
Consistent Polyhedral Surrogates for Top-k Classification and Variants

Jessie Finocchiaro 1 Rafael Frongillo 1 Emma Goodwill 1 Anish Thilagar 1

Abstract
Top-k classification is a generalization of mul-
ticlass classification used widely in informa-
tion retrieval, image classification, and other ex-
treme classification settings. Several hinge-like
(piecewise-linear) surrogates have been proposed
for the problem, yet all are either non-convex or in-
consistent. For the proposed hinge-like surrogates
that are convex (i.e., polyhedral), we apply the
recent embedding framework of Finocchiaro et al.
(2019; 2022) to determine the prediction problem
for which the surrogate is consistent. These prob-
lems can all be interpreted as variants of top-k
classification, which may be better aligned with
some applications. We leverage this analysis to
derive constraints on the conditional label distri-
butions under which these proposed surrogates
become consistent for top-k. It has been further
suggested that every convex hinge-like surrogate
must be inconsistent for top-k. Yet, we use the
same embedding framework to give the first con-
sistent polyhedral surrogate for this problem.

1. Introduction
Top-k classification is commonly used in image recogni-
tion (Akata et al., 2013; Karpathy et al., 2014; Russakovsky
et al., 2015) and action analysis (Furnari et al., 2018), search
querying (Ailon and Mohri, 2008; Reddi et al., 2019), and
recommender systems more broadly (Adomavicius and
Zhang, 2016; Billsus et al., 1998; Deshpande and Karypis,
2004). For example, in information retrieval, a page of k
results may be displayed out of n� k total webpages avail-
able, with success indicated by a user clicking one of these
k. This scenario can be captured by the top-k loss: given
a set S of labels, |S| = k, and the true label y, assign loss
1 if y 6∈ S, and 0 otherwise. As top-k loss is discrete, it
is typically computationally hard to optimize. Therefore,
top-k learning algorithms typically employ a surrogate loss.
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Common desiderata for surrogate losses are that they be
convex, and thus easier to optimize, and that they be statis-
tically consistent, meaning they solve the original problem
(here: top-k) when given enough data. Another considera-
tion is whether the surrogate is smooth (e.g. differentiable)
or piecewise-linear (“hinge-like”). This consideration is
related to whether the surrogate will implicitly learn the
underlying conditional label distribution, which generally
is a harder learning problem than the original; for exam-
ple, the entire label distribution contains more information
than the set of k most likely labels. Typically, smooth sur-
rogates, such as cross-entropy, implicitly learn the entire
label distribution.1 Conventional wisdom has been that
piecewise-linear surrogates are more “efficient” in the sense
that they learn only what is relevant for the original prob-
lem. Moreover, piecewise-linear and convex surrogates give
rise to linear surrogate regret bounds, whereas most smooth
surrogates do not (Frongillo and Waggoner, 2021).

Combining the above desiderata, we would like a surro-
gate which is both polyhedral (convex and piecewise-linear)
and consistent for top-k classification. Unfortunately, while
many piecewise-linear surrogates have been proposed for
top-k, they are all either non-convex or inconsistent (Lapin
et al., 2015; 2016; 2018; Reddi et al., 2019; Yang and
Koyejo, 2020). Moreover, the results and writing of both
Lapin et al. (2016, pg.6) and Yang and Koyejo (2020, pg.1)
suggest that perhaps no such surrogate exists for top-k.

We resolve this open question by presenting the first con-
sistent polyhedral surrogate for top-k classification (§ 4).
Our proof uses embedding framework of Finocchiaro et al.
(2019; 2022). We also use the embedding framework to
analyze three previous polyhedral surrogates in the litera-
ture which are inconsistent for top-k (§ 3). For each we
show (a) what discrete prediction problem the surrogate is
actually solving, in all cases a natural variant of top-k, and
(b) a constraint on the conditional label distributions such
that the surrogate becomes consistent for top-k. Finally, we
evaluate the performance of our surrogate compared to these

1Concretely, consider any surrogate whose Bayes risk is strictly
concave, which is the case for most smooth surrogates. For each
surrogate prediction u, it can minimize expected loss for at most
one conditional label distribution p; otherwise the Bayes risk would
be flat on the line segment between two such distributions. Thus,
one can infer p from the u returned by the model.
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previous surrogates (§ 5).

2. Setting
We consider predictions in a discrete setR over a finite set of
labels Y = {1, . . . , n}, and conditional label distributions
∆Y . In top-k classification, predictions take the form of
size-k subsets of labels, R = Rk := {S ⊆ Y | |S| = k}.
Top-k loss `k : Rk × Y → R+ simply tests whether the
actual label lies in the set,

`k(S, y) = 1{y 6∈ S} , (1)

where 1{E} is 1 if event E is true, and 0 otherwise. In
reasoning about top-k and variants, it is often useful to
denote u[i] to be the ith largest element of the vector u ∈ Rn.
Moreover, the set of possible top-k indices Tk : Rn → 2Rk

is given by Tk : u 7→ arg maxS∈Rk
〈1S , u〉. Observe

|Tk(u)| > 1 if and only if u[k] = u[k+1]. Additionally,
we denote the sum of these top k elements by σk(u) =
maxS∈Rk

〈1S , u〉.

2.1. Consistency, Property Elicitation, and Calibration
Discrete losses such as `k are hard to optimize directly,
so a consistent surrogate is sought instead with better op-
timization guarantees. In essence, a surrogate and link
are consistent with respect to a discrete target loss if ap-
proaching the optimal surrogate loss implies approaching
the optimal target loss when the link function is applied to
the surrogate predictions. We will phrase consistency in
terms of the equivalent notion of calibration (Bartlett and
Wegkamp, 2008; Ramaswamy and Agarwal, 2016; Stein-
wart and Christmann, 2008; Tewari and Bartlett, 2007).

Before defining calibration, we first introduce properties,
which encode the optimal predictions for a loss as a function
of the conditional label distribution. Here P ⊆ ∆Y .

Definition 2.1. A property is a function Γ : P → 2R \ {∅},
which we more succinctly denote Γ : P ⇒ R. A loss
L : R×Y → R elicits a property Γ : P ⇒ R if

∀p ∈ P, Γ(p) = arg min
r∈R

EY∼pL(r, Y ) .

A loss L is minimizable if EY∼pL(·, Y ) attains its infimum
for all p ∈ P . Every minimizable loss L elicits a unique
property, which we denote prop[L].

As an example, the property elicited by top-k loss is γk =
prop[`k], which is given by

γk(p) = arg min
S∈Rk

〈p, `k(S, ·)〉

= arg min
S∈Rk

∑
i 6∈S

pi

= Tk|∆Y (p) . (2)

Definition 2.2. Let ` : R × Y → R with |R| < ∞. A
surrogate L : Rd × Y → R+ and link ψ : Rd → R pair
(L,ψ) is calibrated with respect to ` over P ⊆ ∆Y if for all
p ∈ P ,

inf
u:ψ(u) 6∈prop[`](p)

EY∼pL(u, Y ) > inf
u∈Rd

EY∼pL(u, Y ) .

We simply say L is calibrated with respect to ` if there exists
a link ψ such that (L,ψ) is calibrated with respect to `.

One can think of P as the set of possible conditional la-
bel distributions conditioned on some feature vector. We
consider P = ∆Y unless otherwise specified.

2.2. Embedding Framework for Polyhedral Surrogates
We rely heavily on the embedding framework of Finoc-
chiaro et al. (2019; 2022), which gives tools to analyze and
construct consistent polyhedral surrogates. An embedding
maps the finite set of target predictions to a representative
set of surrogate predictions.

Definition 2.3 (Representative set). A set S ⊆ R is repre-
sentative for a property Γ : P ⇒ R if, for all p ∈ P , we
have Γ(p) ∩ S 6= ∅. We say S is representative for a loss L
if it is representative for the property prop[L].

Definition 2.4 (Embedding). A loss L : Rd × Y → R+

embeds a discrete loss ` : R × Y → R+ if there exists
a representative set S for ` and an injective embedding
ϕ : S → Rd such that (i) for all r ∈ S and y ∈ Y we have
L(ϕ(r), y) = `(r, y), and (ii) for all p ∈ ∆Y , r ∈ S we
have

r ∈ prop[`](p) ⇐⇒ ϕ(r) ∈ prop[L](p) . (3)

In other words, a surrogate embeds a discrete target loss if
the loss values match at the embedded points, and moreover,
a target prediction is optimal exactly when its embedded
prediction is optimal for the surrogate.

Embeddings are closely tied to polyhedral surrogates; in
particular, every polyhedral surrogate embeds some discrete
loss (Finocchiaro et al., 2022). We will primarily use the
following results. Throughout, for a loss L : R× Y → R+

and set S ⊆ R, we denote by L|S the loss on S × Y given
by L|S(u, y) = L(u, y), i.e., the restriction of L to S .

Theorem 2.5 (Finocchiaro et al. (2022)).

1. Every polyhedral loss L has a finite representative set.

2. If S is a finite representative set for L, then L embeds
the discrete loss L|S .

3. If L embeds `, then there exists a link ψ such that
(L,ψ) is calibrated with respect to `.
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These correspond to Lemma 2, Proposition 1, and Theorem
2 in that work, respectively. The authors also provide a con-
struction for the calibrated link ψ, as well as a construction
for a calibrated polyhedral surrogate given any discrete loss;
we discuss both of these additional tools in § 4.

3. Previous Polyhedral Surrogates
Lapin et al. (2015) proposes a nonconvex surrogate for top-k
prediction, as well as convex upper bounds on this surrogate
in (Lapin et al., 2016), denoted L(2) and L(3) here to parallel
their notation. Yang and Koyejo (2020) show that L(2) and
L(3) are inconsistent for `k classification, and introduce
another inconsistent surrogate, which we denote L(4).

All three losses L(2), L(3), and L(4) are polyhedral; as such
Theorem 2.5 implies that they all embed some discrete loss.
It is not immediately clear, however, what exactly these dis-
crete losses are for each surrogate. In this section, we derive
a target loss that each surrogate embeds, which in each case
is an interesting variant of the original top-k problem.

Deriving the loss embedded by an inconsistent surrogate
also allows one to understand when it would be consistent
for the intended target. In particular, by looking at the geom-
etry of the property elicited by the surrogate, we can derive
a constraint on the set of conditional label distributions un-
der which it becomes consistent for top-k. One can view
these results as a refinement of inconsistency results; for
example, Yang and Koyejo (2020, Proposition 4.2) charac-
terizes the set of distributions such that the surrogate report
u = ~0 ∈ Rn is optimal, a subset of the set of distributions
we eliminate.

In summary, then, we strive in this section to answer two
questions about L(2), L(3), and L(4): (i) What discrete loss
does the surrogate embed? (ii) On which conditional label
distributions is the surrogate actually consistent for top-k?

To answer (i), we find a finite representative set and ap-
ply Theorem 2.5, which shows that restricting to that set
gives an embedding. To find this set, we first observe that
these surrogates are all invariant in the 1 direction, meaning
L(u, y) = L(u + α1, y) for all α ∈ R. Furthermore, we
can fix the lowest n− k − 1 elements of U to be the same
as u[k+1], as this can only improve the loss on any outcome.
We can therefore restrict our attention to the set of reports

U = {u ∈ Rn+ | u[k+1] = 0 = u[n]}, (4)

which is representative, although infinite. In some cases, we
further restrict U to a region where the positive part operator
(·)+ can be removed. In each case, we partition the result-
ing set into polytope regions over which the surrogate is
affine; in other words, we find the pieces for which the loss
is piecewise linear. By the theory of polyhedral functions,
for each conditional label distribution, at least one vertex of

one of these regions must be a minimizer of the expected
loss. The union of all such vertices therefore yields a finite
representative set. As a final step, in each case we reparam-
eterize this set of vertices with a bijection to a more natural
prediction set, which more transparently reveals a variant of
the top-k problem. Applying such a bijection preserves the
embedding by Definition 2.4.

To answer (ii), we observe that in all cases, inconsistency
is driven by surrogate reports for which the set of top-k
elements is ambiguous, thus forcing the link to break a
tie. Specifically, for reports u ∈ Rn with u[k] = u[k+1],
we have multiple options for Tk(u), yet ψk must select
one. Let Uambig = {u ∈ Rn | u[k] = u[k+1]} be the set
of these ambiguous surrogate reports. Whenever a report
u ∈ Uambig is optimal for a conditional label distribution p
for which Tk(p) is not ambiguous, i.e. p[k] > p[k+1], we will
have inconsistency. Therefore, (L(i), ψk) is consistent with
respect to `k on the set P(i) := {p ∈ ∆Y | prop[L(i)](p) ∩
Uambig = ∅} of conditional label distributions for which
there is no ambiguous optimal report.

3.1. Analysis of L(2)

The surrogate L(2) proposed by Lapin et al. (2016) is given
by

L(2)(u, y) =

(
1− uy +

1

k

k∑
i=1

(u− ey)[i]

)
+

. (5)

We will derive a discrete loss `(2) in eq. (6) thatL(2) embeds,
and then use it to characterize the set of distributions P(2)

on which (L(2), ψk) is consistent with respect to `k. See
§ A for all omitted details.

By our strategy outlined above, we begin with the set U
(eq. (4)), which is representative for L(2). We then construct
the bounded region U (2)

+ ⊂ U in which the positive part
operator in eq. (5) is not activated, and show U

(2)
+ is repre-

sentative. We next partition U (2)
+ into polytope regions over

which L(2) is affine. When restricting to U (2)
+ , the only way

L(2)(·, y) fails to be affine is in the top-k elements of a pre-
diction (u− ey) changing. Observe that, up to tie-breaking,
the top k elements of (u − ey) are the same as the top k
elements of u if and only if uy ≥ 1 = 1 + u[k+1]. L(2) is
therefore affine on regions where sign(ui − 1) is constant
for all i ∈ {1, . . . , k}. Further examining these affine re-
gions reveals that their vertices are the points u ∈ Rn+ such
that ui ∈ {0, 1, c(u)} for a particular value c(u) > 1 that
depends on how many entries of u are nonzero and how
many are strictly greater than 1.

Taking the union of these vertices, we arrive at a finite
representative set for L(2). Theorem 2.5 now states that
L(2) embeds L(2) restricted to this vertex set. To state this
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,
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)

p1 p3
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∅

2
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p1 p3

p2

14
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k
=

3

p1 p3

p2

(∅, 14)
(1, 4)

(1
2
,
4
)

(1
4
,
2
) (∅

,
3
4
)

(∅
,
2
3
4
)

(2, 34)

p1 p3

p2

(3, 24, 1)

(23, 4, 1)

(3, 4, 12)

(2, 134)(12, 34) p1 p3

p2

134

234124

p1 p3

p2

134

234124

Table 1: Visualizations of the minimizers of the losses (embedded by) L(2), L(3), L(4), and Lk with n = 4 and k ∈ {2, 3},
fixing p4 = 1/4. The dashed blue lines give sets of distributions p corresponding to the same report u such that u ∈
prop[Lk](p). As we must link reports deterministically, we want each of the bold, black cells to be fully contained in a cell
from the blue dashed cells. Blue regions cross the dashed blue lines and suggest where deciding how to construct a link ψ is
ambiguous, as |Tk(u)| > 1. White regions are therefore where the surrogate and any top-k link are consistent, e.g., P(i). On
the right, Lk shows our proposed surrogate that is consistent for top-k classification, demonstrated by no blue regions. Each
of the cells corresponds to a subset of distributions where exactly k reports are optimal.

discrete loss more intuitively, we simply reparameterize
these vertices, letting M be the set of entries equal to 1, and
H the set strictly greater than 1. LettingR(2) be the set of
valid pairs (H,M), namely disjoint and with |H ∪M | ≤ k,
we arrive at the following discrete loss `(2) : R(2)×Y → R
embedded by L(2).

`(2)((H,M), y) =


0 y ∈ H
|H|+|M |−1
k−|H| y ∈M

|H|+|M |−1
k−|H| + k+1

k otherwise
(6)

One can regard H as the “high labels”, with high likeli-
hood of being the ground truth label, and M the “medium
labels”, with some likelihood. One therefore attains loss
0 if they were highly confident in the ground truth label,
and accumulate a loss that grows in the size of H and M
otherwise.

By our observations above, consistency with respect to top-
k is achieved whenever the optimal report is some (H,M)
with |H∪M | = k. This condition can be written as follows,
where h∗(p) = max{i ∈ {0, . . . , k} | p[i] >

1−σi−1(p)
k−(i−1) }.

Corollary 3.1. Define

P(2) :=

{
p ∈ ∆Y | p[k] >

(1− σh∗(p)(p))
(k + 1)(k − h∗(p))

}
. (7)

L(2) is consistent with respect to `k on P(2).

3.2. Analysis of L(3)

Lapin et al. (2016) give two convex upper bounds on the
proposed top-k surrogate from (Lapin et al., 2015): L(2)

studied in § 3.1, and L(3), defined as follows.

L(3)(u, y) =
1

k

k∑
i=1

[
1− uy + (u− ey)[i]

]
+

(8)

While similar to L(2), the placement of the positive part
operator changes the analysis of the surrogate significantly.
See § B for all omitted details.

As above, it suffices to identify sources of non-affineness
on U (eq. (4)) to construct a finite representative set for
L(3). Non-affineness of L(3) is introduced by the positive
part operator and the ordering of the top-k elements of a
prediction u ∈ U . Unlike L(2), the positive part operator
is applied to each term of the summand, so we cannot im-
mediately ignore this operator by restricting to a bounded
representative region. Instead, let us simultaneously fix (1)
a set S ∈ Rk to be indices of the top-k elements of u, and
(2) sets ~V = {Vy ⊆ S \ {y} | y ∈ Y} corresponding to
induces when the positive part operator is not activated for
L(3)(u, y). For any such S, ~V , therefore, we define the re-
gion AS,~V to be all points u ∈ U with (1) S ∈ Tk(u) and
(2) for all y ∈ Y , we have ui + 1 ≥ uy for all i ∈ Vy, and
ui + 1 ≤ uy for all i /∈ Vy . By the above reasoning, L(3) is
affine on the set AS,~V for each choice of S, ~V .

The union of the vertices of each AS,~V region is therefore
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a finite representative set, and L(3) embeds L(3) restricted
to these vertices. Upon inspection of the geometry of the
AS,

~V regions, we show that the vertices of each are in fact a
subset of Znk . A more intuitive form for this discrete loss can
therefore be expressed in terms of ordered partitions, where
index i is in the jth partition Qj when ui = j. Formally, we
reparameterize the vertices as ordered partitions Q ∈ R(3),
where

R(3) = {Q=(Q0, . . . , Qs) | s≤k,Qi∩Qj = ∅ ∀i 6= j,

|Q1,∪ . . . ∪Qs| ≤ k,Qi 6= ∅ ∀i} .

We now have that L(3) embeds `(3) : R(3) ×Y → R, given
by

`(3)(Q, y) =


1
k

(
|Qj | − 1 +

∑
i>j

|Qi|(i− j + 1)

)
j>0

1
k

s∑
i=1

|Qi|(i+ 1) j=0

where y ∈ Qj . For intuition, `(3) allows for predictions
with more granularity than `(2), where the higher index i of
the partition Qi is, the more confident one is in outcomes
in Qi. The punishment for error again grows in the number
of indices one reports high confidence in, as well as the
number of partitions.

In order to characterize the regions where (L(3), ψk) is con-
sistent with respect to `k, we can study where `(3) can be
unambiguously linked to `k. In particular, one can do so for
any p ∈ ∆Y such that |Q0| = n− k for Q ∈ prop[`(3)](p).

Corollary 3.2. L(3) is consistent with respect to `k on
P(3) = {p ∈ ∆Y | p[k+1] >

1
k+1 ∧

∑n
i=k+1 p[i]
k−1 ≥ p[k]}.

3.3. Analysis of L(4)

Observing that L(2) and L(3) are inconsistent with respect
to `k, Yang and Koyejo (2020) propose L(4) as in eq (9),
changing the summation from elements of (u− ey) to ele-
ments of u\y ∈ Rn−1: the elements of u excluding uy . See
§ C for all omitted details.

L(4)(u, y) =

(
1− uy +

1

k

k∑
i=1

(u\y)[i]

)
+

(9)

Again following the strategy outlined above, we begin with
the set U , which is representative for L(4). Here we also
further restrict to the set of points U (4)

+ ⊆ U yielding a
nonnegative argument to the positive part operator, and
show that U (4)

+ is also representative for L(4). Within U (4)
+ ,

we observe that the only way L(4)(·, y) fails to be affine is
when the top k elements of u\y change. Since all elements
of U have at most k nonzero entries already, it therefore

suffices to select a subset T of nonzero indices. For any
T ⊆ [n] with |T | ≤ k, let us therefore define the set AT to
be all points u ∈ Rn such that 0 ≤ ui ≤ 1+ 1

k

∑
j∈T,j 6=i uj

for i ∈ T , and ui = 0 for i /∈ T . For any p ∈ ∆Y , the
function u 7→

〈
L(4)(u, ·), p

〉
is affine on each region AT ,

and moreover, they partition the representative set U (4)
+ .

Taking the union of vertices of each AT set, we arrive at a
finite representative set for L(4). Carefully examining the
geometry of the AT sets, one sees that these vertices are
the points u ∈ Rn such that each element is either 0 or

k
k+1−|T | . Therefore, the finite representative set for L(4)

can be reparameterized as R(4) = {T ⊆ [n] | |T | ≤ k},
and thus L(4) embeds `(4) : R(4) × Y → R given by

`(4)(T, y) =

{
0 y ∈ T
k+1

k+1−|T | y /∈ T
.

Intuitively, `(4) is a variant of top-k where one may report
any set of labels of size m ≤ k, and the stakes for being
incorrect increase in m. Therefore, the loss incentivizes one
to report smaller sets only when sufficiently confident.

Following this intuition, consistency therefore arises when-
ever the conditional label distribution does not lead to such
high confidence that the optimal report is a set of sizem < k.
We characterize such distributions as follows.

Corollary 3.3. L(4) is consistent with respect to `k on
P(4) := {p ∈ ∆Y | p[k] > 1− σk(p)}.

4. A New Consistent Surrogate
Yang and Koyejo (2020) show that the polyhedral surrogates
analyzed in § 3 are not consistent for top-k. They further
suggest that perhaps no polyhedral surrogate can be con-
sistent. On the other hand, the embedding framework of
Finocchiaro et al. (2019; 2022) shows that every discrete
loss has a consistent polyhedral surrogate. As their result
is constructive, we apply it to the top-k loss `k, giving the
first consistent polyhedral surrogate, Lk, for the problem
(§ 4.1). The embedding framework relies on constructing
a link from scratch, rather than using a pre-specified link
function. As such, in principle their surrogate construction
could yield a surrogate which is not consistent when paired
with ψk, but only with a different link entirely. Interestingly,
we further show that in particular (Lk, ψk) is consistent
with respect to `k (§ 4.2).

4.1. Formulating Lk
To show that every discrete loss is embedded by a consistent
polyhedral surrogate, Finocchiaro et al. give the following
construction. Their construction echoes similar construc-
tions in the literature (cf. Asif et al. (2015), Farnia and Tse
(2016), Fathony et al. (2016), Duchi et al. (2018).) Recall
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that the Bayes risk of a loss ` : R× Y → R is the function
` : ∆Y → R, ` : p 7→ minr∈R 〈p, `(r, ·)〉.

Theorem 4.1 (Finocchiaro et al. (2022, Theorem 4)). Any
discrete loss ` : R×Y → R+ is embedded by the consistent
surrogate L(u, y) = (−`)∗(u)− uy where (·)∗ denotes the
convex conjugate.

The Bayes risk of `k is

`k(p) = inf
S∈Rk

〈p, `k(S, ·)〉 = 1− σk(p) .

By Theorem 4.1, the following loss function Lk therefore
embeds `k, with consistency (for some link function) fol-
lowing from Theorem 2.5.

Lk(u, y) = (−`k)∗(u)− uy
= sup
p∈∆Y

(
〈p, u〉+ `k(p)

)
− uy

= sup
p∈∆Y

(〈p, u〉+ 1− σk(p))− uy . (10)

Choosing p to be uniform on the m largest indices of u
(which we justify in § D.2), this expression simplifies to

= max
1≤m≤n

{
σm(u)
m +

(
1− k

m

)
+

}
− uy . (11)

Since σm(u)
m is non-increasing in m, and 1 − k

m ≤ 0 for
0 < m ≤ k, the m = 1 case will dominate the 1 < m ≤ k
cases. Therefore, we can further simplify the loss,

= max

{
u[1], max

k<m≤n

{
σm(u)
m + 1− k

m

}}
− uy .

In this form, it is clear to see that the surrogate is piecewise
linear, as a maximum of affine functions (recall that σm can
itself be written as a maximum).

4.2. The Argmax Link is Calibrated
From Theorem 2.5, there exists some link function ψ :
Rn → Rk mapping the report space of Lk back to the that
of `k, such that (Lk, ψ) is consistent with respect to `k. It
remains to actually find this link ψ. In fact, we will show
that one can take ψ = ψk, the canonical argmax link.

Recall that consistency is characterized by calibration (Def-
inition 2.2), which says that linking to a non-`k-optimal
report should be strictly Lk-suboptimal. To show that ψk
is calibrated, we in turn use another equivalent condition,
that ψk be ε-separated (Finocchiaro et al., 2022, Definition
8) with respect to `k and Lk. Recall that all minimizable
losses elicit a property (Definition 2.1), which is just a map
from distributions to all optimal reports under that loss.

Definition 4.2. Given a discrete loss ` : R × Y → R+

and surrogate L : Rd × Y → R+, let Γ = prop[L] and
γ = prop[`] be their respective properties. The link ψ :
Rd → R is ε-separated with respect to (L, `) if for all
p ∈ ∆Y , u ∈ Γ(p), and u′ ∈ Rd such that ψ(u′) 6∈ γ(p),
we have ‖u− u′‖∞ ≥ ε.

Calibration and ε-separation are equivalent for polyhedral
surrogates (Finocchiaro et al., 2022, Theorem 5).

To show ε-separation, we first must characterize the prop-
erties of `k and Lk. Eq. (2) gives us prop[`k] = γk. Let
Γk = prop[Lk].

Recall that the report space of `k isRk = {S ⊆ Y | |S| =
k}. Let T = {1S | S ∈ Rk} be the set of indicators for the
elements of Rk. Then, τk(u) = arg maxt∈T 〈t, u〉 is the
set of possible indicators of the top k elements of u. Note
that |τk(u)| > 1 if and only if u[k] = u[k+1].

Lemma 4.3. Let cone denote the convex cone. Then,

Γk(p) = hull(τk(p))− cone{1i | pi = 0}+
⋃
α∈R
{α1} .

The proof, deferred to § D.1, relies on the connection be-
tween Γk and the subgradients of −`k. With this charac-
terization of γk and Γk, we can prove that ψk is calibrated.

Theorem 4.4. (Lk, ψk) is calibrated with respect to `k.

Proof. First, we show ψk is ε-separated with respect to Γk
and γk. Let ε = 1

2n . Fix any p ∈ ∆Y , and choose any
u ∈ Γk(p). Choose α such that u − α1 ∈ hull(τk(p)) −
cone{1i | pi = 0}. We need to show for every u′ with
ψk(u′) 6∈ γk(p), ‖u− u′‖∞ ≥ 1

2n .

Case 1: p[k] > 0. Since u ∈ Γk(p), Lemma 4.3 implies
every element of u is at most 1 + α, so we have σk−1(u) ≤
(k− 1)(1 +α). Let S = support(γk(p)), the set of indices
i with p[i] ≥ p[k] > 0. Lemma 4.3 also implies

∑
i∈S ui =

k + α|S|. Since u[k] is the largest element of S that is not
in the top k − 1 elements of u, we have

u[k] ≥
(∑

i∈S ui
)
− σk−1(u)

|S| − (k − 1)

=
k + α|S| − (k − 1)(1 + α)

|S| − (k − 1)

=
1

|S| − (k − 1)
+ α

>
1

n
+ α .

Now, pick any u′ such that ψk(u′) 6∈ γk(p). Since ψk(u′)
is some top-k index set of u′, and by eq. (2) γk(p) is every
possible top-k index set of p, then there must be some index
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j ∈ ψk(u′) such that pj < p[k]. Then by Lemma 4.3,
uj ≤ α.

We proceed by contradiction. Assume ‖u − u′‖∞ < 1
2n .

Therefore for every index i, we have |ui − u′i| < 1
2n . Since

u[k] > α + 1
n , for every i ∈ ψk(u), we must have u′i >

ui − 1
2n ≥ u[k] − 1

2n ≥ α + 1
2n . Since uj ≤ α, we also

must have u′j < α + 1
2n . However, that means there are

|ψk(u)| = k elements of u′ which are larger than u′j , so
j 6∈ ψk(u′), a contradiction. Therefore, ‖u− u′‖∞ ≥ 1

2n .

Case 2: p[k] = 0. Let S = {i|p[i] > 0}. Therefore, for all
i ∈ S, ui = 1 + α. Since p[k] = 0, S must be contained by
element of γk(p). Choose any u′ such that ψk(u′) 6∈ γk(p).
By eq (2) every element of γk(p) contains S, so there must
be some index j ∈ S such that u′j ≤ u′[k].

We again proceed by contradiction, and assume ‖u −
u′‖∞ < 1

2n . Since uj = 1 + α, we must have u′j >

1 + α − 1
2n . However, since u′j ≤ u′[k], there must be

k− (|S| − 1) elements of u′ that are greater than u′j but not
in S. Formally, choose any set T ⊆ ([n] \ S)∪ψk(u′) with
|T | = k − (|S| − 1). For every i ∈ T we have u′i > u′j , so

∑
i∈T

ui ≥
(

1 + α− 1

2n

)
|T |

=

(
1 + α− 1

2n

)
(k − |S|+ 1)

= (1 + α) (k − |S|) + α+ 1− k − |S|+ 1

2n
> (k − |S|)(1 + α) + α .

However, by Lemma 4.3, the maximum sum of any k −
|S|+ 1 elements of [n] \S is (k− |S|) + (k− |S|+ 1)α =
(k−|S|)(1+α)+α, a contradiction. Thus, ‖u−u′‖∞ ≥ 1

2n .

Therefore, in either case, ψk is ε-separated with respect to
(Γk, γk). Finally, by Finocchiaro et al. (2022, Theorem 5),
(Lk, ψk) is calibrated with respect to `k.

5. Numerical Comparison
We have seen that Lk is consistent for top-k classification,
while L(2), L(3), and L(4) are not. In general, therefore,
we expect these inconsistent losses to have worse top-k
performance than Lk. We now quantify this gap for the case
n = 5 and k = 3, by computing the expected difference in
top-k loss obtained as a result of optimizing each of the four
surrogates.

Recall from Definition 2.1 that we have prop[L](p) =
arg minu∈Rn 〈p, L(u, ·)〉 as the minimizers of the expected
loss of L under p. For each surrogate L we measure their
expected risk: the top-k loss obtained by optimizing L

Risk(L) = E
p∼D

[〈p, `k (ψk (prop[L](p)) , ·)〉] ,
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Figure 1: The top-k risk (top) and regret (bottom) from
surrogate risk minimization of L(2), L(3), L(4), and Lk, for
n = 5 and k = 3. For each choice of α, 1000 conditional
label distributions were drawn from Dirichlet(α, α, 1, 1, 1).

and regret: the risk minus the true optimal top-k loss.

Regret(L) = Risk(L)− E
p∼D

[
arg min
r∈Rk

〈p, `k(r, ·)〉
]
.

Here p is a conditional label distribution, which we draw
from D = Dirichlet(α, α, 1, 1, 1), with α varied from 2−3

to 23. We take the ψk that breaks ties lexicographically. The
results of these trials are shown in Figure 1.

When α is large, D concentrates on conditional label dis-
tributions with most of their weight on the first two labels,
and for small α, it concentrates on those with weight on the
last three. As k = 3, we expect all surrogates to perform
well in these regimes, since it is relatively easy to select the
most likely labels. For intermediate values, the distribution
is closer to uniform, and the loss increases for all surrogates.
However, the inconsistent surrogates incur the largest in-
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Figure 2: The empirical top-k test loss for each loss trained
on a dataset with conditional label distributions sampled
from Dirichlet(αp).

crease, and therefore largest regret, as they are more likely
to link to a suboptimal set when p[k] is close to p[k+1].

As expected, Lk incurs no regret, since it is consistent. We
also see that of the inconsistent surrogates, L(2) incurs the
most regret, while L(4) incurs the least. This observation
aligns with Table 1, which shows that L(2) has the largest
inconsistent regions, while L(4) has the smallest.

Next, we verify this performance empirically. We fix
p = (.15, .15, .15, .2, .35), a point where L(2), L(3), and
L(4) are inconsistent. For each value of α, we sample 10000
conditional label distributions pi ∼ Dirichlet(αp); we take
the feature vector xi = pi and draw the label yi ∼ pi. For
each dataset and each surrogate loss function, we train a
linear model for 200 epochs using Adam with a learning
rate of 0.01. Finally, for each α, we create a test set with
1000 samples in the same fashion. We then compute the
top-k loss of the model trained for each surrogate loss, and
plot the results in Figure 2.

For large α, the conditional labels are concentrated on a
region where Lk is consistent but the other surrogate losses
are not. In this regime, Lk clearly obtains a better top-
k test loss. For smaller α, the conditional distributions
are more evenly distributed on ∆Y , and in this regime Lk
actually performs worse than the inconsistent surrogates.
One explanation for this worse performance could be the
shallowness of its gradients.

6. Discussion
In § 3, we apply the embedding framework of Finocchiaro
et al. (2019; 2022) to analyze previously proposed, yet in-
consistent, surrogates for top-k classification. The goal
of this analysis is two-fold: first, to uncover the discrete

losses for which these surrogates are consistent, and second,
to characterize distributional conditions sufficent to render
them consistent for top-k classification. We believe this
general line of inquiry will be useful for other polyhedral
surrogates in the literature known to be inconsistent for their
desired target. In particular, while it is clearly useful to un-
derstand the circumstances in which these surrogates would
be consistent, we also believe it would be useful to uncover
the variants of the intended target which are embedded by
these inconsistent surrogates.

To illustrate, consider the surrogate L(4), analyzed in
§ 3.3. We showed L(4) to be consistent for the target loss
`(4)(T, y) = k+1

k+1−|T |1{y /∈ T}, which allows one to pre-

dict any set of labels T with |T | ≤ k. WhileL(4) is therefore
consistent for top-k only when optimal sets T have size k,
in practice, the extra flexibility to report smaller sets may
be of use. That is, while common practice is to use L(4)

with the argmax link ψk, which always yields a set of size
k, it may be advantageous to use a link ψ(4) that makes
L(4) consistent for `(4), which could link to sets strictly
smaller than k. For example, suppose a search engine has
k = 10 spaces to show on the first page, but given a specific
query x, the model h(x) links to T = ψ(4)(h(x)) where
|T | = 7. Given this information, the search engine may
prefer to show only the results in T to reduce visual clutter,
or perhaps serve advertisements in the remaining 3 slots.
It is of course rare that a practical decision problem lines
up exactly with the canonical discrete loss studied by ma-
chine learning researchers—exploring the variants of these
canonical problems lurking behind inconsistent polyhedral
surrogates may therefore be a useful line of research. We
expect the general technique outlined in § 3 would apply
readily to other such surrogates.

In § 4, we gave the first polyhedral surrogate that is consis-
tent for top-k classification. This result contributes to an
ongoing discussion in the literature about the relative bene-
fits of smooth and polyhedral surrogates. While it has been
suggested that no polyhedral surrogate could be consistent
for top-k, our surrogate emphasizes the broader finding of
Finocchiaro et al. (2022), that in fact every discrete target
loss has a consistent polyhedral surrogate. Moreover, any
smooth proper loss, with an appropriate link, suffices as a
smooth surrogate (Williamson et al., 2016). The question is
therefore not one of existence but of when and why smooth
surrogates or polyhedral surrogates may be preferable. In
particular, an important open direction is to study the re-
lationship between smoothness, consistency, convergence
rates, and excess risk tradeoffs for top-k classification, as
well as other discrete prediction tasks.

Finally, while we give the first polyhedral surrogate that
is consistent for top-k, it remains to compare it to other
surrogates in practice beyond our limited experiments.
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Figure 3: The general embedding procedure used to analyze L(2), L(3), and L(4).

A. Additional Derivations for L(2)

Throughout this section, consider the surrogate loss

L(2)(u, y) =

(
1− uy +

1

k

k∑
i=1

(u− ey)[i]

)
+

. (5)

We proceed as follows: find a bounded representative region for L(2), find the subsets of that region on which u 7→ L(2)(u, y)
is affine for all y ∈ Y , enumerate the vertices of these regions as a finite representative set (since L(2) is polyhedral). By
Theorem 2.5, L(2) embeds its restriction to these vertices. We can then study the property elicited by the embedded loss and
compare it to the top-k property to understand which distributional assumptions are needed for top-k consistency. This
procedure is in Figure 3.

In this section, we take ū to be the average of the top k elements of u, ū = σk(u)
k . Moreover, we denote ū−i =

1
k−1 (σk(u)− u[i]) be the averages of the first k sorted elements of u and the average of the first k − 1 sorted elements of
u besides the ith element, respectively. When u ∈ U2 as defined below, ū−i is the average of the top-k elements of u if
i 6∈ Tk(u) and the top k − 1 of u\i otherwise.

A.1. The Bounded Representative Region
We initially bound our report set with upper and lower bounds, and show the restricted set is representative. We first observe
that L(2) is invariant in the 1 direction, which is necessary for our first restriction.

Lemma A.1 (Invariance in the 1 direction). L(2)(u, y) = L(2)(u+ α1, y) for all α ∈ R and y ∈ Y .

Proof.

L(2)(u+ α1, y) =

(
1− (uy + α) +

1

k

k∑
i=1

(u+ α1− ey)[i]

)
+

=

(
1− (uy + α) +

1

k
αk +

1

k

k∑
i=1

(u− ey)[i]

)
+

=

(
1− uy − α+ α+

1

k

k∑
i=1

(u− ey)[i]

)
+

=

(
1− uy +

1

k

k∑
i=1

(u− ey)[i]

)
+

= L(2)(u, y)
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We now introduce our first restriction on reports and show it is representative.

Lemma A.2. Rlow
2 := {u ∈ Rn+ | ‖u‖0 ≤ k} = {u ∈ Rn | u[k+1] = 0 = u[n]} is a representative set for L(2).

Proof. By Lemma A.1, we can fix u[k+1] = 0 without loss of generality. We then have u[i] ≤ 0 for all i ≥ k + 1. Consider
u′ = max(u,~0) such that u′[i] = u[i] for all i such that u[i] ≥ 0, and u′[i] = 0 otherwise. Observe that u and u′ have the same
ordering on their elements and u′ ∈ Rlow

2 by construction. We want to show that L(2)(u, y) ≥ L(2)(u′, y) for all y ∈ Y , and
representativeness of Rlow

2 follows.

If uy ≤ u[k+1] = 0, then

L(2)(u, y) =

(
1− uy +

1

k

k∑
i=1

(u− ey)[i]

)
+

≥

(
1 +

1

k

k∑
i=1

(u′ − ey)[i]

)
+

top-k + 1 elements of u and u′ are the same and uy ≤ 0

= L(2)(u′, y) .

The inequality comes from the equality of the first k+ 1 sorted elements of u and u′, combined with setting uy ≤ u′y = 0 in
this case.

Now, if uy ≥ u[k+1] and uy ≥ 1, observe that ū = ū′. We then have

L(2)(u, y) =

(
1− uy +

1

k

k∑
i=1

(u− ey)[i]

)
+

=

(
1− uy + ū− 1

k

)
+

substitution of summand by case

=

(
1− u′y + ū′ − 1

k

)
+

ū = ū′

= L(2)(u′, y) .

Now suppose that uy ≥ u[k+1] and uy ∈ [0, 1); as the top-k + 1 elements of u and u′ are the same, observe (u− ey)[k] =
u[k+1] = 0 = (u′ − ey)[k].

L(2)(u, y) =

(
1− uy +

1

k

k−1∑
i=1

u[i] + 0

)
+

case

=

(
1− u′y +

1

k

k−1∑
i=1

u′[i]

)
+

u matches u′ on top k + 1 elements and uy = u′y

=

(
1− u′y +

1

k

k∑
i=1

(u′ − ey)[i]

)
+

= L(2)(u′, y) .

Since L(2)(u, y) ≥ L(2)(u′, y) for all y ∈ Y , this also holds for the expected loss for all p ∈ ∆Y . Thus, Rlow
2 is

representative.

It follows from construction of Rlow
2 that we can take u[k+1] = . . . ,= u[n] = 0 and still have a representative set.
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Now, consider the set Rhigh
2 := {u ∈ Rn+ | ui ≤ ū−i + 1 ∀i ∈ [n]}. While Rlow

2 gives a lower bound on a representative
region, Rhigh

2 gives an upper bound.

Lemma A.3. The set U2 := Rlow
2 ∩Rhigh

2 is representative.

Proof. Since we have already proven Rlow
2 is representative in Lemma A.2, suppose u ∈ Rlow

2 . Any u 6∈ Rhigh
2 must have

some element i ∈ [n] such that ui > ū−i + 1. Consider u′ as follows: for all y ∈ [n] such that uy > ū−y + 1, reassign
such a u′y := ū−y + 1. We proceed in two cases, showing below that L(2)(u′, y) = L(2)(u, y) = 0 due to the positive part
operator. In the second case, L(2)(u′, j) ≤ L(2)(u, j) for all j 6= y as ū < ū′. Moreover, u′ ∈ Rhigh

2 by construction.

First, we consider when the outcome y is the modified element of u. We write uy = ū−y + 1 + ε for some ε > 0 and
u′y = ū−y + 1, with uj = u′j for all j 6= y.

L(2)(u, y) =

1− (ū−y + ε+ 1) +
1

k

 k∑
j=1,j 6=y

uj + ū−y + ε


+

=

(
1− (ū−y + ε+ 1) +

1

k
((k − 1)ū−y + ū−y + ε)

)
+

=
(
−ū−y − ε+ ū−y +

ε

k

)
+

= (−k − 1

k
ε)+

= 0

When ε = 0, we recover u′, in which case we observe the same result from L(2)(u′, y) = (−k−1
k 0)+ = 0. Thus, the losses

are equal on the outcome y.

Now, let us consider z 6= y. Since u ∈ Rlow
2 , we have ū ≥ 0 and ū−i ≥ 0 for any i ∈ [n]. Therefore, if uy > ū−y + 1, then

we have uy > u[k+1] as uy + 1 ≥ 1 > 0 = u[k+1]. Now, for outcome z 6= y (with uz ≤ ū−z + 1, and therefore uz = u′z),
we have

L(2)(u, z) =

(
1− uz +

1

k

k∑
i=1

(u− ez)[i]

)
+

=

(
1− u′z +

1

k

k∑
i=1

(u′ − ez)[i] +
ε

k

)
+

u′y is in the top k elements of (u′ − ez) and uz = u′z

≥

(
1− u′z +

1

k

k∑
i=1

(u′ − ez)[i]

)
+

Since ε > 0

= L(2)(u′, z)

If there is more than one index y such that uy > ū−y + 1, we can repeat this procedure in decsending order so the result
holds.

Therefore, if u ∈ arg minr L
(2)(r, y), then so is some u′ ∈ U2 for each y ∈ Y , and we can say the same of the expected

loss EpL(2)(u, ·) for all p ∈ ∆Y . Thus, arg minu EpL(2)(u, ·) ∩ U2 is nonempty for all p ∈ ∆Y and therefore U2 is
representative.

Re-writing the surrogate without the positive part operator. For any u ∈ U2, we can rewrite L(2)|U2(u, y) =

L(2)(u, y) = 1 − uy + 1
k

∑k
i=1(u − ey)[i], removing the positive part operator, as the term inside is always nonneg-

ative for u ∈ U2. This allows us to re-write the loss as follows:

L(2)(u, y) = 1− uy + ū− 1

k
min(uy, 1) . (12)
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Moreover, we can evaluate the expected loss

EpL(2)(u, ·) =
∑
y

py

(
1− uy + ū− 1

k
min(uy, 1)

)
=
∑
y

py(1 + ū)−
∑
y

pyuy −
∑
y

py
1

k
min(uy, 1)

= 1− 〈p, u〉+ ū− 1

k
〈p,min(u,1)〉 . (13)

A.2. Affine Regions and a Finite Representative Set
Since the loss L(2) is polyhedral, it has a finite set of minimizers (Finocchiaro et al., 2019, Lemma 2). Upon finding a finite
representative setR(2) ⊆ U2, we can apply Theorem 2.5(2) and study the property elicited by L(2)|R(2) via embeddings,
and how it compares to the top-k property γk := prop[`k] under the argmax link.

As we showed U2 is representative in Lemma A.3, consider the following set

R(2) :=

{
|M |+ k − 1

k − |H|
1H + 1M : H,M ⊂ [n], H ∩M = ∅, |H|+ |M | ≤ k, |H| < k

}
.

We will show thatR(2) enumerates the vertices of the regions where the function u 7→ EpL(2)(u, ·) must be affine, regardless
of p ∈ ∆Y . Moreover, is the expected loss is polyhedral, it minimized on at least one face of these affine regions; since each
face contains at least one vertex inR(2), we will concludeR(2) is representative.

Lemma A.4. Fix a set T ⊆ [n] such that |T | = k and any S ⊆ T . Then L(2)(·, y) is affine on the set AT,S := {u ∈ U2 |
T ∈ Tk(u) ∧ uy ∈ [0, 1]∀y ∈ S ∧ uy ∈ [1, 1 + 1

k−1

∑
j∈Tk(u)\{i} uj ]∀y ∈ T \ S} for all y ∈ Y .

Proof. First, observe the that u 7→ L(2)(u, y) is affine in the first two terms of eq. (12) for all u ∈ U2, and nonlinearity is
only introduced in the last two terms of eq. (13). Fix any set T ⊆ [n] of size k. We denote by AT := {u ∈ U2 | Tk(u) = T}
as the set of u whose top k elements are exactly the elements of T . Observe that u 7→ ū is affine in AT for each T since ū is
the sum of the top k elements of u, regardless of their relative order.

Now, since u ∈ U2 ⊇ Rlow
2 , we have u[k+1] = . . . = u[n] = 0, we impose k constraints constructing Rlow

2 given by 0 ≤ ui
for i ∈ T . Moreover, there are k constraints constructing Rhigh

2 , given by ui ≤ 1 + ū−i = 1 + 1
k−1

∑
j∈Tk(u)\{i} uj for all

i ∈ T .

We now consider affineness of u 7→ 1
k min(u,1), where there is a “switch” of affine regions at uy = 1 for each y. For

a fixed set T and u ∈ AT , consider any S ⊆ T . Construct the region AT,S = {u ∈ AT | uy ∈ [0, 1]∀y ∈ S ∧ uy ∈
[1, 1 + 1

k−1

∑
j∈Tk(u)\{i} uj ]∀y ∈ T \ S}. Observe that AT,S ⊆ AT .

Since AT,S ⊆ AT , we know that u 7→ ū is affine on AT,S , and construct AT,S so that u 7→ − 1
k min(u,1) is affine on AT,S .

Therefore, u 7→ L(u, y) is affine on AT,S for all y ∈ Y , T of size k, and S ⊆ T as it is the sum of affine functions.

As vertices of the AT,S regions are formed by the intersections of these affine regions, we can now enumerate the vertices of
the AT,S regions withR(2).

Lemma A.5. Let vert(AT,S) be the vertices of the the region AT,S , and let V := ∪T,S||T |=k,S⊆Tvert(AT,S). Then
V ⊆ R(2).

Proof. By a corollary of Lemma A.4, the function u 7→ EpL(2)(u, ·) is affine on AT,S for any T ⊆ [n] of size k and S ⊆ T
for all p ∈ ∆Y . We now proceed to compute V by finding k equalities imposed on AT,S (Grünbaum et al., 1967). Vertices
of each AT,S region are formed by the intersection of n hyperplanes technically, but with T fixed, the other n− k come
from the requirement ui = 0∀i ∈ [n] \ T .
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Fix T, S such that |T | = k and S ⊆ T . We then have vertices at each of these 2k possible equalities, given by the following
constraints.

∀i ∈ S, 0 ≤ ui ≤ 1

∀i ∈ T \ S, 1 ≤ ui ≤ 1 +
1

k − 1

∑
j∈Tk(u)\{i}

uj

Iterating over each of these 2k inequalities, we see that vertices are generated at points 0, 1 or some constant cS,T ≥ 1 for
each choice of inequalities for T and S.

It suffices to show that for each T and S as above, there is a H and M satisfying the requirements ofR(2). In particular,
we take M = {i ∈ S | ui = 1}, and H := {i ∈ S | ui > 1}. By construction, we have H ∩M = ∅, and |H|+ |M | ≤ k.
Thus, every v ∈ V is contained inR(2).

Corollary A.6. R(2) is a finite representative set for L(2).

A.3. The Loss Embedded by L(2)

Corollary A.7. L(2) embeds L(2)|R(2) .

We can now evaluate the restricted function and obtain it in the form of a loss matrix.

L(2)|R(2)(r, y) =


0 ry = r̄−y + 1

r̄ − 1
k ry = 1

1 + r̄ ry = 0

. (14)

We can equivalently relabel the reports inR(2) via a bijection Φ designating y as an element of H if uy > 1, and y is an
element of M if uy = 1.

ˆ̀
2((H,M), y) =


0 y ∈ H
|H|+|M |−1
k−|H| y ∈M(
|H|+|M |−1
k−|H|

)
+ k+1

k otherwise

A.4. The Property Elicited by the Embedded Loss
The next natural question is to consider is whether or not (L(2), ψk) is calibrated with respect to `k. In order to answer this,
we necessarily need to understand something about Γ := prop[L(2)], which we will study through γ := prop[ˆ̀2].

In the previous subsection, we saw the construction of “high” (H), “meduim” (M ), and “low” (L := [n]\ (H ∪M)) bins for
the elements ofR(2) via the bijection Φ. However, because of the nature of U2, there is a dependence of multiple coordinates
for an optimal report of L(2). That is, for a fixed probability distribution p ∈ ∆Y , there may be coordinates i ∈ [n] with
“enough” weight for i ∈ H ∪M , but there is sometimes a benefit in expected loss for this surrogate by artificially bumping
up from the “low” to “middle” bin when possible because doing so cranks up the constant on the “high” reports, yielding
better expected loss. That is, sometimes an algorithm is confident enough in its “high” labels that it is optimal to take an
additional expected loss on some “lower” labels.

Next, we characterize the distributions p such that Ep ˆ̀
2((H ∪ {i},M), ·) ≤ Ep ˆ̀

2((H,M ∪ {i}), ·).

Lemma A.8. Fix some (H,M) ∈ Φ(R(2)) and consider any index i ∈ [n] \ (H ∪M). Consider u ∈ Φ(R(2)) such that
u = (H ∪ {i},M) and u′ = (H,M ∪ {i}). Then Ep ˆ̀

2(u, ·) ≤ Ep ˆ̀
2(u′, ·) if and only if pi ≥ (1− σH(p))( 1

k−h ).
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Proof. Let h = |H| and m = |M |.

Ep ˆ̀
2(u, ·) ≤ Ep ˆ̀

2(u′, ·)

(1− (σH(p) + pi))

(
k(h+ 1 +m)

k − h− 1

)
≤ (1− σH(p))

(
k(h+ 1 +m)

k − h

)
(k(1− σH(p)))

(k − h− 1)(k − h)
≤ pi

k

k − h− 1

1− σH(p)

k − h
≤ pi .

Observe that for H = ∅, this inequality becomes pi ≥ 1
k . Now, we characterize the distributions p such that Ep ˆ̀

2((H,M ∪
{i}), ·) ≤ Ep ˆ̀

2((H,M), ·).

A.4.1. M �i L

Lemma A.9. Fix (H,M) ∈ Φ(R(2)) and consider any index i ∈ [n] \ (H ∪M). Consider u ∈ Φ(R(2)) such that
(H,M ∪ {i}) and u′ = (H,M). Then Ep ˆ̀

2(u, ·) ≤ Ep ˆ̀
2(u′, ·) if and only if pi ≥ (hk − σH(p))( k

(k−h)(k+1) ) + 1
k+1 .

Proof. Let h = |H| and m = |M |.

Ep ˆ̀
2(u, ·) ≤ Ep ˆ̀

2(u′, ·)

(1− σH(p))k(h+m+1)
k−h + (k+1)(1−σH(p)−σM (p)−pi)

k ≤ (1− σH(p))k(h+m)
k−h + (k+1)(1−σH(p)−σM (p))

k

k(1− σH(p))

k − h
≤ k + 1

k
pi

1− σH(p)

(k + 1)(k − h)
≤ pi .

Lemmas A.8 and A.9 now provide testable conditions to yield prop[ˆ̀2] asR(2) is finite. Now let us consider how one wants
to assign indices to each of these three bins.

Consider first that we can calculate the set of indices that should be designated in H .

h∗(p) = max

{
i ∈ {0, . . . , k − 1} | p[i] >

1−
∑i−1
j=1 p[j]

k − (i− 1)

}
(15)

Now, let us consider ph∗(p) := σh∗(p)(p) =
∑h∗(p)
j=1 p[j] to determine which elements of p should be designated in M .

m∗(p) = max{j ∈ {0, . . . , k} | p[j] >
1− ph∗(p)

(k + 1)(k − h∗(p))
} (16)

A.5. Characterizing Consistency of L(2) with Respect to `k
We have consistency via the canonical argmax link ψk when the optimal surrogate reports u have u[k] > 0 = u[k+1], since
its top-k set is unique. For intuition, consider that inconsistency means that any sequence of reports {ui} approaching the
L(2) optimum and applying the link (e.g., {ri} = {ψ(ui)} approaches the L(2)|R(2) optimum; equivalently, approaching
the L(2) optimum implies that (Hi.Mi) = {Φ(ri)} approaches the ˆ̀

2 optimum.

Consider some distributions p, p′ such that Tk(p) 6= Tk(p′) but (H,M) ∈ prop[ˆ̀2](p) = prop[ˆ̀2](p′) with |H ∪M | < k.
As the link must be deterministic, given u = Φ−1((H,M)), the link must choose some ordering over the elements S ⊆ [n]
such that ui = 0 for all i ∈ S. Even if this ordering aligns with Tk(p), it will not align with Tk(p′) as they are not equal;
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hence the ambiguity in Tk(u) makes it impossible for consistency to hold at both p and p′. Thus, we will only have
consistency guaranteed at distributions p ∈ ∆Y such that there is a value u ∈ prop[L(2)](p) with Tk(u) unambiguous. The
distributions where this condition holds are exactly the p for which m∗(p) = k.

Lemma A.10. Let L : Rn × Y → R+ be a polyhedral loss which embeds ˆ̀ : R̂ × Y → R+. Let ` : R × Y → R+

be a target loss. Let P ⊆ ∆Y . Let γ̂ = prop[ˆ̀], γ = prop[`]. If for all r̂ ∈ R̂, there exists some r ∈ R such that
{p ∈ P : r̂ ∈ γ̂(p)} ⊆ {p ∈ P : r ∈ γ(p)}, then there exists a link function ψ : Rn → R such that (L,ψ) is calibrated
with respect to ` on P .

Proof. The proof is essentially the same as that of Finocchiaro et al. (2022, Theorem 8), but restricted to P ⊆ ∆Y . Since L
embeds ˆ̀, let ψ̂ : Rn → R̂ be a link function such that (L, ψ̂) is calibrated with respect to ˆ̀(Theorem 2.5). By Finocchiaro
et al. (2022, Lemma 4), ˆ̀ indirectly elicits γ for some link function ψR : R̂ → R. Then for any r ∈ R̂ and p ∈ P ,
r ∈ γ̂(p) =⇒ ψR(r) ∈ γ(p).

Now, let ψ = ψR ◦ ψ̂ : Rn → R. We will show (L,ψ) is calibrated with respect to ` on P . By the construction of ψ, for
any p ∈ P and u ∈ Rd, if ψ̂(u) ∈ γ̂(p), then ψ(u) = ψR(ψ̂(u)) ∈ γ(p). Similarly, if ψ(u) 6∈ γ(p), then ψ̂(u) 6∈ γ̂(p).
Therefore,

{u ∈ Rn | ψ(u) 6∈ γ(p)} ⊆ {u ∈ Rn | ψ̂(u) 6∈ γ̂(p)} .

Since (L, ψ̂) is calibrated with respect to ˆ̀, we obtain

inf
u∈Rn:ψ(u) 6∈γ(p)

〈p, L(u)〉 ≥ inf
u∈Rn:ψ̂(u) 6∈γ̂(p)

〈p, L(u)〉 > inf
u∈Rn

〈p, L(u)〉 ,

so (L,ψ) is calibrated with resepct to ` on P .

Corollary 3.1. Define

P(2) :=

{
p ∈ ∆Y | p[k] >

(1− σh∗(p)(p))
(k + 1)(k − h∗(p))

}
. (7)

L(2) is consistent with respect to `k on P(2).

B. Additional Derivations for L(3)

Recall that we have

L(3)(u, y) =
1

k

k∑
i=1

[
1− uy + (u− ey)[i]

]
+

(17)

We follow the same general procedure as § A; see Figure 3 for an outline.

B.1. Finding a Representative Region
As with L(2), we can show that L(3) is invariant in the ones direction.

Lemma B.1 (Invariance in the 1 direction). L(3)(u, y) = L(3)(u+ α1, y) for all α ∈ R.

Proof.

L(3)(u+ α1, y) =
1

k

k∑
i=1

[
1− (uy + α) + (u+ α1− ey)[i])

]
+

=
1

k

k∑
i=1

[
1− uy − α+ (u− ey)[i] + α

]
+

=
1

k

k∑
i=1

[
1− uy + (u− ey)[i]

]
+

= L(3)(u, y) .
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As before, we can then set u[k+1] = 0 without loss of generality, and show that we can restrict to the representative set
Rlow

3 := {u ∈ Rn+ | ‖u‖0 ≤ k} (Lemma B.2). Throughout, let T (u) ∈ Tk(u) be some choice of top-k elements of u so that
|T (u)| = k. For a fixed choice T (u), we additionally consider Vy(u) := {i ∈ T (u) | ui > uy − 1} \ {y}.

Lemma B.2 (Rlow
3 is representative for L(3)). Consider u ∈ Rn+ such that u[k+1] = 0, and u′ such that u′[i] = u[i] for

i ≤ k + 1, and u′[i] = 0 otherwise. For all y ∈ Y , L(3)(u, y) ≥ L(3)(u′, y).

Proof. Observe that there is a choice of T such that T (u) = T (u′); we proceed with this choice, though any other choice of
T (u′) ∈ Tk(u) results in the same loss values. Consider two cases: first, if y ∈ T (u), and then if y 6∈ T (u).

Case 1: y ∈ T (u) follows trivially since the elements being summed over are equal (e.g., ui = u′i∀i ∈ T (u) = T (u′)), so
the losses are equal.

Case 2: y 6∈ T (u)

L(3)(u, y) =
1

k

∑
i∈T (u)

[
1− uy + (u− ey)[i]

]
+

=
1

k

∑
i∈T (u)

[1− uy + ui]+

=
1

k

∑
i∈T (u′)

[1− uy + u′i]+

≥ 1

k

∑
i∈T (u′)

[1 + u′i]+

= L(3)(u′, y) .

By Lemma B.1, u is invariant in the ones direction, so without loss of generality we can set u[k+1] = 0. The cases above
show we can set u[j] = 0 for any j > k + 1 without increasing the loss on any outcome. Together, these results imply that
Rlow

3 = {u ∈ Rn+ | ‖u‖0 ≤ k} is representative.

We continue towards a finite representative set, showing that each element of u should be no more than 1 greater than the
next lowest element

Lemma B.3. Consider u ∈ Rlow
3 and i ∈ {1, . . . , k} such that u[i] = u[i+1] + 1 + ε for some ε > 0. Take u′ such that

u′[j] = u[j] − ε for all j ∈ {1, . . . , i}. Then there exists a choice of T such that T (u) = T (u′) and (1 − uy + uj)+ ≥
(1− u′y + u′j)+ for all j ∈ Vy(u), so Vy(u′) ⊆ Vy(u).

Proof. First, observe Tk(u) = Tk(u′), as we are only shifting at most the top k elements of u, and they are being shifted in a
way that preserves them as the top-k. Thus, by taking T (u) to be a function of Tk(u), a choice of T such that T (u) = T (u′)
exists.

For any outcome y ∈ Y and index j ∈ [n], there are four possible cases for the change in uy and uj : (1) neither is modified
(e.g., uy = u′y and uj = u′j); (2) just uy is modified (e.g., uy = u′y + ε and uj = u′j); (3) just uj is modified (e.g.,
uy = u′y and uj = u′j + ε); and (4) both are modified (e.g., uy = u′y + ε and uj = u′j + ε). Cases 1 and 4 are immediate,
(1− uy + uj)+ = (1− u′y + u′j)+ by substitution.

Case 2: uy = u′y + ε, uj = u′j . For this case to occur, uy ≥ u[i] and u[i] > uj . Therefore, uy > ui + 1 ≥ uj , violating the
construction of Vy(u).

Case 3: uy = u′y , uj = u′j + ε. By the case, we have uj > u′j ≥ u[i+1] + 1 ≥ u′y = uy . As u′j < uj , we immediately have
(1− uy + uj)+ ≥ (1− u′y + u′j)+ ≥ 0.

Let us denote the set Rhigh
3 := {u ∈ Rn | u[i+1] ≤ u[i] ≤ u[i+1] + 1 ∀i ∈ (1, . . . , k)}. We now give a bounded

representative set for L(3).
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Lemma B.4. The set U3 := Rhigh
3 ∩Rlow

3 is representative for L(3).

Proof. Fix any u ∈ Rlow
3 such that for some i ∈ {1, . . . , k} and ε > 0, u[i] = u[i+1] +1+ε. Take u′ such that u′[j] = u[j]−ε

for all j ∈ {1, . . . , i}. We want to show L(3)(u, y) ≥ L(3)(u′, y) for all y ∈ Y .

By construction of Vy(u), we can write

L(3)(u, y) =
∑

j∈Vy(u)

(1− uy + uj) . (18)

Moreover, we have the existence of a T such that T (u) = T (u′) and Vy(u) ⊇ Vy(u′) by Lemma B.3.

We can consider 3 cases for any j ∈ Vy(u): (1) u′y = uy and u′j = uj ; (2) u′y + ε = uy and u′j + ε = uj ; and (3) u′y = uy
and u′j + ε = uj . For cases (1) and (2), we immediately have (1 − uy + uj) = (1 − u′y + u′j), and for (3), we have
(1− uy + uj) = (1− u′y + u′j + ε) > (1− u′y + u′j).

L(3)(u, y) =
∑

j∈Vy(u)

(1− uy + uj)

≥
∑

j∈Vy(u′)

(1− uy + uj) Since Vy(u) ⊇ Vu(u′)

≥
∑

j∈Vy(u′)

(1− u′y + u′j) By substitution

= L(3)(u′, y) .

As this is true for all y ∈ Y , we have EpL(3)(u, ·) ≥ EpL(3)(u′, ·) for all p ∈ ∆Y , yielding the result.

B.2. Characterizing Affineness
Furthermore, we can show that u 7→ EpL(3)(u, ·) is affine on the following regions for all p ∈ ∆Y .

Lemma B.5. Fix a set T ⊆ n such that |T | = k and the set ~V = {Vy | Vy ⊆ T, y ∈ Y}.

AT,
~V = {u ∈ U3 | T ∈ Tk(u) ∧ Vy = Vy(u), ∀y ∈ Y} .

Then u 7→ EpL(3)(u, ·) is affine on each AT,~V for all p ∈ ∆Y .

Proof. Nonaffineness in u 7→ L(3)(u, y) for any y ∈ Y is imposed where there is a change in T (·) or in Vy(·) since we can
write L(3)(u, y) =

∑
i∈Vy(u)(1− uy + ui) as in eq. (18). As non-affineness is only introduced in the terms of the summand,

we construct AT,~V so that T (u) ∈ Tk(u) and Vy(u) is constant on AT,~V , and thus the terms of the summand are constant
on AT,~V . Therefore, u 7→ EpL(3)(u, ·) is affine on AT,~V for all p ∈ ∆Y .

B.3. Constructing a Finite Representative Set
When constructing a finite representative set, it is sufficient to consider the vertices of these affine regions; thus, Lemma B.5
yields a finite representative set as follows.

Corollary B.6. R(3) := U3 ∩ Znk is a finite representative for L(3).

Thus, we can think of the loss L(3)|R(3) as taking in as predictions an ordered partition of size at most k partitions. As with
L(2), we can relabel the elements ofR(3) via some bijection Φ; in particular, we consider a bijection to ordered partitions
as follows. Let Q = {(Q0, Q1, . . . , Qs) | s ≤ k,Qi ∩ Qj = ∅∀i 6= j, |Qs ∪ . . . ∪ Q1| ≤ k}. Let Φ : R(3) → Q be
the bijection u 7→ ({i ∈ [n] | ui = 0}, {i ∈ [n] | ui = 1}, . . . , {i ∈ [n] | ui = s}). Then we can denote ˆ̀

3 such that
L(3)(u, y) = ˆ̀

3(Φ(u), y) for all u ∈ R(3).

ˆ̀
3(Q, y) =

{
1
k

(
|Qj | − 1 +

∑
i>j |Qi|(i− j + 1)

)
j > 0

1
k (
∑s
i=1 |Qi|(i+ 1)) j = 0

, (19)
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where y ∈ Qj .

B.4. Analyzing the Loss Embedded by L(3): Characterizing Consistency
Now that we have the finite representative setR(3) for L(3) , we can characterize the property elicited by L(3).

Lemma B.7. Fix u ∈ R(3) with u[k] = 1, and consider u′ ∈ R(3) such that u′[k] = 0 and u[i] = u′[i] for all i ∈

{1, . . . , k − 1}. Then EpL(3)(u, ·) ≥ EpL(3)(u′, ·) ⇐⇒
∑n

i=k+1 p[i]
k−1 ≥ p[k].

Proof. First, observe that we are not changing the relative order of elements of u and u′, so there is a choice T ∈ Tk such
that T (u) = T (u′), and for each y, the loss is positive on the same set of indices.

EpL(3)(u, ·) ≥ EpL(3)(u′, ·)∑
y 6=[k]

py
∑

i∈Vy(u)

(1− uy + ui) + p[k]

∑
i∈T (u)\k

(1− u[k] + ui) ≥
∑
y 6=[k]

py
∑

i∈Vy(u)

(1− u′y + u′i) + p[k]

∑
i∈T (u′)\k

(1− u′[k] + u′i)∑
y:py<p[k]

py − p[k](k − 1) ≥ 0

∑
y:py<p[k]

py ≥ p[k](k − 1)

∑
y:py<p[k]

py

k − 1
≥ p[k]∑n

i=k+1 p[i]

k − 1
≥ p[k] .

The result follows.

This result partially characterizes when it is better to keep the kth element of u as 0: when it only imposes change in that
one element. This is particularly important to characterize inconsistency for top-k; if u[k] = u[k+1] = 0, then |Tk(u)| > 1

for u ∈ prop[L(3)], so how to link u is ambiguous.

However, we also need to understand when it is beneficial to bump every higher element up by 1, which is given by the
following result.

Lemma B.8. Fix u ∈ R3 with u[j] = 0, and consider u′ ∈ R(3) such that u′[j] = 1 and u[i] + 1 = u′[i] for all i = 1, . . . , j.
Then L(3)(u; p) ≥ L(3)(u′; p) ⇐⇒ p[j+1] ≥ 1

k+1 .

Proof.

EpL(3)(u, ·) ≥ EpL(3)(u′, ·)
n∑

i=j+1

p[i](k + j) +

j∑
i=1

(j − 1) ≥
n∑

i=j+2

p[i](k + j + 1) +

j+1∑
i=1

(j)

p[j+1](k + j) ≥
n∑

i=j+2

p[i] + p[j+1](j − 1) +

j+1∑
i=1

p[i]

p[j+1](k + j) ≥ 1 + p[j+1](j − 1)

p[j+1] ≥
1

k + 1
.

Lemmas B.7 and B.8 together characterize the the distributions p ∈ ∆Y where the report u ∈ prop[L(3)](p) ∩ R(3) has
u[k] > 0. Thus, for u ∈ prop[L(3)](p) for such distributions p, u[k] > 0 and therefore |Tk(u)| = 1. Applying Lemma A.10,
we obtain the desired consistency result.

Corollary 3.2. L(3) is consistent with respect to `k on P(3) = {p ∈ ∆Y | p[k+1] >
1
k+1 ∧

∑n
i=k+1 p[i]
k−1 ≥ p[k]}.
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C. Additional Derivations for L(4)

Recall that for a report u ∈ Rn and label y ∈ Y ,

L(4)(u, y) =

(
1− uy +

1

k

k∑
i=1

(u\y)[i]

)
+

.

We again follow the procedure in § A to find a representative region for L(4).

C.1. Constructing a Bounded, Representative Region for L(4)

To establish a bounded, representative region for L(4), we must first show that L(4) is invariant in the 1 direction.

Lemma C.1 (Invariance in the 1 direction). L(4)(u, y) = L(4)(u+ α1, y) for all α ∈ R.

Proof.

L(4)(u+ α1, y) = (1− (uy + α) +
1

k

k∑
i=1

((u+ α1)\y)[i])+

= (1− uy − α+
1

k

k∑
i=1

(u\y + α1\y)[i])+

= (1− uy − α+
1

k

k∑
i=1

(u\y)[i] +
1

k
kα)+

= (1− uy − α+
1

k

k∑
i=1

(u\y)[i] + α)+

= (1− uy +
1

k

k∑
i=1

(u\y)[i])+

= L(4)(u, y)

Let the sets Rlow
4 and Rhigh

4 be defined as follows:

• Rlow
4 = {u ∈ Rn+ | ||u||0 ≤ k}

• Rhigh
4 = {u ∈ Rn+ | uy ≤ 1 + 1

k

∑k
i=1(u\y)[i] ∀y ∈ Y} .

We will show in Theorem C.3 that the intersection U4 := Rlow
4 ∩Rhigh

4 is representative.

Lemma C.2. Rlow
4 is a representative set for L(4).

Proof. Suppose that u ∈ Rn where u[k+1] = 0. By Lemma C.1, u[k+1] = 0 is without loss of generality. Let u′ = max(u,~0)

be the element-wise max, which is in Rlow
4 by construction. It suffices to show that for all y ∈ Y, L(4)(u, y) ≥ L(4)(u′, y).

By construction, there is a set S ⊆ Y, |S| = k such that S ∈ Tk(u) ∩ Tk(u′). We proceed in two cases: if y ∈ S, and if
y 6∈ S.

Case 1: y ∈ S:
In this case, we have uy = u′y ≥ 0.

L(4)(u, y) = (1− uy +
1

k

k∑
i=1

(u\y)[i])+

= (1− u′y +
1

k

k∑
i=1

(u′\y)[i])+

= L(4)(u′, y) .
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Case 2: y 6∈ S: In this case, we have uy ≤ u′y = 0. Moreover,
∑k
i=1(u\y)[i] =

∑
j∈S uj =

∑
j∈S u

′
j =

∑k
i=1(u′\y)[i], as

S ∈ Tk(u\y) ∩ Tk(u′\y).

L(4)(u, y) = (1− uy +
1

k

k∑
i=1

(u\y)[i])+

≥ (1− 0 +
1

k

k∑
i=1

(u\y)[i])+

= (1− u′y +
1

k

k∑
i=1

(u′\y)[i])+

= L(4)(u′, y) .

Therefore, for all y, we have L(4)(u, y) ≥ L(4)(u′, y). Thus, Rlow
4 is representative.

Using Rlow
4 as a starting point, we now proceed to show U4 := Rlow

4 ∩Rhigh
4 is a representative set for L(4).

Theorem C.3. The set U4 := Rlow
4 ∩Rhigh

4 is a representative set for L(4).

Proof. Since Rlow
4 is representative by Lemma C.2, consider u ∈ Rlow

4 . Moreover, if u /∈ Rhigh
4 , construct u′ ∈ Rn+ such

that

u′y =

{
1 + 1

k

∑k
i=1(u\y)[i] uy > 1 + 1

k

∑k
i=1(u\y)[i]

uy uy ≤ 1 + 1
k

∑k
i=1(u\y)[i]

.

Observe that u′ ∈ Rlow
4 ∩Rhigh

4 by construction and ∀y ∈ Y, uy ≥ u′y .
Since u 6∈ Rhigh

4 , there is a y ∈ Y such that uy > 1 + 1
k

∑k
i=1(u\y)[i]; we can equivalently write

uy =

(
1 +

1

k

k∑
i=1

(u\y)[i]

)
+ ε, (20)

for some ε > 0. We now proceed in two cases: considering the ground truth y′ = y and y′ 6= y.

Case 1: Suppose y is the ground truth label:

L(4)(u, y) = (1− uy +
1

k

k∑
i=1

(u\y)[i])+

=

(
1− (1 +

1

k

k∑
i=1

(u\y)[i] + ε) +
1

k

k∑
i=1

(u\y)[i]

)
+

= (−ε)+ where ε > 0 =⇒ −ε < 0

= 0 .

As u′y is of the same form of eq. (20) with ε = 0, we observe equality as (ε)+ = (0)+ = 0. Therefore,
L(4)(u, y) = 0 = L(4)(u′, y), and L(4)(u, y) ≥ L(4)(u′, y) immediately. Case 2: Let j 6= y be the ground truth
label.

L(4)(u, j) = (1− uj +
1

k

k∑
i=1

(u\j)[i])+ .
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By the case, we have uj = u′j .

L(4)(u, j) = (1− uj +
1

k

k∑
i=1

(u\j)[i])+

= (1− u′j +
1

k

k∑
i=1

(u\j)[i])+

≥ (1− u′j +
1

k

k∑
i=1

(u′\j)[i])+ as u ≥ u′ element-wise

= L(4)(u′, j) .

Therefore, L(4)(u, j) ≥ L(4)(u′, j). Thus, we conclude

L(4)(u, y) ≥ L(4)(u′, y) ∀y ∈ Y,

and therefore U4 := Rhigh
4 ∩Rlow

4 is a bounded, infinite, representative set for L(4).

C.2. Characterizing Affineness of L(4)

For u ∈ U4, we know that ∀y ∈ Y

uy ≤ 1 +
1

k

k∑
i=1

(u\y)[i] as u ∈ Rhigh
4 (21)

=⇒ 0 ≤ 1− uy +
1

k

k∑
i=1

(u\y)[i] . (22)

Therefore, for all ground truth labels y ∈ Y and u ∈ U4, we have

L(4)|U4(u, y) = (1− uj +
1

k

k∑
i=1

(u\y)[i])+

= 1− uy +
1

k

k∑
i=1

(u\y)[i]

is an equivalent way to write the loss L(4) when restricting the domain to U4. When restricting to u ∈ U4, we may denote
L(4)(u, y) = L(4)|U4(u, y) for brevity and drop the positive part operator.

Now consider a set T ⊆ Y such that |T | ≤ k. Let us define the region

AT4 =

{
u ∈ U4 |

{
0 ≤ uy ≤ 1 + 1

k

∑
i∈T,i 6=y ui y ∈ T

uy = 0 y /∈ T

}
We claim, for any y ∈ Y , the function u 7→ L(4)(u, y) is affine on AT , and note that AT ⊆ U4 for all T by construction.

Lemma C.4. For all y ∈ Y and set T ⊆ Y such that |T | ≤ k, the function u 7→ EpL(4)(u, ·) defined on U4 is affine on AT .

Proof. Fix y ∈ Y and T ⊆ Y such that |T | ≤ k. Note that for u ∈ U4,

L(4)(u, y) = 1− uy +
1

k

k∑
i=1

(u\y)[i]

The first two terms of this loss are linear in u; therefore 1
k

∑k
i=1(u\y)[i] is the only term with non-linearity. Moreover, this

term results from the ordering of the top k elements of u\y. Given that |T | ≤ k and all elements of u /∈ T are 0, we have
that T ∈ Tk(u\y) Therefore, u 7→ Li4(u, y) will be linear for u ∈ AT .

This result yields affine regions over which u 7→ L(4)(u, y) is affine for each y ∈ Y . The vertices of these affine regions
yield a finite representative set for L(4).
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C.3. Constructing a Finite Representative Set for L(4)

Each set T has a finite set of vertices according to the two inequalities shown in the definition of AT above. Since |T | ≤ k,
there are a finite number of possible sets T (

(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ ...+

(
n
k

)
= 2n possible sets in particular). Therefore,⋃

T⊆Y, |T |≤k

AT = U4

has a finite number of vertices.

According to the boundaries of the halfspaces defining AT , the vertices of AT must be such points u such that uy = 0 or
uy = 1 + 1

k

∑
i∈T,i 6=y ui for each y ∈ Y . Consider when uy = 1 + 1

k

∑
i∈T,i 6=y ui, which we will refer to as the “bumped

up” value of uy .

Theorem C.5. Fix T ⊆ Y such that 1 ≤ |T | ≤ k. For a vertex u in the region AT with y ∈ Y such that uy =
1 + 1

k

∑
i∈T,i 6=y ui, then ∀i ∈ Y such that ui 6= 0 =⇒ ui = uy.

Proof. Let uy = 1+ 1
k

∑
i∈T,i 6=y ui and j ∈ T =⇒ uj = 1+ 1

k

∑
i∈T,i 6=j uj . We will show that uy = uj , so all “bumped

up” elements of u must be equal to one another:

uy = 1 +
1

k

∑
i∈T,i 6=y

ui

uy = 1 +
1

k

∑
i∈T,i 6=j

ui +
1

k
uj −

1

k
uy

k + 1

k
uy = uj +

1

k
uj

k + 1

k
uy =

k + 1

k
uj

uy = uj

Therefore, for any two arbitrary elements y, j ∈ T, uj = uy .

Therefore, the closed for over vertices u of the region AT are as follows:

uy = 1 +
1

k

∑
i∈T,i 6=y

ui

uy = 1 +
1

k

∑
i∈T

ui −
1

k
uy

uy = 1 +
1

k
|T |uy −

1

k
uy

uy =
k

k + 1− |T |
.

Thus, all of the vertices of each AT occur at u ∈ U4 such that uy = 0 or k
k+1−|T | for all y ∈ Y where |T | ≤ k is the number

of non-zero elements of u ∈ AT . consider the set of subsets T = {T ⊆ {1, . . . , n} | |T | ≤ k} and finite report set vertices
of the AT sets byR(4) := { k

k+1−|T |1T | T ∈ T }.

C.4. Characterizing the Loss Embedded by L(4)

We reparameterize the vertices of the AT sets by their defining set T by the bijection Φ : T 7→ k
k+1−|T |1T . We define the

reparameterization ˆ̀
4 such that L(4)(Φ(T ), y) = L(4)|U4(Φ(T ), y) = ˆ̀

4(T, y) for all u ∈ T .
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We know that L(4) embeds L(4)|U4 , and therefore also embeds

ˆ̀
4(T, y) =

{
1− k

k+1−|T | + 1
k (|T | − 1) k

k+1−|T | y ∈ T
1 + 1

k |T |
k

k+1−|T | y /∈ T

=

{
0 y ∈ T
k+1

k+1−|T | y /∈ T
. (23)

In a slight abuse of notation, for a set T ⊂ [n] and p ∈ ∆Y , let σT (p) =
∑
i∈T pi. Therefore, the expected value of ˆ̀

4 is

Ep ˆ̀
4(T, ·) =

∑
y∈T

py(0) +
∑
y/∈T

py(
k + 1

k + 1− |T |
) = (1− σT (p))(

k + 1

k + 1− |T |
) .

Now, suppose we have some set T ∈ T as defined above; we will analyze prop[ˆ̀4] to determine the necessary probability
pi some in i ∈ Y so that i ∈ T ∈ prop[ˆ̀4](p). In other words, if we have some set T of labels corresponding to scores in u
of k+1

k+1−|T | , then we will bump the score of some label, z /∈ T , up to k+1
k+1−|T |−1 (changing all of the non-zero scores in u to

this value as well) if it surpasses a particular probability threshold. We will find this probability boundary below by seeing
what probability z ∈ Y must achieve in order to meet or lower the expected loss:

Ep ˆ̀
4(T, ·) ≥ Ep ˆ̀

4(T ∪ {z}, ·) .

By doing so, we are determining the probability of pz such that, for a fixed p ∈ ∆Y , we have T ∈ prop[ˆ̀4](p) =⇒
T ∪ {z} ∈ prop[ˆ̀4](p).
This boundary is given:

Ep ˆ̀
4(T, ·) = Ep ˆ̀

4(T ∪ {z}, ·)

(1− σT (p))
k + 1

k + 1− |T |
= (1− σT (p)− pz)

k + 1

k + 1− |T | − 1

(k − |T |)(1− σT (p)) = (k + 1− |T |)(1− σT (p)− pz)
0 = 1− σT (p)− pz(k + 1− |T |)

pz =
1− σT (p)

k + 1− |T |
(24)

Therefore, to add the element z to the set T

pz ≥
1− σT (p)

k + 1− |T |
.

Iteratively adding elements such that the above boundary holds will be necessary and sufficient to form an optimal set
M∗ ⊂ [n] of labels that minimizes Ep ˆ̀

4(M∗, ·), and equivalently, Φ(M∗) minimizes L(4).

Theorem C.6. Consider γ4 := prop[ˆ̀4]. Fix p ∈ ∆Y and T ∈ T be such that T is the top-|T | elements of p with
|T | ≤ k − 1. Consider z ∈ [n] \ T such that pz ≥ 1−σT (p)

k+1−|T | and pi ≤ pz for all i ∈ [n]\T . Then z must be an element of
M∗ for some M∗ ∈ γ4(p).

Proof. For intuition, T is a set of labels at least as likely as label z. Observe that there is an M ∈ γ4(p) such that T ⊆M
since T is composed of the top-|T | elements of p, and replacing any t ∈ T with t′ 6∈ T cannot decrease expected loss as the
denominator stays the same and T is composed of the top-|T | elements of p.

It is not necessarily the case that M = M∗ as we may have |γ4(p)| > 1 and the top-k elements of the property value are
ambiguous. If |γ4(p)| = 1, however, then we must have M = M∗. Suppose z /∈ M (otherwise this proof is trivial), we
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have two cases:
Case 1: T (M , e.g., ∃z′ ∈M such that z′ /∈ T .

Ep ˆ̀
4(M, ·) = (k + 1)

1− pz′ − σM\{z′}(p)
k + 1− |M |

≥ (k + 1)
1− pz − σM\{z′}(p)

k + 1− |M |
from p′z ≤ pz .

Therefore, ∃M∗ which is optimal such that z ∈M∗ = M\{z′} ∪ {z}.
Case 2: T = M . By the assumptions and choice of z,

pz ≥
1− σT (p)

k + 1− |T |
.

Therefore, using the bound from eq. (24), we have

Ep ˆ̀
4(T ∪ {z}, ·) ≤ Ep ˆ̀

4(T, ·) = Ep ˆ̀
4(M, ·) .

As M is optimal, M∗ = T ∪ {z} is also optimal.

From both cases above, we can conclude z ∈M∗ for some optimal set M∗.

This will enable us to characterize γ4 in Theorem C.8. However, we first need the following Lemma.

Lemma C.7. For a, c ∈ R+ and b, d ∈ R++ with b > d,

c

d
<
a

b
=⇒ a+ c

b+ d
<
a

b
.

Proof.
c

d
<
a

b
⇐⇒ cb < ad

⇐⇒ ab+ cb < ab+ ad

⇐⇒ a+ c

b+ d
<
a

b

Now we obtain the following result to characterize γ4.

Theorem C.8. Fix p ∈ ∆Y , and consider any T ⊂ [n] which minimizes Ep ˆ̀
4(T, ·), i.e., T ∈ γ4(p). Then for all z ∈ T , we

have pz ≥ 1−σT (p)
k+1−|T | .

Proof. We will show the contrapositive. For T ∈ γ4(p). Suppose there was a z ∈ T such that pz <
1−σT (p)
k+1−T . We will

contradict optimality of T by showing Ep ˆ̀
4(T \ {z}, ·) < Ep ˆ̀

4(T, ·). Denote M := T \ {z}.

Note, that if we let c = pz ∈ R+, d = 1 ∈ R++, a = (1− σM (p)) ∈ R+, and b = (k + 1− |T |) ∈ R++, then we have
pz <

1−σT (p)
k+1−|T | ⇐⇒

c
d <

a
b . Thus, we can apply Lemma C.7 to observe

a+ c

b+ d
<
a

b
1− σT (p) + pz
k − (|T | − 1) + 1

<
1− σT (p)

k + 1− |T |

=⇒ (k + 1)
1− σM (p)

k − |M |+ 1
< (k + 1)

1− σT (p)

k + 1− |T |
=⇒ Ep ˆ̀

4(M, ·) < Ep ˆ̀
4(T, ·)
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Therefore, the expected loss on M ⊂ [n] is strictly lower than on T ; thus, T 6∈ γ4(p). Thus for any T ∈ γ4(p), we must
have pz ≥ 1−σT (p)

k+1−|T | for all z ∈ T .

By Theorem C.8, we can conclude that iteratively adding elements z ∈ [n] (in increasing order of corresponding probability)
such that

pz ≥
1− σT (p)

k + 1− |T |

to a set T ⊆ [n], that is initially the empty set, is necessary and sufficient to form the optimal set M∗ ⊂ [n] that minimizes
Ep ˆ̀

4(M∗, ·). That is, prop[L(4)|U4 ] can be computed by implementing a greedy algorithm.

C.5. A sketch of prop[L(4)]

Let T ⊂ [n] where the elements of T have been iteratively added in decreasing order of probability so long as |T | ≤ k
and the probability of the added item meets the boundary condition defined above. Suppose |T | ≤ k − 1, then from our
derivation of the probability needed to add an element z to T , we can rewrite the boundary condition as adding an element
u[j] with j ∈ {1, 2, ..., k}, so long as

p[j] ≥
1−

∑j−1
i=1 p[i]

k + 2− j
.

We can rewrite rewrite the above as

(k + 1− j)p[j] ≥ 1− σj(p) . (25)

Let j1 ∈ [n] be the largest j such that

(k + 1− j)p[j] > 1− σj(p) . (26)

Let j2 ∈ [n] be the largest j such that
(k + 1− j)p[j] ≥ 1− σj(p).

Lemma C.9. For all p ∈ ∆Y and j1 as in eq. (26), we have j1 ≤ k.

Proof. Suppose for the sake of contradiction that j1 > k, and therefore j1 ≥ k + 1. Then, we have

(k + 1− j1)p[j1] ≤ 0

By definition of j1,

(k + 1− j1)p[j1] > 1− σj1(p) =⇒ 0 >1− σj1(p)

σj1(p) >1 .

However, this contradicts that σj1(p) ≤
∑n
i=1 p[i] = 1, as p ∈ ∆Y . Thus, we conclude that j1 ≤ k.

Note that if for some j ∈ [n],
(k + 1− j)p[j] = 1− σj(p),

then the expected loss will not change by “bumping up” the corresponding element in u. Therefore, we are indifferent to
“bumping up” this element or not.
From the above definitions define two sets H : ∆Y → 2[n] and I : ∆Y → 2[n] as follows:

H(p) =
{
i ∈ [n] | pi ≥ p[j1]

}
I(p) =

{
i ∈ [n] | p[j2] ≤ pi < p[j1]

}
Note, that T = H(p) ∪ I(p) is a minimizing set of indices for Ep ˆ̀

4(T, ·) when we “bump up” exactly those corresponding
elements in H(p). If p is understood from context, then we simply denote H(p) = H , etc.
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Intuitively, H (“high”) is the set of elements that bumping up (including in the report set T ) will result in a lower expected
loss. I (“indifferent”) is the set of elements that bumping up will not affect expected loss, meaning we are indifferent to
bumping them up.

From these definitions, we can see that the set of all H ∪ I∗ where I∗ ∈ P (I) (the power set 2I) such that |I∗| ≤ k − j1,
will have an expected loss equal to the expected loss associated with the set H ∪ I . And H ∪ I is the exact set constructed
by iteratively adding elements according to the boundary condition defined above (and we established above that this is the
strategy for forming an optimal report set when |H ∪ I| ≤ k). Therefore, the set of all H ∪ I∗ where I∗ ∈ P (I) such that
|I∗| ≤ k − j1, will be representative. In particular, there is an I∗ ∈ P (I) (e.g., I∗ = ∅) such that |H ∪ I∗| ≤ k, so that
Ψ(T ) ∈ R(4), where T = H ∪ I∗.

We can conclude that the property elicited by ˆ̀
4 is given

prop[L(4)](p) =

{
k + 1

k + 1− |T |
1T | T = H ∪ I∗, I∗ ∈ P (I), |I∗| ≤ k − j1

}
,

where P (I) is the power set of set I , and H and I are functions of p.

C.6. Characterizing Consistency of L(4)

From this, we can conclude that ˆ̀
4 indirectly elicits top-k when j1 = k because in all other cases prop[ˆ̀4] will return a set

with cardinality greater than 1 which will require the breaking of ties. This breaking of ties is dependent on the link utilized,
which in this case is the arg max; however, as established we would be breaking ties between sets that result in the same
expected loss of L(4). This means that we would be breaking ties arbitrarily. The only case in which this does not occur is
when we are not indifferent between bumping up any elements ui, uj where i, j ∈ [n], i 6= j. This occurs when j1 = k,
resulting in

(k + 1− k)p[k] > 1− σk by definition of j1
p[k] > 1− σk

Therefore by Lemma A.10, we know that L(4) is guaranteed consistency with top-k when p[k] > 1− σk.

Corollary 3.3. L(4) is consistent with respect to `k on P(4) := {p ∈ ∆Y | p[k] > 1− σk(p)}.

D. Additional Derivations for Lk

D.1. Proof of Lemma 4.3
As Lk is a proper polyhedral function, we know that it attains its infimum (Rockafellar, 1997, Corollary 19.3.1), and thus
Γ is well-defined on ∆Y . Let G(u) = (−`k)∗(u) and I∆Y be the convex indicator function that is 0 on ∆Y and∞ on
Rn \∆Y . Then, G∗(p) = −`k(p) = σk(p) + I∆Y (p)− 1.

Lemma D.1. Γ(p) = ∂G∗(p).

Proof. As Lk is a proper convex function, Rockafellar (1997, Theorem 23.5) yields

u ∈ ∂G∗(p) ⇐⇒ G(u) +G∗(p) = 〈u, p〉 Rockafellar (1997, Theorem 23.5)
⇐⇒ 〈p, Lk(u, ·)〉 = −G∗(p) Finocchiaro et al. (2022, Theorem 4)
⇐⇒ 〈p, Lk(u, ·)〉 = Lk(p) Finocchiaro et al. (2022, Theorem 4)
⇐⇒ u ∈ arg min

u′
〈p, Lk(u′, ·)〉 = Γ(p) .

Therefore, we just need to characterize the subgradients of G∗. As Lk is polyhedral, we know that is is the pointwise
maximum of a finite number of affine (and therefore convex) functions. This enables us to use a result from Hiriart-Urruty
and Lemaréchal (2012) to rewrite the subdifferential of G∗ in order to characterize Γ(p) for all p ∈ relint(∆Y).

Theorem D.2 (Hiriart-Urruty and Lemaréchal (2012)[D.4.3.2]). Let f1, ...fm be convex functions from Rn → R. Then,

∂
(

max
i
fi(x)

)
= hull

{
∪i∂fi(x) | i ∈ arg max

j
fj(x)

}
.
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Lemma D.3. For all p ∈ ∆Y , we have ∂σk(p) = hull{τk(p)}.

Proof. Let ft(p) = 〈t, p〉 for each t ∈ T . By affineness, ∂ft(p) = {t}. Now, recalling the definition of σk, we can write

∂σk(p) = ∂

(
max
t∈T
〈t, p〉

)
= ∂

(
max
t∈T

ft(p)

)
= hull

{
∪t (∂ft(p)) | t ∈ arg max

t′
ft′(p)

}
Theorem D.2

= hull

{
∪t {t} | t ∈ arg max

t′
ft′(p)

}
= hull

{
arg max

t
ft(p)

}
= hull

{
arg max

t
〈t, p〉

}
= hull {τk(p)} .

Lemma D.4. For all p on the relative boundary of ∆Y , (that is, ∆Y \ relint(∆Y)),

∂I∆Y (p) = ∪α∈R{α1} − cone{1i|pi = 0} .

Moreover, ∂I∆Y (p) = ~0 for all p ∈ relint(∆Y).

Proof. We can define the simplex as the set of points p ∈ Rn that satisfies the constraints 〈p,1〉 = 1, and 〈p,1i〉 ≥ 0 for
all 1 ≤ i ≤ n. Let I0 be the convex indicator of the first constraint, such that I0(p) = 0 when 〈p,1〉 = 1, and I0(p) =∞
otherwise. Similarly, let Ii be the convex indicators such that Ii(p) = 0 if 〈p,1i〉 ≥ 0, and Ii(p) =∞ otherwise. A point
p ∈ Rn will be in ∆Y precisely when all n + 1 constraints are satisfied, which is exactly when all the indicators are 0.
Therefore, we can rewrite

I∆Y (p) =

n∑
i=0

Ii(p) .

For any p ∈ ∆Y , we have ∂I0(p) = {α01|α0 ∈ R}. For 1 ≤ i ≤ n, ∂Ii(p) = {~0} if pi > 0, and ∂Ii(p) = {−αi1i | αi >
0} if pi = 0.

The subgradient of a sum of convex functions is the Minkowski sum of their individual subgradients (Rockafellar, 1997,
Theorem 23.8). Now, we observe,

∂I∆Y (p) = ∂

(
n∑
i=0

Ii(p)

)

=

n∑
i=0

∂Ii(p)

= ∂I0(p) +

n∑
i=1

∂Ii(p)

= ∪α0∈R{α01}+

n∑
i=1

{−αi1i|pi = 0, αi ≥ 0}

= ∪α∈R{α1} − cone{1i|pi = 0} .

Lemma D.5. Γ(p) = hull{τk(p)} − cone{1i|pi = 0}+ ∪α∈R{α1}.
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Proof.

Γ(p) = ∂G∗(p) Lemma D.1
= ∂ (σk(p) + I∆Y (p)− 1)

= ∂σk(p) + ∂I∆Y (p)− 0

= hull{τk(p)} − cone{1i|pi = 0}+ ∪α∈R{α1} . Lemma D.3 and Lemma D.4

D.2. Equivalence of Equations 10 and 11
Lemma D.6.

Lk(u, y) = max
1≤m≤n

{
σm(u)
m +

(
1− k

m

)
+

}
− uy .

Proof. By Equation 10,

Lk(u, y) = sup
p∈∆Y

(〈p, u〉 − σk(p)) + 1− uy .

Without loss of generality, we may assume u is sorted. Since σk(p) is not order dependent, and 〈p, u〉 will be maximized
when the elements of p have the same ordering as the elements of u, we can assume p is sorted as well. Let sort(∆Y) denote
the subset of vectors p ∈ ∆Y that are sorted. The loss then simplifies to

Lk(u, y) = sup
p∈sort(∆Y)

(
k∑
i=1

pi(ui − 1) +

n∑
i=k+1

piui

)
+ 1− uy .

Let v be the vector such that for i ≤ k, vi = ui − 1, and for i > k, vi = ui. We can then reduce to

= sup
p∈sort(∆Y)

(
n∑
i=1

pivi

)
+ 1− uy

= sup
p∈sort(∆Y)

〈p, v〉+ 1− uy .

We claim that, for any fixed v, there exists a p ∈ arg supp′∈∆Y 〈p
′, v〉 such that p = 1M/|M | for some set M ⊆ [n].

We proceed by contradiction. Assume that there is no p that is exactly 1
m on m indices that achieves the supremum. Let

U = arg supp∈∆Y 〈p, v〉 ⊆ ∆Y be the set of (sorted) distributions that do achieve the supremum. Since ∆Y is compact and
〈p, v〉 is linear, U is nonempty. By assumption, for every q ∈ U , there must be some indexm such that q1 = qm > qm+1 > 0.
Choose any q with the maximal such m. Let µ = 1

m

∑m
i=1 vi be the average of the first m elements of v. Then, we have

〈q, v〉 = qmµ+

n∑
i=m+1

qivi .

If mµ >
∑
i>m viqi, we can choose a sufficiently small ε > 0 and set q′i = q1 − ε 1−mµ

m for i ≤ m and q′i = (1 + ε)qi
for i > m to get a new distribution q′ ∈ ∆Y . Using this q′ instead of q increases 〈q, v〉, so q 6∈ U , a contradiction.
If instead mµ <

∑
i>m viqi, we can instead choose a sufficiently large ε < 0, and achieve the same result. If instead

mµ =
∑
i>m viqi, we can choose ε such that q′m = q′m+1, so we did not choose the q with the maximal m, also a

contradiction.

Therefore, there is some sorted p that is 1
m on exactly m indicies that achieves the supremum. We therefore need only

consider this set of distributions. Plugging this into the original equation, we get
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Lk(u, y) = sup
p∈∆Y

(
k∑
i=1

pi(ui − 1) +

n∑
i=k+1

piui

)
+ 1− uy

= max
1≤m≤n

(
k∑
i=1

1

m
(ui − 1)

)
+ 1− uy

= max
1≤m≤n

{
σm(u)
m +

(
1− k

m

)
+

}
− uy .


