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Abstract
We introduce a method for policy improvement
that interpolates between the greedy approach of
value-based reinforcement learning (RL) and the
full planning approach typical of model-based
RL. The new method builds on the concept of a
geometric horizon model (GHM, also known as
a γ-model), which models the discounted state-
visitation distribution of a given policy. We show
that we can evaluate any non-Markov policy that
switches between a set of base Markov policies
with fixed probability by a careful composition
of the base policy GHMs, without any additional
learning. We can then apply generalised policy
improvement (GPI) to collections of such non-
Markov policies to obtain a new Markov policy
that will in general outperform its precursors. We
provide a thorough theoretical analysis of this
approach, develop applications to transfer and
standard RL, and empirically demonstrate its ef-
fectiveness over standard GPI on a challenging
deep RL continuous control task. We also provide
an analysis of GHM training methods, proving
a novel convergence result regarding previously
proposed methods and showing how to train these
models stably in deep RL settings.

1. Introduction
Policy improvement is at the heart of reinforcement learning
(RL). The prototypical approach to policy improvement in
value-based RL is to take the Q-function of a policy and
act greedily with respect to it. In contrast, in model-based
RL, planning with a model in principle aims to derive a
(near-)optimal policy directly. Choosing between these two
extremes involves some trade-offs. While greedy improve-
ment requires estimating only a Q-function, from which it is
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Figure 1. A spectrum of trade-offs in policy improvement. Barreto
et al. (2017) propose generalised policy improvement (GPI) as a
means of simultaneously improving over several policies (illus-
trated with blue and red trajectories), a step from greedy improve-
ment of a single policy towards planning. The central contribution
of this paper, GPI with geometric switching policies, moves a
step further in this direction, allowing for improvement over non-
Markov GSPs (illustrated as trajectories that switch between blue
and red base policies).

computationally trivial to derive the greedy policy, this may
result in only a weak improvement over the existing policy.
Planning, on the other hand, is a computationally intensive
process, yet can yield extremely high-quality policies. In
this paper, we introduce an approach to policy improvement
that interpolates between these two extremes.

Barreto et al. (2017) propose generalised policy improve-
ment (GPI), a method that allows for improvement over a
collection of policies {π1, . . . , πk} simultaneously, gener-
alising the notion of greedy improvement of an individual
policy. We show that GPI can be extended to a much wider
class of non-Markov policies. These policies, which we call
geometric switching policies (GSPs), switch between exe-
cuting a base set of Markov policies {π1, . . . , πk}with fixed
probability. In general, these policies do not ever need to be
executed, and can instead be evaluated using information
learnt about the base policies, without any further learning
required, leading to a stronger improvement guarantee in
GPI. This approach to policy improvement makes statisti-
cal and computational trade-offs that interpolate between
greedy improvement and full model-based planning, poten-
tially providing benefits of both worlds; Figure 1 shows
where the proposed approach lies along the spectrum of
methods between the conventional model-free and model-
based extremes.



Generalised Policy Improvement with Geometric Policy Composition

Central to our approach is the notion of a geometric horizon
model (GHM) (Janner et al., 2020), which models the dis-
counted future state-visitation distribution of a given Markov
policy. Janner et al. (2020) introduced GHMs mainly as a
mechanism to compute the value function of a single policy.
In this paper we show that GHMs of distinct policies can be
composed to evaluate a potentially large number of GSPs
with no additional learning required. We can then apply
GPI over this collection of non-Markov policies to obtain a
new Markov policy that will in general outperform all of its
precursors (base policies and switching policies).

In carrying out the above, we address several technical ques-
tions which are contributions in their own right. Specifically,
our central technical contributions include:
• GSP evaluation with GHMs, a method for evaluating

geometric switching policies that only requires learning
GHMs for a base class of Markov policies (Section 3).

• Geometric generalised policy improvement (GGPI), a
method for deriving a Markov policy that improves over
a collection of geometric switching policies, interpolat-
ing between greedy improvement and full model-based
planning (Section 4).

• Convergence analysis of cross-entropy temporal-
difference learning, an algorithm introduced by Janner
et al. (2020) for learning GHMs (Section 6).

• New practical methods and insights for training GHMs
at scale, including cross-entropy temporal-difference
learning with VAE-GHMs (Section 7).

• Applications of GHM evaluation and GGPI to both trans-
fer and standard RL settings (Section 5), with successful
implementation in combination with deep learning in
continuous control tasks (Section 7).

2. Background
A Markov decision process (MDP) is specified by a state
space X , action space A, transition probabilities P : X ×
A → P(X ), reward distributions R : X × A → P1(R),
and corresponding expected reward function r : X ×A →
R, defined by r(x, a) = ER∼R(x,a)[R]. For ease of pre-
sentation, we focus on the case where X is finite, although
much of the material of the paper extends to more general
state spaces. An agent interacting with the environment
using a policy π : X → P(A) generates a trajectory of
states, actions, and rewards (Xt, At, Rt)t≥0, and the agent’s
return along this trajectory is defined by

∑
t≥0 γ

tRt, where
γ ∈ [0, 1) is the discount factor. The agent’s expected re-
turn under π when beginning in state x and initially taking
action a is Qπγ (x, a) = Eπx,a[

∑
t≥0 γ

tRt], where Eπx,a and
Pπx,a denote the expectation operator and probability distri-
bution of a trajectory beginning at state-action pair (x, a)
and following π thereafter. The goal of policy evaluation is
to estimate Qπγ for a policy π of interest, while the goal of

policy optimisation is to obtain a policy π∗ with Qπ
∗

γ ≥ Qπγ
component-wise for all other policies π ∈ P(A)X (Sut-
ton & Barto, 2018; Puterman, 2014; Bertsekas & Tsitsiklis,
1996; Szepesvári, 2010; Meyn, 2022). A fundamental opera-
tion in this process is policy improvement, described below.

2.1. Generalised policy improvement

We first recall a core method for policy improvement in RL.

Greedy policy improvement. The greedy policy improve-
ment map G : RX×A ⇒ P(A)X is a set-valued function
that maps Q-functions to the corresponding set of greedy
policies. Mathematically, we have π′ ∈ G(Q) if and only if

π′(a|x) > 0 =⇒ a ∈ arg max
a′∈A

Q(x, a′) .

We will overload notation to allow us to pass policies di-
rectly to G, writing G(π) for G(Qπ). A classical result
underpinning policy iteration is that if π′ ∈ G(π), then
Qπ
′ ≥ Qπ element-wise, with equality iff π is optimal.

Barreto et al. (2017) propose generalised policy improve-
ment, which provides a means of producing a policy that
simultaneously improves over a set of base policies.

Generalised policy improvement. The generalised pol-
icy improvement (GPI) function G (overloading notation)
takes as input a finite set of Q-functions {Q1, . . . , Qn}, and
returns G({Q1, . . . , Qn}), the set of greedy policies with
respect to this set, defined by π′ ∈ G({Q1, . . . , Qn}) if and
only if

π′(a|x) > 0 =⇒ a ∈ arg max
a′∈A

n
max
i=1

Qi(x, a
′) . (1)

Proposition 2.1 (Barreto et al. 2017). If π′ ∈
G({Qπ1 , . . . Qπn}), then Qπ

′ ≥ maxni=1Q
πi element-

wise, and equality implies that π′ is optimal.

2.2. Discounted visitation distributions and geometric
horizon models

We begin by recalling a key concept in MDPs.

Definition 2.2. The collection of discounted future state-
visitation distributions 1 µπγ for a policy π and discount
factor γ are indexed by initial state-action pairs (x0, a0) ∈
X ×A, and are defined by

µπγ (x|x0, a0) = (1− γ)

∞∑
k=0

γkPπx0,a0(Xk+1 = x) ,

A useful interpretation of these distributions is the following.

1We refer specifically to future state-visitation distributions
to emphasise that the initial state x0 does not contribute to the
distribution.
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Proposition 2.3. If T ∼ Geometric(1− γ), i.e.

P(T = k) = γk−1(1− γ) for k = 1, 2, . . . ,

and is independent of the random trajectory (Xt, At, Rt)t≥0

generated by π beginning at state-action pair (x, a), then
the random state XT is distributed according to µπγ (·|x, a).

This can also be used as a means of defining GHMs over
more general state spaces X . Janner et al. (2020) introduce
γ-models as generative models of these distributions (in
this paper, we will call these objects geometric horizon
models (GHMs)), and propose to use these models for policy
evaluation. The approach is based on well-known identities
such as the following (Toussaint & Storkey, 2005; 2006).

Proposition 2.4. For any policy π ∈P(A)X , we have

Qπγ (x, a) = r(x, a) +
γ

1− γ
EX′∼µπγ (·|x,a)[r

π(X ′)] , (2)

where rπ(x) =
∑
a∈A r(x, a)π(a|x).

This result then naturally suggests a Monte Carlo estimator
that can be used for policy evaluation, given a generative
model of the distribution µπγ (·|x, a), and the reward function

r. Specifically, if X ′1, . . . , X
′
n

i.i.d.∼ µπγ (·|x, a), then

r(x, a) +
1

n

n∑
i=1

γ

1− γ
rπ(X ′i) (3)

is an unbiased estimator for Qπγ (x, a).

Note that this expression requires access to the reward func-
tion r. This function is known in many applications—often
in robotics, for example—and when this is not the case it
can be learned as a supervised learning problem. Through-
out the paper we will assume that r is either given or has
been learned. Note that Janner et al. (2020) implicitly use a
reward function that depends solely on the destination state
x′ of the transition, leading to slightly different, less general
expressions than those above.

2.3. Composing geometric horizon models for
evaluation of Markov policies

As Janner et al. (2020) note, a potential disadvantage of
using the identity in Equation (2) as the basis for policy
evaluation is that it requires learning the object µπγ . When
γ ≈ 1, this distribution corresponds to predictions over
long time-scales, and is therefore often more difficult to
learn than more local predictions. A central observation
of Janner et al. (2020) is that expressions such as those in
Equation (2) can be re-expressed using a geometric horizon
model corresponding to a smaller discount factor, β < γ,
and composing this model with itself.

Proposition 2.5. (Janner et al. (2020)) For any policy π ∈
P(A)X , n ≥ 1, and 0 ≤ β < γ an unbiased estimator of
Qπγ (x, a) is given by

r(x, a) +
γ

1− γ
× (4)[

n−1∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1

rπ(X(m))+

(
γ − β
1− β

)n−1

rπ(X ′)

]
,

where X(m) ∼ µπβ(·|X(m91), A(m91)), A(m) ∼ π(·|X(m)),
(X(0), A(0)) = (x, a), and X ′ ∼ µπγ (·|X(n91), A(n91)).

According to Proposition 2.5, we can estimate Qπγ (x, a)
by sampling the collection of random variables
(X(0), A(0), X(1), . . . , X(n−1), A(n−1), X ′) in the
proposition, summarised below:

X(0) X(1) X(2) · · · X(n−1) X ′

A(0) A(1) A(2) A(n−1)

µπβ µπβ
π

µπβ
π

µπβ µπγ
π

and then constructing the estimator in Equation (4), which
the proposition guarantees to be unbiased for Qπγ (x, a); in-
dependent estimators can be averaged in the usual manner
to reduce variance.

The value of β impacts both the mechanics of the process
above and the learning of the GHM µπβ itself. One ex-
treme, β = γ, reverts to the single-sample estimator in
Equation (3). The other extreme, β = 0, corresponds to es-
timating the Q-function using a single-step transition model
In the first case, predictions are made over potentially long
horizons, which alleviates the risk of compounding errors
while estimating Qπγ . On the other hand, learning the GHM
itself becomes more difficult—if we use bootstrapping to
do so, as we will discuss shortly, errors might compound
when learning µπβ . When β = 0 we observe the opposite
trend. In practice, we expect an intermediate value of β to
offer superior performance to the extremes of 0 and γ, since
this will trade off errors incurred during the learning of the
GHM and the estimation of the Q-function (Janner et al.,
2020). The parameter n offers a trade-off between requiring
more compositions of µπβ , and placing a higher weight on
samples from the higher-discount, harder-to-train GHM µπγ .

3. Composing models for non-Markov policy
evaluation

Our first contribution is to extend the estimator appearing
in Equation (4) by modifying the distribution of the random
variables (X(0), A(0), . . . , X(n−1), A(n−1), X ′) in Proposi-
tion 2.5, composing GHMs for distinct policies together.
More precisely, let (π1, . . . , πn) be a sequence of policies,
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(x, a) an initial state action pair, and consider the distribu-
tion over state sequences specified by

x0 X(1) X(2) · · · X(n−1) X ′

a0 A(1) A(2) A(n−1)

µ
π1
β µ

π2
β

π2

µ
π3
β

π3

µ
πn−1
β

µπnγ
πn

If we form an expression analogous to Equation (4):

r(x) +
γ

1− γ
× (5)[

n−1∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1

r̄(X(m)) +

(
γ − β
1− β

)n−1

r̄(X ′)

]
for some suitable reward function r̄, then following the
intuition above, we should be able to interpret Expression (5)
as unbiasedly estimating the value of a (non-Markov) policy
that begins each trajectory by following π1, before switching
to each of π2, . . . , πn91, and eventually following πn for the
remainder of the episode. We first formalise this notion of
behaviour, and then show that this intuition is correct.
Definition 3.1. Given a sequence (π1, . . . , πn) of (station-
ary Markov) policies and a switching probability α ∈ (0, 1],
the corresponding geometric switching policy (GSP) ν is
a non-Markov policy defined as follows. At the begin-
ning of the episode, the Markov policy π1 is followed for
T1 ∼ Geometric(α) steps, at which point a switch is made
to the Markov policy π2. Once a switch from πi to πi+1

is made, πi+1 is followed for Ti+1 ∼ Geometric(α) steps,
at which point the next switching event occurs. Once πn
has been selected, it is followed for the remainder of the
episode. We write π1

α→ · · · α→ πn to concisely refer to the
GSP ν. We define Qνγ : X ×A → R for a GSP ν by

Qνγ(x, a) = Eνx,a
[ ∞∑
t=0

γtRt

]
;

precisely, the expectation on the right-hand side is over
trajectories beginning at x, with actions generated by ν,
with the first action overridden to be a.

We now show that the value of GSPs can be expressed as
expectations of expressions such as that in Equation (5).

Theorem 3.2. Consider an MDP with reward function
r : X → R and let ν = π1

α→ · · · α→ πn. With
β = γ(1−α), the following is unbiased for Qνγ(x, a):

r(x) +
γ

1− γ
× (6)[

n−1∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1

r(X(m))+

(
γ − β
1− β

)n−1

r(X ′)

]
,

where (X(0), A(0)) = (x, a), X(m) ∼

µπmβ (·|X(m91), A(m91)), A(m) ∼ πm+1(·|X(m)),
X ′ ∼ µπnγ (·|X(n−1), A(n−1)).

We state the result in the case where the reward depends only
on state for conciseness here; the slightly more complex
formula that incorporates action dependence is given in
Appendix F. The key insight is therefore that we can get an
unbiased estimate of the Q-function Qνγ associated with a
geometric switching policy ν = π1

α→ · · · α→ πn just using
the models µπiβ (i = 1, . . . , n − 1) and µπnγ for the base
policies. In particular, if we learn these models to evaluate
the base policies, we can evaluate all GSPs arising from
these base policies without any additional learning.

4. Generalised policy improvement with
geometric switching policies

The ability to evaluate a large number of GSPs without
additional learning opens up the possibility of using GPI
to improve upon all these policies at once. Having estab-
lished how to evaluate GSPs using GHMs for Markov base
policies, the main contribution of this section is to extend
GPI to allow for the inclusion of GSPs into the improve-
ment set. Algorithmically, this is straightforward; the same
definition in Equation (1) can be immediately applied to
the Q-functions of geometric switching policies. Note that
when applying GPI to the Q-functions of non-Markov GSPs,
the returned greedy policies are still Markov; this desirable
property allows us to embed the proposed approach into the
usual RL loop for policy iteration, as discussed below.

What is not immediately clear is whether an improvement
guarantee analogous to Proposition 2.1 still applies when
using the Q-functions of geometric switching policies. It
turns out, under certain conditions, we can recover such a
result. To do so, we need a certain notion of ‘closedness’
amongst the policies to be improved upon.

Definition 4.1. A collection Π of GSPs is suffix-closed if
whenever n > 1 and π1

α→ · · · α→ πn lies in Π, the suffix
policy π2

α→ · · · α→ πn also lies in Π.

Theorem 4.2. Consider a suffix-closed collection of
GSPs Π. Then if π′ ∈ G(Π), we have

Qπ
′

γ (x, a) ≥ max
ν∈Π

Qνγ(x, a) , for all (x, a) ∈ X ×A .

Further, if equality holds for all state-action pairs, then
π′ is optimal.

We refer to the procedure of computing π′ ∈ G(Π) for a
set of GSPs Π as geometric generalised policy improve-
ment (GGPI). A rigorous proof of Theorem 4.2 is given
in Appendix B, but for some intuition for the suffix-closed
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Figure 2. Left: A rollout of an example GSP ν = π1
α→ π2

α→ π3 in the environment, and the GHM sampling procedure that can be
used to unbiasedly estimate the value of this policy via Equation (6). Right: The GGPI framework. Using the GHM sampling procedure,
the action-values of ν and other GSPs are estimated, and fed into the GPI routine to obtain an improved policy π′.

condition, consider the two possibilities after a single step
of executing ν = π1

α→ · · · α→ πn: either the first switch
has not occurred (in which case it is as though we execute
ν from scratch from the next time step), or the switch has
occurred, in which case it is as though we execute the suffix
policy ν′ = π2

α→ · · · α→ πn from the next time step. In
fact, this observation yields a Bellman equation

Qνγ(x, a) = r(x, a)+

γEX′∼P (·|x,a)
A1∼π1(·|X′)
A2∼π2(·|X′)

[(1− α)Qνγ(X ′, A1) + αQν
′

γ (X ′, A2)] .

Thus, the suffix-closedness condition is a way of ensuring
we can reason about both of these possibilities within the
GGPI process. Perhaps surprisingly, the suffix-closedness
condition in Theorem 4.2 really is necessary; some care
needs to be taken when applying the ideas associated with
GPI to non-Markov policies. A counterexample when the
closure condition is removed is provided in Appendix D.1,
along with several other examples.

In summary, GHM policy evaluation and GGPI allow us
to derive Markov policies that improve over a wide range
of GSPs, while only requiring learnt GHMs for the base
Markov policies under consideration; see Figure 2.

5. Applications: transfer and policy iteration
We now detail two central applications of GHM evaluation
and GGPI to reinforcement learning.

5.1. Transfer and zero-shot learning

In the transfer setting, we have a collection of known poli-
cies π1, . . . , πk, and a reward function r for which we wish
to find a good policy. The policies π1:k may have been
obtained in a variety of ways: learnt by maximising other
reward signals, exploration objectives, from imitation learn-
ing, etc. The reward function r is assumed to either be
known (as is common in many robotics applications, for
example), or learnt from data.

One simple approach to implementing GPI is to learn GHMs
(µπiγ )ki=1, and use these in combination with the given re-
ward function r to estimate Qπ1 , . . . , Qπk , and perform
generalised policy improvement over these Q-functions, as
justified by Proposition 2.1.

With the concepts introduced above, we can improve on
this by additionally learning GHMs (µπiβ )ki=1, composing
these to evaluate a collection of GSPs, and then using the
GGPI procedure to improve over all such switching poli-
cies. A pseudocode summary of the approach is provided
in Appendix D.3. Given a base set Π = {π1, . . . , πk} of
Markov policies and a switching probability, we can de-
fine a variety of different sets of GSPs. A natural choice
to consider, which we adopt in the experiments, is the set
of depth-m compositions, Πm = {π(1) α→ · · · α→ π(m) :
π(1), . . . , π(m) ∈ Π}, consisting of all GSPs that switch be-
tween exactly m (not necessarily distinct) base policies. We
refer to GGPI on Πm as depth-m GGPI. The following re-
sult shows that GGPI over Πm guarantees an improvement,
thanks to Theorem 4.2.

Proposition 5.1. Πm is suffix-closed.

Example 5.2. Figure 3 illustrates an example experiment in
the four-rooms environment (Sutton et al., 1999), with a sin-
gle positive reward at the top-right-most cell, and γ = 0.9.
We consider four base policies πL, πD, πR, πU that always
take the action left/down/right/up in each cell. GHMs are
calculated for these policies with discounts γ and β = 0.8.
By using GGPI over GSPs that make switches between
these basic policies, the optimal policy can be recovered in
almost all states of the environment, without any additional
learning. Figure 3 illustrates in which states the optimal
policy can be computed when using GPI over the four base
policies (left), depth-2 GGPI (centre), and depth-3 GGPI
(right). Depth-3 GGPI is able to compute the optimal action
in the vast majority of environment states.
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Figure 3. An illustration of the GGPI method on the four-rooms
environment, with goal state indicated in dark blue. The plots
illustrate which states (highlighted in light blue) each planning
method is able to compute the optimal action for: GPI (left), depth-
2 GGPI (centre), and depth-3 GGPI (right).

5.2. Policy iteration

Policy iteration is a classical dynamic programming algo-
rithm that computes a sequence of policies (πk)k≥0 through
an iterative process of evaluation and greedy improvement,
i.e. πk ∈ G(Qπk91), which is guaranteed to reach the opti-
mal policy in a finite number of iterations (for environments
with finite state space). A natural question is whether we
can use GPI to speed up this iterative process, by leveraging
policies from previous iterations to compute even stronger
improved policies, e.g. πk ∈ G(π0:k91). Unfortunately,
when using standard GPI the answer to this question is “no”;
since Qπk−1 ≥ Qπl for l < k − 1, GPI over π0:k91 reduces
to standard policy improvement over πk−1.

However, using GGPI may enable leveraging policies from
older iterations to make larger improvement steps and con-
verge to π∗ more quickly, for example performing GGPI
over all depth-m compositions over the set of previous poli-
cies {π0, . . . πk−1}. This has the advantage that any useful
behaviour encoded by a prior policy that gets prematurely
overwritten by subsequent iterations can still be leveraged
to make larger improvement steps. Appendix D.2 contains
algorithm pseudocode for applying GGPI to policy iteration,
as well as an illustrative example.

Example 5.3. In Figure 4 we demonstrate the advantage
of using GGPI for policy iteration in the classic four-rooms
environment. The number of improvement steps decreases
with the GGPI depth, indicating that the GGPI improvement
step is able to compute stronger improved policies the more
past knowledge it is allowed to leverage. Note however
that although higher depths require fewer iterations, each
improvement step is more computationally intensive for
higher-depth GGPI; in this instance, depth-2 GGPI obtains
the optimal trade-off between computational burden and
strength of policy improvement, finding the optimal pol-
icy with the lowest total number of GHM samples. Here
we solve the problem for a discount factor of γ = 0.95,
switching probability α = 0.1, compute perfect GHMs
obtained using knowledge of the true environment dynam-
ics, and evaluate each GSP ν using 1000 samples from the
composed GHM µνγ .
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Figure 4. Comparison of GGPI with various planning depths ap-
plied to policy iteration on the standard 4-rooms domain, starting
from a random policy. Left: Total number of iterations of policy
iteration required; Right: Total number of GHM samples required,
as a proxy to total computation performed. Error bars show boot-
strapped 95% confidence intervals over 100 seeds.

6. Learning geometric horizon models
To use geometric horizon models for value estimation in
practice, an important question is how to learn such models
in the first place. An instructive starting point is to consider
supervised learning with samples from µπβ (obtained by sam-
pling XT with T ∼ Geometric(1− β) by interacting with
the environment using π, for example). The canonical cross-
entropy loss can then be used to train a GHM µ, leading to
the cross-entropy Monte Carlo (CEMC) loss:

EX′∼µπβ(·|x,a)[− logµ(X ′|x, a)] . (7)

As with Monte Carlo learning in value-based RL, this ap-
proach is typically difficult to apply with off-policy data,
incurring either bias, or potentially high variance updates
from off-policy corrections (Precup et al., 2000). An alter-
native approach can be motivated by the observation that µπβ
satisfies a Bellman equation involving composed models.

Definition 6.1 (Composed geometric horizon models).
Given two GHMs µ1, µ2 ∈ P(X )X×A, and a policy
π ∈P(A)X , the composed model µ2⊗π µ1 ∈P(X )X×A

is the distribution of the random variable X(2), defined by
• X(1) ∼ µ1(·|x, a),
• A(1) | X(1) ∼ π(·|X(1)),
• X(2) | (X(1), A(1)) ∼ µ2(·|X(1), A(1)),

The distributions satisfy the relationship

(µ2⊗πµ1)(y|x, a)=
∑
x′,a′

µ1(x′|x, a)π(a′|x′)µ2(y|x′, a′) .

Proposition 6.2. Defining the Bellman operator Tπβ :

P(X )X×A →P(X )X×A by

(Tπβ µ)(x′|x, a)=(1−β)P (x′|x, a)+β(µ⊗πP )(x′|x, a) ,

then µπβ is the unique solution to µ = Tπβ µ.

This motivates a loss in which the Monte Carlo target in
Equation (7) is replaced by the ‘bootstrapped’ distribu-
tion Tπβ µ, leading to the cross-entropy temporal-difference
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(CETD) loss, briefly mentioned by Janner et al. (2020):

EX′∼(Tπβ µ̄)(·|x,a)[− logµ(X ′|x, a)] , (8)

where µ̄ denotes a stop-gradient on µ. Intuitively,
(Tπβ µ)(·|x, a) is the distribution obtained by sampling a
next state x̃ from P (·|x, a), independently deciding whether
to stop (with probability 1 − β) and output this state, or
to sample an action ã ∼ π(·|x̃) and instead return a sam-
ple from µ(·|x̃, ã). This also describes a method by which
sample-based approximations to Equation (8) can be de-
rived, leading to an algorithm that can be used at scale.

However, while sample-based minimisation of Equation (7)
can be understood through stochastic gradient descent and
convex optimisation theory, it is less clear that following
sample-based gradients of the CETD loss in Equation (8)
will lead to µπβ , due to the presence of bootstrapping. Next,
we show that, under certain conditions, convergence to µπβ
can be guaranteed, and additionally we show how the CETD
loss can be applied at scale. Note that the prior approach
to training GHMs at scale proposed by Janner et al. (2020)
instead focused on a biased L2 loss between log-densities;
we show that CETD typically outperforms this approach in
Appendix E.4, and note that it has the further advantage of
not requiring access to single-step transition densities.

6.1. Convergence analysis of CETD

Consider a finite state space X , and a tabular parametri-
sation of each distribution µ(·|x, a) by a vector of logits
φ(x, a) ∈ RX , so that µ(·|x, a) = softmax(φ(x, a)). We
show that with this parametrisation convergence to µπβ is ob-
tained following CETD updates under mild conditions. To
describe the precise algorithm we study, let φ0 ∈ RX×A×X
be the initial values of the logits in the parametrisation de-
scribed above. We then consider generating a sequence of
logits (φk)k≥0 and corresponding distributions (µk)k≥0 by
iteratively applying synchronous CETD updates; at algo-
rithm time k, for each state-action pair (x, a), we observe a
transition (x, a, x′) and perform the update:

φk+1(x, a) = φk(x, a) + εk

(
(T̂πµk)(x, a)− µk(·|x, a)︸ ︷︷ ︸

stochastic cross-entropy gradient

)
,

with (T̂πµk)(x, a) = (1− γ)ex′ + γex′′ , (9)

where x′′ is generated by sampling a′ ∼ π(·|x′) and x′′ ∼
µk(·|x′, a′), and where ey ∈ RX is the one-hot vector at
state y. Here, (εk)∞k=0 is a sequence of step sizes.

Theorem 6.3. The CETD algorithm specified by the
updates in Equation (9) produces sequences of distri-
butions (µk)k≥0 such that µk(·|x, a)→ µπγ (·|x, a) for
all (x, a), as long as

∑
k≥0 εk =∞ ,

∑
k≥0 ε

2
k <∞.

The proof, relying on a discrete Lyapunov argument based
on the Robbins-Siegmund theorem (Robbins & Siegmund,
1971), is in Appendix C with several illustrative examples.

6.2. Learning VAE-GHMs with CETD updates

We propose a novel scalable means of learning GHMs µπβ
with VAEs (Kingma & Welling, 2014; Rezende et al., 2014)
based on the CETD loss, and emphasise that these meth-
ods also apply equally well to learning GHM densities for
MDPs with continuous state spaces, as is often of interest
in deep RL. Specifically, we use a conditional VAE archi-
tecture µθ(·|x, a, z) (Sohn et al., 2015) with latent variable
z, and approximate posterior qψ(z|x, a,X ′). The CETD
loss is then the negative log-marginal likelihood of the train-
ing state under the VAE model, leading to the following
evidence lower-bound (ELBO) on the negative CETD loss:

EX′∼(Tπβ µ̄θ)(·|x,a)

[
Ez∼qψ(·|x,a,X′)

[
log
(µθ(X′|x,a,z)
qψ(z|x,a,X′)

)]]
which is then jointly optimised over θ and ψ via stochastic
gradient descent with the reparametrisation trick (Kingma
& Welling, 2014). Using VAEs offers several advantages,
such as allowing low latent dimensionality in non-stochastic
environments, and connection to the theoretically-justified
CETD loss; see Section 7 for further commentary.

7. Deep reinforcement learning experiments
To understand how GSP evaluation using GHMs and GGPI
perform at scale, we test them on a deep RL transfer task.
Full details and further results are given in Appendix E.

Environment details. We consider a continuous control
task inspired from the moving-target arena in Barreto et al.
(2019), which we call sparse-reward ant. The agent is a
quadrupedal “ant”, and the environment observation is a
35-dimensional representation of the agent state, including
position, velocity, and joint angles. The agent interacts
with the environment via an 8-dimensional action space
controlling the torque applied to its various joints. At the
beginning of each episode, the agent’s is initialised at rest at
a location sampled from a uniform distribution over a square
centred at the origin, and a target location is sampled from
a smaller region surrounding the agent’s initialisation (see
Appendix E.1 for details). The reward is 1 for transitions
that terminate in a region around the target and 0 elsewhere.

Experiment setup. Similar to Barreto et al. (2019), we first
pretrain four base policies Π = {πup, πdown, πleft, πright} that
aim to move along each of the 4 directions. The policies are
stochastic and implemented as a 2-layer MLP outputting
the mean/variance of a Gaussian torque to be applied at
each of the ant’s 8 joints. These policies are pretrained
using Abdolmaleki et al.’s (2018) MPO with the reward
calculated based on the component of the ant’s velocity in
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the desired direction.

Next, we train GHMs for the base policies using the ap-
proach described in Section 6.2. The model is implemented
as a standard conditional β-VAE (Higgins et al., 2016; Sohn
et al., 2015) with a single latent dimension, as this is suffi-
cient to model the probabilistic horizon in the deterministic
environment. We train these GHMs from transitions us-
ing the CETD bound described in Section 6.2, for GHM β
values of 0.8 and 0.9, and consider the task with discount
factor γ = 0.9. This corresponds to performing GGPI for
GSPs for a switching probability of α = 1/9. Further de-
tails, observations, and recommendations are provided in
Appendix E; for example, we found off-policy training of
GHMs important to obtain sufficient state coverage.

Once the GHMs have been learned, the agent is evaluated
on new episodes without additional learning. In each test
episode, the agent must plan to optimise for a new revealed
reward function r associated with the randomly-generated
target region, leveraging the learnt GHMs for the set of base
policies Π above. We consider two approaches: (i) GPI
(Barreto et al., 2017) on Π using GHM evaluation (Janner
et al., 2020), a natural baseline for this task (equivalent to
depth-1 GGPI), and (ii) depth-2 GGPI (Section 5.1).

2 20 40 60 80 100
Number of samples

40

60

80

100

Pe
rc

en
ta

ge
 S

ol
ve

d

GPI
Depth-2 GGPI

0 2.5e5  5e5
Learner steps

0.7

0.8

0.9

1.0

1.1

1.2

Fu
tu

re
 st

at
e

ne
ga

tiv
e 

EL
BO

CEMC
CETD (target net)
CETD (no target net)

Figure 5. Left: Comparing GGPI at different depths m in terms
of total episodes succeeded, for various sampling budgets. Agents
are evaluated across 5 random seeds for GHM training and 100
test episodes with bootstrapped 90% confidence intervals. Right:
Comparison of GHMs trained using various losses measured in
terms of negative ELBO (lower is better) of samples from the true
future state visitation distribution obtained by sampling states from
on-policy trajectories, averaged over 5 random seeds.

Results. Figure 5 (left) shows the proportion of test
episodes successfully solved by GPI and by depth-2 GGPI,
varying the sample budget nsamples used to estimate each
Q-value. We see that depth-2 GGPI outperforms GPI for
nsamples ≥ 2, eventually reaching a success rate close to
100%. In Table 1 we take a finer-grained look at the re-
sults when using 100 samples. We see that standard GPI
manages to solve the task roughly 50% of the time, while
depth-2 GGPI (where the agent is able to model changing
directions) not only solves almost all the remaining goal
locations but also almost always solves the task faster than

standard GPI when both are capable of reaching the goal.
Agent behaviour is visualised in Figure 6 and Appendix E.2.

Table 1. Results of comparing agent performance for GPI and
depth-2 GGPI on the sparse-reward ant environment. Agents
are evaluated across 5 random seeds for GHM training and 100
random environment and target initialisations.

Case Frequency

Depth-2 GGPI succeeds, GPI fails 50.8± 5.7
Both succeed, depth-2 GGPI is faster 45.0± 7.0
Both fail 1.0± 0.9
Both succeed but GPI is faster 2.8± 1.2
GPI succeeds, depth-2 GGPI fails 0.4± 0.8

Figure 6. Visualisation of an agent performing GPI (top) and depth-
2 GGPI (bottom) for the same test episode. GHM samples for use
in GGPI at the first episode time step are shown on the left, while
the entire episode trajectory coloured on a gradient from blue to
red with time is shown on the right. We show the ant centre of
mass, target, and reward signal boundary.

GHM training experiments. GHM training is an impor-
tant component of the deep RL results above. We found
combining VAEs with the CETD loss to work particularly
well; Figure 5 (right) shows negative ELBO loss curves for
the VAE-GHM of the policy πright on the sparse-reward ant
domain, with β = 0.8. The loss is similar to that of a VAE-
GHM trained via supervised learning with the CEMC loss
from Equation (7), and we found target networks unneces-
sary for stable training. We show in Appendix E.4 that this
combination of VAEs with the CETD loss is remarkably sta-
ble compared to normalising flows using either CETD or the
log-L2 loss previously considered. Appendix E.3 compares
GHMs with multi-step compositions of VAEs modelling
single-step transitions, showing that the latter incur large
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errors and thus are unsuitable for long-horizon planning.
Finally, in Appendix E.5 we examine the performance of
GGPI when using GHMs trained with varying sampling
budgets, showing that even GHMs trained for only a few
thousand steps whose loss has not yet converged are still
useful and result in a strong improved policy.

8. Related work
This paper relates to a number of different areas in reinforce-
ment learning; we describe the most closely related works
below, with additional discussion in Appendix A.

In addition to the work of Janner et al. (2020) described
above, there are several recent contributions studying the
task of large-scale learning of discounted visitation distribu-
tions and related objects. Blier et al. (2021) propose several
TD-based methods for learning parametric representations,
including an approach based on low-rank approximations.
Building on this work, Touati & Ollivier (2021) propose a
compact representation of an MDP that in principle allows
for the optimal policy associated with any reward function
to be computed without planning, in practice relying on a
low-dimensional approximation of the visitation distribu-
tions. Eysenbach et al. (2021) propose a classification-based
approach based on contrastive learning; these works also
note a close connection with the domain of goal-conditioned
RL (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz
et al., 2017; Pong et al., 2018). These ideas go back to the
successor representation (SR), introduced in the context
of representation learning in finite-state MDPs by Dayan
(1993), who also proposed a TD method for learning the
SR; this has also been explored in combination with deep
learning (Kulkarni et al., 2016b; Fujimoto et al., 2021).

Relatedly, modelling discounted visitation distributions for
evaluation was proposed by Sutton (1995), who termed such
objects β-models. These models were generalised by Pre-
cup et al. (1998a), who proposed multi-time models, which
encompass both β-models and n-step models as special
cases. More generally, there is a long-established practice
of learning option models (Sutton et al., 1999; Precup et al.,
1998b; Precup, 2000), and using such models in a composi-
tional manner (Silver & Ciosek, 2012). A central difference
between these option models and this work is that the use of
geometric switching times (or, in the language of options,
constant termination probabilities) means we do not need
to model accumulated return or the taken executing each
base policy, making applications to transfer possible. In this
regard, the approach of this paper may be viewed as a gener-
ative approach to learning a certain class of universal option
models (Yao et al., 2014), which also disentangle reward
and transition structure; constant termination probabilities
facilitate sample-based composition of such models.

Our application to transfer learning in RL is motivated by
successor features and generalised policy improvement, in-
troduced by Barreto et al. (2017; 2020). Subsequent work
in this direction includes algorithmic innovations in combi-
nation with deep learning (Barreto et al., 2018; Borsa et al.,
2019), reward-free learning (Grimm et al., 2019; Hansen
et al., 2020), and addressing questions concerning the in-
fluence of the policy set on improvements in GPI (Zahavy
et al., 2021; Alver & Precup, 2022; Lehnert & Littman,
2020; Nemecek & Parr, 2021). A notable approach that also
interpolates between greedy improvement and computation
of optimal policies is multi-step policy improvement (Efroni
et al., 2018a;b; Tomar et al., 2020).

9. Conclusions, limitations, and future work
In this paper, we have proposed using geometric horizon
models for the evaluation of non-Markov geometric switch-
ing policies, and for doing policy improvement over col-
lections of such policies. We have shown that this pair of
techniques can be applied to both transfer and policy it-
eration, extending existing techniques based on successor
features and generalised policy improvement. We have also
demonstrated that it is possible to combine these ideas with
deep learning architectures to arrive at novel approaches
to deep RL, and in the course have additionally provided
theoretical analyses of these methods.

We foresee several key considerations in further extending
the applicability of this approach. First, the method relies
on constructing models over environment state; as with
many other model-based methods, a key question is how to
learn such models efficiently in high-dimensional settings.
Additionally, the use of geometric switching times in GSPs
is key to decoupling rewards from learnt models, but limits
the expressivity of the non-Markov policies considered; can
this restriction be lifted? In addition to these questions, there
are several natural directions for future work. These include
further development of theoretical convergence analyses
for learning GHMs and improving over GSPs, as well as
further developing combinations of these techniques with
deep learning. We believe that combining GGPI with recent
advances in adaptive planning techniques is a particularly
promising direction for further work.
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Weber for detailed feedback on an earlier draft.



Generalised Policy Improvement with Geometric Policy Composition

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R.,

Heess, N., and Riedmiller, M. Maximum a posteriori
policy optimisation. In Proceedings of the International
Conference on Learning Representations, 2018.

Agrawal, S. and Jia, R. Optimistic posterior sampling for
reinforcement learning: worst-case regret bounds. In Ad-
vances in Neural Information Processing Systems, 2017.

Alver, S. and Precup, D. Constructing a good behavior
basis for transfer using generalized policy updates. In
Proceedings of the International Conference on Learning
Representations, 2022.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., and
Zaremba, W. Hindsight experience replay. In Advances
in Neural Information Processing Systems, 2017.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv, 2016.

Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce,
J., Buchlovsky, P., Budden, D., Cai, T., Clark, A., Dani-
helka, I., Fantacci, C., Godwin, J., Jones, C., Hennigan,
T., Hessel, M., Kapturowski, S., Keck, T., Kemaev, I.,
King, M., Martens, L., Mikulik, V., Norman, T., Quan,
J., Papamakarios, G., Ring, R., Ruiz, F., Sanchez, A.,
Schneider, R., Sezener, E., Spencer, S., Srinivasan, S.,
Stokowiec, W., and Viola, F. The DeepMind JAX Ecosys-
tem, 2020.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T.,
Van Hasselt, H., and Silver, D. Successor features for
transfer in reinforcement learning. In Advances in Neural
Information Processing Systems, 2017.

Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D.,
Hessel, M., Mankowitz, D., Zidek, A., and Munos, R.
Transfer in deep reinforcement learning using successor
features and generalised policy improvement. In Pro-
ceedings of the International Conference on Machine
Learning, 2018.

Barreto, A., Borsa, D., Hou, S., Comanici, G., Aygün, E.,
Hamel, P., Toyama, D., Hunt, J. J., Mourad, S., Silver,
D., and Precup, D. The option keyboard: Combining
skills in reinforcement learning. In Advances in Neural
Information Processing Systems, 2019.

Barreto, A., Hou, S., Borsa, D., Silver, D., and Precup, D.
Fast reinforcement learning with generalized policy up-
dates. Proceedings of the National Academy of Sciences,
117(48):30079–30087, 2020. ISSN 0027-8424.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1996.

Blier, L., Tallec, C., and Ollivier, Y. Learning successor
states and goal-dependent values: A mathematical view-
point. arXiv, 2021.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D. J., van Has-
selt, H., Munos, R., Silver, D., and Schaul, T. Universal
successor features approximators. In Proceedings of the
International Conference on Learning Representations,
2019.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018.

Brunskill, E. and Li, L. PAC-inspired option discovery in
lifelong reinforcement learning. In Proceedings of the
International Conference on Machine Learning, 2014.
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Generalised Policy Improvement with Geometric Policy Composition: Appendices
We briefly summarise the contents of the appendices here for convenience.

• Appendix A provides further discussion of related work, as well as additional context for geometric horizon models and
their precise connection with concepts such as the successor representation.

• Appendix B provides proofs for the results in the main paper concerning evaluating and improving over geometric
switching policies.

• Appendix C provides a proof of the CETD convergence result presented in the main paper, and illustrations of an
implementation of the algorithm.

• Appendix D provides further examples and illustrations to complement the findings of the main paper, including
counterexamples illustrating the necessity of several conditions in our results and algorithm pseudocode for application
of GGPI to transfer and policy iteration.

• Appendix E provides further experimental details and results.
• Appendix F provides a generalisation of the core policy evaluation result in the main paper.

A. Additional background, related work and context
A.1. Related work

Below, we discuss connections of this work to several sub-fields of reinforcement learning.

Other generalisations of greedy policy improvement. Our proposed approach is one way of interpolating between greedy
improvement and full planning. Efroni et al. (2018a;b); Tomar et al. (2020) consider multi-step improvement as a different
means of achieving such a trade-off, both analysing the approach theoretically, and empirically investigating the approach
in combination with deep reinforcement learning. More generally, recent developments in Monte Carlo tree search and
related ideas in planning (Buşoniu & Munos, 2012; Buşoniu et al., 2012; Feldman & Domshlak, 2013; 2014b; Munos, 2014;
Szörényi et al., 2014; Feldman & Domshlak, 2014a; Efroni et al., 2018a; 2019; Dalal et al., 2021) can all be viewed as
sitting between greedy improvement and computation of the exact optimal policy, and have the potential to be profitably
combined with GHMs and GSPs.

Option models. Modelling discounted visitation distributions was proposed by Sutton (1995), who termed them β-models.
These models were generalised by Precup et al. (1998a), who proposed multi-time models, which encompass both β-models
and n-step models as special cases. More generally, there is a long-established practice of learning option models (Sutton
et al., 1999; Precup et al., 1998b; Precup, 2000), and using such models in a compositional manner (Silver & Ciosek, 2012).
A central difference between option models and this work is that the use of geometric switching times (or in the language
of options, constant termination probabilities) means we do not need to model accumulated return obtained by each base
policy, or the time taken executing each base policy, making applications to transfer possible. In this regard, the approach of
this paper is related to universal option models (Yao et al., 2014), which also disentangle reward and transition structure;
constant termination probabilities more easily facilitate sample-based composition of such models. Although orthogonal to
the direction of this work, the problem of option discovery is central to hierarchical RL (McGovern & Barto, 2001; Menache
et al., 2002; Şimşek & Barto, 2004; Brunskill & Li, 2014; Kulkarni et al., 2016a; Machado et al., 2017; Harb et al., 2018;
Harutyunyan et al., 2019; Wulfmeier et al., 2021), and is clearly relevant here too, essentially posing the question of where
the base policies supplied to GGPI should come from.

The successor representation and visitation distributions. Discounted visitation distributions are closely related to the
successor representation (SR), introduced by Dayan (1993), who also proposed a temporal-difference method for learning
the SR. As discussed above, Janner et al. (2020) introduce several methods for learning approximate discounted visitations
on continuous state spaces, among other contributions. Several other recent works also target this problem. Blier et al. (2021)
propose several methods for learning parametric approximations to discounted visitation distributions, including an approach
based on low-rank approximations. Building on this work, Touati & Ollivier (2021) propose a compact representation of an
MDP that in principle allows for the optimal policy associated with any reward function to be computed without planning,
in practice relying on a low-dimensional approximation of the visitation distributions. Eysenbach et al. (2021) propose an
approach based on contrastive learning; these works also note a close connection with the domain of goal-conditioned RL
(Kaelbling, 1993; Schaul et al., 2015; Andrychowicz et al., 2017; Pong et al., 2018).

Successor features and GPI. Barreto et al. (2017) introduced successor features, a generalisation of the successor represen-



Generalised Policy Improvement with Geometric Policy Composition

tation, and GPI, in the context of transfer; later Barreto et al. (2018) discussed the practicalities involved in combining the
approach with deep learning. The same conceptual machinery was then used by Barreto et al. (2019) to promote temporal
abstraction in RL. Borsa et al. (2019) introduced a generalised form of successor features that has a representation of a
policy as one of their inputs, thus allowing generalisation along the space of policies. Hunt et al. (2019) extended successor
features to entropy-regularized RL and addressed some of the challenges involved in applying GPI to continuous action
spaces. Grimm et al. (2019) and Hansen et al. (2020) propose approaches that allow the features used in successor features to
be learned from data in the absence of a reward signal. Zahavy et al. (2021) and Alver & Precup (2022) studied the problem
of how to construct a good set of policies to be used with GPI. Lehnert & Littman (2020) showed how successor features
can be seen as a link between model-free and model-based RL. Nemecek & Parr (2021) studied a related problem: given a
set of successor features and a reward function, they showed how to estimate the performance of the associated GPI policy
and use this estimate to decide whether to add new successor features to the set. Recently, Barreto et al. (2020) presented a
comprehensive account of GPI and successor features in which the latter are cast as a special case of a more general concept
called generalised policy evaluation (GPE). We believe GHMs can be understood as an alternative form of GPE.

Non-Markov policies. Non-Markov/homogeneous policies are used in several other sub-fields of reinforcement learning
in MDPs. Scherrer & Lesner (2012); Lesner & Scherrer (2015) consider approximate value iteration, policy iteration,
and modified policy iteration algorithms, proposing the use of non-homogeneous policies that repeatedly cycle through
a sequence of recent greedy Markov policies, and showing that such policies obtain improved performance bounds. In
contrast, GGPI always produces a Markov policy, but one which improves upon non-Markov policies. Non-Markov policies
are also commonly-encountered in exploration, for example via action repetition (Dabney et al., 2021), and Thompson
sampling and its approximations and variations (Strens, 2000; Osband et al., 2013; 2016; Agrawal & Jia, 2017; Russo et al.,
2018).

A.2. Successor features, the successor representation, and geometric horizon models

We provide some additional discussion regarding the relationship between the successor representation, successor features,
and geometric horizon models in the case of finite state spaces X . For ease of comparison, we phrase all three concepts in
terms of variants that condition on an initial state-action pair, although the successor representation was originally introduced
as a state-indexed quantity.

Dayan (1993) introduced the successor representation in reinforcement learning. In the context of discounted MDPs, the
definition is as follows.
Definition A.1. For a given policy π : X → P(A), the corresponding successor representation of a state-action pair
(x, a) ∈ X ×A is the vector

λπ(x, a) = Eπx,a
[ ∞∑
k=0

γkeXk

]
∈ RX ,

where ex′ ∈ RX is the one-hot vector for the coordinate x′.

We can view λπ(x, a) as an unnormalised probability distribution; scaling by a factor of 1−γ yields a probability distribution
that corresponds to sampling a time T ∼ Geometric(1− γ), and then sampling T − 1 transition steps in the environment
under π, initialised at the state-action pair (x, a).

Barreto et al. (2017) introduced successor features as a generalisation of the successor representation.
Definition A.2. Consider a base feature map φ : X ×A×X → RK . For a given policy π : X →P(A), the corresponding
vector of successor features of a state x ∈ X is the vector

ψπ(x, a) = Eπx,a
[∑
t≥0

γtφ(Xt, At, Xt+1)
]
∈ RK .

The successor representation is subsumed as a special case of successor features when φ(x, a, x′) ∈ RX is taken to be the
basis vector for state x. The following result relates the discounted future state-visitation distributions of Definition 2.2 with
successor features.
Proposition A.3. The discounted future state-visitation distribution µπγ is an instance of successor features, with the base
feature map φ(x, a, x′) = (1− γ)ex′ ∈ RX , where ex′ is the one-hot vector for the coordinate x′.
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Proof. We directly calculate the x′ coordinate of ψπ(x, a) as:

Eπx,a
[∑
t≥0

γt1{Xt+1 = x′}
]

= Eπx,a
[∑
t≥0

γt(1− γ)1{Xt+1 = x′}
]

(a)
=
∑
t≥0

γt(1− γ)Eπx,a
[
1{Xt+1 = x′}

]
= (1− γ)

∑
t≥0

γtPπx,a(Xt+1 = x′)

= µπγ (x′|x, a) ,

where the swapping of summation and expectation in (a) is justified by the dominated convergence theorem, since the
integrand is bounded.

Proposition A.3 sheds light on the relationship between successor features and GHMs in the case of a finite state space X .
When using the features φ(x, a, x′) = (1−γ)ex′ , the successor features of policy π become the γ-discounted state-visitation
distribution of π—that is, ψπ(x, a) = µπγ (·|x, a); the corresponding GHM is a generative model of this distribution.

B. Proofs relating to geometric horizon models and generalised policy improvement
B.1. Proofs of results in Section 2.2

Proposition 2.3. If T ∼ Geometric(1− γ), i.e.

P(T = k) = γk−1(1− γ) for k = 1, 2, . . . ,

and is independent of the random trajectory (Xt, At, Rt)t≥0 generated by π beginning at state-action pair (x, a), then the
random state XT is distributed according to µπγ (·|x, a).

Proof. We have

Pπx,a(XT = x′) = E[Pπx,a(XT = x′ | T )]

=

∞∑
k=1

P(T = k)Pπx,a(Xk = x′ | T = k)

=

∞∑
k=1

(1− γ)γt−1Pπx,a(Xk = x′)

= µπγ (x′|x, a) ,

as required.

Proposition 2.4. For any policy π ∈P(A)X , we have

Qπγ (x, a) = r(x, a) +
γ

1− γ
EX′∼µπγ (·|x,a)[r

π(X ′)] , (2)

where rπ(x) =
∑
a∈A r(x, a)π(a|x).
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Proof. We have

Qπγ (x, a) = Eπx,a

[ ∞∑
t=0

γtRt

]

= Eπx,a[R0] + Eπx,a
[ ∞∑
t=1

γtRt

]
= r(x, a) + γ

∞∑
t=1

γt−1
∑
x′∈X

Pπx,a(Xt = x′)rπ(x′)

(a)
= r(x, a) + γ

∑
x′∈X

∞∑
t=0

γtPπx,a(Xt+1 = x′)rπ(x′)

= r(x, a) + γ(1− γ)−1
∑
x′∈X

µπγ (x′|x, a)rπ(x′)

= r(x, a) + γ(1− γ)−1EX′∼µπγ (·|x,a)[r
π(X ′)] .

as required. The switching of the order of summation at (a) can be justified, for example, by noting that the double-sum is
absolutely convergent:

∞∑
t=1

∑
x′∈X

∣∣γt−1Pπx,a(Xt = x′)rπ(x′)
∣∣ ≤ ∞∑

t=1

γt−1Rπmax = Rπmax(1− γ)−1 <∞ .

where Rπmax = maxx |rπ(x)| <∞, as |X | is finite.

B.2. Proof of result from Section 2.3

Below, we re-derive a result essentially equivalent to Theorem 2 of Janner et al. (2020), stated as Proposition 2.5 in our
main paper, with a slightly different proof technique. The central idea is to develop a different way of sampling the random
variable XT appearing in Proposition 2.3, using the following results.

Lemma B.1. Let (Ti)
∞
i=1

i.i.d.∼ Geometric(1 − β), and independently, N ∼ Geometric(1−γ/1−β). Then the random sum∑N
i=1 Ti has distribution Geometric(1− γ).

Lemma B.2. Let (Ti)
n−1
i=1

i.i.d.∼ Geometric(1− β), and independently, T ′ ∼ Geometric(1− γ), and N ′ a random variable
taking variables in {1, . . . , n}, with probabilities

P(N ′ = m) =
1− γ
1− β

(
γ − β
1− β

)m−1

for m = 1, . . . , n− 1 , and P(N ′ = n) =

(
γ − β
1− β

)n−1

.

Then the random sum

min(N ′,n−1)∑
i=1

Ti + 1{N ′ = n}T ′

has distribution Geometric(1− γ).

Proposition B.3. If we define a sequence of states and actions (X(n), A(n))n≥0 inductively by (X(0), A(0)) = (x0, a0),

X(n+1) ∼ µπβ(·|X(n), A(n)), A(n+1) ∼ π(·|X(n+1)), then X(n) D= X∑n
i=1 Ti

.

We also note that using different distributional identities for the random variable T leads to variants of the result given in
Proposition 2.5. For example, directly using the distributional identity in Lemma B.1 can be used to establish a version of
Theorem 1 of Janner et al. (2020) using exactly the same proof technique as for Proposition 2.5.

Proof of Lemma B.1. This is a classical result from elementary probability theory. We work with probability generating
functions. The probability generating function of a random variable Z taking values in N is defined as the function
GZ(s) = E[sZ ] =

∑∞
k=1 P(Z = k)sk, and clearly characterises the distribution of Z.
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A standard calculation shows that for T ∼ Geometric(1− γ), we have

GT (s) =
s(1− γ)

1− sγ
, for |s| < γ−1 .

We also have the following standard relationship for the PGF of a random sum of i.i.d. terms:

G∑N
i=1 Ti

(s) = E[s
∑N
i=1 Ti ] = E[E[s

∑N
i=1 Ti | N ]] =

∞∑
n=1

P(N = n)E[s
∑n
i=1 Ti ] =

∞∑
n=1

P(N = n)GT1
(s)n = GN (GT1

(s)) .

Since both N and T1 have geometric distributions, we can directly calculate

GN (GT1(s)) = GN

(
s(1− β)

1− sβ

)
=

s(1−β)
1−sβ

(
1−γ
1−β

)
1− s(1−β)

1−sβ

(
1− 1−γ

1−β

) =
s(1− γ)

1− sγ
,

for |s| < γ−1, which is the probability generating function of a Geometric(1− γ) random variable, as required.

Proof of Lemma B.2. This follows as a straightforward corollary of Lemma B.1; under the notation of that result, we
have T D

=
∑N
i=1 Ti. We now decompose this based on whether the event {N ≥ n} occurs, and use the fact that

P(N = k) = P(N ′ = k) for k = 1, . . . , n− 1:

T
D
=

min(N,n−1)∑
i=1

Ti + 1{N ≥ n}
N∑
i=n

Ti
D
=

min(N ′,n−1)∑
i=1

Ti + 1{N ′ = n}T ′ ,

as required. The final equality in distribution holds from the memoryless property of the geometric distribution; on the event
{N ≥ n}, we have N − (n− 1) ∼ Geometric(1−γ/1−β), and hence

∑N
i=n Ti ∼ Geometric(1− γ) on this event.

Proof of Proposition B.3. This follows straightforwardly by induction. The case n = 1 follows from Proposition 2.3. Now
suppose the claim holds for n = l. Then we have X(l) D= X∑n

i=1 Ti
. So

X(l+1)|X(l), A(l) ∼ µπβ(·|X(l), A(l)) ,

and so by Proposition 2.3 again, we have X(l+1)|X(l) D= X ′T ′ , with T ′ ∼ Geometric(1 − β), and (X ′t, A
′
t, R
′
t)≥0 an

independent trajectory following π with initial state X(l). But since X(l) D= X∑n
i=1 Ti

, by the Markov property we therefore

have X(l+1) D= X∑n
i=1 Ti+T

′
D
= X∑n+1

i=1 Ti
as required.

We now restate and prove Proposition 2.5.

Proposition 2.5. (Janner et al. (2020)) For any policy π ∈ P(A)X , n ≥ 1, and 0 ≤ β < γ an unbiased estimator of
Qπγ (x, a) is given by

r(x, a) +
γ

1− γ
× (4)[

n−1∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1

rπ(X(m))+

(
γ − β
1− β

)n−1

rπ(X ′)

]
,

where X(m) ∼ µπβ(·|X(m91), A(m91)), A(m) ∼ π(·|X(m)), (X(0), A(0)) = (x, a), and X ′ ∼ µπγ (·|X(n91), A(n91)).

Proof. We start from the expression for Qπγ (x, a) in Equation 2. Using the notation of Proposition 2.3, we have

EX′∼µπγ (·|x,a)[r
π(X ′)] = Eπx,a[rπ(XT )] .
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Now with the notation of Lemma B.2, we have

Eπx,a[rπ(XT )] = Eπx,a[rπ(X∑min(N′,n−1)
i=1 Ti+1{N ′=n}T ′

)]

= E[Eπx,a[rπ(X∑min(N′,n−1)
i=1 Ti+1{N ′=n}T ′

) | N ′]]

=

n−1∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1

Eπx,a[rπ(X∑m
i=1 Ti

)] +

(
γ − β
1− β

)n−1

Eπx,a[rπ(X∑n−1
i=1 Ti+T ′

)] .

Finally, by Proposition B.3, we have X∑m
i=1 Ti

D
= X(m) as defined above, and X∑n−1

i=1 Ti+T ′
D
= X ′, to obtain the desired

conclusion.

B.3. Proofs of result from Section 3

Theorem 3.2. Consider an MDP with reward function r : X → R and let ν = π1
α→ · · · α→ πn. With β = γ(1−α), the

following is unbiased for Qνγ(x, a):

r(x) +
γ

1− γ
× (6)[

n−1∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1

r(X(m))+

(
γ − β
1− β

)n−1

r(X ′)

]
,

where (X(0), A(0)) = (x, a), X(m) ∼ µπmβ (·|X(m91), A(m91)), A(m) ∼ πm+1(·|X(m)), X ′ ∼ µπnγ (·|X(n−1), A(n−1)).

Proof. Just as with Markov policies, we have the basic identity

Qνγ(x, a) = r(x) +
γ

1− γ
Eνx,a[r(XT )] .

We now show that Eνx,a[r(XT )] has the required form by induction on n. The base case n = 1 follows from Proposition 2.4.
For the inductive step, fix n = l, and suppose the required form of the expectation has been demonstrated for all smaller
values of n.

Let ν = π1
α→ · · · α→ πl. We consider the time to switch from the first policy π1, to the second sampled policy, π2, denoting

this time T1, recalling that its distribution is Geometric(α). We proceed by considering whether or not the geometric horizon
T ∼ Geometric(1− γ) is greater than T1:

Eνx,a[r(XT )] (10)

=Eνx,a[r(XT )1T≤T1
+ r(XT )1T>T1

]

=Eνx,a[r(XT ) | T ≤ T1]P(T ≤ T1 | X0 = x,A0 = a)

+ Eνx,a[r(XT ) | T > T1]Pνx,a(T > T1) .

Since T , T1 are independent of the trajectory (Xt, At, Rt)t≥0, we have Pνx,a(T ≤ T1) = P(T ≤ T1). To compute
P(T ≤ T1), we have

P(T ≤ T1) =

∞∑
k=1

P(T ≤ k)P(T1 = k)

=

∞∑
k=1

(1− γk)α(1− α)k−1

= α

∞∑
k=1

((1− α)k−1 − γ(γ(1− α))k−1)

= α

(
1

α
− γ

1− γ(1− α)

)
=

1− γ
1− γ(1− α)

.
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Now, to compute Eνx,a[r(XT ) | T ≤ T1], we need the marginal distribution of T given the event {T ≤ T1}, which again is
independent of the trajectory (Xt, At, Rt)t≥0. We have

P(T = k | T ≤ T1) ∝ P(T = k, T ≤ T1)

=

∞∑
l=k

P(T = k)P(T1 = l)

= (1− γ)γk−1(1− α)k

∝ (γ(1− α))k ,

which is the probability mass function of a Geometric(1− γ(1− α)) distribution. Hence, conditional on T ≤ T1, we have
that T ∼ Geometric(1− γ(1− α)), and that the policy ν has not switched from π1 on this event, so

Eνx,a[r(XT ) | T ≤ T1] = EX′∼µπ1
γ(1−α)

(·|x,a)[r(X
′)] .

We next turn our attention to the second term on the right-hand side of Equation (10). Conditional on {T > T1}, we
compute the joint distribution of (T − T1, T1). For any k, l > 0:

P(T − T1 = k, T1 = l | T > T1) ∝ P(T − T1 = k, T1 = l) = P(T = k + l, T1 = l) ∝ γk+l(1− α)l = γk(γ(1− α))l ,

which we recognise as the distribution of two independent geometric random variables with parameters 1−γ and 1−γ(1−α).
Hence, a sample from XT on the event {T > T1} can be obtained by first sampling the state X(1) ∼ µπ1

γ(1−α) at which the
switch from π1 to π2 occurs. From this point, we require a state sampled T − T1 ∼ Geometric(1− γ) steps into the future,
from initial state X(1), and action A(1) ∼ π2(·|X(1)), following the suffix GSP ν′ = π2

α→ · · · α→ πl. By induction, the
corresponding expectation can be expressed as

Eνx,a[r(XT ) | T > T1] = E
[ l−2∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1

r(X̄(m)) +

(
γ − β
1− β

)l−2

r(X̄ ′)
]
,

where X̄(0) ∼ µπ1

β (·|x, a), X̄(m) ∼ µπm+1

β (·|X̄(m91), Ā(m91)), Ā(m) ∼ πm+2(·|X̄(m)), X̄ ′ ∼ µπlγ (·|X̄(l−2), Ā(l−2)).

Rewriting in terms of the original sequence (X(0), X(1), . . . , X(n), A(n), X ′) in the theorem statement, we have

Eνx,a[r(XT ) | T > T1] = E
[ l−2∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1

r(X(m+1)) +

(
γ − β
1− β

)l−2

r(X ′)
]
.

Putting everything together from the decomposition in Equation (10), we therefore have

Eνx,a[r(XT )]

=
1− γ

1− γβ
E[r(X(1))] +

γ − β
1− β

E
[ l−2∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1

r(X(m+1)) +

(
γ − β
1− β

)l−2

r(X ′)
]

=E
[ l−1∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1

r(X(m)) +

(
γ − β
1− β

)l−1

r(X ′)
]

as required.

B.4. Proof of result from Section 4

Theorem 4.2. Consider a suffix-closed collection of GSPs Π. Then if π′ ∈ G(Π), we have

Qπ
′

γ (x, a) ≥ max
ν∈Π

Qνγ(x, a) , for all (x, a) ∈ X ×A .

Further, if equality holds for all state-action pairs, then π′ is optimal.
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Proof. It is sufficient to show that for any policy ν ∈ Π, we have Qπ
′ ≥ Qν . If ν = π is Markov, then we have

Qπγ (x, a) = r(x, a) + γ
∑
x′∈X

∑
a′∈A

P (x′|x, a)π(a′|x′)Qπγ (x′, a′) ,

and hence

Qπγ (x, a) ≤ r(x, a) + γ
∑
x′∈X

∑
a′∈A

P (x′|x, a)π′(a′|x′) max
ν̄∈Π

Qν̄γ(x′, a′) = (Tπ
′
(max
ν̄∈Π

Qν̄γ))(x, a) .

Now suppose ν = π1
α→ · · · α→ πn ∈ Π is a non-Markov geometric switching policy. Let ν′ = π2

α→ · · · α→ πn be the
suffix policy of π. By suffix-closedness of Π, ν′ ∈ Π, and so we have the following observation:

Qνγ(x, a) = r(x, a) + γ
∑
x′∈X

P (x′|x, a)

[
(1− α)

∑
a′∈A

π1(a′|x′)Qνγ(x′, a′) + α
∑
a′∈A

π2(a′|x′)Qν
′

γ (x′, a′)

]

≤ r(x, a) + γ
∑
x′∈X

P (x′|x, a)

[
(1− α)

∑
a′∈A

π′(a′|x′) max
ν̄∈Π

Qν̄γ(x′, a′) + α
∑
a′∈A

π′(a′|x′) max
ν̄∈Π

Qν̄γ(x′, a′)

]
= (Tπ

′
(max
ν̄∈Π

Qν̄γ))(x, a) ,

similarly to the Markov case. By taking a maximum over the policy considering on the left-hand side of the main chain of
inequalities above, we get maxν̄∈ΠQ

ν̄ ≤ Tπ′(maxν̄∈ΠQ
ν̄). As in the proof of improvement guarantee for standard GPI,

we have that Tπ
′

is monotone, and contracts to Qπ
′
. Hence, Qν ≤ maxν∈ΠQ

ν ≤ limn→∞(Tπ
′
)n(maxν∈ΠQ

ν) = Qπ
′
,

as required. For the final statement of the result, observe that if equality holds at all state-action pairs, then we have
that maxν∈ΠQ

ν
γ satisfies the Bellman optimality equation maxν∈ΠQ

ν
γ = Tπ

′
maxν∈ΠQ

ν
γ = T ∗maxν∈ΠQ

ν
γ , and hence

maxν∈ΠQ
ν
γ = Qπ

′
= Q∗, so π′ is optimal.

B.5. Proof of result from Section 5

Proposition 5.1. Πm is suffix-closed.

Proof. Given a policy ν = π(1) α→ · · ·π(m) ∈ Πm, its suffix policy is ν′ = π(2) α→ · · ·π(m). On the face of it, this policy
appears not to lie in Πm, since it contains only m− 2 switches. However, the key observation is that appending an additional
switch from the tail Markov policy to itself does not change the geometric switching policy; that is

π(2) α→ · · ·π(m−1) α→ π(m) = π(2) α→ · · ·π(m−1) α→ π(m) α→ π(m) .

The right-hand side clearly lies in Πm, and hence the proof of suffix-closedness is complete. The improvement guarantee
now follows from Theorem 4.2.

B.6. Proof of result from Section 6

Here, we provide a proof of Proposition 6.2, and note that the (longer) proof of Theorem 6.3 is given in Appendix C.

Proposition 6.2. Defining the Bellman operator Tπβ : P(X )X×A →P(X )X×A by

(Tπβ µ)(x′|x, a)=(1−β)P (x′|x, a)+β(µ⊗πP )(x′|x, a) ,

then µπβ is the unique solution to µ = Tπβ µ.
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Proof. That µπβ solves µ = Tπβ µ follows straightforwardly from the Markov property of the environment:

µπβ(x′|x, a) =(1− β)Eπx,a
[∑
t≥0

βt1Xt+1=x′

]
=(1− β)Eπx,a

[
1Xt+1=x′

]
+ βEπx,a

[
(1− β)EπX1,A1

[∑
t≥1

βt1Xt+1=x′

]]
=(1− β)P (x′|x, a) + βEπx,a

[
µ(x′|X1, A1)

]
=(1− β)P (x′|x, a) + β

∑
x′′∈X

∑
a′′∈A

P (x′′|x, a)π(a′′|x′′)µ(x′|x′, a′)

=(1− β)P (x′|x, a) + β(µ⊗π P )(x′|x, a) .

We now show that Tπβ is a contraction mapping on P(X )X×A. Let µ, µ′ ∈ P(X )X×A, from which uniqueness of the
solution to µ = Tπβ µ immediately follows. We directly calculate

(Tπβ µ− Tπβ µ′)(x′|x, a) =

(
(1− β)P (x′|x, a) + β

∑
x′′∈X

∑
a′∈A

P (x′′|x, a)π(a′|x′′)µ(x′|x′′, a′)

)
−(

(1− β)P (x′|x, a) + β
∑
x′′∈X

∑
a′∈A

P (x′′|x, a)π(a′|x′′)µ′(x′|x′′, a′)

)
= β

∑
x′′∈X

P (x′′|x, a)π(a′|x′′)(µ(x′|x′′, a′)− µ′(x′|x′′, a′)) .

Hence,

max
(x,a,x′)∈X×A×X

|(Tπβ µ− Tπβ µ′)(x′|x, a)| ≤ β max
(x,a,x′)∈X×A×X

|(µ− µ′)(x′|x, a)| ,

as required.

C. Proof of the convergence of cross-entropy temporal-difference learning
In this section we prove Theorem 6.3, which establishes the convergence of cross-entropy TD learning in the tabular, finite
state-space setting, under mild conditions. The broad structure of the proof follows that of many arguments in stochastic
approximation: defining a Lyapnuov function, showing convergence of this Lyapunov function to 0 as the algorithm
progresses via the Robbins-Siegmund theorem (Robbins & Siegmund, 1971), and deducing convergence of the algorithm as
a consequence; see for example Kushner & Yin (2003) for further background. We begin by recalling the details of the
theorem.

Statement of result. The algorithm generates a sequence of logits (φk)k≥0, with φk ∈ RX×A×X , and corresponding
estimated geometric horizon models, denoted µk, and defined by

µk(x′|x, a) =
exp(φk(x′|x, a))∑

x′′∈X exp(φk(x′′|x, a))
.

We work with a synchronous algorithm, for which every state-action pair is updated at every algorithm time step. Thus,
φ0 ∈ RX×A×X is initialised in some manner, and for each algorithm time step k ≥ 0, for each (x, a) we take a transition
(x, a,X ′) generated from the MDP, independent of all other transitions used at time k and earlier, and define φk+1 via the
update

φk+1(·|x, a) =φk(·|x, a)− εk∇φk(·|x,a)KL(SG[(T̂πµk)(·|x, a)] || µk(·|x, a)) , (11)

where SG denotes a stop-gradient, and (T̂πµk)(·|Xk, Ak) is an unbiased approximation error to the Bellman operator
application (Tπµk)(·|Xk, Ak), given by

(T̂πµk)(·|x, a) = (1− γ)eX′ + γeX′′ ,
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where X ′′ is sampled first by sampling A′ ∼ π(·|X ′), and then X ′′ ∼ µk(·|X ′, A′). Evaluating the gradient above allows
us to re-express the update as

φk+1(·|x, a) =φk(·|x, a) + εk

(
(T̂πµk)(·|x, a)− µk(·|x, a)

)
. (12)

Then the theorem statement is that if the Robbins-Monro conditions for the step sizes (εk)∞k=0 hold, then we have µk → µπγ
with probability 1.

Proof. The proof of the result is presented below. We include schematic illustrations of some of the key ideas in the proof in
Figure 7.

Figure 7. Schematic illustrations of core ideas in the convergence proof for cross-entropy temporal-difference learning. Left: Contractivity
of the operator Tπ in the weighted L2 norm ‖ · ‖ξ towards µπγ . Centre-left: For a given value of φk, the corresponding level set of the
Lyapunov function L as a grey line, the conditional distribution over φk+1 illustrated with blue contours, and the negative gradient of
the Lyapunov function indicated as a black arrow. The Robbins-Siegmund argument shows that even though φk+1 may have a higher
Lyapunov value than φk, in the long term the value of the Lyapunov function must converge to 0. Centre-right: The decomposition
of a Markov chain state space into a directed acyclic graph of communicating classes. Right: The distribution ξC supported on a
given communicating class C, as constructed via the Perron-Frobenius theorem, and the result of right-multiplying by the Markov chain
transition matrix Pπ; on the communicating class C, the distribution is scaled by λ, while descendant communicating classes may now
have non-zero probabilities, given by ξ̄C .

The Lyapunov function. Let ξ be a stationary state-action distribution under π, and suppose initially that it has full support;
we will explain how to remove this assumption below. It is useful to introduce the function µ : RX×A×X →P(X )X×A for
the softmax function that maps logits to corresponding collections of probability distributions. We now define the Lyapunov
function

L(φ) =
∑
x,a

ξ(x, a)KL(µπγ (·|x, a) || µ(φ)(·|x, a)) .

The full support condition ensures that L(φ) = 0 implies that µ(φ) = µπγ . Our goal is to show that L(φk) → 0 almost
surely, hence

∑
x,a ξ(x, a)KL(µπγ (·|x, a) || µ(φk)(·|x, a))→ 0, and so µk → µπγ , as required.

A supermartingale argument. We start by considering a second-order Taylor expansion (with Lagrange remainder) of
L(φk+1) around φk (here, and in the remainder of the proof, it is useful to interpret a probability distribution in P(X ) as a
vector in RX — specifically, an element of the simplex ∆(X ), which we will do without further remark):

L(φk+1) = L(φk + εk(T̂πµk − µk)) = L(φk) + εk〈∇φL(φk), T̂πµk − µk〉+ ε2
k∇2

φL(φ̃k)[T̂πµk − µk, T̂πµk − µk] ,

for some φ̃k on the line segment [φk, φk+1]. Defining Fk to be the sigma-algebra generated by all random variables up to,
but not including, those defining the update from φk to φk+1, we have

E[L(φk+1) | Fk] = L(φk) + εkE[〈∇φL(φk), T̂πµk − µk〉 | Fk] + ε2
kE[∇2

φL(φ̃k)[T̂πµk − µk, T̂πµk − µk] | Fk] .

From the form of the gradient∇φL(φ), the Hessian∇2
φL(φ) is readily seen to be bounded, and the inputs above T̂πµk−µk

are also bounded, meaning there is a constant K > 0 such that

E[L(φk+1) | Fk] ≤ L(φk) + εkE[〈∇φL(φk), T̂πµk − µk〉 | Fk] + ε2
kK .
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To deal with the first-order term, we note that a straightforward calculation gives

[∇φL(φ)](x′|x, a) = ξ(x, a)(µ(φ)(x′|x, a)− µπγ (x′|x, a)) .

We hence have

E[〈∇φL(φk), T̂πµk − µk〉 | Fk] = 〈µk − µπγ , Tπµk − µk〉ξ .

Now we use a contractivity argument to bound this derivative. We first argue that Tπ as defined above is a γ-contraction
under the norm ‖ · ‖ξ defined by ‖µ‖2ξ =

∑
x,a,x′ ξ(x, a)µ(x′|x, a)2. To see this, note

‖Tπµ− Tπµ′‖2ξ =‖γPπµ− γPπµ′‖2ξ
=γ2‖Pπµ− Pπµ‖2ξ

=γ2
∑
x,a,x′

ξ(x, a)

∑
x′′,a′′

P (x′′|x, a)π(a′′|x′′)(µ(x′|x′′, a′′)− µ′(x′|x′′, a′′))

2

(a)

≤γ2
∑
x,a,x′

ξ(x, a)
∑
x′′,a′′

P (x′′|x, a)π(a′′|x′′)((µ(x′|x′′, a′′)− µ′(x′|x′′, a′′)))2

(b)
=γ2

∑
x,a,x′

ξ(x, a)(µ(x′|x, a)− µ′(x′|x, a))2

=γ2‖µ− µ′‖2ξ ,

as required, with (a) following from Jensen’s inequality, and (b) from ξ being stationary.

Using this contraction result, we have:

‖µπγ − Tπµk‖2ξ ≤ γ2‖µπγ − µk‖2ξ
=⇒ ‖µπγ − µk + µk − Tπµk‖2ξ ≤ γ2‖µπ − µk‖2ξ
=⇒ ‖µπγ − µk‖2ξ + ‖µk − Tπµk‖2ξ + 2〈µπγ − µk, µk − Tπµk〉ξ ≤ γ2‖µπγ − µk‖2ξ

=⇒ 〈µk − µπγ , Tπµk − µk〉ξ ≤
1

2

(
(γ2 − 1)‖µπγ − µk‖2ξ − ‖µk − Tπµk‖2ξ

)
≤ −1− γ2

2
‖µπγ − µk‖2ξ .

Returning to the Lyapunov function, we therefore have

E[L(φk+1) | Fk] ≤ L(φk)− εk
1− γ2

2
‖µπγ − µk‖2ξ + ε2

kK .

We now follow the ideas of the Robbins-Siegmund theorem (Robbins & Siegmund, 1971). Based on the above inequality,
(L(φk))k≥0 is almost a positive supermartingale, save for the additive ε2

kK terms in the upper bounds on the conditional
expectation. However, defining L̃k = L(φk)−

∑k−1
l=0 ε

2
lK +

∑k−1
l=0 εl

1−γ2

2 ‖µ
π
γ − µl‖2ξ , we have

E[L̃k+1 | Fk] ≤ E
[
L(φk+1)−

k∑
l=0

ε2
lK +

k∑
l=0

εl
1− γ2

2
‖µπγ − µl‖2ξ | Fk

]
≤ L(φk)−

k−1∑
l=0

ε2
lK +

k−1∑
l=0

εl
1− γ2

2
‖µπγ − µl‖2ξ

≤ L̃k .

Hence (L̃k)k≥0 is a supermartingale. However, the subtraction of the ε2
kK terms means that it is not a non-negative

supermartingale, so we cannot immediately apply the supermartingale convergence theorem. The approach of Robbins
& Siegmund (1971) is to define a sequence of stopping times τ` = inf{k ≥ 0 : L̃k ≤ −`}, for ` ∈ N. By the optional
stopping theorem, (L̃k∧τ`)

∞
k=0 is a supermartingale bounded below, and hence by the supermartingale convergence theorem,
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converges almost surely. By the second Robbins-Monro step size condition, τ` =∞ eventually almost surely, and hence L̃k
converges almost surely, leading to almost-sure convergence of L(φk) too, as well as

∑k
l=0 εl

1−γ2

2 ‖µ
π
γ − µl‖2ξ . Due to the

first Robbins-Monro step size condition
∑∞
k=0 εk =∞, we must have ‖µπγ − µk‖2ξ → 0, which completes the proof of the

theorem in the case where ξ has full support.

A chaining argument for invariant distributions without full support. The previous argument relied on the existence of
an invariant distribution ξ for the Markov chain over state-action pairs generated by the interaction of the policy π with the
MDP in question. We now explain how to generalise this proof technique to remove this restriction on ξ.

First, by appending an artificial self-transitioning terminal state if required, there always exists an invariant distribution ξ for
the Markov chain concerned, even in episodic settings where trajectories terminate in finite time. The argument above may
be applied as-is to obtain the same conclusion

∑k
l=0 εl

1−γ2

2 ‖µ
π
γ − µl‖2ξ <∞, and hence ‖µπγ − µk‖2ξ → 0. The difference

now is that this only shows convergence of µk to µπγ along the state-action pairs with support under ξ.

We begin by recalling some notions from the theory of discrete-time Markov chains on finite sets; see Norris (1998) for
further background. We also clarify that in Markov chain theory, the term state space is typically used to refer to the set of
states which a Markov chain can take on. For our Markov chain, this state space is X ×A, not the usual state space of the
MDP. To avoid confusion, we will use the term Markov chain state space (or MCSS) to distinguish the state space of the
Markov chain from the set X , and the term Markov chain state to refer to an element of the MCSS.

We can partition the MCSS X ×A into communicating classes. A communicating class C ⊆ X ×A is a set of Markov
chain states such that for all (x, a), (y, b) ∈ C, there exists t > 0 such that P((Xt, At) = (x, a) | (X0, A0) = (y, b)) > 0
and P((Xt, At) = (y, b) | (X0, A0) = (x, a)) > 0, and further for any (x, a) ∈ C, no Markov chain state outside C has
this property. The set of communicating classes of the Markov chain can be given a directed acyclic graph structure, by
adding an edge from one class C to a distinct class C ′ if there exist (x, a) ∈ C, (y, b) ∈ C ′ with P((X1, A1) = (y, b) |
(X0, A0) = (x, a)) > 0. Let us refer to this directed acyclic graph as G. Without loss of generality to what follows, we may
assume G is connected (the argument may be applied to each connected component of G separately if G is not connected).

The goal is to recurse backwards through the directed acyclic graph G, establishing first for the Markov chain states
(x, a) in communicating classes in the leaves of the graph that µk(·|x, a) → µπγ (·|x, a), and then inductively moving
back through the graph. Note that the leaves of G are precisely the recurrent communicating classes of the Markov
chain: those classes C for which there exists an invariant distribution ξC for the Markov chain supported precisely on C.
The argument above establishes that µk(·|x, a) → µπγ (·|x, a) for all (x, a) ∈ C, and in fact the stronger conclusion that∑∞

l=0 εl‖µπγ − µl‖2ξC <∞.

Now, for the inductive step of the argument, let C be a non-recurrent communicating class of the Markov chain, and suppose
that for every descendant C ′ of C in the directed acyclic graph G, we have established that for some distribution ξC′
supported on C ′, we have

∑∞
l=0 εl‖µπγ − µl‖2ξC′ → 0. We now aim to construct a distribution ξC supported on C, and to

demonstrate that
∑∞
l=0 εl‖µπγ − µl‖2ξC → 0, so that by induction the theorem is proven.

To do this, we appeal to the Perron-Frobenius theorem (Perron, 1907; Frobenius, 1912); see Seneta (2006) for a recent
account. Specifically, we consider the transition matrix of the Markov chain in question, and consider the sub-matrix
obtained by deleting all rows and columns corresponding to Markov chain states outside C. The resulting matrix is strictly
sub-stochastic (all elements are non-negative, rows sums are less than or equal to 1, with at least one row having row sum
strictly less than 1), and hence by the Perron-Frobenius theorem, there exists a left-eigenvector v ∈ RC for this matrix
with eigenvalue 0 ≤ λ < 1, and all elements positive; we may further scale v so that the elements sum to 1. We now set
ξC to be the distribution over the Markov chain state space that is equal to v on C, and 0 elsewhere. We now show that
Tπ still behaves ‘almost’ like a contraction under ‖ · ‖ξC , which will allow us to re-use the supermartingale argument
above. First note that from the structure of the communicating classes, we have that ξCPπ is equal to λξC on C, some other
non-negative vector ξ̄C on C̄ the union of descendant communicating classes from C, and 0 elsewhere. Now, note that for
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µ, µ′ ∈ ∆(X )X×A, we have

‖Tπµ− Tπµ′‖2ξC
=γ2‖Pπµ− Pπµ‖2ξC

=γ2
∑
x,a,x′

ξC(x, a)

∑
x′′,a′′

P (x′′|x, a)π(a′′|x′′)(µ(x′|x′′, a′′)− µ′(x′|x′′, a′′))

2

≤γ2
∑
x,a,x′

ξC(x, a)
∑
x′′,a′′

P (x′′|x, a)π(a′′|x′′)((µ(x′|x′′, a′′)− µ′(x′|x′′, a′′)))2

=γ2

 ∑
(x,a)∈C

λξC(x, a)
∑
x′

(µ(x′|x, a)− µ′(x′|x, a))2 +
∑

(x,a)∈C̄

ξ̄C(x, a)
∑
x′

(µ(x′|x, a)− µ′(x′|x, a))2


=γ2λ‖µ− µ′‖2ξC + γ2‖µ− µ′‖2ξ̄C .

The intuition here is that if µ ≈ µ′ on C̄, then we have a contraction-like bound for Tπ as measured by ξC . From this, we
obtain the bound

〈µk − µπγ , Tπµk − µk〉ξC ≤ −
1− γ2λ

2
‖µπγ − µk‖2ξC +

γ2

2
‖µk − µπγ‖2ξ̄C .

Defining an alternative Lyapunov function by

LξC (φ) =
∑
x,a

ξC(x, a)KL(µπγ (·|x, a) || µ(φ)(·|x, a)) ,

a similar calculation to the above gives

E[LξC (φk+1) | Fk] ≤ LξC (φk)− εk
1− γ2λ

2
‖µπγ − µk‖2ξC + εk

γ2

2
‖µk − µπγ‖2ξ̄C + ε2

kK .

The inductive hypothesis leads to
∑∞
l=0 εl

γ2
/2‖µl − µπγ‖2ξ̄C <∞, and so defining the modified sequence

L̃ξCk = LξC (φk)−
k−1∑
l=0

(
ε2
lK + εl

γ2

2
‖µl − µπγ‖2ξ̄C

)
+

k−1∑
l=0

εl
1− γ2λ

2
‖µπγ − µl‖2ξC ,

the same Robbins-Siegmund argument yields that (L̃ξCk )k≥0 is a convergent supermartingale, and hence
∑∞
l=0 εl

1−γ2λ
2 ‖µπγ−

µl‖2ξC <∞, as required to complete the induction, and hence the proof.

C.1. Examples of cross-entropy TD learning

Figure 8 shows an example visualisation of the synchronous CETD algorithm in the case of a randomly-generated three-state,
one-action MDP. The transition matrix and initial distributions µ0 used to generated these plots are

P =

0.297492728 0.702444212 0.000063060
0.584810131 0.257810252 0.157379617
0.181511854 0.373368720 0.445119427

 , φ0 =

 −2.3634686 1.13534535 −1.01701414
0.63736181 −0.85990661 1.77260763
−1.11036305 0.18121427 0.56434487

 ,

where as the MDP has a single action, we specify P as a state-by-state transition matrix, and similarly φ0 is presented a
state-by-state matrix, with each row corresponding to the logits of a single estimated future state-visitation distribution.
Further, we take γ = 0.9, and the learning rate schedule used was εk = 0.75(k + 1)−0.6. In all plots presented in this
section, we subsample the trajectories generated by a factor of 10 to make trajectories easier to visually inspect.

We also provide a further illustration of CETD below, in the case where the target µπγ lies on the boundary of ∆(X )X×A, by
modifying the transition matrix P above to have a transient first state. Specifically, we set

P =

0.765830909 0.234148071 0.000021020
0 0.620945430 0.379054570
0 0.456168756 0.543831244

 ,
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Figure 8. Illustration of CETD dynamics in a three-state MDP. The red dots indicate the fixed point of the operator Tπ (the true visitation
distributions). The coloured lines indicate the path taken by the CETD algorithm.

and use the same initialisation for φ0 as described above. The results are shown in Figure 9. One interesting observation is
that when the collection of true state visitation distributions lies on the boundary of the product of simplices, the convergence
of the algorithm appears to be particularly slow. An intuition as to why this might be the case is that the sample-based
CETD update is limited to decreasing logit values only by the magnitude of the current probability corresponding to the
logit. Because of this, fitting zero (or near-zero) probabilities requires many gradient updates. This hints at the utility of
further work to develop a finer-grained understanding of the asymptotic performance of this algorithm (such as asymptotic
covariance and/or convergence rate), as well as approaches for variance reduction that may improve the convergence rate,
either practically or empirically.

Figure 9. CETD dynamics for an MDP with µπγ lying on the boundary of ∆(X )X×A.

D. Further details and examples relating to core algorithms
D.1. GGPI counterexamples

We address several questions about the necessity of conditions for results appearing in the main paper through a set of
counterexamples. Specifically, these questions and their resolutions are:
• Is the Q-function of a non-Markov policy always equal to that of a Markov policy? No: See Example D.1.
• Can we do GPI with the Q-functions of any collection of non-Markov policies? No: See Example D.2.
• If we restrict to GSPs, do we need the closure condition? Yes: See Example D.3.

Example D.1. Consider the two-state, two-action MDP in Figure 10, and consider a non-Markov policy π of the following
form. When initialised in the left state, the agent seeks to take the action sequence bb, leading it to transition immediately
to the right state, and then to terminate in the right state, having attained 0 reward. When initialised in the right state, the
agent seeks to take the action sequence aab, attaining a reward of 2. In order for Qπ(L, b) to be equal to Qπ

′
(L, b) for some

Markov policy π′, it must be the case that π′ takes action b in state R with probability 1. However, this is incompatible with
the requirement Qπ(R, a) = Qπ

′
(R, a), since we would require π′(a|R) > 0.
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Example D.2. As a very basic example of why non-Markov policies cannot in general be used within GPI, consider the
one-state MDP in Figure 11. Consider a non-Markov policy π specified as follows:
• Initially, the policy randomises uniformly between actions a and b.
• If action a is selected at the first time-step, then the full sequence of actions is deterministically specified as abbbb . . ..
• If action b is selected at the first time-step, then the full sequence of actions is deterministically specified as baaaa . . ..

We therefore have Qπ(a) = 1, and Qπ(b) = γ/(1− γ). So if γ > 1
2 , the greedy Markov policy obtained prefers action b,

which is clearly worse for performance than the non-Markov policy π, meaning the GPI guarantee does not hold in this case.

Example D.3. Consider the MDP with a depth-3 binary tree transition structure displayed in Figure 12. Consider two
policies πL and πR which always take the ‘left’ and ‘right’ actions in the tree. We consider the GSP ν that follows πL for
two steps and then switches to πR (this is a GSP with two switches, and probability of switching equal to 1 in both cases).
The value of this policy at the root node (in the undiscounted case) is +1 (obtained at the red leaf node), since the sequence
of actions taken from the root node x0 is LLR.

We now consider the Markov policy obtained by acting greedily with respect to Qν . To begin with, consider the Q-values
Qν(x0,L) and Qν(x0,R). These are +1 and +2 respectively (obtained from the red and green leaf nodes), since these
correspond to sequences of actions LLR and RLR respectively. So the greedy policy with respect to this Q-function takes
the ‘right’ action at the base state x0. Next, at state x1, we have Qν(x1,L) = −1 and Qν(x1,R) = 0 (obtained at the blue
and grey nodes), since these correspond to the action sequences LL and RL from x1, meaning that the greedy policy takes
the ‘right’ action in state x2. This is enough to deduce that the greedy policy, executed from x0, attains a return of 0, in
contrast to the return of +1 obtained by the initial GSP ν; the greedy policy performs worse than the initial policy.

To see how the closure condition deals with this, note that the condition would require that we include the value functions
for (i) the GSP that executes πL for one step and then switches to πR and (ii) πR itself, in the GPI procedure. Performing
GGPI over this collection of three policies then leads to an improved policy which when executed from x0, obtains a return
of +2, improving over all initial policies considered.

Figure 10. Example MDP showing that the Q-function of a non-Markov policy cannot necessarily be written as the Q-function of a
Markov policy.

Figure 11. Example MDP illustrating that acting greedily with respect to a non-Markov policy may lead to detrimental performance.

D.2. Further examples of GGPI for policy iteration

We first give a full description in Algorithm 1 of the combination of GGPI with policy iteration that we consider in the paper.
A possible optimisation is for each step to consider only those GSPs that end in the most recent policy πk, as this dominates
any GSP comprised of the same initial policies and ending in any other prior policy.

The example that follows then gives a granular sense of when GGPI delivers benefits over standard policy iteration in the
tabular setting, to complement the four-rooms experiments in the main paper.

Example D.4. Figure 13 illustrates a chain environment with a large reward at one end of the chain, and ‘distractor’ rewards
along the chain that may cause a myopic agent to prefer a sub-optimal action. An initial policy π0 that is able to make
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Figure 12. Example MDP illustrating that acting greedily with respect to a GSP may lead to detrimental performance.

Algorithm 1 GGPI for sample-based policy iteration
Require: Number of iterations niter, sample budget nsamples
i← 0
π′ ← arbitrary policy
Π← ∅ {Set of policies seen so far}
M ← ∅ {Set of GHMs associated with policies in Π}
repeat
π ← π′

Π← Π ∪ {π}
Learn GHMs µπγ and µπβ , with β = γ(1− α).
M←M∪ {µπγ , µπβ}
Define a set V of GSPs using base policies in Π and switching probability α.
for each state x ∈ X do

For each ν ∈ V , estimate Qνγ(x, ·) by composing nsamples GHM samples via Equation (6).
π′(x)← G

(
{Qνγ(x, ·)|ν ∈ V}

)
end for
i← i+ 1

until π′ = π or i ≥ niter

some progress towards the optimal side of the chain will have this progress ‘wiped out’ by myopic greedy improvements
in standard policy iteration. In contrast, with GGPI, this initial progress can be used to deliver a stronger improvement
over the first greedy policy π1, leading to an optimal policy in fewer iterations. The figure illustrates an extreme setting
where standard policy iteration would need k + 1 improvement steps to reach the optimal policy, while GGPI reaches it
in two single improvement steps. Note also that the set {π0

α→ π1, π1} is suffix-closed in the sense of Definition 4.1, so
improvement is guaranteed by Theorem 4.2.

D.3. Full algorithmic description of GGPI for transfer

In Algorithm 2, we give algorithmic pseudocode to describe the use of GSP evaluation with GHMs and GGPI for transfer.
There are several steps to the process: a set of Markov policies is given, which may be obtained through learning about prior
reward signals, exploration objectives, imitation learning, etc. The agent learns GHMs for these models in a reward-free
manner. A novel reward function is then revealed, and GGPI can be used to derive an improved policy in a zero-shot manner.

D.4. Geometric horizon models with β = 0 and β > 0

As noted in the main text, there is a close connection between GHMs with β = 0 (equivalently taking the switching
probability as α = 1) and one-step forward models traditionally used in planning. Concretely, we can say that µπβ=0(· | x, a),
for any policy π, is exactly identical to one-step forward models commonly used in planning. In Figure 14 (top row), we
show examples of samples generated in this setting while varying the number of model compositions. For any n ≥ 1, this
corresponds to planning with a one-step model for n − 1 steps and ‘bootstrapping’ afterwards with a value estimate of
V πγ (X ′) using µπγ . When we set β > 0, the practice of planning with this model is much the same but each sample from the
model may move one or more trajectory steps into the future, and now the policies (πi)

n−1
i=1 determines the nature of this
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Policy x0 x1 · · · xk92 xk91 xk

π0 → → · · · → → ↑
π1 = G(π0) ↑ ↑ · · · ↑ ↑ →
G(π1) ↑ ↑ · · · ↑ → →

G({π0, π1}) ↑ ↑ · · · ↑ → →
G({π0

α→ π1, π1}) → → · · · → → →

Figure 13. Example chain environment, initial policy π0, and policies generated by a variety of policy improvement steps. Light-blue
shaded cells indicate optimal actions/policies. In this case, since π0 encodes optimal behaviour in some states, it is useful to include
switching policies beginning with π0 in the policy improvement step, and G({π0

α→ π1, π1}) is indeed optimal in this case.

Algorithm 2 GGPI for sample-based transfer.
Require: Markov policies π1, . . . , πk, switching probability α ∈ (0, 1], sampling budget nsamples, discount γ.

Learn GHMs µπiγ and µπiβ , with β = γ(1− α).
Novel reward function r is revealed
Select a suffix-closed set Π of GSPs
for each state x encountered do

For each ν ∈ Π, estimate Qνγ(x, ·) by composing nsamples GHM samples via Equation (6).
Act greedily according to the output of G applied to these estimated Q-functions.

end for

evolution. In Figure 14 (bottom row), the corresponding illustration for β > 0 is given. This again can be thought of as
planning for n− 1 steps and bootstrapping afterwards with a value estimate of V πγ (X ′), however now each step of unrolling
the model is temporally extended and thus potentially moves through many intermediate trajectory states (while following
some Markov policy πi). This allows for much deeper planning with fewer unroll steps than in the β = 0 (one-step model)
case, potentially reducing problems with error accumulation common in planning with learned models. Finally, note that in
the case of n = 1, the value of β has no effect, and we always sample directly from µπγ (· | x0, a0).
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Figure 14. Illustrating samples for GHMs with (a)-(c) β = 0 and (d)-(f) β > 0, with n ∈ {1, 2, 3} respectively. Starting state-action
given by (x0, a0) shown as the root node and first branch. States that are sampled or directly observed are shown in black and actions
explicitly conditioned on are denoted with solid line branches. Meanwhile, states shown in white are not sampled, but would have been
produced while following the policy connecting two observed states. Action branches not followed are shown with dashed lines.
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E. Further experiments and training details
All experiments were undertaken with Python, using NumPy (Harris et al., 2020) and Matplotlib (Hunter, 2007) for
visualisation. Experiments involving deep neural networks were undertaken with Jax (Bradbury et al., 2018), specifically
making use of the DeepMind Jax ecosystem (Babuschkin et al., 2020).

E.1. Sparse-reward ant experiment details

Environment and task. The sparse-reward ant domain is implemented in the MuJoCo framework (Todorov et al., 2012)
for realistic physics simulations. The agent is a quadrapedal bot resembling an ant, first introduced by Schulman et al.
(2016), with 8 controllable joints. The observation is a 35-dimensional representation of the true agent state, including
information about its centre of mass position, velocity, joint angles and angular velocities, heading, etc. The environment
has an 8-dimensional action space [−1, 1]8 representing the torque to be applied at each joint. The ant is capable of moving
about in an infinite unconstrained two-dimensional arena. Each episode starts with the agent randomly initialised at rest in a
20x20 square centered at the origin. A target is chosen randomly at a distance of between 2 to 4 units, at an angle that lies
in the middle 30 degrees of each quadrant. Note that a policy trained to move consistently in a single direction typically
progresses at around 0.2-0.4 units of distance per time step. The episode lasts for 150 time steps, or ends early if the ant
reaches the target.

Policy training. We pretrain policies to move consistently in the 4 axis-aligned directions in the arena. In order to train
the policies to effectively turn directions when switching between these policies, we jointly pretrain them by randomly
switching between them every Uniform(40) steps. Thus the pretraining conditions mimic how the policies will be used
during GGPI planning. We found training policies jointly on data generated in this manner to be important in learning
policies that composed well together. In contrast, training the base policies entirely from on-policy data typically led to poor
compositions in preliminary experiments.

The policies are implemented as stochastic Gaussian policies, with a 4-layer MLP with 256 hidden units including layer
normalisation (Ba et al., 2016) and tanh non-linearities. The network outputs the mean/variance of the torque to be applied
at each of the 8 joints independently. The policies are pretrained using the component of the velocity in the desired direction
as a reward signal, using MPO (Abdolmaleki et al., 2018). The critic network used for MPO is a similar 5-layer MLP with
256 hidden units at each layer, with Layer Norm and tanh non-linearities. The policies are pretrained for 1 million update
steps, using the Adam optimiser (Kingma & Ba, 2015) with a learning rate of 0.0003.

GHM training. We implement the GHMs as conditional β-VAE models with a single latent dimension and a βVAE = 20.
The encoder, prior, and decoder distributions are all assumed to be Gaussian, and implemented as a 3-layer MLP with 128
hidden units in each layer. They each take the concatenated representation of the current agent state and action (x, a) as
auxiliary input to be conditioned on. We slightly modify the modelling task to predict the change in the agent state rather
than the future state directly, i.e. we model Xt+Geom(1−β) −Xt and add this to the state Xt to form a prediction, rather than
directly modelling Xt+Geom(1−β) itself. We found this to improve performance in terms of negative ELBO slightly. For each
pretrained policy, we train 2 separate GHMs, one with geometric horizon parameter β = 0.8 and one with β = 0.9. The
GHMs are trained for 500,000 update steps with the CETD loss, using the Adam optimiser and a learning rate of 0.0003.

We performed a light hyperparameter search for: the learning rate between {3 · 10−5, 10−4, 3 · 10−4, 10−3}; the βVAE-
parameter in the β-VAE loss between {1, 20, 50, 100}; and the VAE latent dimension between {1, 8}. Performance in terms
of negative ELBO was fairly robust across this range of hyperparameters.

Both the policy and GHM training use a distributed actor-learner setup communicating via a uniform replay buffer of size
106. Each learner step uses a batch size of 256 and averages the loss over trajectories of length 20. These settings are
conducted without a target specified, and episodes last for between 100 and 140 steps uniformly at random.

GGPI. When performing GGPI to improve on this set of policies, we evaluate with a discount factor of γ = 0.9. Thus,
we can consider geometric switching policies that switch with a probability of α = 1/9, and estimate the GHM of such a
policy using the GHMs of its constituent base policies with β = 0.8 and β = 0.9. We estimate the action-value function by
sampling from the composed GHM, evaluating the sample under the known non-linear reward function r, and averaging
over multiple samples per geometric switching policy. For fairness, when comparing GGPI with n = 1 and n = 2, we
sample 4 times the sampling budget when evaluating n = 1 — thus, both n = 2 and n = 1 GGPI are considering the same
number of total samples, with n = 1 actually seeing more samples per policy.
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Since this environment has a continuous action space, we cannot evaluate Qν(x, a) for all actions; thus, instead we estimate
V ν(x) = EA∼π1(·|x)[Q

ν(x,A)], i.e. consider only those actions that we obtain by sampling from the head-policy π1 of the
GSP ν, and use this to choose the best GSP ν ∈ Π and act according to it per time step.

E.2. Additional agent visualisations

Figures 15 and 16 show more detailed visualisations of the GPI and depth-2 GGPI agents.

Figure 15. Visualisation of an agent performing GPI (top) and depth-2 GGPI (bottom) for the same episode initialisation. While GGPI is
immediately able to plan to reach the target and reaches it within 20 steps, standard GPI is unable to do so and spends 70 steps moving
randomly before happening to align with the target through pure chance, and then reaching the target. We show the agent and target
locations, the boundary outside of which the reward signal is zero, and visualisation of the different agent plans.

E.3. Comparing GHMs to compositions of 1-step models

We compare the use of GHMs against a 1-step model unrolled for multiple steps. Concretely, we compare our our VAE-based
GHM(β) against a one-step model unrolled for a Geometric(1− β) number of steps. Note that for perfectly trained models,
these two distributions would be identical; however, the GHM models show compounding error at train time due to the use
of bootstrapping, while the one-step model shows compounding error at evaluation time due to the multi-step composition.
We implement the one-step model with identical architecture as the GHM model, equivalent to a GHM(β = 0) model.

Figure 17 shows a comparison of these models for β = 0.9, versus the true geometrically discounted future state distribution
obtained through sampling trajectories via simulating the policy in the environment. The scatterplot on the left shows
samples from these models compared with the true distribution, showing a high degree of overlap for the GHM with the true
distribution and large errors for the one-step model. The plot on the left measures distance of a sample from these models
versus the nearest simulated future state. Though the 1-step model has lower error for very near-term predictions, its error
quickly compounds and increases steadily as the prediction horizon increases. Meanwhile, the GHM models make low-error
predictions even far into the future.
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Figure 16. Comparison of standard GPI (left) and n = 2 GGPI (right) to navigate towards a goal given sparse rewards. We plot the x-y
coordinates of the agent centre of mass, and colour on a gradient from blue to red through the duration of the episode. The target is
displayed along with the boundary outside of which the reward signal is zero.
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E.4. GHM training using normalising flows

In this section we provide further details of GHM training experiments that inform our choice of VAE-GHMs and the CETD
loss in the main paper. One of our main points of comparison is the L2 loss on log-densities, introduced by Janner et al.
(2020).

Definition E.1 (Log-L2 temporal-difference (LL2TD) loss (Janner et al., 2020)). Given an observed transition (x, a, x′),
the log-L2 bootstrap loss is defined by

(log(µ(x′′|x, a))− log((1− β)P (x′′|x, a) + βµ̄(x′′|x′, a′)))2 ,

where a′ ∼ π(·|x′), x′′ ∼ µ(·|x′, a′), µ̄ denotes a stop-gradient on µ.

Janner et al. (2020) focus on the LL2TD bootstrap loss in their experiments. However, as they note, this loss generally leads
to an incorrect minimiser, due to the presence of bias (specifically, the averaging of x′, a′, x′′ outside rather than inside the
logarithm).
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Figure 18. Comparison of CEMC, CETD, and LL2TD losses for training GHMs implemented as normalising flows (left) and β-VAEs
(right). Performance (lower is better) is measured in terms of estimated negative log-likelihood of samples from the true geometric horizon
distribution obtained by sampling states from on-policy trajectories. Results are shown averaged over 5 random seeds.

We provide an empirical comparison of the different methods for GHM training introduced in Section 6. We primarily
consider the LL2TD loss proposed by Janner et al. (2020), against the CETD loss analysed previously. We also briefly
consider training the GHM model µ by directly sampling a future state from on-policy trajectories at a time sampled
according to a Geometric(1− β) distribution into the future, following the CEMC loss introduced in the main paper. Note
that the CEMC loss is straightforward to implement and does not require any bootstrapping, but cannot be learned from
off-policy samples and thus is less desirable than the other methods.

In addition to the comparison using the much simpler VAE models in Section 7, here we compare the losses using normalising
flow models (Rezende & Mohamed, 2015) of a similar architecture as suggested by Janner et al. (2020). As these models
admit exact density computation, we also can compare against the LL2TD loss. Figure 18 shows the performance of
the different methods for β = 0.8 in terms of the negative log-likelihood of a sample from the true geometric horizon
distribution of the πright pretrained policy on the sparse-reward ant environment. Note that the CEMC loss is explicitly
optimising for this metric and achieves very strong performance, while the CETD and LL2TD losses perform much worse.
Further, the LL2TD loss is much less stable than CETD and actually diverges late in training.

When training GHMs using normalising flows, we use a similar architecture to that proposed by Janner et al. (2020). We
use a normalising flow consisting of 2 coupling layers, each including a batch norm flow (Dinh et al., 2017), a 1x1 invertible
convolution (Kingma & Dhariwal, 2018), and a conditional neural spline (Durkan et al., 2019). The neural spline includes a
rational quadratic spline with range between -5 to 5, 8 knots, and whose parameters are outputted by an MLP with a single
hidden layer of size 256. When training using the LL2TD loss, we use a target network with a target update period of 200
learner steps to generate the bootstrap targets as suggested by Janner et al. (2020).
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E.5. Evaluating GGPI performance for varying GHM training budgets

In our main experiments, we train GHMs using VAEs for 500000 learner steps, which is sufficient to plateau the training
ELBO. We now examine the sensitivity of our proposed method to the training budget afforded to GHM training.

Figure 19. Performance of depth-2 GGPI on the sparse-reward ant task with snapshots of GHM models taken at various stages through
training.

Figure 19 shows that GHMs trained with as few as 104 learner steps (taking only 2 minutes wall-clock time on our distributed
training setup described in Appendix E.1) are still successful in planning. Additional preliminary experiments with even
fewer learner steps did not result in GHMs useful for planning.

F. An extension of the main evaluation result
For simplicity, in the main paper we presented Theorem 3.2 for action-independent rewards. There is a simple adaptation to
this result that applies to general reward functions r : X ×A → R.

Theorem F.1. Consider an MDP with expected reward function r : X × A → R, and let ν = π1
α→ · · · α→ πn. Writing

β = γ(1− α), we have

r(x, a) +
γ

1− γ
×

[
n−1∑
m=1

1− γ
1− β

(
γ − β
1− β

)m−1 (
(1− α)rπm(X(m)) + αrπm+1(X(m))

)
+

(
γ − β
1− β

)n−1

rπn(X ′)

]
,

where (X(0), A(0)) = (x, a), X(m) ∼ µπmβ (·|X(m91), A(m91)), A(m) ∼ πm+1(·|X(m)), X ′ ∼ µπ
(n)

γ (·|X(n), A(n)), is an
unbiased estimator for Qνγ(x, a).

Proof. The result can be proven as a straightforward corollary of Theorem 3.2; the distribution of X(m) matches that of
XT conditional on the geometric time T falling between the times of the (m − 1)th and mth switches, while the GSP is
executing policy πm. Thus, to know what the distribution of actions should be when evaluating the reward function at this
state, we need to know whether the switch happens at the current time step or not. From the memoryless property of the
geometric distribution concerned, this probability is precisely α. So with a weighting of 1− α, the reward is evaluated for
the policy πm, and with a weighting of α, the reward is evaluated according to the distribution πm+1 over policies that will
be switched to at this time step.


