dependent estimators can be averaged in the usual manner

to reduce variance.

The value of 5 impacts both the mechanics of the process
above and the learning of the GHM 4 itself. One ex-
treme, § = -y, reverts to the single-sample estimator in
Equation (3). The other extreme, 5 = 0, corresponds to es-
timating the )-function using a single-step transition model
In the first case, predictions are made over potentially long
horizons, which alleviates the risk of compounding errors
while estimating Q7. On the other hand, learning the GHM
itself becomes more difficult—if we use bootstrapping to
do so, as we will discuss shortly, errors might compound
when learning ;. When 8 = 0 we observe the opposite
trend. In practice, we expect an intermediate value of 3 to
offer superior performance to the extremes of 0 and ~, since
this will trade off errors incurred during the learning of the
GHM and the estimation of the Q)-function (Janner et al.,
2020). The parameter n offers a trade-off between requiring
more compositions of 17, and placing a higher weight on
samples from the higher-discount, harder-to-train GHM 7.

3. Composing models for non-Markov policy
evaluation

Our first contribution is to extend the estimator appearing
in Equation (4) by modifying the distribution of the random
variables (X (0, A x(® 1 A 1 X0 in Proposi-
tion 2.5, composing GHMs for distinct policies together.
More precisely, let (7, ..., 7,) be a sequence of policies,
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(x;a) an initial state action pair, and consider the distribu
tion over state sequences speci ed by

Xo — XB —5 X@ —  — x(0 D X0

LA T

If we form an expression analogous to Equation (4):

r(0+ 1 )
' 1 m 1 n 1 #
X 1 (m)
— —— X"+ — r(x9
1 1
m=1

for some suitable reward functian then following the
intuition above, we should be able to interpret Expreséijn

as unbiasedly estimating the value of a (non-Markov) policy

that begins each trajectory by following, before switching

remainder of the episode. We rst formalise this notion of
behaviour, and then show that this intuition is correct.

ary Markov) policies and a switching probability2 (0; 1],
the correspondingeometric switching policgGSP) is

a non-Markov policy de ned as follows. At the begin-
ning of the episode, the Markov policy is followed for
T1 Geometri¢ ) steps, at which point a switch is made
to the Markov policy ,. Once a switch from; to 4+

is made, i+ is followed forT;.;  Geometri¢ ) steps,
at which point the next switching event occurs. Onge

m(jx(m91);A(m91))’ A(m) m+1(jx(m)),

X 0 n(jx(n D-Aln 1))_

We state the result in the case where the reward depends only
on state for conciseness here; the slightly more complex
formula that incorporates action dependence is given in
Appendix F. The key insight is therefore that we can get an
unbiased estimate of the Q-functi@Qh associated with a
geometric switching policy = 1! I 4 justusing

the models 1) and ~ for the base
policies. In particular, if we learn these models to evaluate
the base policies, we can evaluate all GSPs arising from
these base policies without any additional learning.

4. Generalised policy improvement with
geometric switching policies

The ability to evaluate a large number of GSPs without
additional learning opens up the possibility of using GPI
to improve upon all these policies at once. Having estab-
lished how to evaluate GSPs using GHMs for Markov base
policies, the main contribution of this section is to extend
GPI to allow for the inclusion of GSPs into the improve-
ment set. Algorithmically, this is straightforward; the same
de nition in Equation(1) can be immediately applied to
the Q-functions of geometric switching policies. Note that
when applying GPI to the Q-functions of non-Markov GSPs,
the returned greedy policies are still Markov; this desirable
property allows us to embed the proposed approach into the

has been selected, it is followed for the remainder of theé/sual RL loop for policy iteration, as discussed below.

episode. We write 1 ! !
GSP .WedeneQ :X Al

hx
Q (xa) = Exa
t=0

n to concisely refer to the
R fora GSP by

i
IRt ;

What is not immediately clear is whether an improvement
guarantee analogous to Proposition 2.1 still applies when
using the Q-functions of geometric switching policies. It
turns out, under certain conditions, we can recover such a
result. To do so, we need a certain notion of “closedness'

precisely, the expectation on the right-hand side is ovePMONgst the policies to be improved upon.

trajectories beginning at, with actions generated by,
with the rst action overridden to ba.

of GSPs issuf x-closedif
! n liesin , the sufx
n alsoliesin .

De nition 4.1. A collection
wheneven > 1and ;!

policy ! !

We now show that the value of GSPs can be expressed as

expectations of expressions such as that in Equation (5).

fTheorem 3.2. Consider an MDP with reward functioﬁ

r: X! Randlet = 4! ! n. With
= (1 ), the following is unbiased fa® (x;a):
"0+ 1 (6)
#
K1 1 m 1 - n 1
- m - .
T T XM e rx
m=1
where (X©:AQ@) = (xa), XM

fTheorem 4.2. Consider a suf x-closed collection o}
GSPs . Thenif °2 G() , we have
Q 0(x; a) rr12axQ (x;a); forall(x;a)2X A

Further, if equality holds for all state-action pairs, the
Ois optimal.
- Wy

=

We refer to the procedure of computin§ 2 G() for a

set of GSPs asgeometric generalised policy improve-
ment(GGPI). A rigorous proof of Theorem 4.2 is given
in Appendix B, but for some intuition for the suf x-closed
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Figure 2. Left: Arollout of an example GSP= 1! ! 3inthe environment, and the GHM sampling procedure that can be
used to unbiasedly estimate the value of this policy via Equd@hrRight: The GGPI framework. Using the GHM sampling procedure,
the action-values of and other GSPs are estimated, and fed into the GP!I routine to obtain an improved folicy

condition, consider the two possibilities after a single stepgOne simple approach to implementing GPl is to learn GHMs
of executing = 1! I, eitherthe rstswitch (1)K, , and use these in combination with the given re-

from scratch from the next time step), or the switch hasgeneralised policy improvement over these Q-functions, as
occurred, in which case it is as though we execute the suf Xusti ed by Proposition 2.1.
policy 9= 5! I, from the next time step. In

fact, this observation yields a Bellman equation With the concepts introduced above, we can improve on

this by additionally learning GHM§ '), , composing
Q (x;a) = r(x;a)+ these to evaluate a collection of GSPs, and then using the
GGPI procedure to improve over all such switching poli-

0
Exo p ((jx;ao)) (1 )Q (X%AN+ Q (X%A): cies. A pseudocode summary of the approach is provided
Ar o (jXH A A iy Y 2 Civen A hace cal f s
B 0
Az 20X0) Markov policies and a switching probability, we can de-
Thus, the suf x-closedness condition is a way of ensuring ne a variety of different sets of GSPs. A natural choice
we can reason about both of these possibilities within theo consider, which we adopt in the experimentghis set
GGPI process. Perhaps surprisingly, the suf x-closednessf depthm compositions , = f @ 1 room e
condition in Theorem 4.2 really is necessary; some care®;:::; (M) 2 ¢ consisting of all GSPs that switch be-
needs to be taken when applying the ideas associated witiveen exactlym (not necessarily distinct) base policies. We
GPI to non-Markov policies. A counterexample when therefer to GGPI on |, asdepthm GGPI. The following re-
closure condition is removed is provided in Appendix D.1,sult shows that GGPI over,, guarantees an improvement,
along with several other examples. thanks to Theorem 4.2.

In summary, GHM policy evaluation and GGPI allow us
to derive Markov policies that improve over a wide rangeproposition 5.1. , is suf x-closed.
of GSPs, while only requiring learnt GHMs for the base

Markov policies under consideration; see Figure 2.
Example 5.2. Figure 3 illustrates an example experiment in

the four-rooms environment (Sutton et al., 1999), with a sin-
gle positive reward at the top-right-most cell, and 0:9.
We now detail two central applications of GHM evaluation Ve consider four base policies; p; r; u that always

5. Applications: transfer and policy iteration

and GGPI to reinforcement learning. take the action left/down/right/up in each cell. GHMs are
calculated for these policies with discountand = 0:8.
5.1. Transfer and zero-shot learning By using GGPI over GSPs that make switches between

these basic policies, the optimal policy can be recovered in
In the transfer setting, we have a collection of known poli-gimost all states of the environment, without any additional
cies 1;:::1; k, and areward function for which we wish  |earning. Figure 3 illustrates in which states the optimal
to nd a good policy. The policies 1.c may have been policy can be computed when using GPI over the four base
obtained in a variety of ways: learnt by maximising otherpolicies (left), depth-2 GGPI (centre), and depth-3 GGPI

reward signals, exploration objectives, from imitation learn-right). Depth-3 GGPI is able to compute the optimal action
ing, etc. The reward function is assumed to either be in the vast majority of environment states.

known (as is common in many robotics applications, for
example), or learnt from data.
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Figqre 3.An illus_tration of the GG_PI method on the four-rooms Figure 4.Comparison of GGPI with various planning depths ap-
environment, with goal state indicated in dark blue. The plotsyjieq 1o policy iteration on the standard 4-rooms domain, starting

illustrate which states (highlighted in light blue) each planning f4m 4 random policyLeft: Total number of iterations of policy
method is able to compute the optimal action for: GPI (left), depthiteration requiredRight: Total number of GHM samples required,

2 GGPI (centre), and depth-3 GGPI (right). as a proxy to total computation performed. Error bars show boot-
strapped 95% con dence intervals over 100 seeds.

5.2. Policy iteration

Policy iteration is a classical dynamic programming algo©- L€arning geometric horizon models

rithm that computes a sequence of polidieg)x o through 14 yse geometric horizon models for value estimation in
an iterative process of evaluation and greedy improvemeng,tice'an important question is how to learn such models

.e. k 2G(Q ***), which is guaranteed to reach the opti-j, the rst place. An instructive starting point is to consider
mal policy in a nite number of iterations (for environments supervised learning with samples from (obtained by sam-
with nite state space). A natural question is whether Wepling X1 with T Geometri¢l ) by interacting with
can use GPI to speed up this iterative process, by leveraginge environment using, for example). The canonical cross-
policies from previous iterations to compute even strongebntroon loss can then be used to train a GHMeading to
improved policies, e.g. k 2 G( ok91). Unfortunately, the cross-entropy Monte Carl(CEMC) loss:

when using standard GPI the answer to this question is “no”;

sinceQ « 1 Q 'forl<k 1, GPlover go1 reduces Exo (jxayl log (X9x;a)]: (7)

to standard policy improvement oveg ;.

However. usina GGPI mav enable leveraging policies fromAS with Monte Carlo learning in value-based RL, this ap-
WEVET, using Y veraging polict roach is typically dif cult to apply with off-policy data,

older iterations to mfake larger improvement ste_ps and Corﬁﬁcurring either bias, or potentially high variance updates
verge to  more quickly, for example performing GGPI

y ) . from off-policy corrections (Precup et al., 2000). An alter-
over all depthm compositions over the set of previous poli- policy ( P )

ciesf o::::  10. This has the advantage that any usefulnatlve approach can be motivated by the observation that

. . : satis es a Bellman equation involving composed models.
behaviour encoded by a prior policy that gets prematurely d 9 P

overwritten by subsequent iterations can still be leverage&® nition 6.1 (Composed geome)ErLc horizon models)
to make larger improvement steps. Appendix D.2 containg&iven two GHMs 1; > 2 P (X) , and a policy

algorithm pseudocode for applying GGP! to policy iteration, 2 P (A)*, thecomposed model, ;2 P (X)**
as well as an illustrative example. is the distribution of the random variabie® , de ned by

() -
Example 5.3. In Figure 4 we demonstrate the advantage X 1(jx;2),

. L S . AD jx@® (jX D)
of using GGPI for policy iteration in the classic four-rooms @ iy @) AD) T Q- AQ)
environment. The number of improvement steps decreases X ] J_ (X_ A ) 2(JX _'A _)’
with the GGPI depth, indicating that the GGPI improvement T N€ distributions satisfy the relationship
step is able to compute stronger improved policies the more L ) 0O
past knowledge it is allowed to leverage. Note however* 2 )(yix;a)= s 10x2) (@Jx) 2(yix%a):
that although higher depths require fewer iterations, each xna
improvement step is more computationally intensive for, . .
higher-depth GGPI; in this instance, depth-2 GGPI obtainsprc’pOinAlonI 6.2. De)?Lng the Bellman operator
the optimal trade-off between computational burden and (X) bP(X) by
strength of policy improvement, nding the optimal pol- T Ca)=(1 p )+ p cay -
icy with the lowest total number of GHM samples. Here (T )xIxa)=( P (xIxa) JxIx;a);
we solve the problem for a discount factor of= 0:95,  then is the unique solutionto = T
switching probability = 0:1, compute perfect GHMs
obtained using knowledge of the true environment dynam¥his motivates a loss in which the Monte Carlo target in
ics, and evaluate each GSRising1000samples from the Equation(7) is replaced by the “bootstrapped' distribu-
composed GHM . tionT ,leading to thecross-entropy temporal-difference
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(CETD) loss, brie y mentioned by Janner et al. (2020):  The proof, relying on a discrete Lyapunov argument based
on the Robbins-Siegmund theorem (Robbins & Siegmund,
Exo (r )ixayl log (X9xa)l; (8)  1971), is in Appendix C with several illustrative examples.

where  denotes a stop-gradient on. Intuitively,  6.2. Learning VAE-GHMs with CETD updates
(T )(jx;a) is the distribution obtained by sampling a _

next statec from P ( jx; a), independently deciding whether We propose a novel scale_lble means of learning GHMs

to stop (with probabilityl ) and output this state, or with VAEs (Kingma & Welling, 2014; Rezgnde etal., 2014)

to sample an actior (j%) and instead return a sam- based on the CETD loss, and emphasise that these meth-
ple from (jx &). This also describes a method by which ods aIso.appIy egually well to learning GHM densm_es for
sample-based approximations to Equatighcan be de- MDPs with continuous state spaces, as is often of interest

rived, leading to an algorithm that can be used at scale. " deep RL. Speci cally, we use a conditional VAE archi-
tecture (jx;a;z) (Sohn et al., 2015) with latent variable

However, while sample-based minimi.sation pf Equalith  z, and approximate posterigr (zjx;a; X 9. The CETD
can be understood through stochastic gradient descent afgks is then the negative log-marginal likelihood of the train-
convex optimisation theory, it is less clear that following jng state under the VAE model, leading to the following

sample-based gradients of the CETD loss in Equa@)n  evidence lower-bound (ELBO) on the negative CETD loss:
willlead to , due to the presence of bootstrapping. Next, h i

we show that, under certain. (;onditions, convergenceto  Exo (1 yjxa) Ez q (jxax o l0Q qgi‘%

can be guaranteed, and additionally we show how the CETD

loss can be applied at scale. Note that the prior approacihich is then jointly optimised overand via stochastic

to training GHMs at scale proposed by Janner et al. (2020yradient descent with the reparametrisation trick (Kingma
instead focused on a biaskd loss between log-densities; & Welling, 2014). Using VAEs offers several advantages,
we show that CETD typically outperforms this approach insuch as allowing low latent dimensionality in non-stochastic
Appendix E.4, and note that it has the further advantage ognvironments, and connection to the theoretically-justi ed
not requiring access to single-step transition densities.  CETD loss; see Section 7 for further commentary.

6.1. Convergence analysis of CETD 7. Deep reinforcement learning experiments

Consider a nite state spacé, and a tabular parametri- 1o ynderstand how GSP evaluation using GHMs and GGPI
sation of each distribution( jx;a) by a vector of logits  perform at scale, we test them on a deep RL transfer task.

(x;a) 2 R*, sothat (jx;a) = softmax (x;a)). We  Fyj| details and further results are given in Appendix E.
show that with this parametrisation convergence tds ob-

tained following CETD updates under mild conditions. To Environment details. We consider a continuous control
describe the precise algorithm we study, lgt2 RX A% task inspired from the moving-target arena in Barreto et al.
be the initial values of the logits in the parametrisation de{2019), which we calsparse-reward antThe agent is a
scribed above. We then consider generating a sequence @¢adrupedal “ant”, and the environment observation is a
logits ( k) o and corresponding distributiofsy)x o by 35—(_ji_mensiona! represe.nt.ation of the agent state,.including
iteratively applyingsynchronousCETD updates; at algo- POSition, veI_oc;|ty, and joint anglgs. The agent interacts
rithm timek, for each state-action pak; a), we observe a with the environment via an 8-dimensional action space

transition(x; a; x% and perform the update: controlling the torque applied to its various joints. At the
beginning of each episode, the agent's is initialised at rest at

Ca) — . " ) ‘e . alocation sampled from a uniform distribution over a square
1 (@)= kOGa)t ff QUG a?z k(X a}) ' centred at the origin, and a target location is sampled from
stochasic cross-entropy gradient a smaller region surrounding the agent's initialisation (see
with (T )(x;a) =1 )eo+ €y (9)  Appendix E.1 for details). The reward 1sfor transitions
that terminate in a region around the target 8redsewhere.

wherex%is generated by samplir]d  (jx9 andx®
k(jx%a%, and where, 2 R* is the one-hot vector at
statey. Here,("«)i- iS @ sequence of step sizes.

Experiment setup. Similar to Barreto et al. (2019), we rst
pretrain four base policies= f up; down; left; rightd that
aim to move along each of the 4 directions. The policies are

Theorem 6.3. The CETD algorithm speci ed by the stochastic and implemented as a 2-layer MLP outputting

updates in Equatio(®) produces sequences of distrj-  the mean/variance of a Gaussian torque to be applied at
butions( )k o suchthat «(jx;a)!p (jx;a) for each of the ant's 8 joints. These policies are pretrained

all (x;a),aslongas , ,"«k=1; , o"2<1. using Abdolmaleki et al.'s (2018) MPO with the reward
calculated based on the component of the ant's velocity in
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the desired direction. standard GPI when both are capable of reaching the goal.

Next, we train GHMs for the base policies using the apAgent behaviour is visualised in Figure 6 and Appendix E.2.

proach described in Section 6.2. The model is implemented

as a standard conditionatVAE (Higgins et al., 2016; Sohn Table 1.Results of comparing agent performance for GPI and
et al., 2015) with a single latent dimension, as this is suf -depth-2 GGPI on theparse-reward anenvironment. Agents
cient to model the probabilistic horizon in the deterministic are evaluated across 5 random seeds for GHM training and 100
environment. We train these GHMs from transitions us/andom environment and target initialisations.

ing the CETD bound described in Section 6.2, for GHM Case | Frequency

values 0f0:8 and0;9, and consider the task with discount Depth-2 GGPI succeeds, GPI fails | 508 5:7

factor =0:9. '_I'hls_ corresponds to performing GGPI for Both succeed, depth-2 GGPI is faste#5:0  7:0

G_SPs for a SWItChlng probability of = _1:9. Further c_zle-  Both fail 1:0 09

tails, observations, and recommendations are provided in  gih succeed but GPI is faster 28 1:2

Appendix E; for example, we found off-policy training of GPI succeeds, depth-2 GGPI fails | 0:4 0:8
GHMs important to obtain suf cient state coverage. i

Once the GHMs have been learned, the agent is evaluated
on new episodes without additional learning. In each test
episode, the agent must plan to optimise for a new revealed
reward functiorr associated with the randomly-generated
target region, leveraging the learnt GHMs for the set of base
policies above. We consider two approaches: (i) GPI
(Barreto et al., 2017) on using GHM evaluation (Janner

et al., 2020), a natural baseline for this task (equivalent to
depth-1 GGPI), and (ii) depth-2 GGPI (Section 5.1).

Figure 6.Visualisation of an agent performing GPI (top) and depth-
Figure 5.Left: Comparing GGPI at different depths in terms 2 GGPI (bottom) for the same test episode. GHM samples for use
of total episodes succeeded, for various sampling budgets. Agent8 GGPI at the rst episode time step are shown on the left, while
are evaluated across 5 random seeds for GHM training and 10te entire episode trajectory coloured on a gradient from blue to
test episodes with bootstrapped 90% con dence interRiight: red with time is shown on the right. We show the ant centre of
Comparison of GHMs trained using various losses measured iMnass, target, and reward signal boundary.
terms of negative ELBO (lower is better) of samples from the true
future state visitation distribution obtained by sampling states fromGHM training experiments. GHM training is an impor-
on-policy trajectories, averaged over 5 random seeds. tant component of the deep RL results above. We found

combining VAEs with the CETD loss to work particularly
Results. Figure 5 (left) shows the proportion of test well; Figure 5 (right) shows negative ELBO loss curves for
episodes successfully solved by GPI and by depth-2 GGPihe VAE-GHM of the policy igh: On the sparse-reward ant
varying the sample budgetampiesused to estimate each domain, with = 0:8. The loss is similar to that of a VAE-
Q-value. We see that depth-2 GGPI outperforms GPI folGHM trained via supervised learning with the CEMC loss
Nsamples 2, €ventually reaching a success rate close tdrom Equation(7), and we found target networks unneces-
100% In Table 1 we take a ner-grained look at the re- sary for stable training. We show in Appendix E.4 that this
sults when using 100 samples. We see that standard Gebmbination of VAEs with the CETD loss is remarkably sta-
manages to solve the task roughly 50% of the time, whiléble compared to normalising ows using either CETD or the
depth-2 GGPI (where the agent is able to model changintpg-L 2 loss previously considered. Appendix E.3 compares
directions) not only solves almost all the remaining goalGHMs with multi-step compositions of VAEs modelling
locations but also almost always solves the task faster thagsingle-step transitions, showing that the latter incur large
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errors and thus are unsuitable for long-horizon planningOur application to transfer learning in RL is motivated by
Finally, in Appendix E.5 we examine the performance ofsuccessor featureend generalised policy improvement, in-
GGPI when using GHMs trained with varying sampling troduced by Barreto et al. (2017; 2020). Subsequent work
budgets, showing that even GHMs trained for only a fewin this direction includes algorithmic innovations in combi-
thousand steps whose loss has not yet converged are stilation with deep learning (Barreto et al., 2018; Borsa et al.,

useful and result in a strong improved policy. 2019), reward-free learning (Grimm et al., 2019; Hansen
et al., 2020), and addressing questions concerning the in-
8. Related work uence of the policy set on improvements in GPI (Zahavy

et al., 2021; Alver & Precup, 2022; Lehnert & Littman,
This paper relates to a number of different areas in reinforce2020; Nemecek & Parr, 2021). A notable approach that also
ment learning; we describe the most closely related workénterpolates between greedy improvement and computation
below, with additional discussion in Appendix A. of optimal policies is multi-step policy improvement (Efroni

In addition to the work of Janner et al. (2020) describedet al., 2018a;b; Tomar et al., 2020).

above, there are several recent contributions studying the ] o
task of large-scale learning of discounted visitation distribu9. Conclusions, limitations, and future work

tions and related objects. Blier et al. (2021) propose severa}ln this paper. we have proposed using geometric horizon
TD-based methods for learning parametric representations Paper, prop 99

. . — . odels for the evaluation of non-Markov geometric switch-
including an approach based on low-rank approximations, - . o
- ) : - Ihg policies, and for doing policy improvement over col-
Building on this work, Touati & Ollivier (2021) propose a . - . ;
. L lections of such policies. We have shown that this pair of
compact representation of an MDP that in principle allows

. . . . . “techniques can be applied to both transfer and policy it-
for the optimal policy associated with any reward function . : L .
; S . . eration, extending existing techniques based on successor
to be computed without planning, in practice relying on a

low-dimensional approximation of the visitation distribu- features and generalised policy improvement. We have also

) o emonstrated that it is possible to combine these ideas with
tions. Eysenbach et al. (2021) propose a classi cation-base . . :
: - eep learning architectures to arrive at novel approaches

approach based on contrastive learning; these works also ; . .

. . . I 0 deep RL, and in the course have additionally provided
note a close connection with the domain of goal-conditione heoretical analvses of these methods
RL (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz y '
etal., 2017; Pong et al., 2018). These ideas go back to thé&/e foresee several key considerations in further extending
successor representatiq®R), introduced in the context the applicability of this approach. First, the method relies
of representation learning in nite-state MDPs by Dayanon constructing models over environment state; as with
(1993), who also proposed a TD method for learning thenany other model-based methods, a key question is how to
SR; this has also been explored in combination with deepearn such models ef ciently in high-dimensional settings.
learning (Kulkarni et al., 2016b; Fujimoto et al., 2021).  Additionally, the use of geometric switching times in GSPs
is key to decoupling rewards from learnt models, but limits

evaluation was proposed by Sutton (1995), who termed suc[’hhe expressivity of the non-Markov policies considered; can

X : is restriction be lifted? In addition to these questions, there
objects -models. These models were generalised by Pre- L .

o .. are several natural directions for future work. These include

cup et al. (1998a), who proposed multi-time models, which

. further development of theoretical convergence analyses
encompass both-models andch-step models as special : . )
! : . for learning GHMs and improving over GSPs, as well as
cases. More generally, there is a long-established practi

of learning option models (Sutton et al., 1999; Precup et al Urther developing combinations of these techniques with

1998b; Precup, 2000), and using such models in a composq-eep learning. We believe that combining GGPI with recent

tional manner (Silver & Ciosek, 2012). A central difference a(rj(;/ri?;ﬁs Eﬁg?gﬂgﬁﬁ?ﬁg?’vﬁﬁmques is a particularly
between these option models and this work is that the use & 9 '
geometric switching times (or, in the language of options,
constant termination probabilities) means we do not needA\Cknowledgements
to model accumulated return or the taken executing eac\lxl )

. . o . - We thank the anonymous reviewers for useful comments and
base policy, making applications to transfer possible. In this .

suggestions, and gratefully acknowledge support from our

regard, the approach of this paper may be viewed as a gemta:rdlleagues in the course of this work. Thanks in particular to

ative approach to learning a certam class.of universal optio ohammad Gheshlaghi Azar, Gheorghe Comanici, Hamza
models (Yao et al., 2014), which also disentangle rewar : . !
erzic, Doina Precup, Yunhao Tang, and to€bphane

anc_j_transmon structure; constar_ﬂ_ termination probab|I|t|e§Neber for detailed feedback on an earlier draft.
facilitate sample-based composition of such models.

Relatedly, modelling discounted visitation distributions for
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Generalised Policy Improvement with Geometric Policy Composition: Appendices

We brie y summarise the contents of the appendices here for convenience.

Appendix A provides further discussion of related work, as well as additional context for geometric horizon models and
their precise connection with concepts such as the successor representation.

Appendix B provides proofs for the results in the main paper concerning evaluating and improving over geometric
switching policies.

Appendix C provides a proof of the CETD convergence result presented in the main paper, and illustrations of an
implementation of the algorithm.

Appendix D provides further examples and illustrations to complement the ndings of the main paper, including
counterexamples illustrating the necessity of several conditions in our results and algorithm pseudocode for application
of GGPI to transfer and policy iteration.

Appendix E provides further experimental details and results.

Appendix F provides a generalisation of the core policy evaluation result in the main paper.

A. Additional background, related work and context
A.1. Related work
Below, we discuss connections of this work to several sub- elds of reinforcement learning.

Other generalisations of greedy policy improvementOur proposed approach is one way of interpolating between greedy
improvement and full planning. Efroni et al. (2018a;b); Tomar et al. (2020) consider multi-step improvement as a different
means of achieving such a trade-off, both analysing the approach theoretically, and empirically investigating the approach
in combination with deep reinforcement learning. More generally, recent developments in Monte Carlo tree search and
related ideas in planning (Boniu & Munos, 2012; Bgoniu et al., 2012; Feldman & Domshlak, 2013; 2014b; Munos, 2014;
Szrényi et al., 2014; Feldman & Domshlak, 2014a; Efroni et al., 2018a; 2019; Dalal et al., 2021) can all be viewed as
sitting between greedy improvement and computation of the exact optimal policy, and have the potential to be pro tably
combined with GHMs and GSPs.

Option models. Modelling discounted visitation distributions was proposed by Sutton (1995), who termed theodels.

These models were generalised by Precup et al. (1998a), who proposed multi-time models, which encompasstheith
andn-step models as special cases. More generally, there is a long-established practice of learning option models (Sutton
et al., 1999; Precup et al., 1998b; Precup, 2000), and using such models in a compositional manner (Silver & Ciosek, 2012).
A central difference between option models and this work is that the use of geometric switching times (or in the language
of options, constant termination probabilities) means we do not need to model accumulated return obtained by each base
policy, or the time taken executing each base policy, making applications to transfer possible. In this regard, the approach of
this paper is related to universal option models (Yao et al., 2014), which also disentangle reward and transition structure;
constant termination probabilities more easily facilitate sample-based composition of such models. Although orthogonal to
the direction of this work, the problem option discoverys central to hierarchical RL (McGovern & Barto, 2001; Menache

et al., 2002Simsek & Barto, 2004; Brunskill & Li, 2014; Kulkarni et al., 2016a; Machado et al., 2017; Harb et al., 2018;
Harutyunyan et al., 2019; Wulfmeier et al., 2021), and is clearly relevant here too, essentially posing the question of where
the base policies supplied to GGPI should come from.

The successor representation and visitation distributionsDiscounted visitation distributions are closely related to the
successor representation (SR), introduced by Dayan (1993), who also proposed a temporal-difference method for learning
the SR. As discussed above, Janner et al. (2020) introduce several methods for learning approximate discounted visitations
on continuous state spaces, among other contributions. Several other recent works also target this problem. Blier et al. (2021)
propose several methods for learning parametric approximations to discounted visitation distributions, including an approach
based on low-rank approximations. Building on this work, Touati & Ollivier (2021) propose a compact representation of an
MDP that in principle allows for the optimal policy associated with any reward function to be computed without planning,

in practice relying on a low-dimensional approximation of the visitation distributions. Eysenbach et al. (2021) propose an
approach based on contrastive learning; these works also note a close connection with the domain of goal-conditioned RL
(Kaelbling, 1993; Schaul et al., 2015; Andrychowicz et al., 2017; Pong et al., 2018).

Successor features and GPBarreto et al. (2017) introduced successor features, a generalisation of the successor represen-
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tation, and GPI, in the context of transfer; later Barreto et al. (2018) discussed the practicalities involved in combining the
approach with deep learning. The same conceptual machinery was then used by Barreto et al. (2019) to promote temporal
abstraction in RL. Borsa et al. (2019) introduced a generalised form of successor features that has a representation of a
policy as one of their inputs, thus allowing generalisation along the space of policies. Hunt et al. (2019) extended successor
features to entropy-regularized RL and addressed some of the challenges involved in applying GPI to continuous action
spaces. Grimm et al. (2019) and Hansen et al. (2020) propose approaches that allow the features used in successor features to
be learned from data in the absence of a reward signal. Zahavy et al. (2021) and Alver & Precup (2022) studied the problem

of how to construct a good set of policies to be used with GPI. Lehnert & Littman (2020) showed how successor features
can be seen as a link between model-free and model-based RL. Nemecek & Parr (2021) studied a related problem: given a
set of successor features and a reward function, they showed how to estimate the performance of the associated GPI policy
and use this estimate to decide whether to add new successor features to the set. Recently, Barreto et al. (2020) presented a
comprehensive account of GPI and successor features in which the latter are cast as a special case of a more general concept
calledgeneralised policy evaluatiofGPE). We believe GHMs can be understood as an alternative form of GPE.

Non-Markov policies. Non-Markov/homogeneous policies are used in several other sub- elds of reinforcement learning

in MDPs. Scherrer & Lesner (2012); Lesner & Scherrer (2015) consider approximate value iteration, policy iteration,
and modi ed policy iteration algorithms, proposing the use of non-homogeneous policies that repeatedly cycle through
a sequence of recent greedy Markov policies, and showing that such policies obtain improved performance bounds. In
contrast, GGPI always produces a Markov policy, but one which improves upon non-Markov policies. Non-Markov policies
are also commonly-encountered in exploration, for example via action repetition (Dabney et al., 2021), and Thompson
sampling and its approximations and variations (Strens, 2000; Osband et al., 2013; 2016; Agrawal & Jia, 2017; Russo et al.,
2018).

A.2. Successor features, the successor representation, and geometric horizon models

We provide some additional discussion regarding the relationship between the successor representation, successor features,
and geometric horizon models in the case of nite state spacdsor ease of comparison, we phrase all three concepts in

terms of variants that condition on an initial state-action pair, although the successor representation was originally introduced
as a state-indexed quantity.

Dayan (1993) introduced the successor representation in reinforcement learning. In the context of discounted MDPs, the
de nition is as follows.

De nition A.1. For a given policy : X ! P (A), the correspondinguccessor representatiaf a state-action pair
(x;a) 2 X A isthe vector
hy [
(x;@) = Exa “ex, 2RX;
k=0

whereeo 2 RX is the one-hot vector for the coordinat®

We canview (x;a) as an unnormalised probability distribution; scaling by a factdr of yields a probability distribution
that corresponds to sampling a tie Geometri¢l ), and then samplin 1 transition steps in the environment
under , initialised at the state-action pgi; a).

Barreto et al. (2017) introduced successor features as a generalisation of the successor representation.

De nition A.2. Consider a base feature map X A X! RX . Foragiven policy : X ! P (A), the corresponding
vector ofsuccessor featuresf a statex 2 X is the vector
hx i
(x;a) = Eyxq U (XA X)) 2RE:
to

The successor representation is subsumed as a special case of successor features a2 R* is taken to be the
basis vector for state. The following result relates the discounted future state-visitation distributions of De nition 2.2 with
successor features.

Proposition A.3. The discounted future state-visitation distributionis an instance of successor features, with the base
feature map (x;a;x% = (1 Yewo 2 RX, wheree,o is the one-hot vector for the coordinate
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Proof. We directly calculate th&® coordinate of (x;a) as:
hx i hx i
Exa "1 X141 = X% = Eya Y1 H)1fXe1 = x%
t o t 0

@ X h i

Y1 )Ega 1fXea = x%
t 0

X
=(1 ) th;a(XHl = x9
to

= (xIxa);

where the swapping of summation and expectation in (a) is justi ed by the dominated convergence theorem, since the
integrand is bounded. O

Proposition A.3 sheds light on the relationship between successor features and GHMs in the case of a nite stdte space
When using the featuregx; a; x% = (1 )exo, the successor features of policypecome the -discounted state-visitation
distribution of —thatis, (x;a)=  (jx;a); the corresponding GHM is a generative model of this distribution.

B. Proofs relating to geometric horizon models and generalised policy improvement
B.1. Proofs of results in Section 2.2

Proposition 2.3. If T  Geometri¢l ), i.e.
PT=k)= K@ ) fork=1;2;:::;
and is independent of the random trajectbXy; A¢; Rt): o generated by beginning at state-action pdix; a), then the

random stateX 1 is distributed according to (jx;a).

Proof. We have

Px;a (XT = XO) = E[Px;a (XT = Xoj T)]

b3
= P(T = K)Po (Xk = X°j T = k)
1

K=
b3

1
~
[N

) ! lPx;a(xk = XO)
k=1

x9x;a);

as required. O

Proposition 2.4. For any policy 2 P (A)X, we have

Q (x;a)=r(x;a)+ 1 Exo (jx;a)[r (XO)]; (2)

wherer (x) = P aa F(x;a) (ajx).
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Proof. We have

" #
X
Q (X;a): Ex;a th
t=0
hx i
= Ex;a [RO]+ Ex;a th
t=1
p3 X
= r(x;a)+ t1 Pea (Xt = x9r (x9
t=1 x02X
(@) X X
2 (xa)+ Pra (Xes = X91 (x9
x02X t=0 X
=r(ga)+ (1 ) * xGx;a)r (x9

x 02X
r(x;a)+ (1 ) lEXO (jx;a)[r (XO)]:

as required. The switching of the order of summation at (a) can be justi ed, for example, by noting that the double-sum is
absolutely convergent:

x *
b Pa (X=X () " Rma= Rma(l ) T 1
t=1 x02X t=1
whereR ., = maxy jr (x)j < 1, asjXj is nite. O

B.2. Proof of result from Section 2.3

Below, we re-derive a result essentially equivalent to Theorem 2 of Janner et al. (2020), stated as Proposition 2.5 in our
main paper, with a slightly different proof technique. The central idea is to develop a different way of sampling the random
variableX 1 appearing in Proposition 2.3, using the following results.

IDemma B.1. Let(Ti)k, . Geometri¢l ), and independenti\l  Geometri¢! = ). Then the random sum
iNzl T; has distribution Geometifz ).

LemmaB.2. Let(T;)",* """ Geometri¢l ), and independently[® Geometri¢l ), andN °a random variable

m 1 n 1
1

0_ - . . 0— )=
P(N"= m)= 1 1 form=1;:::;n 1; andP(N n) 1

Then the random sum
min( No;n 1)
Ti + 1fN°%= ngT?®
i=1
has distribution Geometrit ).

Proposition B.3. If we de ne a sequence of states and actiXs™) ; A(M), ¢ inductively by(X ©@; A©) = (xq; ap),
X (n+1) (jX (M: Ay A+D) (iX (D) thenx (M D yp 0T

We also note that using different distributional identities for the random varial#ads to variants of the result given in
Proposition 2.5. For example, directly using the distributional identity in Lemma B.1 can be used to establish a version of
Theorem 1 of Janner et al. (2020) using exactly the same proof technique as for Proposition 2.5.

Proof of Lemma B.1This is a classical result from elementary probability theory. We work with probability generating
functions. The plgpbability generating function of a random variablking values inN is de ned as the function
Gz (s) = E[§?] = &:1 P(Z = k)s, and clearly characterises the distributiorZof
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A standard calculation shows that for Geometri¢€l ), we have

Gr(s) = a_) s ) L

1 ; forjsj <

We also have the following standard relationship for the PGF of a random sum of i.i.d. terms:

Py Py b3 P b3
GPy ()= Els = T]=E[E[s T N]= PN =mnEs == PN = nGr(9)" = Gu(Gr.(s):
n=1 n=1

Since bothN andT; have geometric distributions, we can directly calculate

sl ) 1

_ s(1 ) s 1 _s(1 ).
Gn (G, (8)) = Gn 1 s = L e 4 1 =1 s
1 s 1
forjsj< 1, which is the probability generating function of a Geoméfric ) random variable, as required. O

Proof of Lemma B.2This follows as a straightforward corollary of Lemma B.1; under the notation of that result, we

haveT 2 iN:1 Ti. We now decompose this based on whether the eifint ng occurs, and use the fact that
P(N = k)= P(N°=k)fork=1;:::;n 1
. . ; 0.
b mln(%,n 1) X b mln(N n 1) o .
T= T+ 1fN ng T = Ty + 1fN"= ngT";
i=1 i=n i=1

as required. The nal equality in distribution holds from the mem(g;yless property of the geometric distribution; on the event

fN ng,wehaveN (n 1) Geometri¢l =1 ), andhence iNznTi Geometri€l ) on this event. O

Proof of Proposition B.3.This follows straightforwardly by induction. The case= 1 follows from Proposition 2.3. Now
suppose the claim holds far= 1. Then we havex ) 2 xP . TS0

X (#1) jx (0 AC) (XD ADY:

and so by Proposition 2.3 again, we hagé*D jX ) 2 X0, with T Geometri¢l ), and(X®A%R?) , an
independent trajectory following with initial stateX (). But sincex () 2 xP ». T, by the Markov property we therefore
haveX ("D 8 XP o 1,02 xP 141 7, as required. O

We now restate and prove Proposition 2.5.

Proposition 2.5. (Janner et al. (2020)) For any policy2 P (A)*,n 1, and0 < anunbiased estimator of
Q (x;a) is given by

rca)+ ¢ (4)
)¢ 11 m 1 () n 1 #.
m:lli 7 ' (XTM)+ 7 X9 ;

whereX (M) (jX (mo1). A(mOL)y “A (M) (jX M), (X @;A®) = (x;a), andX ° (jX (9D): A(NOD)y

Proof. We start from the expression f@ (x; a) in Equation 2. Using the notation of Proposition 2.3, we have

Exo (jx;a)[r (XO)]: Ex;a[r (XT)]:
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Now with the notation of Lemma B.2, we have

Ex;a [I’ (XT)] = Ex;a [I’ (XP .m=|r1]( NOn 1) Ti+lfN°:ngT0)]

E[Ex;a [r (X P Imzlq( NOn 1) T+ 1fN 0= ngTO) ] N OJ]
K 1 1 m 1 n 1
= o Ex;a [I’ (X P mT )] + 17 Ex;a [r (X P noIT TD)] :

i
m=1

Finally, by Proposition B.3, we haweP moT 2 x (M as de ned above, ang P nIT+TO 2 x % to obtain the desired
conclusion. O

B.3. Proofs of result from Section 3

Theorem 3.2. Consider an MDP with reward function: X ! Randlet = ! I L. With = (1 ), the
following is unbiased foQ (x;a):

.r.(x)+ 1 (6)

#

X1 m 1 - n 1
- m - .
1 1 r(X*)+ 1 r(x9 ;
m=1

where(X @;A@) = (x;a), XM m (X MIDAMIY AM g (jXM), X0 n (X VA0 D),

Proof. Just as with Markov policies, we have the basic identity

Q (x;a)=r(x)+ Exa[r(X7)]:

1

We now show thaE,., [r (X1 )] has the required form by induction on The base case = 1 follows from Proposition 2.4.
For the inductive step, »n = |, and suppose the required form of the expectation has been demonstrated for all smaller
values ofn.

Let = ;! I |. We consider the time to switch from the rst policy, to the second sampled policy,, denoting
this timeT;, recalling that its distribution i§eometri¢ ). We proceed by considering whether or not the geometric horizon
T Geometri€l ) is greater thai;:

Exalr(Xt)] (10)
=Ea[r(X1)1r 1, + r(X7)lrs7,]
=Ear(Xr)jT TiIP(T  TijXo=XA0=a)
+ Ex;a [r(XT) J T >T1]Px;a (T >T1):

SinceT, Ty are independent of the trajectof}(; A¢; Rt)t o, we haveP,., (T T1) = P(T  Ti1). To compute
P(T T.),we have

X
PT Ti)= P(T KP(T.=K)
k=1
X
= @ @ )kt
k=1
3
= @ H* (@ »<h
k=1
_ 1
B 1 1 )
1
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Now, to computeE,., [r(X1) j T T1], we need the marginal distribution &fgiven the event T T g, which again is
independent of the trajecto(X; A¢; Rt)t o. We have

PM=KjT T/ P(MT=KT Ti)

R

= P(T=KP(T=1)
1=k

=1 )k )

@ ok

which is the probability mass function of@eometri¢l (1 )) distribution. Hence, conditional oh Ty, we have
thatT Geometri€l (1 )), and that the policy has not switched from; on this event, so

Ex;a[r(XT)jT Ti] = Exo a )(jx;a)[r(xo)]:
We next turn our attention to the second term on the right-hand side of Eqa@ipnConditional onfT > T,g, we
compute the joint distribution dfT  T1; Ty). For anyk;| > O:
PMT Ti=kTi=1jT>Ty)/ PT Ta=kTi=)=PT=k+LTy=0)/ '@ )= kca ),

which we recognise as the distribution of two independent geometric random variables with parametargll (1 ).

Hence, a sample froid+ on the event T > T,g can be obtained by rst sampling the staté? %1 ) at which the
switch from ; to , occurs. From this point, we require a state sampled T; Geometri€l ) steps into the future,
from initial stateX (M | and actiorPA® >(jX @), following the sufx GSP %=, | I |. By induction, the
corresponding expectation can be expressed as
hi?2 1 m 1 I 2 i
Exal(X1)JT>Ted=€E  T— 77— XM+ — (X9,
m=1

whereX © Y(jx;a), X (M L (X (MO A(MODY A(M) X (M) X0 i (jX (DAl D),

Rewriting in terms of the original sequengé © ; X - :::: X (M; A(M: X 9 in the theorem statement, we have
hx 2 1 m 1 I 2 i
Exaf(X1)jT>Ted=E 77— 7— XM+ —0 r(x9:
m=1

Putting everything together from the decomposition in Equation (10), we therefore have

Ex;a[r(xT)]

1 h ¥ 2 1 m 1 |2 i
= E[r (X D] + E P QUL E— X

T Er(X@)+ 7 I 1 rX M)+ o r(x9

m=1

hit 1 m 1 I 1 i
= - (m) -

E 1 I rxMy+ 4 r(x9

m=1
as required. O

B.4. Proof of result from Section 4

Theorem 4.2. Consider a suf x-closed collection of GSPs Thenif °2 G() , we have

Q 0(x; a) mzaxQ (x;a); forall(x;a)2 X A

Further, if equality holds for all state-action pairs, théis optimal.
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Proof. Itis suf cient to show that for any policy 2 , we haveQ ° Q .If = s Markov, then we have
X X
Q (xa)= r(xa)+ P(x9xa) (a3x9)Q (x%a);
x02X a%A
and hence

X X
Q (xa) r(xa)+ P(ixa) (aixImaxQ (%ad) = (T ‘(maxQ )(x;a):

x02X  a%A

Now suppose = ;! I, 2 isanon-Markov geometric switching policy. Let= ! I, bethe
sufx policy of . By suf x-closedness of , °2 , and so we have the following observation:

" =
X X X 0

Q (x;a)= r(x;a)+ Px9xa) (1 ) 1(@%x9Q (x%a%) + 2(@%x9Q (x%a?)
x02X " a02A af2A #

X X X
r(x;a)+ P(x9x;a) (1 ) %a%x9 max Q (x%ad + %a%x9 max Q (x% a9

x 02X al2A al2A

= (T "(MaxQ N(xa);

similarly to the Markov case. By taking a maX|mum over the policy considering on the left-hand side of the main chain of
inequalities above we gatax , Q T (max 2 Q). Asin the proof of improvement guarantee forstandard GPI,

we have thal " is monotone, and contracts@)0 HenceQ max , Q limy, (T )"(max 2 Q)=Q

as required. For the nal statement of the result, observe that if equallty holds at all state-action pairs, then we have
thatmax , Q satis es the Bellman optimality equationax , Q =T max, Q =T max, Q ,andhence

max, Q =Q "= Q,so Cisoptimal. O

B.5. Proof of result from Section 5

Proposition 5.1. , is suf x-closed.

Proof. Given apolicy = @ | (m 2 ., itssufxpolicyis °= @1 (M) On the face of it, this policy
appears not to lie in o, since it contains onlyn 2 switches. However, the key observation is that appending an additional
switch from the tail Markov policy to itself does not change the geometric switching policy; that is

@ | m D, M= @, (m 1y (M (m.

The right-hand side clearly lies iny,, and hence the proof of suf x-closedness is complete. The improvement guarantee
now follows from Theorem 4.2. O

B.6. Proof of result from Section 6
Here, we provide a proof of Proposition 6.2, and note that the (longer) proof of Theorem 6.3 is given in Appendix C.

Proposition 6.2. De ning the Bellman operatof  : P (X)*XA | P (X)*A by

(T xIxa)=@ HIPEIxa)+ ( P)xIxa);

then isthe unique solutionto = T
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Proof. That solves = T  follows straightforwardly from the Markov property of the environment:
hx i
(X%X; a) :(1 )Ex;a tlel =x0
h' % h hx i
=1 )Ex;a Ixia=x0 + Eya (1 )Exl;Al thH—l =x0
. t 1
h i
:(1 )P(X%X; a) + Ex;a (X(ixl;Al)

X X
=1 PxIxa)+ P(x%Ix;a) (a%1x%) (x9x5 &)
x002X  a%2A
=1 PxIxa)+ ( P)xYxa):
We now show thaT is a contraction mapping oA (X)XA . Let; 92 P (X)XA , from which uniqueness of the

solutionto = T immediately follows. We directly calculate
|

(T T YxIxa)= @ HPXIxa)+ - P(x%x;a) (a9x%) (x9x%a)

x002X  a02A |

X X '
@ HPExIxa)+ P(x%Px;a) (a3x%y AxJx%a%)

X x002X a02A
= P(x°Ix;ia) (@3x%( (x4x%a)  AxGx®ad):
X002X
Hence,
e IR IT T ) max i e
as required. O

C. Proof of the convergence of cross-entropy temporal-difference learning

In this section we prove Theorem 6.3, which establishes the convergence of cross-entropy TD learning in the tabular, nite
state-space setting, under mild conditions. The broad structure of the proof follows that of many arguments in stochastic
approximation: de ning a Lyapnuov function, showing convergence of this Lyapunov function to 0 as the algorithm
progresses via the Robbins-Siegmund theorem (Robbins & Siegmund, 1971), and deducing convergence of the algorithm as
a consequence; see for example Kushner & Yin (2003) for further background. We begin by recalling the details of the
theorem.

Statement of result. The algorithm generates a sequence of logit9x o, with 2 RXAX | and corresponding
estimated geometric horizon models, denotgdand de ned by

exp( k(x9x; a))
wooox €XP( k (x%9x; a))

r(x9x;a)= P

We work with a synchronous algorithm, for which every state-action pair is updated at every algorithm time step. Thus,
0 2 R*AX sinitialised in some manner, and for each algorithm time ktep0, for each(x; a) we take a transition

(x;a; X 9 generated from the MDP, independent of all other transitions used aktand earlier, and de ney4; via the

update

ka(ixa)= «(ixa) "k (jxa)KLSAT O(ixalii k(ixa); 11)

whereSGdenotes a stop-gradient, atifl )( jXk;Ax) is an unbiased approximation error to the Bellman operator
application(T  ¢)( jXk;Ax), given by

(f Oixa)=@  )exo+ exow;



Generalised Policy Improvement with Geometric Policy Composition

whereX ©is sampled rst by samplind®  (jX9, andthenrx ©© | (jX %A9. Evaluating the gradient above allows
us to re-express the update as

wa(ixa)= k(ixa)+ "« (T Wixa) «(ixa) : (12)

Then the theorem statement is that if the Robbins-Monro conditions for the stepﬁ"&i)z#_% hold, then we havey !
with probability 1.

Proof. The proof of the result is presented below. We include schematic illustrations of some of the key ideas in the proof in
Figure 7.

Figure 7.Schematic illustrations of core ideas in the convergence proof for cross-entropy temporal-difference leafhir@ontractivity

of the operatofl  in the weighted_? normk k towards . Centre-left: For a given value of , the corresponding level set of the
Lyapunov functiorL as a grey line, the conditional distribution ovey:; illustrated with blue contours, and the negative gradient of
the Lyapunov function indicated as a black arrow. The Robbins-Siegmund argument shows that evenghougdy have a higher
Lyapunov value thany, in the long term the value of the Lyapunov function must converde €@entre-right:. The decomposition

of a Markov chain state space into a directed acyclic graph of communicating clé&8ghs. The distribution ¢ supported on a

given communicating clagss, as constructed via the Perron-Frobenius theorem, and the result of right-multiplying by the Markov chain
transition matrixP ; on the communicating clas3, the distribution is scaled by, while descendant communicating classes may now
have non-zero probabilities, given by .

The Lyapunov function. Let be a stationary state-action distribution undeand suppose initially that it has full support;

we will explain how to remove this assumption below. It is useful to introduce the functidR* A% 1 P (X)XA for

the softmax function that maps logits to corresponding collections of probability distributions. We now de ne the Lyapunov
function

X
L()= (x;a)KL( (ixa)i ()(ix;a)):

X;a
The full supgert condition ensures tat ) = 0 impliesthat ( ) = . Our goal is to show thdt( ) ! 0 almost
surely, hence ., (x;a)KL( (jx;a)ji ( «)(jx;a))! 0,andso ! , as required.
A supermartingale argument. We start by considering a second-order Taylor expansion (with Lagrange remainder) of
L( k+1) around g (here, and in the remainder of the proof, it is useful to interpret a probability distributien(i) as a
vector inR* — speci cally, an element of the simpleg X ), which we will do without further remark):

L ko) = Lk + "« )= LCW+ "hr LCW:T o Wi+ 2r2ecf « o«

for some™ on the line segmerjt «; «+1]. De ning F  to be the sigma-algebra generated by all random variables up to,
but not including, those de ning the update fromto .1, we have

EIL( ke1)jFkl=L( &)+ "kEhr L( &) T« «ij Fid+ "2Er 2L(COIT « T« «liF«l:

From the form of the gradiemt L( ), the Hessiam 2L( ) is readily seen to be bounded, and the inputs afove, ~ «
are also bounded, meaning there is a condfant 0 such that

EIL( ks2)iFil LC W+ "kElr L( )T« wif Ful+ "EK:
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To deal with the rst-order term, we note that a straightforward calculation gives

[r LOIXI%a) = (xa) ( )(x9xa) (x9x;a)):

We hence have

Elhr L( «);T «  «ij Ful=hy T ok ki
Now we use a contractivity argument 2 bound this derivative. We rst arguelthats de ned above is a-contraction
under the nornk k denedbyk k=" _ . (x;a) (x9x; a)? To see this, note
KT T %=kP P %
= %P P K
0 1,
X X
=2 xa)@  P(xMa) (X (Ix®a%  (xGx%a%)A
x;ax 0 % 00,500
@ , X X 0 00,0 00 0 Oy Gy, 00 2081y 2
(xa)  P(x%xa) (@Y xIx%a%  xGx%a%))
X;aX 0 XOO;aOO
o 2 X . . 0 CAVy 2
= xa)( (xIxa)  xIxa)
x;a;x 0
= % g

as required, with (a) following from Jensen's inequality, and (b) frobeing stationary.

Using this contraction result, we have:

k T k¥ % k2
=) k Kt o Tk %k k2
=) k 2+ ke T kk¥+2h ok Tk 2Kk k2
5h o T % (% Dk K ko Tk L 5 i kk?

Returning to the Lyapunov function, we therefore have

. 1 2
ELC ) iFel LW "empk ke RK
We now follow the ideas of the Robbins-Siegmund theorem (Robbins & Siegmund, 1971). Based on the above inequality,

(L( k))k o is almost a positive supermartingale, save for the addifi¥e terms in the upper bounds on the conditional

expectation. However, de ningx = L( ) KoK+ Rt i Tk k2, we have
. h )4( )« 1 2 ) i
E[Ck+1 JFk] E L( k+1) K 5 k K2 F i
1=0 =0
5( 1 5( 1 1 2
L( «) K+ 2 K 1k?
1=0 =0
Cy:

Hence(Ck)k o is a supermartingale. However, the subtraction of'thi€¢ terms means that it is not a non-negative
supermartingale, so we cannot immediately apply the supermartingale convergence theorem. The approach of Robbins
& Siegmund (1971) is to de ne a sequence of stopping times inf fk 0 : Cy g, for* 2 N. By the optional

stopping theorem(Cy~ .)i_, is a supermartingale bounded below, and hence by the supermartingale convergence theorem,
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converges almost surely. By the second Robbins-Monro step size conditien] e}_/)entually almost surely, and hencg
. 2
converges almost surely, leading to agnost—sure convergerce @) too, as well as :‘:0 " 1Tk k2. Due to the

rst Robbins-Monro step size condition &:0 "k = 1, we must hav& «k? 1 0, which completes the proof of the
theorem in the case wheréhas full support.

A chaining argument for invariant distributions without full support. The previous argument relied on the existence of
an invariant distribution for the Markov chain over state-action pairs generated by the interaction of the poliith the
MDP in question. We now explain how to generalise this proof technique to remove this restriction on

First, by appending an arti cial self-transitioning terminal state if required, there always exists an invariant distrifotion

the Markov chain concerned, even in episc&giic settings where trajectories terminate in nite time. The argument above may
be applied as-is to obtain the same conclusiofy, ", %k 1k? < 1, and hencé kk? 1 0. The difference

now is that this only shows convergence @fto  along the state-action pairs with support under

We begin by recalling some notions from the theory of discrete-time Markov chains on nite sets; see Norris (1998) for
further background. We also clarify that in Markov chain theory, the t&ate spacés typically used to refer to the set of

states which a Markov chain can take on. For our Markov chainsthie spacés X A , notthe usual state space of the

MDP. To avoid confusion, we will use the term Markov chain state space (or MCSS) to distinguish the state space of the
Markov chain from the seX, and the term Markov chain state to refer to an element of the MCSS.

We can partition the MCS® A into communicating classeé communicating clas€ X A s a set of Markov

chain states such that for ##;a); (y;b) 2 C, there exists > 0such thaP((X;A:) = (x;a) j (Xo;A0) =(y;b) >0
andP((X¢;At) = (y;b) j (Xo;Ag) = (x;a)) > 0, and further for anyx;a) 2 C, no Markov chain state outside has

this property. The set of communicating classes of the Markov chain can be given a directed acyclic graph structure, by
adding an edge from one claSsto a distinct clas€Cif there exist(x;a) 2 C, (y;b) 2 COwith P(X1;A1) = (y;b)

(Xo0;Ap) =(x;a)) > 0. Let us refer to this directed acyclic graph@sWithout loss of generality to what follows, we may
assumes is connected (the argument may be applied to each connected compo@Ges¢pdrately ifG is not connected).

The goal is to recurse backwards through the directed acyclic geamstablishing rst for the Markov chain states

(x;a) in communicating classes in the leaves of the graph thajx;a) ! (jx;a), and then inductively moving

back through the graph. Note that the leave$adire precisely theecurrentcommunicating classes of the Markov

chain: those classés for which there exists an invariant distributiog for the Markov chain supported precisely Gn

Ehf argument ab2c>ve establishes thatjx; a) ! (jx;a) forall (x;a) 2 C, and in fact the stronger conclusion that
=0 "k |kc<l.

Now, for the inductive step of the argument, &be a non-recurrent communicating class of the Markov chain, and suppose
that for every descenda@0 of C in the directed acyclic grap&, we have established that for some distributign
supported orC® we have ,1:0 "1k |k2CO I 0. We now aim to construct a distributiog supported oiC, and to

demonstrate that |1=o "k |k2C I 0, so that by induction the theorem is proven.

To do this, we appeal to the Perron-Frobenius theorem (Perron, 1907; Frobenius, 1912); see Seneta (2006) for a recent
account. Speci cally, we consider the transition matrix of the Markov chain in question, and consider the sub-matrix
obtained by deleting all rows and columns corresponding to Markov chain states dlitSithe resulting matrix is strictly
sub-stochastic (all elements are non-negative, rows sums are less than or equal to 1, with at least one row having row sum
strictly less than 1), and hence by the Perron-Frobenius theorem, there exists a left-eigan2eBorfor this matrix
with eigenvalued < 1, and all elements positive; we may further soako that the elements sum to 1. We now set

c to be the distribution over the Markov chain state space that is equadnaC, and O elsewhere. We now show that
T still behaves “almost' like a contraction underk ., which will allow us to re-use the supermartingale argument
above. First note that from the structure of the communicating classes, we havgPhats equal to ¢ onC, some other
non-negative vectorc on C the union of descendant communicating classes figrand 0 elsewhere. Now, note that for
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;92 ( X)XA | we have

kT T %

= kP P K
0 1,

X X
= 2 c(xa)@  P(x%xa) (@9 (x9x%a%  AxGx%a’9)A

x:ax 0 Xxoo;aoo

2 c(xa) P(xTxa) (%% (xGx%a%  A(xGx%a%))?

63;)(0 X 00:500 1

2@ X . X . 0 ca)) 2 X . X . 0 < a))2A
cxa) ((xX9xa)  AxIxa)?+ cxa) ( (xIxa)  Wxixa)
(x;a)2C X0 (x;a)2C x0

Sk 9%+ % 92

[

The intuition here is that if %onC, then we have a contraction-like bound for as measured by . From this, we

obtain the bound

1 2
2

2
k kkzc + ?k K k2 :

C

h « Tk ki
De ning an alternative Lyapunov function by
X
L.()= c(x;a)KL( (ixa)j ()(ixa));
xX;a
a similar calculation to the above gives

) 1 2 2
EL () iFil LoC) sk Wk + gk K+ EK:

P
The inductive hypothesis leads to|1:O " =k k2C < 1 , and so de ning the modi ed sequence

K 1 K1 1 2
I:kc =L c( ) "|2K + "|?k I kzc + "l 5 k |k2c ;
1=0 1=0

N

P 2
the same Robbins-Siegmund argument yields(tiigt )« o is a convergent supermartingale, and henrfgo " 1Tk

|k2C < 1, asrequired to complete the induction, and hence the proof. O
C.1. Examples of cross-entropy TD learning

Figure 8 shows an example visualisation of the synchronous CETD algorithm in the case of a randomly-generated three-state,
one-action MDP. The transition matrix and initial distributionsused to generated these plots are

0 1 0 1
0:297492728 (¥02444212 ®MOO063060 2:3634686 113534535  1:01701414

P = @0:584810131 (57810252 @5737961A ; = @ 0:63736181  0:85990661 177260763A ;
0:181511854 (B73368720 45119427 1:11036305 18121427 66434487

where as the MDP has a single action, we speRifys a state-by-state transition matrix, and similagyis presented a
state-by-state matrix, with each row corresponding to the logits of a single estimated future state-visitation distribution.
Further, we take = 0:9, and the learning rate schedule used Was 0:75(k +1) 6. In all plots presented in this
section, we subsample the trajectories generated by a factor of 10 to make trajectories easier to visually inspect.

We also provide a further illustration of CETD below, in the case where the targiés on the boundary of X)*A |, by
modifying the transition matri above to have a transient rst state. Speci cally, we set

0 1
0:765830909 (234148071 M00021020

p=@ 0 0:620945430 (B79054576 :
0 0:456168756 (543831244






