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Abstract

We propose the Bayes-UCBVI algorithm for re-
inforcement learning in tabular, stage-dependent,
episodic Markov decision process: a natural exten-
sion of the Bayes-UCB algorithm by Kaufmann
et al. (2012) for multi-armed bandits. Our method
uses the quantile of a Q-value function posterior
as upper confidence bound on the optimal Q-value
function. For Bayes-UCBVI, we prove a regret
bound of order Õ(

√
H3SAT ) where H is the

length of one episode, S is the number of states,A
the number of actions, T the number of episodes,
that matches the lower-bound of Ω(

√
H3SAT )

up to poly-log terms in H,S,A, T for a large
enough T . To the best of our knowledge, this
is the first algorithm that obtains an optimal de-
pendence on the horizon H (and S) without the
need of an involved Bernstein-like bonus or noise.
Crucial to our analysis is a new fine-grained anti-
concentration bound for a weighted Dirichlet sum
that can be of independent interest. We then ex-
plain how Bayes-UCBVI can be easily extended
beyond the tabular setting, exhibiting a strong link
between our algorithm and Bayesian bootstrap
(Rubin, 1981).

1. Introduction
In reinforcement learning (RL), an agent interacts with an
environment with the objective of maximizing the sum of
collected rewards (Puterman, 1994). In order to fulfill this
objective, the agent should balance between exploring the
environment and exploiting the current knowledge to ac-
cumulate rewards. In this paper aim at providing generic
solution to this exploration-exploitation dilemma.
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We model the environment as an unknown episodic tabular
Markov decision process (MDP) with S states, A actions,
and episodes of lengthH . After T episodes, we measure the
performance of the agent by its cumulative regret which is
the difference between the total reward collected by an opti-
mal policy and the total reward collected by the agent during
the learning. In particular, we study the non-stationary set-
ting where rewards and transitions can change within an
episode.

An effective and widely used way to solve the exploration-
exploitation dilemma is the application of the principle of
optimism in face of uncertainty. One line of work (Azar
et al., 2017; Dann et al., 2017; Zanette and Brunskill, 2019a)
for episodic MDPs and for non-episodic MDPs (Jaksch et al.,
2010; Fruit et al., 2018; Talebi and Maillard, 2018) imple-
ments this principle by injecting optimism through bonuses
added to the rewards. By adding these bonuses we can build
upper confidence bounds (UCBs) on the optimal Q-value
functions and act greedily with respect to them. Typically,
these bonuses are decreasing functions of counts on the
number of visits of state-action pairs. Notably, for such ap-
proach, Azar et al. (2017) proved a regret bound of order12

Õ(
√
H3SAT ). Note that this upper bound matches, in

the first order and up to poly-logarithmic terms, the known
lower bound (Domingues et al., 2021b; Jin et al., 2018) of
order Ω(

√
H3SAT ) for the considered setting. The explo-

ration based on building UCBs and adding bonuses is be-
sides model-based also used for model-free algorithms (Jin
et al., 2018; Zhang et al., 2020). For example, Zhang et al.
(2020) proved a regret bound of order Õ(

√
H3SAT ) for an

optimistic version of the Q-learning algorithm (Watkins and
Dayan, 1992). One shortcoming of this exploration method
is that algorithms with bonuses designed to obtain optimal
problem-independent regret bound often perform poorly in
practice, even for simple MDPs (Osband et al., 2013; Os-
band and Van Roy, 2017). Furthermore, the notion of count
used in the bonuses does not easily generalize beyond the
tabular setting3 even if some solutions exist (Bellemare et al.,

1We translate all the bounds to the stage-dependent setting by
multiplying by

√
H the regret bounds in the stage-independent

setting.
2In the Õ(·) notation we ignore terms poly-log in H,S,A, T .
3Or simple linearly parameterized settings.



2016; Tang et al., 2017; Burda et al., 2019); See Section 4.1
for a thorough review of these methods.

A second line of work introduces optimism by injecting
noise. Osband et al. (2013; 2016b); Osband and Van Roy
(2017); Agrawal and Jia (2017) proposed the posterior
sampling for RL (PSRL), an adaptation of the well-known
Thompson sampling (Thompson, 1933) for multi-armed
bandits. Using a Bayesian view, PSRL maintains a posterior
on the MDP parameters and at each episode samples a new
parameter from this posterior to act greedily with respect to
it. Despite its good empirical performance in comparison
to bonus-based algorithms (Osband et al., 2013; Osband
and Van Roy, 2017), it is not known if PSRL algorithm can
attain the problem-independent lower bound. Indeed, the
best regret bound proved by Agrawal and Jia (2017); Qian
et al. (2020) is of order Õ(H2S

√
AT ) for PSRL. PSRL is

close to the randomized least-square value iteration (RLSVI,
Osband et al., 2016b; Russo, 2019) which injects noise di-
rectly in the value iteration through noisy Bellman updates.
Specifically, a Gaussian with a variance that shrinks with the
number of visits is added at each state-action pair during the
value iteration. Interestingly, RLSVI also demonstrates good
empirical performance in practice but most importantly can
easily be extended outside the tabular setting as explained
by Russo (2019); Osband et al. (2019), in particular, deep
RL environment Osband et al. (2016a; 2018; 2019) Specif-
ically, they combine RLSVI with DQN (Mnih et al., 2015)
by replacing the Gaussian noise in RLSVI with a bootstrap
sample (Efron, 1979) of the next targets. As a first step to an-
alyze such noise, recently, Pacchiano et al. (2021) analyzed
a version of RLSVI where the Gaussian noise is replaced by
a bootstrap sample of the past rewards and adding pseudo
rewards in the same fashion as Kveton et al. (2019). Their
algorithm, BootNARL, comes with a regret bound of order
Õ(H2S

√
AT ). Note that Russo (2019) proved a regret

bound of order Õ(H2S3/2
√
AT ) for the original version

of RLSVI. Later Xiong et al. (2021) improved this bound
to Õ(

√
H3SAT ) but at the price of scaling the Gaussian

noise by a term similar to the Bernstein bonuses used in
UCBVI. In particular, it is not clear if such variant could also
be extended beyond the tabular setting.

Thus among the above Bayesian-inspired algorithms which
both demonstrate good empirical results and are also readily
extendable to large-scale environments none of them enjoys
such as strong guarantee as problem-independent optimality.
Therefore, in this paper, we propose to fill this gap with the
Bayes-UCBVI algorithm. It is an optimistic algorithm that
does not rely on bonuses but uses the quantile of a of Q-
value functions posterior as UCBs on the optimal Q-value
functions. We can think of Bayes-UCBVI as a deterministic
version of PSRL, which, in particular, shares with PSRL
the same good empirical performance, see Section 5. We
adopt a surrogate Bayesian model for the transitions starting

from an (improper) Dirichlet prior. No assumption is made
on the environment and that the Bayesian model is purely
instrumental for Bayes-UCBVI. The posterior on the Q-
value function is then obtained by the Bellman equations.
The prior can be interpreted as prior observations of pseudo-
transitions toward an absorbing pseudo-state with maximal
reward. As a result, Bayes-UCBVI has the advantage of
requiring no information on the state space. We note that
similar optimistic prior observations were already explored
by Brafman and Tennenholtz (2002); Szita and Lőrincz
(2008). For Bayes-UCBVI, we prove a regret bound of order
Õ(
√
H3SAT ) matching the lower bound at first order and

up to poly-log terms, see Table 1. In particular we get a
tight dependence on the horizon H without the need of an
involved Bernstein-like bonus (Azar et al., 2013; Zanette
and Brunskill, 2019b; Zhang et al., 2020) or Bernstein-
type noise (Xiong et al., 2021). Indeed, in Bayes-UCBVI
the UCBs on the optimal Q-value functions induced by
the Dirichlet posteriors over the transitions adapt to the
variance automatically. Our proof relies on fine control of
the deviations of the posterior. This tight control of the
posterior is central in the analysis of the Bayesian inspired
algorithm; see Agrawal and Jia (2017); Osband and Roy
(2017). In particular, we provide a new anti-concentration
inequality for a random Dirichlet-weighted sum that could
be of independent interest, see Theorem 3.2. We believe
that this anti-concentration inequality could also be used to
tighten the bound of the PSRL algorithm.

As RLSVI, Bayes-UCBVI can be extended in a smooth way
beyond the tabular setting. Indeed, we can reinterpret the
posterior over the Q-value function of a given state-action
pair as the distribution of a Bayesian bootstrap sample of the
targets for this pair. Recall that in Bayesian bootstrap (Ru-
bin, 1981) the observations are re-weighted by a Dirichlet
sample instead of being sampled with replacement as done
by the standard bootstrap (Efron, 1979). Consequently, the
quantile serving as UCB can be straightforwardly approx-
imated by Monte-Carlo method with Bayesian bootstrap
samples. Thus, the exploration procedure of Bayes-UCBVI,
can also be combined with the DQN algorithm to tackle large-
scale RL: We achieve that by simply re-weighting the regres-
sion loss of the Q-value functions by a different Dirichlet
sample. In particular, we explain how to combine the explo-
ration procedure of Bayes-UCBVI with the DQN algorithm
for Deep RL. The resulting algorithm is in essence an opti-
mistic version of the one of Osband et al. (2019). We show
experimentally that the resulting algorithm is competitive
with the one introduced by Osband et al. (2019).

We highlight our main contributions:

• We propose the Bayes-UCBVI algorithm for tab-
ular, stage-dependent, episodic RL. Interestingly
Bayes-UCBVI is an optimistic algorithm that does not



Algorithm Upper bound (non-stationary)

UCBVI (Azar et al., 2017)
Õ(
√
H3SAT )UCB-Advantage (Zhang et al., 2020)

RLSVI (Xiong et al., 2021)

PSRL (Agrawal and Jia, 2017) Õ(H2S
√
AT )BootNARL (Pacchiano et al., 2021)

Bayes-UCBVI (this paper) Õ(
√
H3SAT )

Lower bound (Jin et al., 2018; Domingues et al., 2021b) Ω(
√
H3SAT )

Table 1. Regret upper bound for episodic, non-stationary, tabular
MDPs.

rely on adding bonuses but rather builds UCBs on the
optimal Q-value functions by taking the quantile of
a well-chosen posterior. For Bayes-UCBVI, we pro-
vide a regret bound of order Õ(

√
H3SAT ) matching

the problem independent lower bound up to poly-log
terms.

• Central to the analysis of Bayes-UCBVI is a new anti-
concentration inequality for a Dirichlet weighted sum
(Theorem 3.2). We believe this inequality could be of
independent interest, e.g., to sharpen the regret bound
of other Bayesian inspired algorithms like PSRL.

• We extend Bayes-UCBVI beyond the tabular setting,
exhibiting a strong link between our algorithm and
Bayesian bootstrap (Rubin, 1981). In particular, we
explain how to combine the exploration procedure of
Bayes-UCBVI with the DQN algorithm for Deep RL.
We show experimentally that the resulting algorithm is
competitive with the one introduced by Osband et al.
(2019).

2. Setting
We consider a finite episodic MDP(
S,A, H, {ph}h∈[H], {rh}h∈[H]

)
, where S is the set

of states, A is the set of actions, H is the number of steps
in one episode, ph(s′|s, a) is the probability transition
from state s to state s′ by taking the action a at step h,
and rh(s, a) ∈ [0, 1] is the bounded deterministic4 reward
received after taking the action a in state s at step h. Note
that we consider the general case of rewards and transition
functions that are possibly non-stationary, i.e., that are
allowed to depend on the decision step h in the episode.
We denote by S and A the number of states and actions,
respectively.

Policy & value functions A deterministic policy π is
a collection of functions πh : S → A for all h ∈ [H],
where every πh maps each state to a single action. The
value functions of π, denoted by V πh , as well as the optimal

4We study deterministic rewards to simplify the proofs but our
result extend to random rewards as well.

value functions, denoted by V ?h are given by the Bellman
respectively optimal Bellman equations

Qπ
h(s, a) = rh(s, a) + phV

π
h+1(s, a) V π

h (s) = πhQ
π
h(s)

Q⋆
h(s, a) = rh(s, a) + phV

⋆
h+1(s, a) V ⋆

h (s) = max
a

Q⋆
h(s, a)

where by definition, V ?H+1 , V πH+1 , 0. Furthermore,
phf(s, a) , Es′∼ph(·|s,a)[f(s′)] denotes the expectation
operator with respect to the transition probabilities ph and
πhg(s) , g(s, πh(s)) denotes the composition with the
policy π at step h.

Learning problem The agent, to which the transitions are
unknown (the rewards are assumed to be known for simplic-
ity), interacts with the environment during T episodes of
length H , with a fixed initial state s1.5 Before each episode
t the agent select a policy πt based only on the past observed
transitions up to episode t − 1. At each step h ∈ [H] in
episode t, the agent observes a state sth ∈ S , takes an action
πth(s

t
h) = ath ∈ A and makes a transition to a new state

sth+1 according to the probability distribution ph(sth, a
t
h)

and receives a deterministic reward rh(sth, a
t
h).

Regret The quality of an agent is measured through its
regret, that is the difference between what it could obtain
(in expectation) by acting optimally and what it really gets,

RT ,
T∑
t=1

V ?1 (s1)− V π
t

1 (s1) .

Counts nth(s, a) ,
∑t
i=1 1

{
(sih, a

i
h) = (s, a)

}
are the

number of times the state action-pair (s, a) was visited in
step h in the first t episodes. Next, we define nth(s

′|s, a) ,∑t
i=1 1

{
(sih, a

i
h, s

i
h+1) = (s, a, s′)

}
the number of transi-

tions from s to s′ at step h.

Pseudo counts and improper Dirichlet distribution We
define the pseudo counts as the counts shifted by initial
pseudo counts nth(s, a) , nth(s, a) + n0. For m ∈ N∗ the
simplex of dimension m− 1 is denoted by ∆m−1. For α ∈
(R++)

m we denote by Dir(α) the Dirichlet distribution on
∆m−1 with parameter α. We also extend this distribution to
improper parameter α ∈ (R+)

m such that
∑m
i=1 αi > 0 by

injecting Dir((αi)i:αi>0) into ∆m−1. Precisely we say that
p ∼ Dir(α) if (pi)i:αi>0∼Dir((αi)i:αi>0) and all other
coordinates are zero.

Additional notation For N ∈ N++ we define the set
[N ] , {1, . . . , N}. We denote the uniform distribution

5As explained by Fiechter (1994) and Kaufmann et al. (2021),
if the first state is sampled randomly as s1 ∼ p, we can simply add
an artificial first state s1′ such that for any action a, the transition
probability is defined as the distribution p1′(s1′ , a) , p.



over this set by Unif[N ]. The vector of dimension N with
all entries one is 1N , (1, . . . , 1). p̂ th(s, a) is an empirical
distribution defined as p̂ th(s

′|s, a) = n th(s
′|s, a)/n th(s, a)

if n th(s, a) > 0 else p̂ th(s
′|s, a) = 1/S, and p th(s, a)

is an pseudo-empirical measure defined as p th(s, a) =
n th(s

′|s, a)/n th(s, a). Appendix A gives a reference of the
notation used.

3. Algorithm
In this section we describe the Bayes-UCBVI algorithm.
Similarly to UCBVI, we build upper confidence bounds
(UCBs) on the Q-value functions and act greedily with
respect to them. However, to construct the UCBs we in-
stead use a quantile of certain posterior distribution. The
name Bayes-UCBVI highlights the link between our algo-
rithm and the one of Kaufmann et al. (2012) for multi-arm
bandits.

First, we extend the state space S by an absorbing pseudo-
state s0 with reward rh(s0, a) , r0 > 1 for all h, a and tran-
sition probability distribution ph(s′|s0, a) , 1{s′ = s0}. A
similar pseudo-state called “garden of even” was used by
Brafman and Tennenholtz (2002); Szita and Lőrincz (2008).
We denote the extended state space by S ′ , S ∪ {s0}.
The optimal value at s0 is V ?h (s0) = r0(H − h + 1)
by definition. Next, we adopt a Bayesian model on the
transition distributions. Note that it is only a surrogate
model used by the algorithm but not the one from which
the transition are sampled. Precisely, the improper prior
on the probability transition is a Dirichlet6 distribution
ρ0h(s, a) = Dir(n0h(s′|s, a)s∈S′) parameterized by the ini-
tial pseudo-count n0h(s

′|s, a) = n01{s′ = s0}. We re-
call that the pseudo-counts nh(s, a) are the counts plus a
prior observation of a transition to the artificial state s0.
In fact, the prior is just a Dirac distribution at a deter-
ministic transition p0(s′) = 1{s′=s0} leading to the arti-
ficial state s0. Then the posterior is a Dirichlet distribution
ρth(s, a) = Dir(nth(s′|s, a)s∈S′). Given an upper bound on
the value function at the next step V

t

h+1, we set the upper
confidence bound on the Q-value at step h to the quantile
of order κth(s, a) of the distribution of Q-value where the
transition probability distribution is sampled according to
the posterior,

Q
t

h(s, a) , rh(s, a)+Qp∼ρth(s,a)
(
pV

t

h+1(s, a), κ
t
h(s, a)

)
,

where for ρ ∈ ∆S′−1, κ ∈ [0, 1], V : S ′ → R, the
quantile Qp∼ρ(pV, κ) of order κ is defined as Pp∼ρ

(
pV ≤

Qp∼ρ(pV, κ)
)
= κ.

To compute UCBs on the value and Q-value functions for

6See Section 2 for the extension of a Dirichlet distribution to
parameter with coordinates that could be equal to zero.

all (s, a) ∈ S ×A, we use an optimistic value iteration,

Q
t

h(s, a) = rh(s, a) + Qp∼ρth(s,a)
(
pV

t

h+1(s, a), κ
t
h(s, a)

)
V
t

h(s) , max
a∈A

Q
t

h(s, a) V
t

h(s0) , V ?h (s0) (1)

V
t

H+1(s) , 0 .

The complete procedure of Bayes-UCBVI is described in
Algorithm 1.

Algorithm 1 Bayes-UCBVI
1: Input: quantile functions (κt)t∈[T ], prior dist. ρ0

2: for t ∈ [T ] do
3: Optimistic planning, see (1)
4: for h ∈ [H] do
5: Play ath ∈ argmaxa∈AQ

t−1
h (sth, a)

6: Observe sth+1 ∼ ph(sth, ath)
7: Update the posterior distributions ρth(s

t
h, a

t
h) with

(sth, a
t
h, s

t
h+1)

8: end for
9: end for

3.1. Analysis

We fix δ ∈ (0, 1) and the quantile function

κth(s, a) , 1− Cκδ

SAH[2nth(s, a) + 1]3[nth(s, a)]
3/2

(2)

up to an absolute constant Cκ , 1/(5(eπ)3). We now state
the main result of the paper, proved in Appendix B.3 and
with a proof sketch in Section 3.2.

Theorem 3.1. Consider a parameter δ > 0. Let n0 ,
⌈cn0

+ log17/16(T )⌉, r0 , 2, where cn0
is an abso-

lute constant defined in (4); see Appendix B.2. Then for
Bayes-UCBVI, with probability at least 1− δ,

RT = O
(√

H3SATL+H3S2AL2
)
,

where L , O(log(HSAT/δ)).

Notice that Bayes-UCBVI matches the problem-
independent lower bound Ω(

√
H3SAT ) by Jin et al.

(2018); Domingues et al. (2021b) for T ≥ H3S3A and up
to poly-log terms in H,S,A, T, 1/δ.

Complexity Bayes-UCBVI is a model-based algorithm,
and thus gets the O(HS2A) space complexity of UCBVI.
Note that there is no closed-form solution to compute the
quantile used in the UCB and thus we approximate it e.g.,
by Monte-Carlo sampling; see Section 4. In particular, if we
useB Monte-Carlo samples to approximate one quantile the
time complexity of Bayes-UCBVI is O(BHS2AT ) for T
episodes.



Comparison with PSRL and RLSVI Bayes-UCBVI is
close to PSRL (Osband et al., 2013; Agrawal and Jia, 2017).
Instead of computing quantiles, PSRL directly samples a
transition probability distribution from the posterior to com-
pute Q-values. Note that these Q-values may not neces-
sary be UCBs as for Bayes-UCBVI. Agrawal and Jia (2017)
proved a regret bound of order Õ(H2S

√
AT ) for PSRL.

We believe that our analysis for Bayes-UCBVI and in par-
ticular Theorem 3.2, could be used to improve the regret
bound for PSRL to Õ(

√
H3SAT ), thus matching (in terms

of its dependence on the number of states S and the hori-
zon H) the Bayesian regret bound provided by Osband and
Van Roy (2017). Another Bayesian-inspired algorithm is
RLSVI by Osband et al. (2013). It works by injecting Gaus-
sian noise into the Bellman equations. Adding this noise can
be seen as sampling accordingly to a certain posterior on
the Q-value functions (Russo and Van Roy, 2014). Recently,
Xiong et al. (2021) improved the dependence on the hori-
zon H in RLSVI’s regret bound to Õ(

√
H3SAT ) thanks to

a Gaussian noise with a “Bernstein” shaped variance. Yet,
it is not clear if this variant of RLSVI has a clean exten-
sion beyond the tabular setting. The interesting property of
Bayes-UCBVI is that its Dirichlet posterior on the transi-
tions adjusts automatically to the variance without the need
of Bernstein bonuses/noises. Moreover, Pacchiano et al.
(2021) proposed to replace the Gaussian noise in RLSVI
by bootstrap sampling of past rewards and adding pseudo-
rewards as Kveton et al. (2019). They proved7 a regret
bound of order Õ(H2S

√
AT ) for this type of noise. Note

that in Bayes-UCBVI it is targets rather than the rewards
that are used in the (Bayesian) bootstrap, see Section 4.

3.2. Proof sketch

We now sketch the proof of Theorem 3.1. The proof relies
heavily on boundary-crossing probabilities for weighted
sums of the Dirichlet distribution with integer parameter.
The result below gives tight bounds for these probabilities.
The lower bound in particular, is one of our main technical
contributions.

Step 1. Dirichlet boundary crossing
Theorem 3.2 (see Lemma D.1 and Theorem D.2). For
any α = (α0, α1, . . . , αm) ∈ Nm+1 define p ∈ ∆m with
p(ℓ) = αl/α, ℓ = 0, . . . ,m, where α =

∑m
j=0 αj . As-

sume that α0 ≥ log17/16(α) + cn0 , where cn0 is defined
in (4); see Appendix B.2, and α ≥ 2α0. Then for any
f : {0, . . . ,m} → [0, b0] such that f(0) = b0, f(ℓ) ≤ b <
b0/2, ℓ ∈ {1, . . . ,m} and any µ ∈ (pf, b0) we have

e−αKinf(p,µ,f)

α3/2
≤ Pw∼Dir(α)[wf ≥ µ] ≤ e−αKinf(p,µ,f),

7We hypothesise that the noise should be scaled by H as in
RLSVI for their result to be valid.

where Kinf(p, u, f) is given by

Kinf(p, u, f) , max
λ∈[0,1]

EX∼p

[
log

(
1− λ

f(X)− u

b0 − u

)]
.

While the upper bound follows directly from the work of
Riou and Honda (2020), the lower bound is new. The proof
of the lower bound is presented in Theorem D.2 and consists
of two main steps:

1. Geometrical reduction of the density of wf to 1D com-
plex integral (see Dirksen, 2015; Lasserre, 2020);

2. Sharp non-asymptotic analysis of the integral using
the saddle-point method (see Olver, 1997; Fedoryuk,
1977).

Using Theorem 3.2, we show that Q
t

is an upper confidence
bound on the optimal action-value function.

Step 2. Optimism Using the lower bound of Theorem 3.2,
we show that for our choice of κth(s, a), given in (2), the
following result holds.
Lemma 3.3 (see Lemma B.5). Let n0 ≥ log17/16(α)+ cn0

and r0 ≥ 2, where cn0
is defined in (4); see Appendix B.2.

Then on event E?(δ); see Appendix C, for any t ∈ N, h ∈
[H], (s, a) ∈ S ×A,

Qp∼ρt
h
(s,a)

(
pV ⋆

h+1(s, a), κ
t
h(s, a)

)
≥ phV

⋆
h+1(s, a).

By the decomposition (1) and the Bellman equation, we see
that

Q
t

h(s, a)−Q⋆
h(s, a)

≥ Qp∼ρt
h
(s,a)

(
pV

t
h+1(s, a), κ

t
h(s, a)

)
− phV

⋆
h+1(s, a).

Induction over h and Lemma 3.3 yield that on event E?(δ),
Q
t

h(s, a) ≥ Q?h(s, a) for any t ≤ T, h ∈ [H], (s, a) ∈
S ×A.

Step 3. Reduction to UCBVI with Bernstein bonuses By
optimism we have

RT ,
T∑

t=1

V ⋆
1 (st1)− V πt

1 (st1) ≤
T∑

t=1

δt1,

where δth , V
t−1
h (st1) − V

πt
h (st1). The quantity δth can be

decomposed as follows

δ
t
h = Q

p∼ρt−1
h

(st
h
,at
h
)
(pV

t−1
h+1(s

t
h, a

t
h), κ̂

t
h)− p

t−1
h V

t−1
h+1(s

t
h, a

t
h)︸ ︷︷ ︸

(A)

+ [p
t−1
h − p̂t−1

h ]V
t−1
h+1(s

t
h, a

t
h)︸ ︷︷ ︸

(B)

+ (p̂
t−1
h − ph)[V

t−1
h+1 − V

?
h+1](s

t
h, a

t
h)︸ ︷︷ ︸

(C)

+(p̂
t−1
h − ph)V ?h+1(s

t
h, a

t
h)︸ ︷︷ ︸

(D)

+ ph[V
t−1
h+1 − V

πt
h+1](s

t
h, a

t
h)− [V

t−1
h+1 − V

πt
h+1](s
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where κ̂th = κt−1h (sth, a
t
h). The terms (C), (D) and ξth

coincide with similar terms in the analysis of UCBVI with
Bernstein bonuses. The term (B) could be upper-bounded
by r0H

max{nt−1
h ,1} and turns out to be a second-order term.

The analysis of the term (A) is novel. Using the upper
bound from Theorem 3.2 we may obtain the Bernstein type
inequality for the Dirichlet distribution (see Lemma C.8 in
Appendix C) which yields the following key inequality for
the quantile Qp∼ρth(s,a)(pV

t

h+1(s, a), κ
t
h(s, a)).

Lemma 3.4 (see Corollary B.7). Assume conditions of The-
orem 3.1. On event E?(δ), for any t ∈ N, h ∈ [H], (s, a) ∈
S ×A,
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2 · r0H log
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)
nt
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.

Since 1− κth(s, a) depends on nth(s, a) only polynomially,
we see that the term (A) can be upper bounded by a quantity
which looks very similar to the Bernstein bonuses in UCBVI
and, moreover, it has the same role in the regret analysis.
After using these upper bounds, the rest of the proof follows
from the analysis of UCBVI with the Bernstein bonuses; see
Azar et al., 2017.

4. Bayes-UCBVI for Deep RL
We now extend Bayes-UCBVI beyond the tabular setting.
Fix a state-action pair (s, a). At episode t, the targets to esti-
mate the Q-value function at state-action pair (s, a) at step h
are ynh(s, a) , rh(s, a) + V

t

h+1(s
n
h+1) for n ∈ [nth(s, a)]

where snh+1 is the next state observed after taking the ac-
tion a in state s for the nth time.8 We also need prior targets9

ynh(s, a) , rh(s, a) + V
t

h(s0) for (−n + 1) ∈ [n0] corre-
sponding to the pseudo-transition to s0. Using the aggrega-
tion property of the Dirichlet distribution we can compute
the UCB by taking the quantile of randomly re-weighted
sum of targets. Precisely, we have that

Q
t

h(s, a) , rh(s, a) + Qp∼ρt
h
(s,a)

(
pV

t
h+1(s, a), κ

t
h(s, a)

)
= Q

w∼Dir(1
nt
h
(s,a)

)

 nth(s,a)∑
n=−n0+1

wny
n
h (s, a), κ

t
h(s, a)

 .

We can approximate this quantile by the quantile of the em-
pirical distribution of B Bayesian bootstrap samples (Rubin,

8In particular, n is a number of visits of a state-action pair
(s, a) and not the global time (the number of episodes).

9In the case of unknown rewards we use the sample returns
instead. For the pseudo-target, we always set the rewards to 1
which gives y0

h(s, a) , H − h+ 1.

1981). Precisely, if we fix (wbh(s, a))b∈[B] i.i.d. samples
from a Dirichlet distribution Dir(1nth(s,a)) we have

Q
t

h(s, a) ≈ Qb∼Unif([B])

(
Q
t,b

h (s, a), κth(s, a)
)

where Q
t,b

h (s, a) ,
nth(s,a)∑
n=−n0+1

wn,bh (s, a)ynh(s, a) .

In particular, using that a uniform Dirichlet distribution can
be obtained by normalizing independent samples from the
exponential probability distribution E(1), we can obtain the
Bayesian samples by solving a weighted linear regression

Q
t,b

h (s, a) = argmin
x

nth(s,a)∑
n=−n0+1

zn,bh (s, a)(x− ynh(s, a))
2

(3)

where zn,bh (s, a) ∼ E(1) i.i.d. .

We name this approximation of Bayes-UCBVI, incremental
Bayes-UCBVI (Incr-Bayes-UCBVI) and provide its de-
tailed pseudo-code as Algorithm 2 in Appendix F. Note
that this way to generate bootstrap sample is similar to the
incremental Bayesian bootstrap by Osband and Van Roy,
2015 (their Algorithm 5).

A great advantage of this formulation of Bayes-UCBVI is
that it can be easily extended beyond the tabular setting. In-
deed, we can simply replace the weighted linear regression
loss in (3) by the weighted regression loss of any function
approximation. Remarkably, except for the initial pseudo-
transitions, Incr-Bayes-UCBVI does not rely on counts but
on a easy-to-implement Bayesian bootstrap. As an exam-
ple, in Appendix F, we combine the Incr-Bayes-UCBVI
exploration procedure with DQN (Mnih et al., 2015) and call
it Bayes-UCBDQN, detailed as Algorithm 3 of Appendix F.

4.1. Related work

Generalizing principled solutions of the exploration-
exploitation dilemma from the theoretical tabular RL setting
to large-scale deep RL is quite challenging (Yang et al.,
2021). For instance, Bellemare et al. (2016); Ostrovski
et al. (2017) approach the count-based UCBs used in tabu-
lar RL by approximating the visits counts using a density
estimation. Later, Tang et al. (2017) directly map states
to hash codes and then count their occurrences in a hash
table. Another line of work sets bonuses to the approxima-
tion error of some quantities related to the MDP dynamics:
the forward dynamics (Schmidhuber, 1991; Pathak et al.,
2017), the inverse dynamics (Haber et al., 2018) or simply
a constant function (Fox et al., 2018). Similarly, Burda et al.
(2019) builds bonus from he prediction error of a randomly
initialized network. This can be further combined with the
pseudo-counts (Badia et al., 2020) leading to impressive



results. As in the tabular setting, a second line of work
deals with the exploration-exploitation trade-off by inject-
ing noise. Fortunato et al. (2018) add parametric noise to
the weights of the agent’s network that is learned with the
weights. Azizzadenesheli et al. (2018) approximate PSRL
by replacing the typical last linear layer of agent’s Q-value
network with a Bayesian linear regression. Alternatively,
bootstrap DQN (BootDQN, Osband et al., 2016a; 2018; 2019)
extends RLSVI by bootstrap sampling of the transitions to
inject noise into DQN. Specifically, in BootDQN an ensemble
of Q-value functions is learned each on a different bootstrap
sample of the transitions collected so far. Building on this
work, Nikolov et al. (2019) use bootstrap as well but instead
combines the bandit algorithm, information direct sampling
(Russo and Van Roy, 2014), with DQN. Recently, Bai et al.
(2021) also proposed an optimistic algorithm based on boot-
strap, using a bonus that scales with the variance of the
ensemble of Q-value functions learned as did Osband et al.
(2019).

Further comparison of Bayes-UCBDQN with BootDQN
Bayes-UCBDQN is close to BootDQN of Osband et al.
(2016a). In BootDQN, an ensemble of B bootstrap Q-value
functions (or in practice only the “heads” of a unique Q-
value function) are learned with different sub-sets of transi-
tions. Each transition is randomly assigned to the training
of one bootstrap Q-value function with a fixed probabil-
ity p ∈ [0, 1]. In particular they consider p = 0.5 for
the double-or-nothing bootstrap and p = 1 for no boot-
strap. Each bootstrap Q-value function is then trained
with targets computed from the corresponding bootstrap
Q-value function at the next state; see Appendix G for a
detailed description. As explained by Osband et al. (2016a),
BootDQN can be seen as approximation of RLSVI. That is
why Bayes-UCBDQN can be seen as an optimistic version
of BootDQN (as Bayes-UCBVI is an optimistic version of
PSRL & RLSVI). The main differences between BootDQN
and Bayes-UCBDQN are therefore: (i) Bayes-UCBDQN acts
greedily with respect to the quantile of the bootstrap Q-value
functions instead of one bootstrap Q-value function sampled
uniformly at random. (ii) Bayes-UCBDQN uses Bayesian
bootstrap instead of the classical bootstrap (Efron, 1979).
(iii) In Bayes-UCBDQN, the bootstrap Q-value functions are
trained with the same target computed with the quantile of
the bootstrap Q-functions at the next step, as in (3). We
discuss the impacts of these modifications in Section 5.

5. Experimental Results
In this section we provide experiments on Bayes-UCBVI
and its variants. We illustrate two points: First, that
Incr-Bayes-UCBVI performs similarly as other algorithms
relying on noise-injection for exploration such that PSRL
and RLSVI. Second, that Bayes-UCBDQN, the deep RL ex-

tension of Bayes-UCBVI is competitive with BootDQN.

5.1. Tabular environment

We first evaluate Bayes-UCBVI and Incr-Bayes-UCBVI
on a simple tabular environment.

Environment For the tabular experiments we consider a
simple grid-world with 5 connected rooms of size 5 × 5,
totalling S = 129 states. The agent starts in the middle
room. There is one small deterministic reward in the left-
most room, one large deterministic reward in the rightmost
room and zero reward elsewhere. The agent can take A = 4
actions: moving up, down, left, right. When taking an ac-
tion, the agent moves in the corresponding direction with
probability 0.9 and moves to a neighboring state at random
with probability 0.1. The horizon is fixed to H = 30; see
Appendix G for details. In this environment the agent must
explore efficiently all the room avoiding being lured by the
small reward in the leftmost room.

Baselines We compare Bayes-UCBVI and
Incr-Bayes-UCBVI with the following baselines:
UCBVI (Azar et al., 2017), RLSVI (Osband et al., 2016b),
and PSRL (Osband et al., 2013); see Appendix G for a full
description of the parameters of the algorithms used in the
experiments.

Results In Figure 1, we plot the regret of the various
baselines, Bayes-UCBVI and Incr-Bayes-UCBVI in the
aforementioned environment. In this experiment, we ob-
serve that both Bayes-UCBVI and Incr-Bayes-UCBVI
achieve competitive results with respect to baselines re-
lying on noise-injection for exploration (PSRL, RLSVI).
This is remarkable, since the common belief is that opti-
mistic algorithm perform poorly in practice (Osband and
Van Roy, 2017). Indeed, Incr-Bayes-UCBVI exhibits a
regret similar to PSRL. It is not completely surprising since
they share the same model on the transitions (up to the
prior). Notice that Bayes-UCBVI performs slightly worse
than Incr-Bayes-UCBVI but better than RLSVI. One pos-
sible reason to explain this gap between Bayes-UCBVI and
Incr-Bayes-UCBVI is that the incremental implementa-
tion of Bayesian bootstrap forgets the prior faster than the
non-incremental version, resulting in a more aggressive algo-
rithm. We also note that RLSVI performs slightly worse than
PSRL, Incr-Bayes-UCBVI but much better than UCBVI.
A possible explanation for this ranking is that RLSVI is
much more aggressive than UCBVI when they have compa-
rable noise, bonuses; whereas PSRL, Incr-Bayes-UCBVI,
Bayes-UCBVI take better advantage of the small variance
of this particular environment than the two last baselines.



Figure 1. Regret of Bayes-UCBVI and Incr-Bayes-UCBVI com-
pared to baselines for H = 30 an transitions noise 0.1. We show
average over 4 seeds.

5.2. Deep RL experiments

In this section we evaluate the performance of
Bayes-UCBDQN in large-scale environments.

Setup All algorithms are based on the architecture of DQN
(Mnih et al., 2013). In order to implement the bootstrapped
ensemble, we follow BootDQN (Osband and Van Roy, 2015)
and maintain an ensemble of B = 10 head networks over
a shared torso network. For fairness of comparison, all
algorithmic variants share hyper-parameters wherever pos-
sible; see Appendix G for further details on the detailed
architecture and implementation details.

Environment and evaluation To evaluate the scalability
of Bayes-UCBDQN, we train DQN variants over a suite of 57
Atari games (Bellemare et al., 2013). For each algorithm and
each game, we train for 200M frames and record the human
normalized scores per game. The overall performance curve
in Figure 2 is calculated as the median score over all games.

Results We compare DoubleDQN (Van Hasselt et al.,
2016), BootDQN and Bayes-UCBDQN. In Figure 2, we show
the evaluation performance of different algorithms over
training, measured in median human normalized scores.
We make a few observations: (1) Both Bayes-UCBDQN and
BootDQN outperform DoubleDQN, potentially due to better
training stability thanks to more consistent exploration; (2)
The performance of BootDQN converges to about 0.7, which
is consistent with results of Osband and Van Roy (2015);
(3) Overall, Bayes-UCBDQN and BootDQN perform simi-
larly. We see that Bayes-UCBDQN achieves very marginal
advantage over BootDQN towards the end of training, how-
ever, more significant gains might require further engi-
neering efforts. Nevertheless, we have established that
Bayes-UCBDQN, as a theoretically grounded algorithm, is

Figure 2. Evaluating deep RL algorithms with median human nor-
malized scores across Atari-57 games. We compare DoubleDQN,
BootDQN and Bayes-UCBDQN. The training curves show the
average± std over 3 seeds.

competitive with BootDQN. This paves the way for future
research in this space; see Appendix G for further discussion
on the effect of various hyper-parameters.

6. Conclusion
We presented a new algorithm, Bayes-UCBVI. It is an
optimistic algorithm that does not rely on bonuses but
rather uses the quantile of a well-chosen posterior to in-
ject optimism. We proved that this algorithm is problem-
independent optimal up to term poly-log in the hori-
zon H , the number of action A, states S and episodes T .
Bayes-UCBVI also exhibits similar empirical performance
than other existing Bayesian-inspired algorithms thus bridg-
ing the optimal problem-independent theoretical guarantees
of optimistic algorithms and the good empirical results of
algorithms relying on noise-injection for exploration. Im-
portantly we also demonstrated that Bayes-UCBVI could
easily be extended beyond the tabular setting. In particular,
we provided a new principled algorithm Bayes-UCBDQN
based on Bayes-UCBVI that is competitive with BootDQN
of Osband et al. (2019) on large-scale environments.

This work also raises the following open question that we
think bring interesting future directions.

Problem-independent optimality of PSRL Central to the
proof of the regret bound of PSRL is the control of the devia-
tion of a Dirichlet re-weighted sum (Agrawal and Jia, 2017).
Thus, we believe that the anti-concentration inequality of
Theorem 3.2, or a close variant, could allow to improve
the regret bound to Õ(

√
H3SAT ) (for T large enough).

In particular, this would imply that PSRL is also problem-
independent optimal.



Integration with deep RL agents Existing deep RL ar-
chitectures, such as the implementations of base agent’s loss
functions and training pipeline, might not interact with our
proposed exploration techniques in the optimal way (see Ap-
pendix G.3 for details). Thus, an open question is whether
we could make more fundamental changes to certain deep
RL agents so that the exploration methods can be integrated
in a better way.
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A. Notation

Table 2. Table of notation use throughout the paper

Notation Meaning

S state space of size S
A action space of size A
H length of one episode
T number of episodes
B number of bootstrap samples
rh(s, a) reward
ph(s

′|s, a) probability transition
Qπh(s, a) Q-function of a given policy π at step h
V πh (s) V-function of a given policy π at step h
Q?h(s, a) optimal Q-function at step h
V ?h (s) optimal V-function at step h
RT regret
n0 number of fake samples
s0 fake state
r0 reward of fake transition
s th state that was visited at h step during t episode
a th action that was picked at h step during t episode
nth(s, a) number of visits of state-action nth(s, a) =

∑t
k=1 1

{
(skh, a

k
h) = (s, a)

}
nth(s

′|s, a) number of transition to s′ from state-action nth(s
′|s, a) =

∑t
k=1 1

{
(skh, a

k
h, s

k
h+1) = (s, a, s′)

}
.

nth(s, a) pseudo number of visits of state-action nth(s, a) = nth(s, a) + n0
nth(s

′|s, a) pseudo number of transition to s′ from state-action nth(s
′|s, a) = nth(s

′|s, a) + 1{s′ = s0} · n0
p̂ th(s

′|s, a) empirical probability transition p̂ th(s
′|s, a) = nth(s

′|s, a)/nth(s, a)
pth(s

′|s, a) pseudo-empirical probability transition pth(s
′|s, a) = nth(s

′|s, a)/nth(s, a)
Q
t

h(s, a) upper bound on the optimal Q-value
V
t

h(s, a) upper bound on the optimal V-value
R+ non-negative real numbers
R++ positive real numbers
N++ positive natural numbers
[n] set {1, 2, . . . , n}
∆d d-dimensional probability simplex: ∆d = {x ∈ Rd+1

+ :
∑d
j=0 xj = 1}

1N vector of dimension N with all entries one is 1N , (1, . . . , 1)
∥x∥1 ℓ1-norm of vector ∥x∥1 =

∑m
j=1 |xj |

∥x∥2 ℓ2-norm of vector ∥x∥2 =
√∑m

j=1 x
2
j

∥f∥2 for f : X→ R, where |X| <∞ define ∥f∥2 =
√∑

x∈X f
2(x)

Let (X,X ) be a measurable space and P(X) be the set of all probability measures on this space. For p ∈ P(X) we denote by
Ep the expectation w.r.t. p. For random variable ξ : X→ R notation ξ ∼ p means Law(ξ) = p. We also write Eξ∼p instead

of Ep. For independent (resp. i.i.d.) random variables ξ`
ind∼ p` (resp. ξ`

i.i.d∼ p), ℓ = 1, . . . , d, we will write E
ξ`

ind∼ p`
(resp.

E
ξ`

i.i.d∼ p
), to denote expectation w.r.t. product measure on (Xd,X⊗d). For any p, q ∈ P(X) the Kullback-Leibler divergence

KL(p, q) is given by

KL(p, q) =

{
Ep[log dp

dq ], p≪ q

+∞, otherwise

For any p ∈ P(X) and f : X → R, pf = Ep[f ]. In particular, for any p ∈ ∆d and f : {0, . . . , d} → R, pf =∑d
`=0 f(ℓ)p(ℓ). Define Varp(f) = Es′∼p

[
(f(s′) − pf)2

]
= p[f2] − (pf)2. For any (s, a) ∈ S, transition kernel

p(s, a) ∈ P(S) and f : S → R define pf(s, a) = Ep(s,a)[f ] and Varp[f ](s, a) = Varp(s,a)[f ].



We write f(S,A,H, T ) = O(g(S,A,H, T, δ)) if there exist S0, A0, H0, T0, δ0 and constant Cf,g such that for any S ≥
S0, A ≥ A0, H ≥ H0, T ≥ T0, δ < δ0, f(S,A,H, T, δ) ≤ Cf,g · g(S,A,H, T, δ). We write f(S,A,H, T, δ) =

Õ(g(S,A,H, T, δ)) if Cf,g in the previous definition is poly-logarithmic in S,A,H, T, 1/δ.

For λ > 0 we define E(λ) as an exponential distribution with a parameter λ. For k, θ > 0 define Γ(k, θ) as a gamma-
distribution with a shape parameter k and a rate parameter θ. For set X such that |X| < ∞ define Unif(X) as a uniform
distribution over this set. In particular, Unif[N ] is a uniform distribution over a set [N ].



B. Bayes-UCBVI Proofs
B.1. Concentration events

Let β?, βKL, βconc, βVar : (0, 1) × N → R+ and β : (0, 1) → R+ be some function defined later on in Lemma B.1. We
define the following favorable events

E?(δ) ,

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A : Kinf(p̂

t
h(s, a), phV

?
h+1(s, a), V

?
h+1) ≤

β?(δ, nth(s, a))

nth(s, a)

}
,

EKL(δ) ,

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A : KL(p̂ th(s, a), ph(s, a)) ≤

S · βKL(δ, n th(s, a))

n th(s, a)

}
,

Econc(δ) ,

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :

|(p̂th − ph)V ?h+1(s, a)| ≤

√
2Varph(V

?
h+1)(s, a)

β(δ, nth(s, a))

nth(s, a)
+ 3H

β(δ, nth(s, a))

nth(s, a)

}
,

EVar(δ) ,

{
∀t ∈ N :

t∑
`=1

H∑
h=1

Varph [V
π`
h+1(s

`
h, a

`
h)] ≤ H2t+

√
2H5tβVar(δ, t) + 3H3βVar(δ, t)

}
,

E(δ) ,

{
T∑
t=1

H∑
h=1

∣∣∣ph[V t−1h+1 − V
πt
h+1](s

t
h, a

t
h)− [V

t−1
h+1 − V

πt
h+1](s

t
h+1)

∣∣∣ ≤ 2r0H
√
2HTβ(δ),

T∑
t=1

H∑
h=1

(1− 1/H)H−h+1
∣∣∣ph[V t−1h+1 − V

πt
h+1](s

t
h, a

t
h)− [V

t−1
h+1 − V

πt
h+1](s

t
h+1)

∣∣∣ ≤ 2er0H
√
2HTβ(δ),

}
.

We also introduce the intersection of these events, G(δ) , E?(δ) ∩ EKL(δ) ∩ Econc(δ) ∩ EVar(δ) ∩ E(δ). We prove that for
the right choice of the functions β?, βKL, βconc, β, βVar the above events hold with high probability.

Lemma B.1. For any δ ∈ (0, 1) and for the following choices of functions β,

β?(δ, n) , log(5SAH/δ) + 3 log(eπ(2n+ 1)) ,

βKL(δ, n) , log(5SAH/δ) + log(e(1 + n)),

βconc(δ, n) , log(5SAH/δ) + log(4e(2n+ 1)),

β(δ) , log(20/δ),

βVar(δ, t) , log(20e(2t+ 1)/δ),

it holds that

P[E?(δ)] ≥ 1− δ/5, P[EKL(δ)] ≥ 1− δ/5, P[Econc(δ)] ≥ 1− δ/5,
P[EVar(δ)] ≥ 1− δ/5, P[E(δ)] ≥ 1− δ/5.

In particular, P[G(δ)] ≥ 1− δ.

Proof. It follows from Theorem C.4 that P[E?(δ)] ≥ 1 − δ/5. Applying Theorem C.1 and the union bound over h ∈
[H], (s, a) ∈ S ×A we get P[EKL(δ)] ≥ 1− δ/5. Next, Theorem C.6 and the union bound over h ∈ [H], (s, a) ∈ S ×A
yield P[Econc(δ)] ≥ 1− δ/5. By Lemma B.2, P[EVar(δ)] ≥ 1− δ/5. It remains to estimate P[E(δ)].

Define the following sequences

Z̄t,h , V
t−1
h+1(s

t
h+1)− V ∗h+1(s

t
h+1)− ph[V

t−1
h+1 − V ∗t+1](s

t
h, a

t
h), t ∈ [T ], h ∈ [H],

Z̃t,h , (1− 1/H)H−h+1
(
V
t−1
h+1(s

t
h+1)− V ∗h+1(s

t
h+1)− ph[V

t−1
h+1 − V ∗h+1](s

t
h, a

t
h)
)
, t ∈ [T ], h ∈ [H],



It is easy to see that these sequences form a martingale-difference w.r.t filtration Ft,h =

σ
{
{(s`h′ , a`h′), ℓ < t, h′ ∈ [H]} ∪ {(sth′ , ath′), h′ ≤ h}

}
. Moreover, |Z̄t,h| ≤ 2r0H, |Z̃t,h| ≤ 2er0H for all t ∈ [T ]

and h ∈ [H]. Hence, the Azuma-Hoeffding inequality implies

P
(∣∣∣ T∑
t=1

H∑
h=1

Z̄t,h

∣∣∣ > 2r0H
√

2tH · β(δ)
)
≤ 2 exp(−β(δ)) = δ/10,

P
(∣∣∣ T∑
t=1

H∑
h=1

Z̄t,h

∣∣∣ > 2er0H
√

2tH · β(δ)
)
≤ 2 exp(−β(δ)) = δ/10,

By the union bound P[E(δ)] ≥ 1− δ/5.

Lemma B.2. Under conditions of Lemma B.1, for any δ ∈ (0, 1), P[EVar(δ)] ≥ 1− δ/5.

Proof. For any ℓ ∈ N define F` = σ{(sjh, a
j
h), j ≤ ℓ, h ∈ [H]} and let

Y` =
H∑
h=1

Varph [V
π`
h+1](s

`
h, a

`
h)− σV

π`
1 (s`1),

where operator σV is defined in Section E. It is straightforward to check that (Y`,F`)`∈N is a martingale-difference sequence.
Applying Bernstein inequality (Theorem C.6) we get that with probability at least 1− δ/5 for any t ∈ N∣∣∣∣∣

t∑
`=1

Y`

∣∣∣∣∣ ≤
√√√√2

t∑
`=1

E[Y 2
` |F`−1] log(20e(2t+ 1)/δ) + 3H3 log(20e(2t+ 1)/δ).

Next we estimate E[Y 2
` |F`−1] in the following way

E[Y 2
` |F`−1] ≤ E

( H∑
h=1

Varph [V
π`
h+1](s

`
h, a

`
h)

)2∣∣∣∣F`−1
 ≤ H3Eπ`

[
H∑
h=1

Varph [V
π`
h+1](sh, ah)

]
.

By Lemma E.1

Eπ`

[
H∑
h=1

Varph [V
π`
h+1](s

`
h, a

`
h)

]
= Eπ`

( H∑
h=1

rh(sh, ah)− V π`1 (s1)

)2
 ≤ Eπ`

( H∑
h=1

rh(sh, ah)

)2
 ≤ H2,

Since βVar(δ, t) = log(20e(2t+ 1)/δ), we have

t∑
`=1

Y` ≤
√

2H5tβVar(δ, t) + 3H3βVar(δ, t).

Finally, by Lemma E.1

t∑
`=1

H∑
h=1

Varph [V
π`
h+1](s

`
h, a

`
h) =

t∑
`=1

Y` +

t∑
`=1

σV π`1 (s`1) ≤
√

2H5tβVar(δ, t) + 3H3βVar(δ, t) +H2t.

Lemma B.3. Assume conditions of Lemma B.1. Then conditioned on event EKL(δ), for any f : S → [0, r0H], t ∈ N, h ∈
[H], (s, a) ∈ S ×A,

(p̂th − ph)f(s, a) ≤
1

H
phf(s, a) +

5r0H
2S · βKL(δ, n th(s, a))

n th(s, a)
,

∥p̂ th(s, a)− ph(s, a)∥1 ≤

√
2S · βKL(δ, n th(s, a))

n th(s, a)
.



Proof. We apply Lemma E.2 and Lemma E.3 to obtain

(p̂th − ph)f(s, a) ≤
√
2Varp̂th [f ](s, a) ·KL(p̂th, ph) +

2Hr0
3

KL(p̂th, ph)

≤ 2
√
Varph [f ](s, a) ·KL(p̂th, ph) +

(
2
√
2 +

2

3

)
Hr0 KL(p̂th, ph).

Since 0 ≤ f(s) ≤ r0H we get
Varph [f ](s, a) ≤ ph[f2](s, a) ≤ r0H · phf(s, a).

Finally, applying 2
√
ab ≤ a+ b, a, b ≥ 0, we obtain the following inequality

(p̂th − ph)f(s, a) ≤
1

H
phf(s, a) + (H2 + 2

√
2r0H + 2r0H/3)KL(p̂th, ph) ≤

1

H
phf(s, a) + 5r0H

2 KL(p̂th, ph).

Definition of EKL(δ) implies the first statement. The second statement follows directly from the combination of Pinsker’s
inequality and definition of EKL(δ).

B.2. Optimism

In this section we prove that conditioned on the event E?(δ) our estimate of Q-function Q
t

h(s, a) is optimistic that is
Q
t

h(s, a) ≥ Q?h(s, a) for any t ≤ T, h ∈ [H], (s, a) ∈ S ×A.

For any β > 0, p ∈ ∆S′−1 and f : S ′ → R define

UKinf(β, p, f) = sup{µ ≥ pf : Kinf(p, µ, f) ≤ β}.

First we are going to prove that UKinf(β?(δ, n th(s, a))/n
t
h(s, a), p

t
h(s, a), V

?
h+1) defines an upper confidence bound for

phV
?
h+1(s, a).

Lemma B.4. Conditioned on the event E?(δ), for any t ∈ N, h ∈ [H], (s, a) ∈ S ×A,

phV
?
h+1(s, a) ≤ UKinf

(
β?(δ, n th(s, a))

n th(s, a)
, p th(s, a), V

?
h+1

)
,

where event E?(δ) and function β?(δ, n) were defined in Lemma B.1.

Proof. By Lemma C.2 we have for any p thV
?
h (s, a) < u < r0(H − h)

n th(s, a)Kinf(p
t
h(s, a), u, V

?
h+1) = nth(s, a) max

λ∈[0,1]
Es′∼p th(s,a)

[
log

(
1− λ

V ?h+1(s
′)− u

r0(H − h)− u

)]
≤ max
λ∈[0,1]

n0 log(1− λ) + (n th(s, a)− n0) max
λ∈[0,1]

Es′∼p̂ th(s,a)
[
log

(
1− λ

V ?h+1(s
′)− u

r0(H − h)− u

)]
≤ (n th(s, a)− n0) max

λ∈[0,1]
Es′∼p̂ th(s,a)

[
log

(
1− λ

V ?h+1(s
′)− u

H − h− u

)]
= (n th(s, a)− n0)Kinf(p̂

t
h(s, a), u, V

?
h+1) = n th(s, a)Kinf(p̂

t
h(s, a), u, V

?
h+1).

By the definition of event E?(δ) we have for any t ∈ N, h ∈ [H], (s, a) ∈ S ×A,

n th(s, a)Kinf(p̂
t
h(s, a), phV

?
h+1(s, a), V

?
h+1) ≤ β?(δ, n th(s, a)),

hence n th(s, a)Kinf(p
t
h(s, a), phV

?
h+1(s, a), V

?
h+1) ≤ β?(δ, n th(s, a)). Therefore a value phV ?h+1(s, a) is feasible for opti-

mization problem in the definition of UKinf .

For the further results we have to guarantee that a number of observations of the fake state s0 is large enough to apply
anti-concentration result of Dirichlet distribution. Define constant

cn0 =
1

(
√
2π − 1)2

·

(
2
√
2√

log(17/16)
+

98
√
6

9

)2

+
log(10π)

log(17/16)
. (4)



Lemma B.5. Let n0 ≥ cn0
+ log17/16(T ), where cn0

is defined in (4), and r0 ≥ 2, and assume conditions of Lemma B.1.
Then on the event E?(δ), it holds for any t ∈ N, h ∈ [H], (s, a) ∈ S ×A,

phV
?
h+1(s, a) ≤ Qp∼ρ th(s,a)(pV

?
h+1(s, a), κ

t
h(s, a)),

where κ th(s, a) = 1− Cκδ
SAH[2n th(s,a)+1]3[n th(s,a)]

3/2 with an absolute constant Cκ = 1/(5 · (eπ)3).

Proof. To simplify notations we set n = n th(s, a) and n = n th(s, a). Note that ρ th(s, a) is a Dirichlet distribution
Dir({n th(s′|s, a)}s′∈S′). Since n th(s0|s, a) = n0 ≥ cn0

+ log17/16(T ), we may apply Theorem D.2 if n ≥ 2n0: for any
p thV

?
h+1(s, a) ≤ u < r0(H − h)

Pp∼ρ th(s,a)
(
pV ?h+1 ≥ u

)
≥ exp(−nKinf(p

t
h(s, a), u, V

?
h+1)− 3/2 log n). (5)

Notice that the same inequality also holds for u < p thV
?
h+1(s, a) because Kinf(p

t
h(s, a), u, V

?
h+1) = 0 and

Pp∼ρ th(s,a)
(
pV ?h+1 ≥ u

)
≥ Pp∼ρ th(s,a)

(
pV ?h+1 ≥ p thV ?h+1(s, a)

)
.

Let u′ = UKinf(β?(δ, n)/n, p th(s, a), V
?
h+1). Fix arbitrary ε > 0 and set u = u′ − ε. This choice implies that

nKinf(p
t
h(s, a), u, V

?
h+1) ≤ β?(δ, n), and together with (5) yields

Pp∼ρ th(s,a)
(
pV ?h+1 ≥ u

)
≥ exp(−β?(δ, n)− 3/2 log(n)) ≥ Cκδ

SAH[2n th(s, a) + 1]3[n th(s, a)]
3/2

.

By Lemma E.5 and definition of κ th(s, a), Qp∼ρ th(s,a)(pV
?
h+1(s, a), κ

t
h(s, a)) ≥ u′ − ε. Allowing ε → 0 we have

Qp∼ρ th(s,a)(pV
?
h+1(s, a), κ

t
h(s, a)) ≥ u′. It remains to apply Lemma B.4 to conclude the statement in the case n ≥ 2n0.

To handle the case n < 2n0 we remark that

Pp∼ρ th(s,a)
(
pV ?h+1 ≥ phV ?h+1(s, a)

)
≥ Pξ∼B(n0,n−n0)(r0(H − h)ξ ≥ H − h) ≥ Pξ∼B(n0,n−n0)

(
ξ ≥ 1

2

)
,

where we used an upper bound phV ?h+1(s, a) ≤ H−h and a lower bound V ?h+1(s) ≥ 0 for s ∈ S and V ?h+1(s0) = r0(H−h).
By the result of Groeneveld and Meeden (1977) we have that for n0 ≤ n− n0 we have that the median m of ξ is greater
than the mode (n0 − 1)/(n− 2). Since 2n0 > n, we have that m ≥ 1/2, thus

Pp∼ρ th(s,a)
(
pV ?h+1 ≥ phV ?h+1(s, a)

)
≥ Pξ∼B(n0,n−n0)

(
ξ ≥ 1

2

)
≥ Pξ∼B(n0,n−n0)(ξ ≥ m) =

1

2

≥ Cκδ

SAH[2n th(s, a) + 1]3[n th(s, a)]
3/2

.

Lemma E.5 concludes the statement.

Proposition B.6 (Optimism). Let n0 = ⌈cn0 + log17/16(T )⌉, where cn0 is an absolute constant defined in (4). Furthermore,

let r0 = 2 and assume that conditions of Lemma B.1 are satisfied. Then Q
t

h(s, a) ≥ Q?h(s, a) on the event E?(δ) for any
t ≤ T, h ∈ [H] and (s, a) ∈ S ×A.

Proof. We proceed using backward induction over h. For h = H + 1, Q
t

h(s, a) = Q?h(s, a) = 0. Let h ≤ H . Note that

Q
t

h(s, a)−Q?h(s, a) = Qp∼ρ th(s,a)(pV
t

h+1(s, a), κ
t
h(s, a))− phV ?h+1(s, a). (6)

Induction hypothesis implies that

V ?h+1(s) = Q?h+1(s, π
?(s)) ≤ Qth+1(s, π

?(s)) ≤ V th+1(s),

and hence
Qp∼ρ th(s,a)(pV

t

h+1(s, a), κ
t
h(s, a)) ≥ Qp∼ρ th(s,a)(pV

?
h+1(s, a), κ

t
h(s, a)). (7)

Equation (6), inequality (7) and Lemma B.5 imply the statement.



Next we formulate key inequality for the further proof of regret bound.
Corollary B.7. Let n0 = ⌈cn0

+ log17/16(T )⌉ and r0 = 2. Under conditions of Lemma B.1, it holds on the event E?(δ) for
any t ∈ N, h ∈ [H], (s, a) ∈ S ×A,

phV
?
h+1(s, a) ≤ Qp∼ρ th(s,a)(pV

t

h+1(s, a), κ
t
h(s, a))

≤ p thV
t

h+1(s, a) + 2

√√√√Varp th [V
t

h+1](s, a) log
(

1
1−κ th(s,a)

)
n th(s, a)

+
2r0H

√
2 log

(
1

1−κ th(s,a)

)
n th(s, a)

,

where κ th(s, a) = 1− Cκδ
SAH[2n th(s,a)+1]3[n th(s,a)]

3/2 with an absolute constant Cκ = 1/(5 · (eπ)3) and cn0
defined in (4).

Proof. The first inequality immediately follows from Proposition B.6. The second inequality follows from Lemma C.8,
where we take δ = 1− κ th(s, a), f = V

t

h+1, and Lemma E.5.

B.3. Proof of Theorem 3.1

Denote δth = V
t−1
h (sth)− V

πt
h (sth) and surrogate regret R

t

h =
∑T
t=1 δ

t
h. To simplify notations denote N t

h = n t−1h (sth, a
t
h),

N t
h (s) = n t−1h (s|sth, ath), N

t

h = n t−1h (sth, a
t
h), N

t

h(s) = n t−1h (s|sth, ath), and κ̂th = κt−1h (sth, a
t
h). Let

L = max

{
n0, log(TH), max

t∈[T ],h∈[H]
log

(
1

1− κ̂th

)
, β?(δ, T ), βKL(δ, T ), βconc(δ, T ), β(δ), βVar(δ, T ), 1

}
. (8)

Under conditions of Proposition B.6 and Lemma B.1, L = O(log(SATH/δ)) = Õ(1). In what follows we will follow
ideas of UCBVI with the Bernstein bonuses, see Azar et al. (2017).
Lemma B.8. Assume conditions of Theorem 3.1. Then it holds on the event G(δ), for any h ∈ [H],

R
T

h ≤ UTh , ATh +BTh + CTh + 4eH
√
2HTL+ 2eSAH2,

where

ATh = 2e
√
L

T∑
t=1

H∑
h′=h

√
Varpt−1

h′
[V

t−1
h′+1](s

t
h′ , a

t
h′)

1{N t
h′ > 0}
N t
h′

,

BTh = e
√
2L

T∑
t=1

H∑
h′=h

√
Varph′ [V

?
h′+1](s

t
h′ , a

t
h′)

1{N t
h′ > 0}
N t
h′

,

CTh = 21eH2S · L ·
T∑
t=1

H∑
h=h′

1{N t
h′ > 0}
N t
h′

,

and L is defined in (8).

Proof. By the greedy choice of action, formula (1) for Q and Bellman’s equations

δth = rh(s
t
h, a

t
h) + Qp∼ρ t−1

h (sth,a
t
h)
(pV

t−1
h+1(s

t
h, a

t
h), κ

t−1
h (sth, a

t
h))− rh(sth, ath)− phV

πt
h+1(s

t
h, a

t
h)

= Qp∼ρ t−1
h (sth,a

t
h)
(pV

t−1
h+1(s, a), κ

t−1
h (sth, a

t
h))− (p t−1h − p t−1h )V

t−1
h+1(s

t
h, a

t
h)

− (p̂ t−1h − p̂ t−1h )V
t−1
h+1(s

t
h, a

t
h)− phV

t−1
h+1(s

t
h, a

t
h) + ph[V

t−1
h+1 − V

πt
h+1](s

t
h, a

t
h)

= Qp∼ρt−1
h (sth,a

t
h)
(pV

t−1
h+1(s

t
h, a

t
h), κ

t−1
h (sth, a

t
h))− p t−1h V

t−1
h+1(s

t
h, a

t
h)︸ ︷︷ ︸

(A)

+ [p t−1h − p̂ t−1h ]V
t−1
h+1(s

t
h, a

t
h)︸ ︷︷ ︸

(B)

+ (p̂ t−1h − ph)[V
t−1
h+1 − V ?h+1](s

t
h, a

t
h)︸ ︷︷ ︸

(C)

+(p̂ t−1h − ph)V ?h+1(s
t
h, a

t
h)︸ ︷︷ ︸

(D)

+ ph[V
t−1
h+1 − V

πt
h+1](s

t
h, a

t
h)− [V

t−1
h+1 − V

πt
h+1](s

t
h+1)︸ ︷︷ ︸

ξ th

+δth+1.



It is easy to see that ξ th appears in the definition of event E(δ) ⊆ G(δ).

We analyse each term in this representation under assumption N t
h > 0.

Term (A). Then to estimate this term we apply the second inequality in Corollary B.7. We obtain

Qp∼ρt−1
h (sth,a

t
h)
(pV

t−1
h+1(s

t
h, a

t
h), κ̂

t
h)− p t−1h V

t−1
h+1(s

t
h, a

t
h) ≤ 2

√√√√Varp t−1
h

[V
t−1
h+1](s

t
h, a

t
h) log

(
1

1−κ̂th

)
N
t

h

+
2r0
√
2H log

(
1

1−κ̂th

)
N
t

h

.

Note that this term acts very similar to Bernstein-type bonuses in UCBVI algorithm.

Term (B). The bound follows directly from the definition of p th and p̂ th. Indeed,

[p t−1h − p̂ t−1h ]V
t−1
h+1(s

t
h, a

t
h) =

n0

N
t

h

· (r0H) +
∑
s′∈S

(
N t
h (s
′)

N
t

h

− N t
h (s
′)

N t
h

)
· V th+1(s

′) ≤ r0HL

N
t

h

.

Term (C). To estimate this term we first note that by Proposition B.6, V
t−1
h+1(s)− V ?h+1(s) ≥ 0 for any s ∈ S. Hence, we

may use Lemma B.3 with f = V
t

h+1 − V ?h+1. We obtain

(p̂ t−1h − ph)[V
t−1
h+1 − V ?h+1](s

t
h, a

t
h) ≤

1

H
ph[V

t−1
h+1 − V ?h+1](s

t
h, a

t
h) +

5r0H
2S · βKL(δ,N t

h )

N t
h

≤ 1

H
(ξ th + δth) +

5r0H
2S · L
N t
h

.

Term (D). By the definition of event Econc(δ) ⊆ G(δ)

(p̂ t−1h − ph)V ?h+1(s
t
h, a

t
h) ≤

√
2Varph [V

?
h+1](s

t
h, a

t
h)
βconc(δ,N t

h)

N t
h

+ 3H
βconc(δ,N t

h)

N t
h

.

Collecting bounds for the terms (A)–(D) we get

δth ≤
(
1 +

1

H

)
δth+1 +

(
1 +

1

H

)
ξ th + 2

√
Varp th [V

t

h+1](s
t
h, a

t
h)

L

N
t

h

+

√
2Varph [V

?
h+1](s

t
h, a

t
h)

L

N t
h

+
(2r0
√
2H + r0H + 5r0H

2S + 3H)L

N t
h

.

Notice that in the case N t
h = 0 we have a trivial bound δth ≤ r0H . However, this case might appear at most SAH times in

the summation and thus we can handle this case by additive r0SAH2 error term.

Define γh = (1 + 1/H)H−h+1. Notice that γh < e, 1/N
t

h < 1/N t
h , r0 = 2, H ≤ H2S. After summation, we have

R
T

h ≤
T∑
t=1

H∑
h′=h

γh′ξ
t
h′ + r0H

2SA

+ 2e
√
L

T∑
t=1

H∑
h′=h

√
Varp t−1

h′
[V

t−1
h′+1](s

t
h′ , a

t
h′)

1{N t
h′ > 0}
N t
h′

, ATh

+ e
√
2L

T∑
t=1

H∑
h′=h

√
Varph′ [V

?
h′+1](s

t
h′ , a

t
h′)

1{N t
h′ > 0}
N t
h′

, BTh

+ 21eH2S · L ·
T∑
t=1

H∑
h=h′

1{N t
h′ > 0}
N t
h′

. , CTh



Finally, by definition of the event E(δ) we get

T∑
t=1

H∑
h′=h

γh′ξ
t
h′ ≤ 4e ·H

√
2HTL.

Lemma B.9. For any H,T ≥ 1,

T∑
t=1

H∑
h=1

1{n t−1h (sth, a
t
h) > 0}

n t−1h (sth, a
t
h)

≤ 2HSAL,

T∑
t=1

H∑
h=1

1{n t−1h (sth, a
t
h) > 0}√

n t−1h (sth, a
t
h))

≤ 3H
√
TSA.

Proof. The main observation for both inequalities follows from pigeon-hole principle: term corresponding to each state-
action pair (s, a) appears in the sum exactly n t−1h (s, a) times with a value 1/n for n increasing from 1 to n t−1h (s, a).

For the first sum we use a bound on harmonic numbers

T∑
t=1

1{n t−1h (sth, a
t
h) > 0}

n t−1h (sth, a
t
h)

=
∑

(s,a)∈S×A

n t−1
h (s,a)∑
n=1

1

n
≤ SA(log(T ) + 1) ≤ 2SAL.

To finish the proof of the first inequality it remains to take a sum w.r.t h. For the second sum we use the following integral
bound

T∑
t=1

1{n t−1h (sth, a
t
h) > 0}√

n t−1h (sth, a
t
h))

=
∑

(s,a)∈S

n t−1
h (s,a)∑
n=1

1√
n
≤

∑
(s,a)∈S

2
√
n t−1h (s, a) + 1. (9)

Since
∑
s,a n

t−1
h (s, a) = t − 1, the last sum is maximized if n t−1h (s, a) = (t − 1)/(SA). This implies the second

statement.

Lemma B.10. Assume that conditions of Theorem 3.1 are fulfilled. Then it holds on the event G(δ),

T∑
t=1

H∑
h=1

Varp t−1
h

[V
t−1
h+1](s

t
h, a

t
h)1{N t

h > 0} ≤ 2H2T + 2H2UT1 + 22H3S2AL2 + 32H3S
√
2ATL,

T∑
t=1

H∑
h=1

Varph [V
?
h+1](s

t
h, a

t
h) ≤ 2H2T + 2H2UT1 + 6H3L+ 8

√
2H5TL.

where UTh is defined in Lemma B.8.

Proof. We apply the second inequality in Lemma E.4,

T∑
t=1

H∑
h=1

Varp t−1
h

[V
t−1
h+1](s

t
h, a

t
h)1{N t

h > 0} ≤
T∑
t=1

H∑
h=1

Varph [V
t−1
h+1](s

t
h, a

t
h)1{N t

h > 0}︸ ︷︷ ︸
(W)

+ 2r20H
2
T∑
t=1

H∑
h=1

∥p t−1h (sth, a
t
h)− ph(sth, ath)∥11{N

t
h > 0}︸ ︷︷ ︸

(X)

.



To bound the term (X) one may use Lemma B.3. We obtain for N t
h > 0

∥p t−1h (sth, a
t
h)− ph(sth, ath)∥1 ≤ ∥p

t−1
h (sth, a

t
h)− p̂ t−1h (sth, a

t
h)∥1 + ∥ph(s

t
h, a

t
h)− p̂ t−1h (sth, a

t
h)∥1

≤ n0

N
t

h

+
∑
s∈S

N t
h (s)

(
1

N t
h

− 1

N
t

h

)
+

√
2SL

N t
h

≤ SL

N t
h

+

√
2SL

N t
h

.

Since r0 = 2, Lemma B.9 implies

(X) ≤ 2r20H
2
T∑
t=1

H∑
h=1

∥p th(sth, ath)− ph(sth, ath)∥1 ≤ 16H3S2AL2 + 24H3S
√
2ATL.

Next, we bound (W) using the first inequality in Lemma E.4. We get

(W) ≤ 2

T∑
t=1

H∑
h=1

Varph [V
πt
h+1](s

t
h, a

t
h)︸ ︷︷ ︸

(Y)

+2

T∑
t=1

H∑
h=1

r0Hph

∣∣∣V t−1h+1 − V
πt
h+1

∣∣∣(sth, ath)︸ ︷︷ ︸
(Z)

.

The term (Y) could be bounded using definition of the event EVar. It follows that

(Y) ≤ H2T +
√
2H5TL+ 3H3L.

By Proposition B.6 we have V
t

h+1(s) ≥ V
πt
h+1(s) for any s ∈ S. By the definition of ξ th, δ

t
h and definition of event E term

(Z) could be bounded as follows

(Z) ≤
T∑
t=1

H∑
h=1

2H(ξ th + δth+1)

≤ 2r0H
2
√
2TL+ 2H

H∑
h=1

R
T

h+1 ≤ 4H2
√
2TL+ 2H2UT1 .

Here the last inequality follows from Lemma B.8. Therefore, we have

T∑
t=1

H∑
h=1

Varp t−1
h

[V
t−1
h+1](s

t
h, a

t
h)1{N t

h > 0} ≤ (X) + 2 · (Y) + 2 · (Z)

≤ 2H2T + 2H2UT1 + 22H3S2AL2 + (24 + 8)H3S
√
2ATL

≤ 2H2T + 2H2UT1 + 22H3S2AL2 + 32H3S
√
2ATL.

To bound the second inequality one may apply the first inequality in Lemma E.4. We get

T∑
t=1

H∑
h=1

Varph [V
?
h+1](s

t
h, a

t
h) ≤ 2

T∑
t=1

H∑
h=1

Varph [V
πt
h+1](s

t
h, a

t
h)︸ ︷︷ ︸

(Y)

+2

T∑
t=1

H∑
h=1

r0Hph
∣∣V ?h+1 − V

πt
h+1

∣∣(sth, ath).

Note that by Proposition B.6 the second term is bounded by (Z). Thus

T∑
t=1

H∑
h=1

Varph [V
?
h+1](s

t
h, a

t
h) ≤ 2(Y) + 2(Z) ≤ 2H2T + 2H2UT1 + 8

√
2H5TL+ 6H3L.



Lemma B.11. Under conditions of Lemma B.8, it holds on the event G(δ),

AT1 ≤ 4e
√
H3SAT · L+ 4e

√
H3SAUT1 · L+ 14eH2S3/2AL2 + 20eH2SA3/4T 1/4L5/4,

BT1 ≤ 4e
√
H3SAT · L+ 4e

√
H3SAUT1 · L+ 8eH2S1/2A1/2L2 + 10eH7/4S1/2A1/2T 1/4L5/4,

CT1 ≤ 42eH3S2AL2 = Õ(H3S2A).

Proof. To bound AT1 we apply the Cauchy—Schwartz inequality, Lemma B.10, Lemma B.9 and inequality
√
a+ b ≤√

a+
√
b, a, b ≥ 0,

T∑
t=1

H∑
h=1

√
Varpt−1

h
[V

t−1
h+1](s

t
h, a

t
h)
1{N t

h > 0}
N t
h

≤

√√√√ T∑
t=1

H∑
h=1

Varpt−1
h

[V
t−1
h+1](s

t
h, a

t
h)1{N t

h > 0} ·

√√√√ T∑
t=1

H∑
h=1

1{N t
h > 0}
N t
h

≤
√

2H2T + 2H2UT1 + 22H3S2AL2 + 32H3S
√
2ATL ·

√
2SAHL

≤ 2
√
H3SATL+ 2

√
H3SAUT1 L+ 7H2S3/2AL3/2 + 10H2SA3/4T 1/4L3/4.

Similarly, the term BT1 may be estimated as follows

T∑
t=1

H∑
h=1

√
Varph [V

?
h+1](s

t
h, a

t
h)
1{N t

h > 0}
N t
h

≤

√√√√ T∑
t=1

H∑
h=1

Varph [V
?
h+1](s

t
h, a

t
h) ·

√√√√ T∑
t=1

H∑
h=1

1{N t
h > 0}
N t
h

≤
√
2H2T + 2H2UT1 + 8

√
2H5TL+ 6H3L ·

√
2SAH · L

≤ 2
√
H3SATL+ 2

√
H3SAUT1 L+ 4H2L

√
SA+ 5H7/4T 1/4L3/4

√
SA.

Finally, to estimate CT1 we apply Lemma B.9. We obtain

CT1 ≤ 21eH2S · L · 2SAHL ≤ 42eH3S2AL2.

Proof of Theorem 3.1. Note that by Lemma B.1 event G(δ) holds with probability at least 1− δ. Next we assume that this
event holds. Then we have two cases: T < H2S2AL2 and T ≥ H2S2AL2. In the first case the regret is trivially bounded
by RT ≤ H3S2AL2. Thus it is sufficient to analyze only the second case.

By Proposition B.6 and Lemma B.8

RT =

T∑
t=1

V ?h (s
t
1)−V

πt
h (st1) ≤

T∑
t=1

V
t−1
h (st1)−V

πt
h (st1) = R

T

1 ≤ UT1 = AT1 +B
T
1 +C

T
1 +4e

√
2H3TL+2eSAH2. (10)

Next, under our condition on T we can simplify expressions for the bounds of AT1 and BT1 . Indeed, T ≥ H2S2AL2 implies
that

H7/4S1/2A1/2L5/4 · T 1/4 ≤ H2SA3/4L5/4 · T 1/4 ≤
√
H3SATL.

Furthermore,

H2S3/2AL2 ≤ H3S2AL2, H2S1/2A1/2L2 ≤ H3S2AL2,
√
2H3TL ≤

√
2H3SAT · L.

We obtain the following bounds

AT1 ≤ 24e
√
H3SAT · L+ 4e

√
H3SAUT1 · L+ 14eH3S2AL2,

BT1 ≤ 14e
√
H3SAT · L+ 4e

√
H3SAUT1 · L+ 8eH3S2AL2,

CT1 ≤ 42eH3S2AL2 ≤ 42eH3S2AL2.



Hence, by a bound SAH2 ≤ H3S2AL2

UT1 ≤ 38e
√
H3SAT · L+ 8e

√
H3SAUT1 · L+ 66eH3S2AL2 + 4e

√
2 ·
√
H3TL.

This is a quadratic inequality in UT1 . Solving this inequality and using inequality
√
a+ b ≤

√
a+
√
b, a, b ≥ 0, we obtain

UT1 ≤ 176e
√
H3SAT · L+ 264eH3S2AL2 + 256e2H3SAL2.

The last inequality and (10) imply that

RT = O
(√

H3SATL+H3S2AL2
)
.



C. Deviation Inequalities
C.1. Deviation inequality for categorical distributions

Next, we reproduce the deviation inequality for categorical distributions by Jonsson et al. (2020, Proposition 1). Let (Xt)t∈N?

be i.i.d. samples from a distribution supported on {1, . . . ,m}, of probabilities given by p ∈ ∆m−1, where ∆m−1 is the
probability simplex of dimension m− 1. We denote by p̂n the empirical vector of probabilities, i.e., for all k ∈ {1, . . . ,m},

p̂n,k =
1

n

n∑
`=1

1{X` = k}.

Note that an element p ∈ ∆m−1 can be seen as an element of Rm−1 since pm = 1−
∑m−1
k=1 pk. This will be clear from the

context.

Theorem C.1. For all p ∈ ∆m−1 and for all δ ∈ [0, 1],

P(∃n ∈ N?, nKL(p̂n, p) > log(1/δ) + (m− 1) log(e(1 + n/(m− 1)))) ≤ δ.

C.2. Deviation inequality for categorical weighted sum

We fix a function f : {1, . . . ,m} 7→ [0, b] and recall the definition of the minimal Kullback-Leibler divergence for p ∈ ∆m−1
and u ∈ R

Kinf(p, u, f) = inf{KL(p, q) : q ∈ ∆m−1, qf ≥ u} .

As the Kullback-Leibler divergence this quantity admits a variational formula.

Lemma C.2 (Lemma 18 by Garivier et al. (2018)). For all p ∈ ∆m−1, u ∈ [0, b),

Kinf(p, u, f) = max
λ∈[0,1]

EX∼p
[
log

(
1− λf(X)− u

b− u

)]
,

moreover if we denote by λ? the value at which the above maximum is reached, then

EX∼p

[
1

1− λ? f(X)−u
b−u

]
≤ 1 .

Remark C.3. Contrary to Garivier et al. (2018) we allow that u = 0 but in this case Lemma C.2 is trivially true, indeed

Kinf(p, 0, f) = 0 = max
λ∈[0,1]

EX∼p
[
log

(
1− λf(X)

b

)]
.

We are now ready to state the deviation inequality for the Kinf which is a self-normalized version of Proposition 13 by
Garivier et al. (2018).

Theorem C.4. For all p ∈ ∆m−1 and for all δ ∈ [0, 1],

P
(
∃n ∈ N?, nKinf(p̂n, pf, f) > log(1/δ) + 3 log(eπ(1 + 2n))

)
≤ δ.

Proof. First if pf = b then f(k) = b for all k such that pk > 0. In this case Kinf(p̂n, pf, f) = 0 for all n and the result is
trivially true. We thus assume now that pf < b.

The proof is a combination of the one of Proposition 13 by Garivier et al. (2018) and the method of mixtures. We first define
the martingale

Mλ
n = exp

(
n∑
`=1

log

(
1− λf(X`)− pf

b− pf

))
,

with the convention Mλ
0 = 1. Indeed if we denote by Fn = σ(X1, . . . , Xn) the information available at time n, we have

E
[
Mλ
n |Fn−1

]
= E

[
1− λf(Xn)− pf

b− pf

]
Mλ
n−1 =Mλ

n−1 .



We fix a real number γj = 1/(2j) for j ∈ N∗and let Sj be the set

Sj =

{
1

2
−

⌊
1

2γj

⌋
γj , . . . ,

1

2
− γj ,

1

2
,
1

2
+ γj , . . . ,

1

2
+

⌊
1

2γj

⌋
γj

}
.

The cardinality of this set Sj is bounded by 1 + 2j. We choose a prior on λ the mixture of uniform distribution over this
grid: 6/π2

∑∞
j=1 1/j

2U(Sj). Thus we consider the integrated martingale

Mn =
6

π2

∞∑
j=1

1

j2

∑
λ∈Sj

1

|Sj |
Mλ
n

≥ 6

π2n2|Sn|
max
λ∈Sn

Mλ
n

≥ 6

π2(1 + 2n)3
max
λ∈Sn

Mλ
n . (11)

Lemma C.5 below indicates that for all λ ∈ [0, 1], there exists a λ′ ∈ Sn such that for all x ∈ [0, b],

log

(
1− λ x− pf

b− pf

)
≤ 2γn + log

(
1− λ′x− pf

b− pf

)
. (12)

Now, a combination of the variational formula of Lemma C.2 and of the inequality (12) yields a finite maximum as an upper
bound on Kinf(p̂n, pf, f)

Kinf(p̂n, pf, f) = max
0≤λ≤1

1

n

n∑
`=1

log

(
1− λX` − pf

b− pf

)

≤ 2γn + max
λ′∈Sn

1

n

n∑
k=1

log

(
1− λ′X` − pf

b− pf

)
.

Thanks to the definition of the martingale Mλ
n we obtain

max
λ∈Sn

Mλ
n ≥ e−2nγnenKinf(p̂n,pf,f) = e−1enKinf(p̂n,pf,f) .

Combining this inequality with (11) yields

Mn ≥
6

eπ2(1 + 2n)3
enKinf(p̂n,pf,f) .

Since for any supermartingale we have that

P(∃n ∈ N :Mn > 1/δ) ≤ δ · E[M0], (13)

which is a well-known property of the method of mixtures (de la Peña et al., 2004), we conclude that

P(∃n ∈ N?, nKinf(p̂n, pf, f) > log(1/δ) + 3 log(eπ(1 + 2n))) ≤ δ .

Lemma C.5 (Lemma 19 by Garivier et al., 2018 and comment below). For all λ, λ′ ∈ [0, 1] such that either λ ≤ λ′ ≤ 1/2
or 1/2 ≤ λ′ ≤ λ, for all real numbers c ≤ 1,

log(1− λc)− log(1− λ′c) ≤ 2|λ− λ′| .



C.3. Deviation inequality for bounded distributions

Below, we reproduce the self-normalized Bernstein-type inequality by Domingues et al. (2021c). Let (Yt)t∈N? , (wt)t∈N?

be two sequences of random variables adapted to a filtration (Ft)t∈N. We assume that the weights are in the unit interval
wt ∈ [0, 1] and predictable, i.e. Ft−1 measurable. We also assume that the random variables Yt are bounded |Yt| ≤ b and
centered E[Yt|Ft−1 ] = 0. Consider the following quantities

St ,
t∑

s=1

wsYs, Vt ,
t∑

s=1

w2
s · E

[
Y 2
s |Fs−1

]
, and Wt ,

t∑
s=1

ws

and let h(x) , (x+ 1) log(x+ 1)− x be the Cramér transform of a Poisson distribution of parameter 1.

Theorem C.6 (Bernstein-type concentration inequality). For all δ > 0,

P
(
∃t ≥ 1, (Vt/b

2 + 1)h

(
b|St|
Vt + b2

)
≥ log(1/δ) + log(4e(2t+ 1))

)
≤ δ.

The previous inequality can be weakened to obtain a more explicit bound: if b ≥ 1 with probability at least 1− δ, for all
t ≥ 1,

|St| ≤
√

2Vt log(4e(2t+ 1)/δ) + 3b log(4e(2t+ 1)/δ) .

C.4. Deviation inequality for Dirichlet distribution

Below we provide the Bernstein-type inequality for weighted sum of Dirichlet distribution, using a result on upper bound on
tails of Dirichlet boundary crossing (see Lemma D.1).

Lemma C.7. For any p ∈ ∆m, f : {0, . . . ,m} → [0, b] such that f(0) = b, p0 > 0, and µ ∈ (pf, b) there exists a measure
q ∈ ∆m such that p≪ q, qf = µ and Kinf(p, µ, f) = KL(p, q).

Proof. By the variational form of Kinf (Lemma C.2)

Kinf(p, µ, f) = max
λ∈[0,1]

EX∼p
[
log

(
1− λf(X)− µ

b− µ

)]
= EX∼p

[
log

(
1− λ? f(X)− µ

b− µ

)]
.

Note that P(f(X) = b) > 0 implies λ? < 1. Jensen’s inequality and µ > pf imply λ? > 0. It is easy to check that λ?

satisfies

E
[

1

1− λ?(f(X)− µ)/(b− µ)

]
=

m∑
j=0

p(j)

1− λ?(f(j)− µ)/(b− µ)
= 1,

and

E
[

f(X)− µ
1− λ?(f(X)− µ)/(b− µ)

]
=

m∑
j=0

p(j)(f(j)− µ)
1− λ?(f(j)− µ)/(b− µ)

= 0. (14)

Define q(j) = p(j)
1−λ?(f(j)−µ)/(b−µ) , j = 0, . . . ,m, and let q = (q0, . . . , qm). Clearly, q ∈ ∆m, qf = µ by (14) and p≪ q.

Moreover,

Kinf(p, µ, f) = EX∼p
[
log

(
1− λ? f(X)− µ

b− µ

)]
= Ep

[
log

dp

dq

]
= KL(p, q).

Lemma C.8. For any α = (α0, α1, . . . , αm) ∈ Nm+1 define p ∈ ∆m such that p(ℓ) = α`/α, ℓ = 0, . . . ,m, where
α =

∑m
j=0 αj . Then for any f : {0, . . . ,m} → [0, b] such that f(0) = b and δ ∈ (0, 1)

Pw∼Dir(α)

[
wf ≥ pf + 2

√
Varp(f) log(1/δ)

α
+

2b
√
2 · log(1/δ)
α

]
≤ δ.



Proof. Fix δ ∈ (0, 1) and let µ ∈ (pf, b) be such that

Kinf(p, µ, f) = α−1 log(1/δ).

Note that such µ exists. Indeed, it follows from the continuity of Kinf w.r.t. the second argument, see Honda and Takemura
(2010, Theorem 7). By Lemma C.7 there exists q such that p≪ q, qf = µ and KL(p, q) = α−1 log(1/δ). By Lemma D.1

Pw∼Dir(α)[wf ≥ qf ] = Pw∼Dir(α)[wf ≥ µ] ≤ exp(−αKinf(p, µ, f)) = δ. (15)

By Lemma E.2

qf − pf ≤
√

2Varq(f)KL(p, q).

By Lemma E.3, Varq(f) ≤ 2Varp(f) + 4b2 KL(p, q). The last two inequalities and (15) imply that

Pw∼Dir(α)

[
wf − pf ≥

√
4Varp(f)KL(p, q) + 2b

√
2 ·KL(p, q)

]
≤ δ.



D. Dirichlet Boundary Crossing
In this section we will provide upper and lower bounds on the Dirichlet boundary crossing. The proof of the upper bound
follows Baudry et al. (2021); see also Riou and Honda (2020).

Lemma D.1 (Upper bound). For any α = (α0, α1, . . . , αm) ∈ Nm+1 define p ∈ ∆m such that p(ℓ) = α`/α, ℓ = 0, . . . ,m,
where α =

∑m
j=0 αj . Then for any f : {0, . . . ,m} → [0, b] and 0 < µ < b and

Pw∼Dir(α)[wf ≥ µ] ≤ exp(−αKinf(p, µ, f)).

Proof. First if µ ≤ pf then the upper bound is trivial since in this case Kinf(p, µ, f) = 0. Assume that µ > pf . It is well
know fact that w ∼ Dir(α) may be represented as follows

w ,

(
Y0
Vm

,
Y1
Vm

, . . . ,
Ym
Vm

)
,

where Y`
ind∼ Γ(α`, 1), ℓ = 0, . . . ,m and Vm =

∑m
`=0 Y`. Furthermore, denoting v`

i.i.d∼ E(1), ℓ = 1, . . . , α, we get

wf =

m∑
`=0

w`f(ℓ) =

∑α
j=1 vjxj∑α
j=1 vj

,

where xj = f(ℓ) iff
∑`
k=0 αk < j ≤

∑`+1
k=0 αk. Changing measure and using variational formula for the minimal

Kullback-Leibler divergence we get for λ ∈ [0, 1/(b− µ))

Pw∼Dir(α)[wf ≥ µ] = E
v`

i.i.d∼ E(1)

[
1

{
α∑
`=1

v`(x` − µ) ≥ 0

}]

= E
v̂`

ind∼ E
(
1−λ(x`−µ)

)[1{ α∑
`=1

v̂`(x` − µ) ≥ 0

}
·
α∏
`=1

e(1−λ(x`−µ))v̂`−v̂`

1− λ(x` − µ)

]

= e−
∑α
`=1 log(1−λ(x`−µ))E

v̂`
ind∼ E
(
1−λ(x`−µ)

)[1{ α∑
`=1

v̂`(x` − µ) ≥ 0

}
e−λ

∑α
`=1 v̂`(x`−µ))

]

≤ exp

(
−

α∑
`=1

log(1− λ(x` − µ))

)
= exp

(
−

m∑
`=0

α` log(1− λ(f(ℓ)− µ))

)
,

where the last equality follows from regrouping all xj back to f(ℓ). Since the previous inequality is true for all λ ∈
[0, 1/(b− µ)), then the variational formula (Lemma C.2) allows to conclude

Pw∼Dir(α)[wf ≥ µ] ≤ exp

(
− sup
λ∈[0,1/(b−µ))

m∑
`=0

α` log(1− λ(f(ℓ)− µ))

)
= exp(−αKinf(p, µ, f)).

Theorem D.2 (Lower bound). For any α = (α0, α1, . . . , αm) ∈ Nm+1 define p ∈ ∆m such that p(ℓ) = α`/α, ℓ =
0, . . . ,m, where α =

∑m
j=0 αj . Assume that

α0 ≥ max

 1

(
√
2π − 1)2

·

(
2
√
2√

log(17/16)
+

98
√
6

9

)2

,
log(10π · α)
log(17/16)


and α ≥ 2α0. Then for any f : {0, . . . ,m} → [0, b0] such that f(0) = b0, f(j) ≤ b < b0/2, j ∈ {1, . . . ,m} and
µ ∈ (pf, b0)

Pw∼Dir(α)[wf ≥ µ] ≥ exp(−αKinf(p, µ, f)− 3/2 logα).

In the further subsections we are going to prove this theorem.



D.1. Proof of Theorem D.2

Throughout this section we will often use the following notations. Let Fm(b) = {f : {0, . . . ,m} → [0, b]} and for b < b0,
Fm(b0, b) = {f : {0, . . . ,m} → [0, b0], f(0) = b0, f(j) ≤ b, j = 1, . . . ,m}. For any α = (α0, α1, . . . , αm) ∈ Nm+1

define p = p(α) ∈ ∆m such that p(ℓ) = α`/α, ℓ = 0, . . . ,m, where α =
∑m
j=0 αj

Density of weighted sum of the Dirichlet distribution In this section we compute the density of a random variable
Z = wf , where w ∼ Dir(α) and f ∈ Fm(b).
Proposition D.3. Let f ∈ Fm(b) and α = (α0, α1, . . . , αm) ∈ Rm+1

+ such that α =
∑m
j=0 αj > 1. Assume that Z is not

degenerate. Then for any 0 ≤ u < b0

pZ(u) =
α− 1

2π

∫
R

m∏
j=0

(1 + i(f(j)− u)s)−αjds.

Proof of Proposition D.3 will be given at the end of this paragraph.

A function g : Rm+1 → R is called a positive homogeneous on a cone A ⊆ Rm+1 of degree t if for any γ > 0 and x ∈ A
we have g(γx) = γtg(x). Define ∆̃m = Conv(0,∆m) = {w ∈ Rm+1

+ :
∑m
j=0 wj ≤ 1} as a pyramid with a base ∆m

and apex at 0. Denote ∆m = {w ∈ Rm+1 :
∑m
`=0 w` = 1}. For r > 0 we write ∆m(r) = {w ∈ Rm+1

+ :
∑m
`=0 w` = r}.

Then, clearly ∆m = ∆m(1). For any a ∈ Rm+1 define Ha = {w ∈ Rm+1 : ⟨a,w⟩ = 0}.

For any measurable set A ⊆ Rm+1 of dimension n < m+ 1 and any function g : Rm+1 → R define

In(g,A) =

∫
A

g(w)Hn(dw),

whereHn is an n-dimensional Hausdorff measure (see Evans and Garzepy, 2018, for definition). If A = L(Y ) for a linear
map L : Rn → Rm+1 and Y ⊆ Rn, then we can write

In(g,L(Y )) = [L] ·
∫
Y

g(L(y))λn(dy),

where λn is an n-dimensional Lebesgue measure on Y and [L] is a Jacobian of the map L that could be computed as
[L] =

√
det(LLT). Let us define an affine map Lta : Rm → Rm+1 that transforms Rm to Hta by mapping x1, . . . , xm to

w1, . . . , wm and w0 =
t−

∑m
j=1 ajxj

a0
for a0 > 0 (without loss of generality). The linear part of this map has a Jacobian that

is equal to [Lta] =
‖a‖2
a0

(see Lemma E.6). Additionally, define La = L0
a.

Lemma D.4. Let g be a positively homogeneous function of degree t > −m on Rm+1
++ . Then we have

Im(g, ∆̃m ∩Ha) =
dist(∆m ∩Ha, 0)

m+ t
Im−1(g,∆m ∩Ha).

Proof. Denote h = dist(∆m ∩Ha, 0). The change of variable formula (Evans and Garzepy, 2018, 3.4.3) implies that

Im(g, ∆̃m ∩Ha) =

∫ h

0

Im−1(g,∆m(s/h) ∩Ha)ds.

Using definition of a positive homogeneous function and properties of the Haudorff measureHm−1, we derive

Im−1(g,∆m(s/h) ∩Ha) =

∫
∆m∩Ha

g(w · (s/h))Hm−1(d(w · s/h)) =

=
( s
h

)m+t−1 ∫
∆m∩Ha

g(w)Hm−1(dw) =
( s
h

)m+t−1
· Im−1(g,∆m ∩Ha).

Hence,

Im(g, ∆̃m ∩Ha) =
Im−1(g,∆m ∩Ha)

hm+t−1

∫ h

0

sm+t−1ds =
hIm−1(g,∆m ∩Ha)

m+ t
·



Now we see that in order to find Im−1(g,∆m ∩Ha) it is sufficient to compute the integral Im(g, ∆̃m∩Ha) and the distance
dist(∆m ∩Ha, 0). This distance was computed in Dirksen (2015).
Lemma D.5 ( Lemma 3.2 in Dirksen, 2015). Let a ∈ Rm+1 be such that ∥a∥2 = 1. Then

dist(∆m ∩Ha, 0) =
1√

m+ 1− (
∑m
i=0 ai)

2
.

Without normalization of the vector a we get as a corollary the following representation.
Corollary D.6. Let a ∈ Rm+1. Then

dist(∆m ∩Ha, 0) =
∥a∥2√

(m+ 1)
(∑m

j=0 a
2
j

)
− (
∑m
j=0 aj)

2

.

Next we provide another representation of the integral Im(g, ∆̃m ∩ Ha). We follow Lasserre (2020) and use the same
technique based on the Laplace transform.
Lemma D.7. Let g be a positively homogeneous function of degree t on Rm+1

++ such that t > −(1+m) and
∫
∆̃m
|g(w)|dw <

∞. Then

Im(g, ∆̃m ∩Ha) =
1

Γ(1 +m+ t)

∫
Rm+1

+ ∩Ha
g(w) exp

(
−

m∑
`=0

w`

)
Hm(dw).

Proof. Consider h(y) =
∫
w≥0,〈1,w〉≤y,〈a,w〉=0

g(w)Hm(dw). Clearly, h(1) = Im(g, ∆̃m ∩ Ha). Since g is posi-
tively homogeneous function we get h(y) = ym+th(1). This implies that the Laplace transform of h is equal to
L(λ) =

∫∞
0
h(y)e−λydy = h(1)Γ(m+t+1)

λm+t+1 . On the other hide, the Laplace transform L(λ) may be calculated via a
linear parametrization of the subspace ⟨a,w⟩ = 0 using the map La and the Fubini theorem

L(λ) =

∫ ∞
0

e−λy

[∫
w∈Rm+1

+ ,〈1,w〉≤y,〈a,w〉=0

g(w)Hm(dw)

]
dy

= [La]
∫
La(x)≥0

dx · g(La(x)) ·

[∫
〈1,La(x)〉≤y

e−λydy

]

=
[La]
λ

∫
La(x)≥0

g(La(x)) exp(−λ⟨1,La(x)⟩)dx

=
[La]

λm+t+1

∫
La(x)≥0

g(La(x)) exp(−⟨1,La(x)⟩)dx

=
1

λm+t+1

∫
Rm+1

+ ∩Ha
g(w) exp

(
−

m∑
`=0

w`

)
Hm(dw).

Identifying two ways of computation of the Laplace transform, we finish the proof.

We now compute the integral in the r.h.s. of Lemma D.7. We shall use the Fourier transform method and follow the approach
of Dirksen (2015).
Lemma D.8. Let g(w) = wα0−1

0 · . . . · wαm−1m . Then we have∫
Rm+1

+ ∩Ha
g(w) exp

(
−

m∑
i=0

wi

)
Hm(dw) =

∥a∥2 ·
∏m
j=0 Γ(αj)

2π

∫
R

m∏
j=0

(1 + iajτ)
−αjdτ.

Proof. Denote for any t ∈ R

G(t) =

∫
∀j:〈a,w〉=t,wj≥0

g(w) exp

(
−

m∑
`=0

w`

)
Hm(dw).



Next, we apply affine parametrization induced by map Lta

G(t) = [Lta]
∫

∀j xj≥0
t−

∑m
j=1 ajxj≥0

m∏
j=1

x
αj−1
j ·

(
t−

∑m
j=1 ajxj

a0

)α0−1

exp

− m∑
j=1

xj −

(
t−

∑m
j=1 ajxj

a0

)dx.

By Lemma E.6 [Lta] =
‖a‖2
a0

. The Fourier transform of G may be calculated using the Fubini’s theorem

F [G](τ) =
∥a∥2√
2π · a0

∫∫
∀j xj≥0

t−
∑m
j=1 ajxj≥0
t∈R

m∏
j=1

x
αj−1
j

(
t−

∑m
j=1 ajxj

a0

)α0−1

exp

(
−

m∑
j=1

xj−
(
t−

∑m
j=1 ajxj

a0

))
· e−itτdtdx.

By the change of variables s = t−
∑m
j=1 ajxj , the above integral can be represented as a product of m+1 one-dimensional

integrals

F [G](τ) =
∥a∥2√
2π · a0

∫ ∞
0

dx1x
α1−1
1 e−x1−iτa1x1 . . .

∫ ∞
0

dxmx
αm−1
m e−xm−iτamxm

∫ ∞
0

ds

(
s

a0

)α0−1

e−s/a0−iτs.

Performing the change of variables x0 = s/a0, we arrive at the product of m characteristic functions of independent
Γ(α`, 1)-distributed random variables

F [G](τ) =
∥a∥2√
2π
·
m∏
j=0

Γ(αj) ·
1

(1 + iajτ)αj
·

Finally, by the inverse Fourier transform

G(0) =
∥a∥2√
2π

∫
R
F [G](τ)dτ =

∥a∥2 ·
∏m
j=0 Γ(αj)

2π

∫
R

m∏
j=0

(1 + iajτ)
−αjdτ.

Remark D.9. Notice that the value of the integral is the right-hand side is real because the function under integral has even
real part and odd imaginary one.

Corollary D.10. Let g(w) = Γ(α)
∏m
j=0 w

αj−1
j /Γ(αj), where α > 1 and a ∈ Rm+1. Then

Im−1(g,∆m ∩Ha) = (α− 1)

√√√√(m+ 1)

(
m∑
i=0

a2i

)
−

(
m∑
i=0

ai

)2

· 1

2π

∫
R

m∏
j=0

(1 + iajs)
−αjds.

Proof. Notice that g is positively homogeneous function of degree α− (m+ 1) > −m on Rm+1
++ . Hence, we may apply

Lemma D.4 and Lemma D.7. We obtain

Im−1(g,∆m ∩Ha) =
α− 1

dist(∆ ∩Ha, 0)
· Im(g, ∆̃m ∩Ha)

=
α− 1

dist(∆ ∩Ha, 0)Γ(α)

∫
Rm+1

+ ∩Ha
g(w) exp

(
−

m∑
`=0

w`

)
Hm(dw).

The last integral could be computed by Lemma D.8. We have

Im−1(g,∆m ∩Ha) =
α− 1

dist(∆m ∩Ha, 0)
·
∥a∥2
2π

∫
R

m∏
j=0

(1 + iajs)
−αjds.

Finally, we apply Corollary D.6 to conclude the statement.



Now we are ready to prove Proposition D.3.

Proof of Proposition D.3. First, we give a formula for pZ in terms of Im−1. We start from rewriting the probability in terms
of a usual integral

Pw∼Dir(α)[wf ≤ µ] =
∫
w≥0,

∑m
i=1 wi≤1,wf≤µ

g

(
1−

m∑
i=1

wi, w1, . . . , wm

)
dw1, . . . ,dwm

where g(w) = Γ(α)
∏m
j=0 w

αj−1
j /Γ(αj) is the density of the Dirichlet distribution. We note that this transform exactly

defines a map L1
1. Then we apply changing of variables formula (Evans and Garzepy, 2018, 3.4.3) using map ϕ(x) =

fTL1
1(x)

Pw∼Dir(α)[wf ≤ µ] =
1

[ϕ]

∫ µ

0

[∫
L1

1(x)≥0,fTL1
1(w)=u

g(L1
1(x))Hm(dx)

]
du

Define a vector c = LT
1f . Then we apply changing of variables formula (Evans and Garzepy, 2018, 3.3.3) to the inner

integral using parametrization through map Luc

Pw∼Dir(α)[wf ≤ µ] =
1

[ϕ]

∫ µ

0

[
[Luc ]

∫
L1

1(Lucw)≥0
g(L1

1(Luc (z)))dz

]
du

We note that a Jacobian of Luc does not depend on the shift parameter u, therefore could me moved from the integral sign.
Next we apply changing of variables formula for a map L1

1 ◦ Luc

Pw∼Dir(α)[wf ≤ µ] =
[Luc ]

[ϕ][L1
1 ◦ Luc ]

∫ µ

0

[∫
∆m,wf=u

g(w)Hm−1(dw)
]
du.

To compute all Jacobians we shall use Lemma E.6 and Lemma E.7, and notice that [ϕ] = ∥c∥2. As a result, pZ can be
represented as the following integral

pZ(u) =
1√

(m+ 1)
∑m
j=0 f

2(j)−
(∑m

j=0 f(j)
)2
∫
∆m∩Huf

g(w)Hm−1(dw)

=
1√

(m+ 1)
∑m
j=0 f

2(j)−
(∑m

j=0 f(j)
)2 Im−1(g,∆m ∩Huf ),

where Huf = {w ∈ Rm+1 : wf = u}. Unfortunately, we cannot apply the previous result directly because the hyperplane
Huf does not intersect 0 in general. To overcome this issue, define the following vector a(u)j = f(j) − u. Note that
⟨w, a(u)⟩ = 0 iff ⟨w, f − u1⟩ = wf − u = 0, where we used ⟨w,1⟩ = 1. Hence Huf ∩∆m = Ha(u) ∩∆m. We can apply
Corollary D.10 to the subspace Ha(u)

Im−1(g,∆m ∩Huf ) =
α− 1

2π

√√√√√(m+ 1)

 m∑
j=0

a(u)2j

−
 m∑
j=0

a(u)j

2

·
∫

R

m∏
j=0

(1 + ia(u)js)
−αjds

=
α− 1

2π

√√√√√(m+ 1)

m∑
j=0

(f(j)− u)2 −

 m∑
j=0

(f(j)− u)

2

·
∫

R

m∏
j=0

(1 + i(f(j)− u)t)−αjdt.



Finally, we will rewrite the expression under square root as follows

(m+ 1)

m∑
j=0

(f(j)− u)2 −

 m∑
j=0

(f(j)− u)

2

= (m+ 1)

 m∑
j=0

f(j)2 − 2u

m∑
j=0

f(j) + (m+ 1)u2


−

 m∑
j=0

f(j)

2

+ 2u(m+ 1)

m∑
j=0

f(j)− (m+ 1)2u2

= (m+ 1)

m∑
j=0

f(j)2 −

 m∑
j=0

f(j)

2

.

We conclude the proof of proposition.

Saddle point method In this paragraph, we analyze the asymptotic behavior of the density of a linear statistic of the
Dirichlet distribution using the method of saddle point (Olver, 1997; Fedoryuk, 1977) and obtain sharp bounds on remainder
terms.

Proposition D.11. Let f ∈ Fm(b0, b) and let α = (α0, α1, . . . , αm) ∈ Rm+1
+ be a fixed vector with α0 ≥ 2. Then for any

u ∈ (pf, b0),∫
R

m∏
`=0

(1 + i(f(ℓ)− u)s)−α`ds =

(√
2π

ασ2
−R1(α) +R2(α)

)
exp(−α Kinf(p, u, f)) +R3(α),

where

σ2 = EX∼p

[(
f(X)− u

1− λ?(f(X)− u)

)2
]
,

|R1(α)| ≤
c1√

σ2cκα0

· exp(−cκα0)√
α

,

|R2(α)| ≤
c2√

σ2 αα0

· b0
b0 − pf

,

|R3(α)| ≤ c3 · exp(−αKinf(p, u, f)) ·
1− λ?(b0 − u)

b0 − u
exp(−cκα0)

with c1 = 2
√
2, c2 = 49

√
6

9 , c3 =
√
5π
2 , cκ = 1/2 · log

(
1 + 1

4

(
b0−pf
b0

)2)
and λ? being a solution to the optimization

problem
λ?(p, u, f) = argmax

λ∈[0,1/(b0−u)]
EX∼p[log(1− λ(f(X)− u))].

Remark D.12. From these bounds on remainder terms we see that α0 should increase at least as logα in order to make R3

small enough.

Proof. Let us first rewrite our integral in the form

I =

∫
R

n∏
j=0

(1 + i(f(j)− u)s)−αj ds =
∫

R
exp

−α m∑
j=0

pj log(1 + i(f(j)− u)s)

ds

=

∫
R
exp(−αEX∼p[log(1 + i(f(X)− u)s)]) ds, (16)

where we choose the principle branch of the complex logarithmic function. Denote S(z) = EX∼p[log(1 + i(f(X)− u)z)].
In the sequel we shall write for simplicity E instead of EX∼p.



Since f(X) ≤ b0, this function is holomorphic for | Im z| < 1/(b0 − u) and Re z ∈ R. The last integral representation (16)
allows to use the method of saddle point (Olver, 1997). Next, we are going to compute the saddle points of the function S.
To do it, compute the derivative of the function S at complex point z = x+ iy

S′(z) = iE
[

f(X)− u
1 + i(f(X)− u)z

]
= E

[
x(f(X)− u)2 + i(f(X)− u)(1− y(f(X)− u))

(1− y(f(X)− u))2 + x2(f(X)− u)2

]
= 0.

Notice that the real part of the expression above is zero if and only if x = 0. Therefore the saddle points could be only on
the imaginary line iR. They can be found from the equation

S′(iy) = iE
[

f(X)− u
1− y(f(X)− u)

]
= 0.

Note that for y ≥ 0, this equation coincides with the optimality condition for λ? in the definition of Kinf(p, u, f). Since
pf < u < b0, the function y 7→ S(iy) = E[log(1− y(f(X)− u))] is strictly concave in y and, therefore, equation
S′(iy) = 0 has a unique solution y = λ?. Thus the unique saddle point of S is equal to z0 = iλ?. Next, let us change the
integration contour to γ? = R + iλ?. To prove that this contour is suitable, let us show that the real part of S achieves a
minimum at z0 over all z ∈ γ?

ReS(x+ iλ?) =
1

2
E
[
log
(
(1− λ?(f(X)− u))2 + x2(f(X)− u)2

)]
.

The minimum of ReS(x+ iλ?) is achieved for x = 0, therefore the contour γ? is suitable. Hence, we can apply the Laplace
method after a simple change of coordinates

I =

∫
R
exp(−αE[log(1− λ?(f(X)− u) + is(f(X)− u))]) ds

Denote
T (s) = E[log(1− λ?(f(X)− u) + is(f(X)− u))].

Fix a cut-off parameter K > 0 and define κ1 = T (−K)− T (0), κ2 = T (K)− T (0). Next, similarly to Section 6 by Olver
(1997), we define the change of variables v1 = T (−s) − T (0), v2 = T (s) − T (0) and the implicit functions q1(v1) =

1
T ′(−s) , q2(v2) =

1
T ′(s) . Using the first order Taylor expansion, we can write q1(v1) = 1√

2T ′′(0)·v1
+ r1(v1), q2(v2) =

1√
2T ′′(0)·v2

+ r2(v2). Then we have the following decomposition

I =

∫ K

−K
exp(−αT (s)) ds+R3(α) =

(√
2π

αT ′′(0)
−R1(α) +R2(α)

)
exp(−αT (0)) +R3(α),

where

R1(α) =

(
Γ

(
1

2
, κ1 α

)
+ Γ

(
1

2
, κ2 α

))
1√

2T ′′(0)α
,

R2(α) =

∫ κ1

0

e−αv1r1(v1) dv1 +

∫ κ2

0

e−αv2r2(v2) dv2,

R3(α) =

∫
R\[−K,K]

exp(−αT (s)) ds,

where Γ(α, x) is an upper incomplete gamma function and integration w.r.t. v1, v2 is performed over the straight lines
connecting the points 0 and κ1, κ2, respectively. Our next goal is to analyze these remainder terms and compute upper
bounds on their absolute values.

Term R2. First, we derive the uniform bounds for r2 and r1. Using the expansions

T (s) = T (0) + T ′(0) · s+ T ′′(0)

2
s2 +

T ′′′(ξ1)

6
s3, ξ1 ∈ (0, s)

T ′(s) = T ′(0) + T ′′(0)s+
T ′′′(ξ2)

2
s2, ξ2 ∈ (0, s).



and noting that T ′(0) = 0, we get

|r2(v)| =

∣∣∣∣∣ 1

T ′(s)
− 1√

2T ′′(0)(T (s)− T (0))

∣∣∣∣∣
=

∣∣∣∣∣∣
√
T ′′(0)2s2 + T ′′(0)T

′′′(ξ1)
3 s3 − T ′′(0)s− T ′′′(ξ2)

2 s2

[T ′′(0)s+ T ′′′(ξ2)
2 s2] ·

√
T ′′(0)2s2 + T ′′(0)T

′′′(ξ1)
2 s3

∣∣∣∣∣∣
=

∣∣∣∣∣∣T ′′(0)
√
1 + T ′′′(ξ1)

3T ′′(0) s− 1− T ′′′(ξ2)
2T ′′(0) s

s · [T ′′(0) + T ′′′(ξ2)
2 s] ·

√
T ′′(0)2 + T ′′(0)T

′′′(ξ1)
3 s

∣∣∣∣∣∣.
Next by applying the inequality

√
1 + x− 1 = x

2 −
x2

8(1+ξ3)3/2
for |ξ3| < x,

|r2(v)| =

∣∣∣∣∣∣T ′′(0)
T ′′′(ξ1)
6T ′′(0) −

T ′′′(ξ2)
2T ′′(0) − s ·

(T ′′′(ξ1)/T
′′(0))2

8·9·(1+ξ3)3/2

[T ′′(0) + T ′′′(ξ2)
2 s] ·

√
T ′′(0)2 + T ′′(0)T

′′′(ξ1)
3 s

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T ′′′(ξ1)

6 − T ′′′(ξ2)
2 − s · (T ′′′(ξ1))

2

8·9·(1+ξ3)3/2·T ′′(0)

[T ′′(0) + T ′′′(ξ2)
2 s] ·

√
T ′′(0)2 + T ′′(0)T

′′′(ξ1)
3 s

∣∣∣∣∣∣ ≤
2
3 supu∈(0,s) |T

′′′(u)|+ s · supu∈(0,s) |T
′′′(u)|2

72·|T ′′(0)|

|T ′′(0) + T ′′′(ξ2)
2 s| ·

√
|T ′′(0)2 + T ′′(0)T

′′′(ξ1)
3 s|

.

Let us analyze the second and third derivative of T

T ′′(s) = E

[(
f(X)− u

1− λ?(f(X)− u) + is(f(X)− u)

)2
]
, T ′′′(s) = −2iE

[(
f(X)− u

1− λ?(f(X)− u) + is(f(X)− u)

)3
]
.

Define a random variable Ys =
f(X)−u

1−λ?(f(X)−u)+is(f(X)−u) , then T ′′(s) = E[Y 2
s ], T

′′′(s) = −2iE[Y 3
s ]. Let us compute an

upper bound on the absolute value of T ′′′(s)

|T ′′′(s)| ≤ 2E
[

|f(X)− u|3

((1− λ?(f(X)− u))2 + s2(f(X)− u)2)3/2

]
≤ 2E[|Y0|3].

By choosing 1/(2K) = max
{

b0−u
1−λ?(b0−u) ,

u
1+λ?u

}
, we ensure that E[Y 2

0 ]− sE[|Y0|3] ≥ 1
2E[Y 2

0 ] for all 0 ≤ s < K, since

E[|Y0|3] ≤ max
j∈{0,...,m}

|f(j)− u|
1− λ?(f(j)− u)

E[Y 2
0 ] ≤ max

{
b0 − u

1− λ?(b0 − u)
,

u

1 + λ?u

}
E[Y 2

0 ] ≤
1

2K
E[Y 2

0 ].

Hence

|r2(v)| ≤
4
3E[|Y0|3] + sE[|Y0|3]2

18·E[Y 2
0 ]

(E[Y 2
0 ]− E[|Y0|3]s) ·

√
E[Y 2

0 ] ·
√

E[Y 2
0 ]− E[|Y0|3] 2s3

≤ 4/3 + 1/36

1/2 ·
√
2/3
· E[|Y0|3]

E[Y 2
0 ]

2
≤ 49

√
6

36E[Y 2
0 ]
·max

{
b0 − u

1− λ?(b0 − u)
,

u

1 + λ?u

}
.

Next, using the bound

E[Y 2
0 ] =

α0

α

(
b0 − u

1− λ?(b0 − u)

)2

+

m∑
j=1

αj
α

(
f(j)− u

1− λ?(f(j)− u)

)2

≥ α0

α

(
b0 − u

1− λ?(b0 − u)

)2

,

we obtain

|r2(v)| ≤
49
√
6

36
√

E[Y 2
0 ]
·
√

α

α0
max

{
1,
u(1− λ?(b0 − u))
(1 + λ?u)(b0 − u)

}
.



Next we use Lemma 12 from (Honda and Takemura, 2010)

λ? ≥ u− pf
u(b0 − u)

⇐⇒ 1 + λ?u ≥ b0 − pf
b0 − u

,

thus

|r2(v)| ≤
49
√
6

36
√

E[Y 2
0 ]
·
√

α

α0

b0
b0 − pf

.

A similar bound also holds for r1(v) by symmetry. Set c′2 = 49
√
6

18 , then

|R2(α)| ≤
c′2

2
√

E[Y 2
0 ]
·
√

α

α0
·
∣∣∣∣∫ κ2

0

e−αvdv +

∫ κ1

0

e−αvdv

∣∣∣∣ ≤ c′2√
E[Y 2

0 ]
· 1 + exp(−ακ)√

α · α0

b0
b0 − pf

,

where κ = min{Reκ1,Reκ2}. Using the identity

Reκ1 = Reκ2 =
1

2
E
[
log

(
(1− λ?(f(X)− u))2 +K2(f(X)− u)2

(1− λ?(f(X)− u))2

)]
=

1

2
E
[
log
(
1 +K2Y 2

0

)]
and the inequality

E
[
log
(
1 +K2Y 2

0

)]
=
α0

α
log

(
1 +K2 ·

(
b0 − u

1− λ?(b0 − u)

)2
)

+

m∑
j=1

αj
α

log

(
1 +K2 ·

(
f(j)− u

1− λ?(f(j)− u)

)2
)

≥ α0

α
log

(
1 +K2 ·

(
b0 − u

1− λ?(b0 − u)

)2
)
≥ α0

α
log

(
1 +

1

4

(
b0 − pf
b0

)2
)
,

we have κ = Reκ2 = Reκ1 ≥ cκ·α0

α with cκ = 1/2·log
(
1 + 1

4

(
b0−pf
b0

)2)
. Sinceα0 ≥ 2, we also have exp(−cκα0) ≤ 1.

Finally setting c2 = 2 · c′2 = 49
√
6

9 , we derive the following bound on R2

|R2(α)| ≤
c2√

E[Y 2
0 ]
· 1√

αα0
· b0
b0 − pf

.

Term R1. By Theorem 2.4 of Borwein and Chan (2007) we have the following bound on complex gamma function for
any complex z with Re z > 0 ∣∣∣∣Γ(1

2
, z

)∣∣∣∣ ≤ 2e−Re z

|z|1/2
.

Therefore,

|R1(α)| ≤
4√

2T ′′(0)|κ|
· exp(−ακ)

α
.

Set c1 = 2
√
2, then we have under our choice of K and κ,

|R1(α)| ≤
c1√

E[Y 2
0 ]cκα0

· exp(−cκα0)

α1/2
.

Term R3. We have∣∣∣∣∫ ∞
K

exp(−αT (s)) ds
∣∣∣∣ ≤ exp(−α · Re[T (K)− T (0)]) · exp(−αT (0)) ·

∫ ∞
K

exp(−αRe[T (s)− T (K)]) ds. (17)

Our goal is to bound the last integral. Let us analyze the function under exponent after a change of variables s→ t+K

q(t) , Re[T (t+K)− T (K)] =
1

2
E
[
log

(
(1− λ?(f(X)− u))2 + (t+K)2(f(X)− u)2

(1− λ?(f(X)− u))2 +K2(f(X)− u)2

)]
=

1

2
E
[
log

(
1 +

(2tK + t2)(f(X)− u)2

(1− λ?(f(X)− u))2 +K2(f(X)− u)2

)]
.



Define a function g(j) = (f(j)−u)2
(1−λ?(f(j)−u))2+K2(f(j)−u)2 ≥ 0. Then

q(t) =
1

2
E
[
log
(
1 + (2tK + t2)g(X)

)]
≥ 1

2
· α0

α
· log(1 + (2tK + t2)g(0)), (18)

by positivity of g(j). By choosing b0 > u, we have g(0) > 0, therefore (18) is a non-trivial lower bound. By substitution of
(18) into the integral (17), we get∫ ∞

K

exp(−αRe[T (s)− T (K)])ds =

∫ ∞
0

exp(−αq(t))dt ≤
∫ ∞
0

(
1

1 + (2tK + t2)g(0)

)α0/2

dt

≤
∫ ∞
0

(
1

1 + t2g(0)

)α0/2

dt =

√
π · Γ

(
α0−1

2

)
2
√
g(0) · Γ(α0/2)

.

Notice that the last integral converges if α0 > 1. By symmetry of our arguments, we have the same bound for another part
of the integral in R3. Thus,

|R3(α)| ≤ exp(−ακ− αKinf(p, u, f))

√
π · Γ

(
α0−1

2

)
Γ(α0/2)

(√
(1− λ?(b0 − u))2 +K2(b0 − u)2

(b0 − u)2

)

≤
√
5π

2
· exp(−cκα0 − αKinf(p, u, f))

Γ
(
α0−1

2

)
Γ(α0/2)

· 1− λ
?(b0 − u)
b0 − u

,

where the last inequality follows from the lower bound Reκ ≥ cκα0/α and the choice of K. Set c3 =
√
5π/2 and note that

Γ
(
α0−1

2

)
Γ(α0/2)

≤ 1.

Finally, we have

|R3(α)| ≤ c3 · exp(−αKinf(p, u, f)) ·
1− λ?(b0 − u)

b0 − u
exp(−cκα0).

Our next goal is to provide a lower bound on the density pZ using the above representation.

Lemma D.13. Consider a function f ∈ Fm(b0, b) and a vector α = (α0, α1, . . . , αm) ∈ Rm+1
+ with α ≥ 2α0, b0 ≥ 2b

and

α0 ≥ max

 1

(
√
2π − 1)2

·

(
2
√
2√

log(17/16)
+

98
√
6

9

)2

,
log(10π · α)
log(17/16)

.
Then for any u ∈ (pf, b0),

pZ(u) ≥
√
α− 1/α

8π
·
(
1− λ?(b0 − u)

b0 − u

)
· exp(−αKinf(p, u, f)).

Proof. First, we derive from Proposition D.11 a lower bound for the integral (16), using inequality b0/(b0 − pf) ≤ 4 under
our conditions on b0 and α

∫
R

n∏
j=0

(1 + i(f(j)− u)s)−αjds ≥

(√
2π − c1 exp(−cκα0)√

cκα0
− 4c2√

α0

)
√
αE[Y 2

0 ]
exp(−αKinf(p, u, f)) +R3(α),

First, we want to ensure that
√
2π − c1 exp(−cκα0)√

cκα0
− c2√

α0
≥ 1. (19)



To do it, notice that since α0 ≥ 2, then c1 exp(−cκα0)√
cκα0

≤ c1√
cκα0

. Therefore, to ensure that (19) holds, we can choose

α0 ≥
1

(
√
2π − 1)2

·
(

c1√
cκ

+ 4c2

)2

=
1

(
√
2π − 1)2

·

(
2
√
2√

log(17/16)
+

98
√
6

9

)2

.

Under these conditions, we derive∫
R

n∏
j=0

(1 + i(f(j)− u)s)−αjds ≥ 1√
αE[Y 2

0 ]
exp(−αKinf(p, u, f))− |R3(α)|

≥ exp(−αKinf(p, u, f))

(
1√

αE[Y 2
0 ]
− c3 ·

1− λ?(b0 − u)
b0 − u

exp(−cκα0)

)
.

Now using an inequality

E[Y 2
0 ] ≤

(
b0 − u

2(1− λ?(b0 − u))
+

u

2(1 + λ?u)

)2

=
b20

4(1− λ?(b0 − u))2(1 + λ?u)2
≤ 4(b0 − u)2

(1− λ?(b0 − u))2
,

we conclude that∫
R

n∏
j=0

(1 + i(f(j)− u)s)−αjds ≥ 1− λ?(b0 − u)
b0 − u

· exp(−αKinf(p, u, f))√
α

(
1/2− c3 exp(−cκα0) ·

√
α
)
.

Next, by choosing α0 ≥ 1
cκ
(1/2 · log(α) + log(4c3)) = log(10π · α)/ log(17/16), we have

∫
R

n∏
j=0

(1 + i(f(j)− u)s)−αjds ≥ 1− λ?(b0 − u)
b0 − u

· exp(−αKinf(p, u, f))

4
√
α

.

Using this bound, we can easily derive a lower bound on the density pZ

pZ(u) =
α− 1

2π

∫
R

m∏
j=0

(1 + i(f(j)− u)s)−αjds

≥ α− 1

2π
· 1− λ

?(b0 − u)
b0 − u

· exp(−αKinf(p, u, f))

4
√
α

.

Before we proceed with the proof of Theorem D.2, we need the following auxiliary result.

Lemma D.14. Consider a function f ∈ Fm(b0, b) and a vector α = (α0, α1, . . . , αm) ∈ Rm+1
+ with α > α0. Then for all

pf < u < b0, (
1

b0 − u
− λ?(p, u, f)

)
≥ α0

α

1

b0 − u
.

Proof. Under the condition pf < u < b0, the value λ? = λ?(p, u, f) satisfies the following equation

E
[

f(X)− u
1− λ? · (f(X)− u)

]
=
α0

α

b0 − u
1− λ? · (b0 − u)

+

m∑
j=1

αj
α

f(j)− u
1− λ? · (f(j)− u)

= 0. (20)

Define a distribution p̂ with p̂(i) = αi
α−α0

for i ∈ {1, . . . ,m} and p̂(0) = 0. Then the expectation in (20) can be written as

α0

α

b0 − u
1− λ? · (b0 − u)

+
α− α0

α
EX∼p̂

[
f(X)− u

1− λ? · (f(X)− u)

]
= 0.



Define a function w(x, u) = x−u
1−λ?·(x−u) , which is convex in x. By the Jensen inequality,

EX∼p̂
[

f(X)− u
1− λ? · (f(X)− u)

]
≥ p̂f − u

1− λ? · (p̂f − u)
.

Hence
α0

α

b0 − u
1− λ? · (b0 − u)

≤ −α− α0

α

p̂f − u
1− λ? · (p̂f − u)

=
α− α0

α

u− p̂f
1 + λ? · (u− p̂f)

.

By rearranging terms, we get

1

α0

(
1

b0 − u
− λ?

)
≥ 1

α− α0

(
1

u− p̂f
+ λ?

)
=

1

α− α0

(
1

u− p̂f
+

1

b0 − u

)
− 1

α− α0

(
1

b0 − u
− λ?

)
.

As a result, (
1

b0 − u
− λ?

)
≥ α0

α
· b0 − p̂f
(b0 − u)(u− p̂f)

≥ α0

α

1

b0 − u
.

Now we are ready to finish the proof of Theorem D.2.

Proof of Theorem D.2. By Lemma D.13,

P(Z ≥ µ) =
∫ b0

µ

pZ(u)du ≥
√
α− 1/α

8π
·
∫ b0

µ

(
1

b0 − u
− λ?(p, u, f)

)
· exp(−αKinf(p, u, f)) du.

Our goal is to analyze the last integral. First of all, by Lemma D.14 we have∫ b0

µ

(
1

b0 − u
− λ?(p, u, f)

)
exp(−αKinf(p, u, f)) du ≥

α0

α
·
∫ b0

µ

1

b0 − u
exp(−αKinf(p, u, f)) du.

Next, by Theorem 6 of Honda and Takemura (2010) we have for all pf < u < b0,

λ?(p, u, f) =
∂

∂u
Kinf(p, u, f).

Therefore, since λ? ≤ 1/(b0 − u), we get

Kinf(p, u, f)−Kinf(p, µ, f) =

∫ u

µ

λ?(p, s, f)ds ≤
∫ u

µ

1

b0 − s
ds = log

(
b0 − µ
b0 − u

)
.

Hence,∫ b0

µ

1

b0 − u
exp(−αKinf(p, u, f)) du ≥ exp(−αKinf(p, µ, f)) ·

∫ b0

µ

1

b0 − u
exp

(
−α log

(
b0 − µ
b0 − u

))
du,

where the last integral could by easily computed∫ b0

µ

1

b0 − u
exp

(
−α log

(
b0 − µ
b0 − u

))
du =

∫ b0

µ

1

b0 − u

(
b0 − u
b0 − µ

)α
du =

1

(b0 − µ)α

∫ b0

µ

(b0 − u)α−1du =
1

α
.

Thus,

P(Z ≥ µ) ≥ α0

α2 ·
√
α− 1/α

8π
exp(−αKinf(p, µ, f))

≥ α0 ·
√
1− α2

8π
exp(−αKinf(p, µ, f)− 3/2 logα)

≥ α0 ·
√
3

16π
exp(−αKinf(p, µ, f)− 3/2 logα),

where we used that α ≥ 2. To conclude the statement, note that α0 ≥ 16π.



E. Technical Lemmas
E.1. A Bellman-type equation for the variance

For a deterministic policy π we define Bellman-type equations for the variances as follows

σQπh(s, a) , VarphV
π
h+1(s, a) + phσV

π
h+1(s, a)

σV πh (s) , σQπh(s, π(s))

σV πH+1(s) , 0,

where Varph(f)(s, a) , Es′∼ph(·|s,a)
[
(f(s′) − phf(s, a))2

]
denotes the variance operator. In particular, the function

s 7→ σV π1 (s) represents the average sum of the local variances VarphV
π
h+1(s, a) over a trajectory following the policy π,

starting from (s, a). Indeed, the definition above implies that

σV π1 (s1) =

H∑
h=1

∑
s,a

pπh(s, a)Varph(V
π
h+1)(s, a).

The lemma below shows that we can relate the global variance of the cumulative reward over a trajectory to the average sum
of local variances.

Lemma E.1 (Law of total variance). For any deterministic policy π and for all h ∈ [H],

Eπ

( H∑
h′=h

rh′(sh′ , ah′)−Qπh(sh, ah)

)2∣∣∣∣∣∣(sh, ah) = (s, a)

 = σQπh(s, a).

In particular,

Eπ

( H∑
h=1

rh(sh, ah)− V π1 (s1)

)2 = σV π1 (s1) =

H∑
h=1

∑
s,a

pπh(s, a)Varph(V
π
h+1)(s, a).

Proof. We proceed by induction. The statement in Lemma E.1 is trivial for h = H + 1. We now assume that it holds for
h+ 1 and prove that it also holds for h. For this purpose, we compute

Eπ

( H∑
h′=h

rh′(sh′ , ah′)−Qπh(sh, ah)

)2∣∣∣∣∣∣(sh, ah)


= Eπ

(Qπh+1(sh+1, ah+1)− phV πh+1(sh, ah) +

H∑
h′=h+1

rh′(sh′ , ah′)−Qπh+1(sh+1, ah+1)

)2∣∣∣∣∣∣(sh, ah)


= Eπ
[(
Qπh+1(sh+1, ah+1)− phV πh+1(sh, ah)

)2∣∣∣(sh, ah)]
+ Eπ

( H∑
h′=h+1

rh′(sh′ , ah′)−Qπh+1(sh+1, ah+1)

)2∣∣∣∣∣∣(sh, ah)


+ 2Eπ

[(
H∑

h′=h+1

rh′(sh′ , ah′)−Qπh+1(sh+1, ah+1)

)(
Qπh+1(sh+1, ah+1)− phV πh+1(sh, ah)

)∣∣∣∣∣(sh, ah)
]
.

The definition of Qπh+1(sh+1, ah+1) implies that

Eπ

[
H∑

h′=h+1

rh′(sh′ , ah′)−Qπh+1(sh+1, ah+1)

∣∣∣∣∣(sh+1, ah+1)

]
= 0.



Therefore, the law of total expectation gives us

Eπ

( H∑
h′=h

rh′(sh′ , ah′)−Qπh(sh, ah)

)2∣∣∣∣∣∣(sh, ah)


= Eπ
[(
V πh+1(sh+1)− phV πh+1(sh, ah)

)2∣∣∣(sh, ah)]+ Eπ

( H∑
h′=h+1

rh′(sh′ , ah′)−Qπh+1(sh+1, ah+1)

)2
∣∣∣∣∣∣(sh, ah)


= VarphV

π
h+1(sh, ah)

+
∑

(sh+1,ah+1)

ph(sh+1|sh, ah)1(ah+1=π(sh+1))Eπ

( H∑
h′=h+1

rh′(sh′ , ah′)−Qπh+1(sh+1, ah+1)

)2
∣∣∣∣∣∣(sh+1, ah+1)


= VarphV

π
h+1(sh, ah) + phσV

π
h+1(sh, ah)

= σQπh(sh, ah)

where in the third equality we used the inductive hypothesis and the definition of σV πh+1.

E.2. On the Bernstein inequality

We reproduce here a Bernstein-type inequality by Talebi and Maillard (2018).

Lemma E.2 (Corollary 11 by Talebi and Maillard, 2018). Let p, q ∈ ∆S−1, where ∆S−1 denotes the probability simplex of
dimension S − 1. For all functions f : S 7→ [0, b] defined on S,

pf − qf ≤
√
2Varq(f)KL(p, q) +

2

3
bKL(p, q)

qf − pf ≤
√
2Varq(f)KL(p, q) .

where use the expectation operator defined as pf , Es∼pf(s) and the variance operator defined as Varp(f) , Es∼p
(
f(s)−

Es′∼pf(s′)
)2

= p(f − pf)2.
Lemma E.3. Let p, q ∈ ∆S−1 and a function f : S 7→ [0, b], then

Varq(f) ≤ 2Varp(f) + 4b2 KL(p, q) ,

Varp(f) ≤ 2Varq(f) + 4b2 KL(p, q).

Proof. Let p̃ be the distribution of the pair of random variables (X,Y ) where X,Y are i.i.d. according to the distribution p.
Similarly, let q̃ be the distribution of the pair of random variables (X,Y ) where X,Y are i.i.d. according to distribution q.
Since Kullback–Leibler divergence is additive for independent distributions, we know that

KL(p̃, q̃) = 2KL(p, q) ≤ 2KL(p, q).

Using Lemma E.2 for the function g(x, y) = (f(x)− f(y))2 defined on S2, such that 0 ≤ g ≤ b2, we get

|p̃g − q̃g| ≤
√
4Varq̃(g)KL(p, q) +

4

3
b2 KL(p, q)

≤
√
4b2 KL(p, q)q̃g +

4

3
b2 KL(p, q)

≤ 1

2
q̃g +

10

3
b2 KL(p, q) ,

where in the last line we used 2
√
xy ≤ x+ y for x, y ≥ 0. In particular we obtain

p̃g ≤ 3

2
q̃g +

10

3
b2 KL(p, q)

q̃g ≤ 2p̃g +
20

3
b2 KL(p, q) .



To conclude, it remains to note that
p̃g = 2Varp(f) and q̃g = 2Varq(f).

Lemma E.4. For p, q ∈ ∆S−1, for f, g : S 7→ [0, b] two functions defined on S, we have that

Varp(f) ≤ 2Varp(g) + 2bp|f − g| and

Varq(f) ≤ Varp(f) + 3b2∥p− q∥1,

where we denote the absolute operator by |f |(s) = |f(s)| for all s ∈ S.

Proof. First note that

Varp(f) = p(f − g + g − pg + pg − pf)2 ≤ 2p(f − g − pf + pg)2 + 2p(g − pg)2 = 2Varp(f − g) + 2Varp(g).

From the above we can immediately conclude the proof of the first inequality with

Varp(f − g) ≤ p(f − g)2 ≤ bp|f − g|,

where we used that for all s ∈ S, 0 ≤ |f(s)− g(s)| ≤ b. For the second inequality, using the Hölder inequality,

Varq(f) = pf2 − (pf)2 + (q − p)f2 + (pf)2 − (qf)2

≤ Varp(f) + b2∥p− q∥1 + 2b2∥p− q∥1
≤ Varp(f) + 3b2∥p− q∥1.

E.3. Inequalities for quantiles

Lemma E.5. Let X be a random variable from distribution ρ, κ ∈ (0, 1), and u ∈ R. Then

PX∼p(X > u) ≤ 1− κ ⇐⇒ QX∼p(X,κ) ≤ u, PX∼p(X > u) ≥ 1− κ ⇐⇒ QX∼p(X,κ) ≥ u.

Proof. Follows directly from the definition

QX∼p(X,κ) = inf{t ∈ R : PX∼p(X > u) ≤ 1− κ}.

E.4. Jacobian computation

For any non-zero vector v ∈ Rn we define linear parametrization of the set Htv = {x ∈ Rn|vTx = t} by a linear map

Ltv : Rn−1 → Rn by a rule y → x, y1 = x1, . . . , yn−1 = xn−1, x0 =
t−

∑n−1
i=1 viyi
v0

. Without loss of generality we may
assume that v0 ̸= 0 so the parametrization is well-defined. Using matrix language, we can define a matrix Lv ∈ Rn×n−1
with the first row is equal to [−v1/v0, . . . , vm/v0], and the last n − 1 row forms an identity matrix. For a linear map
L : Rn → Rm we define a Jacobian [L] as a generalized determinant of a gradient matrix of this map (see (Evans and
Garzepy, 2018) for more detail).
Lemma E.6 (Jacobian of a linear parametrization). For any non-zero vector v ∈ Rn such that v0 ̸= 0 and t ∈ R a Jacobian
of map Ltv is equal to ∥v∥2/|v0|.

Proof. Note that the gradient vector does not depend on constant shifts. Thus the gradient matrix is equal to a linear map
Lv . Define a vector ṽ = [v1, . . . , vn], then the square Jacobian is equal to

[Lv]2 = det(LT

vLv) = det

([
ṽ/v0 In−1

][ṽT/v0
In−1

])
= det

(
ṽṽT

v20
+ In−1

)
.

This matrix is a rank-one matrix plus identity. Its eigenvalues are equal to ∥ṽ∥2/v20 + 1 and n − 2 ones. Thus [Lv]2 =

∥ṽ∥2/v20 + 1 = ∥v∥2/v20 .



Lemma E.7 (Jacobian of a composition of linear parametrizations). For a vector f ∈ Rm+1 define a vector c = LT
1f .

Assume that f0 ̸= f1. Then

[L1Lc]2 =
(m+ 1)

∑m
j=0 f

2
j −

(∑m
j=0 fj

)2
(f1 − f0)2

.

Proof. To compute a Jacobian of the composition we have to compute a vector c, a matrix Lc and a matrix L1Lc.

L1 =


−1 −1 . . . −1
1 0 . . . 0
0 1 . . .
...

...
. . .

...
0 0 . . . 1

, cT = LT

1f =

 f1 − f0...
fm − f0

, Lc =


f0−f2
f1−f0

f0−f3
f1−f0 . . . f0−fm

f1−f0
1 0 . . . 0
0 1 . . .
...

...
. . .

...
0 0 . . . 1

.

Finally,

A = L1Lc =



f2−f1
f1−f0

f3−f1
f1−f0 . . . fm−f1

f1−f0
f0−f2
f1−f0

f0−f3
f1−f0 . . . f0−fm

f1−f0
1 0 . . . 0
0 1 . . .
...

...
. . .

...
0 0 . . . 1


Call v =

(
f2−f1
f1−f0 ,

f3−f1
f1−f0 , . . . ,

fm−f1
f1−f0

)T

and u =
(
f0−f2
f1−f0 ,

f0−f3
f1−f0 , . . . ,

f0−fm
f1−f0

)T

the first and the second rows of the matrix
A. We have to compute the following determinant

det(ATA) = det

[v u I
]vT

uT

I

 = vvT + uuT + I.

Notice that this matrix is a rank-2 matrix plus the identity matrix. Let λ1, λ2 be two non-zero eigenvalues. Then eigenvalues
of matrix ATA is λ1 + 1, λ2 + 1 and all other eigenvalues are ones. Thus

det(ATA) = (λ1 + 1)(λ2 + 1) = λ1λ2 + (λ1 + λ2) + 1.

To compute it, notice that non-zero eigenvalues of BTB and BBT coincide. Then we note

vvT + uuT =
[
v u

][vT

uT

]
,

therefore λ1, λ2 are eigenvalues of the following matrix 2× 2[
vT

uT

][
v u

]
=

[
∥v∥2 vTu

uTv ∥u∥2
]
= C

Then we note that det(C) = λ1λ2 and λ1 + λ2 = Tr(C). Thus

det(ATA) = ∥v∥2∥u∥2 − (vTu)2 + ∥v∥2 + ∥u∥2 + 1.

Next we start computing required quantities

∥v∥2 =

∑m
i=2(f1 − fi)2

(f1 − f0)2
, ∥u∥2 =

∑m
i=2(f0 − fi)2

(f1 − f0)2
, |vTu| =

∑m
i=2(f1 − fi)(f0 − fi)

(f1 − f0)2
,



and then

∥v∥2∥u∥2 − (vTu)2 =
1

(f1 − f0)4

 m∑
i,j=2

(f1 − fi)2(f0 − fj)2 −
m∑

i,j=2

(f1 − fi)(f1 − fj)(f0 − fi)(f1 − fj)


=

1

(f1 − f0)4

 m∑
i,j=2

(f1 − fi)(f0 − fj)[(f1 − fi)(f0 − fj)− (f1 − fj)(f0 − fi)]


=

1

(f1 − f0)3

 m∑
i,j=2

(f1 − fi)(f0 − fj)(fi − fj)


=

1

(f1 − f0)3

 m∑
i,j=2

(f0f1 − f0fi − f1fj + fifj)(fi − fj)


=

1

(f1 − f0)3
m∑

i,j=2

(f0f1fi − f0f2i − f1fifj + f2i fj − f0f1fj + f0fifj + f1f
2
j − fif2j ).

Define S =
∑m
i=2 fi, V =

∑m
i=2 f

2
i . Then after grouping the terms

∥v∥2∥u∥2 − (vTu)2 =
f0f1(m− 1)S − f0(m− 1)V − f1S2 + V S − f0f1(m− 1)S + f0S

2 + f1(m− 1)V − SV
(f1 − f0)3

=
(m− 2)V − S2

(f1 − f0)2
.

Finally

det(ATA) =
1

(f1 − f0)2

(
(m− 1)

m∑
i=2

f2i −

(
m∑
i=2

fi

)2

+ (m− 1)f20 − 2f0

m∑
i=2

fi +

m∑
i=2

f2i

+ (m− 1)f21 − 2f1

m∑
i=2

fi +

m∑
i=2

f2i + 2f20 + 2f21 − 2f0f1 − f20 − f21
)

=
(m+ 1)

∑m
i=0 f

2
i − (

∑m
i=0 fi)

2

(f1 − f0)2
.



F. Non-tabular Extension Detailed
In this section, we detail the extension of Bayes-UCBVI beyond the tabular setting. First recall that in Incr-Bayes-UCBVI,
Q-value functions are given by the quantile Q

t

h(s, a) = Qb∼Unif([B])

(
Q
t,b

h (s, a), κth(s, a)
)

over B (incremental) Bayesian
bootstrap samples. Theses samples can be computed by updating sums of random weights distributed according to an
exponential distribution of parameter one. Precisely, we define

Zt,bh (s, a, s′) ,
t∑
`=1

1{(s`h, a`h) = (s, a)}z`,bh (s, a) + 1{s′ = s0}
0∑

`=−n0+1

z`,bh (s, a) ,

where the weights are i.i.d. zt,bh (s, a) ∼ E(1). Then, the Bayesian bootstrap sample at time t is given by

Q
t,b

h (s, a) = rh(s, a) +
∑
s′∈S′

Zt,bh (s, a, s′)∑
s′′∈S′ Z

t,b
h (s, a, s′′)

V
t

h+1(s
′) .

The complete procedure is detailed in Algorithm 2. Note that if the rewards are unknown we just need to also re-weight the
observed rewards for a given state-action pair, similarly to Riou and Honda (2020) for multi-armed bandits. There are two
approximations made in Incr-Bayes-UCBVI with respect to Bayes-UCBVI. First, Incr-Bayes-UCBVI approximates the
quantile with B Monte-Carlo samples. Second, Incr-Bayes-UCBVI reuses the same exponential noise from one time step
to the next one to improve the time complexity (run-time).

Algorithm 2 Incr-Bayes-UCBVI
1: Input: quantile κ, B number of bootstrap samples, number of prior transitions n0.
2: Initialize: weights Z0

h(s, a, s
′) ← 1{s′ = s0}

∑0
`=−n0+1 z

`,b
h (s, a), where z`,bh ∼ E(1) i.i.d., for h, s, a, s′ ∈

[H]× S ×A× S ′.
3: for t ∈ [T ] do
4: Optimistic value iteration

Q
t−1

h (s, a)← Qb∼Unif[B]

(
rh(s, a) +

∑
s′∈S′

Zt−1,b
h (s, a, s′)∑

s′′∈S′ Z
t−1,b
h (s, a, s′′)

V
t−1
h+1(s

′), κt−1
h (s, a)

)
V

t−1
h (s)← max

a∈A
Q

t−1

h (s, a) V
t−1
h (s0)← V ⋆

h (s0)

V
t−1
H+1(s)← 0 .

5: for h ∈ [H] do
6: Play ath ∈ argmaxaQ

t−1
h (s, a).

7: Observe reward rth and next state sth+1 ∼ ph(sth, ath).

8: Update weights Zt,bh (s, a, s′)← Zt−1,bh (s, a, s′) +

{
zt,bh (s, a, s′) ∼ E(1) i.i.d. if (s, a, s′) = (sth, a

t
h, s

t
h+1)

0 else
.

9: end for
10: end for

We now present the non-tabular extension of Incr-Bayes-UCBVI. Fix a state-action pair (s, a) at time t. As explained in
Section 4, the Bayesian bootstrap samples can be obtained thanks to a weighted linear regression,

Q
t,b

h (s, a) , argmin
x

nth(s,a)∑
n=−n0+1

zn,bh (s, a)(x− ynh(s, a))
2
, where zn,bh (s, a) ∼ E(1) i.i.d.

and the targets are defined by ynh(s, a) , rh(s, a) + V
t

h+1(s
n
h+1). Note that it is possible to adapt this re-weighting to any

loss instead of the mean-squared error. To combine this exploration procedure with the DQN algorithm, we introduce two
Q-value networks. One Q-value network Qψ parametrized by ϕ and one target Q-value network parametrized by ψ. We also



Algorithm 3 Bayes-UCBDQN
1: Input: discount factor γ, quantile κ, B number of bootstrap samples, ϕ, ψ parameter of the Q-value respectively target

Q-value network, replay bufferR, pseudo target ypseudo, pseudo transition probability ε.
2: for t ∈ [T ] do
3: for h ∈ [H] do
4: Play ath ∈ argmaxa Qb∼Unif[B]

(
Qφ,bh (sth, a), κ

)
.

5: Observe reward rth and next state sth+1 ∼ ph(sth, ath).
6: Record {h, rth, sth, ath, sth+1, z

t
h} inR where zt,bh ∼ E(1) i.i.d for b ∈ [B].

7: With probability ε record {h, _, sth, a0, s0, z0} inR where z0,b ∼ E(1) i.i.d for b ∈ [B] and a0 ∼ Unif(A).
8: end for
9: if time to update then

10: Sample a batch of transitions C =
{
(h, r, s, a, s′, z)

}
fromR

11: Compute the targets
12: for (h, r, s, a, s′, z) ∈ C do
13: if s ̸= s0 then
14:

y(h, s, a, s′)← r + γmax
a′∈A

Qb∼Unif[B]

(
Qψ,bh+1(s

′, a′), κ
)

15: else
16:

y(h, s, a, s′)← ypseudo .

17:
18: end if
19: end for
20: Update the Q-value network by one step of gradient descent with

∇φ
1

|C|
∑

(h,s,a,s′,z)∈C

B∑
b=1

zb
(
Qφ,bh (s, a)− y(h, s, a, s′)

)2
.

21: if time to update target then
22: Update the target Q-value network ψ ← ϕ.
23: end if
24: end if
25: end for

introduce a replay bufferR. For each observed transition, we record inR the tuple {h, rth, sth, ath, sth+1, z
t
h}, where we also

add an exponential mask zth. Each element of the mask zt,bh ∼ E(1) i.i.d. , will be used to weight the loss. Precisely, given a
batch of transitions C =

{
(h, r, s, a, s′, z)

}
; fromR we first compute the targets with the target Q-value network,

y(h, s, a, s′)← r + γmax
a′∈A

Qb∼Unif[B]

(
Qψ,bh+1(s

′, a′), κ
)
.

Then, we update each (incremental) Bayesian bootstrap of the Q-value network with one gradient step

∇φ
1

|C|
∑

(h,s,a,s′,z)∈C

B∑
b=1

zb
(
Qφ,bh (s, a)− y(h, s, a, s′)

)2
.

As in DQN, the target Q-value network is regularly updated with the weights of the Q-value network. To stick to the
Incr-Bayes-UCBVI, it remains to introduce a mechanism that emulates the prior transitions. Since obviously, we cannot
add a prior transition for each state-action pair, we propose to simply use ε-greedy to add prior transitions to the replay
bufferR. In particular, when interacting with the environment, say that the agent is in state sth, then with probability ε, we



add a pseudo transition {h, _, sth, a0, s0, z0h} to the replay bufferR, where the action a0 ∼ Unif(A) is sampled uniformly
at random and z0h is an exponential mask. When a pseudo transition is sampled from the replay buffer, we assign to it an
arbitrary fixed target ypseudo. Typically, we want the constant ypseudo to be large, e.g., of the order of the value of the pseudo
state s0. We name the resulting algorithm Bayes-UCBDQN and detail it in Algorithm 3. We highlight in blue the procedure
used to add the pseudo transitions.



G. Experimental Details
In this section we detail the experiments we conduct for tabular and large-scale environments.

G.1. Tabular

Environment For the tabular experiments10 we consider a simple grid-world with 5 connected rooms of size 5×5 totalling
S = 129 states. The agents starts in the middle where there is a very small deterministic reward of 0.01. Additionally there
is one small deterministic reward of 0.1 in the leftmost room, one large deterministic reward of 1 in the rightmost room and
zero reward elsewhere. The agent can take A = 4 actions: moving up, down, left, right. When taking an action, the agent
moves in the corresponding direction with probability 0.9 and moves to a neighbor state at random with probability 0.1. The
horizon is fixed to H = 30. Thus in this environment, the agent must explore efficiently all the rooms avoiding being lured
by the small reward in the leftmost room.

Baselines We compare Bayes-UCBVI and Incr-Bayes-UCBVI to the following baselines:

• PSRL (Osband et al., 2013),

• RLSVI (Osband et al., 2016b),

• UCBVI (Azar et al., 2017).

Using different parameters (e.g., by changing the multiplicative constants in the bonus of UCBVI or the scale of the noise in
RLSVI) can result in drastically different empirical regrets. Thus for a fair comparison, we make the following choices. For
UCBVI, the bonus at state-action pair is

βth(s, a) , min

(√
1

nth(s, a)
+
H − h+ 1

nth(s, a)
, H − h+ 1

)
.

As explained by Ménard et al. (2021), this bonus does not necessarily result in a true UCB on the optimal Q-value.
However, it is a valid UCB for nth(s, a) = 0 which is important in order to discover new state-action pairs. For RLSVI at
state-action pair (s, a), we use noise from a centered Gaussian probability distribution with standard deviation βth(s, a).
For PSRL, we use a Dirichlet prior on the transition probability distribution with parameter (1/S, . . . , 1/S) and for the
rewards a Beta prior with parameter (1, 1). Note that since the reward r is not necessarily in {0, 1} we just sample a
new reward r′ ∼ Ber(r) accordingly to a Bernoulli distribution of parameter r, to update the posterior, see Garivier
and Cappé (2011). We choose the same parameter for Bayes-UCBVI and Incr-Bayes-UCBVI. The quantile is fixed to

κth(s, a) , 0.85. This choice is informally justified as follows: If we assume βth(s, a) ≈
√(

H2 log(1/δ)
)
/
(
2nth(s, a)

)
then it holds δ ≈ e−2/H2 ≥ e−2 ≈ 0.15. Thus, we get κ ≈ 1− δ ≈ 0.85. The number of pseudo transitions is set to n0 = 1
as well as the reward of the pseudo transition is r0 = 1. We use B = 64 Monte-Carlo samples to approximate the quantile.

Results In Figure 1, we plot the regret of the various baselines, Bayes-UCBVI and Incr-Bayes-UCBVI in the aforemen-
tioned environment. In this experiment, we observe that both Bayes-UCBVI and Incr-Bayes-UCBVI achieves competitive
results with respect to baselines relying on noise-injection for exploration (PSRL, RLSVI). This is remarkable, since the com-
mon belief is that optimistic algorithm perform poorly in practice (Osband and Van Roy, 2017). Indeed Incr-Bayes-UCBVI
exhibits a similar regret than PSRL. It is not completely surprising since they share the same model on the transitions11

(up to the prior). Whereas Bayes-UCBVI performs slightly worse than Incr-Bayes-UCBVI but better than RLSVI. One
possible reason to explain this gap between Bayes-UCBVI and Incr-Bayes-UCBVI is that the incremental implementation
of Bayesian bootstrap forgets faster the prior than the non-incremental version resulting in a more aggressive algorithm.
We also note that RLSVI performs slightly worse than PSRL/Incr-Bayes-UCBVI but much better than UCBVI. A possible
explanation for this ranking is that RLSVI is much more aggressive than UCBVI when they have comparable noise/bonuses.
Whereas PSRL,Incr-Bayes-UCBVI,Bayes-UCBVI take better advantage of the small variance of this particular environment
than the two last baselines.

10Our code is based on the library of Domingues et al. (2021a).
11However, not exactly the same on the rewards: Beta/Bernoulli versus non-parametric. Nonetheless, this should have a relatively small

impact since the rewards are deterministic.



G.2. Deep RL

We introduce important details of a few baseline algorithms.

DQN. DQN adopts the standard Q-learning algorithm. DQN maintains a Q-function Qθ. When interacting with the environ-
ment, DQN adopts ε-greedy with respect to Qθ(x, a). The value of ε decays linearly from εmax = 1.0 to εmin = 0.01. The
algorithm puts transition tuples (s, a, r, s′) into a replay bufferR. At training time, DQN samples C = 32 transitions tuples
(si, ai, ri, s

′
i)
C
i=1 ∼ R uniformly from the replay. It updates the parameter by minimizing the following loss function with

respect to θ,

1

C

C∑
i=1

(
Qθ(si, ai)− ri − γmax

a′
Qθ−(s

′
i, a
′)
)2
.

Here θ− is the parameter of the target network, a delayed copy of θ used for stabilizing training (Mnih et al., 2013). See
(Mnih et al., 2013) for other missing hyper-parameters.

Double DQN. Double DQN (Van Hasselt et al., 2016), built on top of DQN (Mnih et al., 2013), further applies the double
Q-learning algorithm to stabilize learning (Hasselt, 2010). Concretely, in addition to the online network θ, Double DQN
maintains two copies of online networks θ1, θ2; and two copies of target networks θ′1, θ

′
2. Double DQN constructs the

following learning target:

Q
(i)
1 = ri + γQθ−1

(s′i, a
′
i), a

′
i = argmax

a′
Qθ−2

(si, a
′)

Q
(i)
2 = ri + γQθ−2

(s′i, a
′
i), a

′
i = argmax

a′
Qθ−1

(si, a
′).

Then both networks θ1, θ2 are updated by minimizing the following loss function

1

C

C∑
i=1

(
Qθ1(si, ai)−Q

(i)
1

)2
+

1

C

C∑
i=1

(
Qθ2(si, ai)−Q

(i)
2

)2
.

In summary, Double DQN decouples the maximizing operation and the maximizing value. Empirically, this helps avoid the
over-estimation issue that plagues vanilla DQN. Similar techniques have been implemented in BootDQN and we adopt the
same technique in Bayes-UCBDQN.

BootDQN. BootDQN (Osband and Van Roy, 2015) maintains B copies of the Q-function Qθb , b ∈ [B]. In practice,
maintaining B full networks might be too expensive; instead, Osband and Van Roy (2015) suggested to share the torso
network and only maintain B = 10 different heads to the Q-networks. During interaction with the environment, BootDQN
uniformly random samples a network Qθb , b ∼ Uniform[B]. Then the algorithm selects an action by being greedy with
respect to Qθb . In practice, it has been observed that some local greedy exploration might also be helpful (Osband and
Van Roy, 2015; Osband et al., 2018). The transition (s, a, r, s′) is put into the bufferR, along with a mask m ∈ RB with
each component independently generated from a Bernoulli distribution of parameter p ∈ [0, 1]. At training time, only the
Q-networks with mask mb = 1 is trained with the sampled transition using the DQN loss function.

Though the mask is meant to enforce diversity across different copies of the Q-networks. In practice, Osband and Van Roy
(2015) reported that when p = 1 the method works well too. They speculated it is because the stochastic gradient based
training of DQN networks already led to sufficient amount of diversity.

Bayes-UCBDQN. Similar to BootDQN, Bayes-UCBDQN maintains B = 10 copies of the Q-functions by creating B separate
Q-network heads with a shared torso network. At acting time, Bayes-UCBDQN acts greedily with respect to the bootstrap
quantile, computed across B heads. The transition (s, a, r, s′) is put into the buffer R, along with a mask z ∼ E(1). At
training time, this mask is used for weighing different transitions (see Algorithm 3). All Q-networks are updated by a
common target, computed as the κ-quantile bootstrapped values. The quantile is set at κ = 0.85 in our experiments.

We provide a detailed discussion on the effect of different hyper-parameters and implementations on the performance of the
agent, such as the number of heads B and quantile parameter κ. See Appendix G.3.



Network architecture. The network architecture follows from Mnih et al. (2013). The network consists of a torso network
with convolutional layers that process the input state images s. The torso layer outputs an embedding embed = torso(s).
The downstream network is a MLP that takes the embedding as input, and output a A-dimensional vector as the Q-function
approximation head(embed) ∈ RA; see Mnih et al. (2013) for detailed definitions of layer sizes and non-linear activation
functions.

For BootDQN, in order to avoid the high computational complexity of having B copies of the full network, they argued
to instead maintain H copies of the head networks headb, b ∈ [B]. The Q-function for the b-th head is defined as
Qθb(s, a) = headb(embed).

Other hyper-parameters. All algorithms are trained with 200M frames for each environment. The networks are trained
with RMSProp optimizer (Hinton et al., 2012) with learning rate 2.5 · 10−4. See Mnih et al. (2013) and Osband and Van Roy
(2015) for other missing hyper-parameters.

Environment and evaluation. The testing environments are Atari-57 games, consisting of 57 selected Atari games
(Bellemare et al., 2013). For each game, the state st is an image and the action at corresponds to controls in the game.
For each game, at iteration t, let z(i)t be the performance of the algorithm in a particular game i for 1 ≤ i ≤ 57. Then the
human-normalized performance is normalized per game as

norm(z
(i)
t ) =

z
(i)
t − z

(i)
u

z
(i)
h − z

(i)
u

.

Here, z(i)u is the performance of the random policy in game i; z(i)h is the human performance in game i. The median
performance at iteration t across all game is computed as

median-performance(t) = median
(
{z(t)t }57i=1

)
.

The operation median(·) takes a set of human normalized scores per game and computes the median value over all scores.

G.3. Discussion on the effect of hyper-parameters on Bayes-UCBDQN

As shown in Algorithm 3, Bayes-UCBDQN adds a considerable number of hyper-parameters compared to DQN and BootDQN.
In our experiments, we have empirically studied the effect of such hyper-parameters and provide a detailed discussion here.

Effect of κ. Throughout experiments, we use κ = 0.85. We have tested the algorithm’s performance under other values of
κ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Overall, we find that the algorithm’s performance is not very sensitive to κ.

Pseudo transition probability ε and pseudo target ypseudo. Throughout experiments, we use ε = 0. This is mainly
because, we find that the training tend to be unstable when using ε significantly larger than 0. The best choice of ypseudo

seems to be also game-dependent, and as a result, is more challenging to tune in practice.

We speculate that the instability is due to the fact that DQN updates are based on the minimization of squared Bellman errors.
Concretely, when with probability ε, the algorithm encounters ypseudo, which is an optimistic value estimate and is hence
likely to be an outlier in the data distribution over target values, the update becomes unstable. To address such issues might
require further modification to the DQN updates, such as based on categorical representation of values (Schrittwieser et al.,
2020) or alternative update rules (Bas-Serrano et al., 2021).

Exponential mask zb. Throughout experiments, we sample z ∼ E(1) for each transition and apply the mask during
learning, based on Algorithm 3. Empirically, we find that the mask plays a similar role as the Bernoulli masks adopted in
(Osband and Van Roy, 2015).

Effect of number of heads B. Throughout experiments, we use B = 10. We have also tried B ∈ {10, 20, 100}. Overall,
we find that increasing the number of heads does not improve the performance. Quite on the contrary, larger number of heads
slightly degrades the performance. Such empirical ablations are consistent with the observation of Osband and Van Roy
(2015) that B ≈ 10 works the best.
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