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Abstract
This paper proposes a theoretical analysis of a
Lasso-based classification algorithm. Leveraging
on a realistic regime where the dimension of the
data p and their number n are of the same order
of magnitude, the theoretical classification error
is derived as a function of the data statistics. As a
result, insights into the functioning of the Lasso in
classification and its differences with competing
algorithms are highlighted. Our work is based
on an original novel analysis of the iterative soft-
thresholding algorithm (ISTA), which may be of
independent interest beyond the particular prob-
lem studied here and may be adapted to similar it-
erative schemes. A theoretical optimization of the
model’s hyperparameters is also provided, which
allows for the data- and time-consuming cross-
validation to be avoided. Finally, several applica-
tions on synthetic and real data are provided to
validate the theoretical study and justify its impact
in the design and understanding of algorithms of
practical interest.

1. Introduction
The Lasso. The Lasso (Least Absolute Shrinkage and
Selection Operator, (Tibshirani, 1996)) is one of the most
well-known tools in statistics and signal processing. By em-
ploying `1-regularization, it imposes sparsity on the solution
sought by selecting only a limited number of features of
interest for the task at hand. Furthermore, the Lasso and its
various related variants are of interest for machine learning,
particularly in the field of classification when only a few
features are relevant for predicting the class memberships.
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On the theoretical analysis of the Lasso. Although the
Lasso is a classical and widespread tool, its precise perfor-
mance, strengths and limitations for classification tasks are
subject to surprisingly few theoretical studies. In particular,
the choice of the hyperparameter (i.e., the regularization
parameter) has, for the time being, remained restricted to
a cross validation which may be time and data consuming.
Furthermore, the difficulty of predicting in advance the per-
formance obtained by the classification algorithm and the
lack of statistical interpretation make it data-dependent. In
this article, we address these issues from a theoretical per-
spective through a novel analysis of ISTA, which may be
extended to similar iterative algorithms. Specifically, based
on a mixture of concentrated random vector assumption on
the data, among which we find images generated by Gener-
ative Adversarial Nets (GANs), and considering a statistical
learning regime where the dimension of the data evolves
linearly with the number of samples, this paper derives the
exact theoretical classification error as a function of the
underlying model parameters and the data statistics. Even
though the theoretical analysis is performed in an asymptotic
setting, we confirm our findings on both real and synthetic
datasets of finite sample and feature size, thereby allowing
their application also to situations of practical interest.

State of the art. Although widely used in practice, the
theoretical study of Lasso has been subject to very few
studies on the exact performance characterization in large
dimensions. Much of the literature has focused on the re-
lated problem of Compressive Sensing, where one aims to
reconstruct sparse vectors from only few linear measure-
ments (Candès & Tao, 2005; Candès et al., 2006), typically
providing non-asymptotic bounds (e.g. on the necessary
number of measurements). Our study complements this
theory by providing not bounds but exact performances.
Regarding the exact performance, large areas of literature
have focused on risk analysis in the large random matrices
regime (where the dimension p and the number of data n
are of the same order of magnitude): Approximate Message
Passing (Bayati & Montanari, 2011) and analysis based
on the Convex Gaussian Minmax Theorem (Thrampoulidis
et al., 2015). These two approaches, although very robust
and theoretically stable, are restricted to regression cases
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and the theoretical formulas obtained are generally difficult
to interpret given a classification problem. In this work,
we are more interested in the latter while providing a set
of intuitions for the Lasso-based classification algorithms.
We should interestingly mention that ISTA, being an itera-
tive process, can likely be analyzed theoretically also in a
classification context using Statistical Physics techniques
in particular Approximate Message Passing (AMP) beyond
the regression case predominant in literature. However, the
tools required by AMP (Gerbelot & Berthier, 2021; Mezard
& Montanari, 2009; Baker et al., 2020) and the one used
in this article (Random Matrix Theory and in particular the
leave-one-out approach), although being similar, have dif-
ferences. The two methods are indeed conceptually similar
in the considered regime (commensurable dimension and
sample size) and their common objective (large dimensional
analysis). However, the two methods have differences, no-
tably concerning the assumptions on the data (concentrated
random vector in the case considered in the present article
and Gaussian in the AMP case). Furthermore, the analytical
tools (deterministic equivalent in particular used in Random
Matrix Theory) do not have explicit equivalents. The univer-
sality of the random matrix results for the distribution of the
data combined with the intuitive interpretation of the cavity
method’s proof make them two different but complementary
methods. Despite the differences between the two methods,
it is possible to establish strong interconnections, a line of
research that we find extremely important, but goes beyond
the study of the Lasso (but is also valid for the comparison
of studies on linear models in general, among others).

Our contributions. Therefore, the main contributions
brought by this work are listed as follows:

• The exact classification error of the Lasso problem is
theoretically derived using the so-called leave-one-out
approach to handle the strong statistical dependencies.

• As a consequence, insights into the Lasso-based classi-
fication are obtained. We propose a new approach to hy-
perparameter optimization avoiding cross-validation.

• A range of applications is proposed to attest the rele-
vance of the theoretical study and the robustness of the
concentrated random vector assumptions on real data.

Outline of the paper. The paper is structured as follows.
In Section 2, the Lasso-based classification algorithm is
introduced and the data modelling for the high-dimensional
analysis is further presented. Section 3 provides our main
theoretical findings and some insights into the functioning
of the Lasso-based classification algorithm from a statisti-
cal perspective. Section 4 proposes one application of the
theoretical result in the context of hyperparameter selection.

Related work. Sparse representations have attracted
much attention from researchers in the areas of signal
processing, image processing, computer vision and pat-
tern recognition (Mallat, 1999; Elad et al., 2010; Lu & Li,
2014; Foucart & Rauhut, 2013; Baraniuk et al., 2011), with
their high potential to represent some phenomenon with as
few variables as possible. Several papers (Donoho, 2006;
Candès et al., 2006) laid the foundation of Compressive
Sensing by demonstrating the rationale of reconstructing
sparse signals from fewer samples than required by Shannon
(Shannon, 1948). Recently, sparse representations received
a lot of attention from the machine learning community, and
the Lasso has been extended to network structures (Hallac
et al., 2015; Jung et al., 2018).

Sparse linear classifiers have been studied from the statisti-
cal learning perspective, but based on VC dimension bounds,
previously in (Sabato et al., 2015) and, for sparse logistic re-
gression, in (Abramovich & Grinshtein, 2018). A mathemat-
ical framework for features selection from real-world data
with non-linear observations, also from a non-asymptotic
viewpoint, is provided in (Genzel & Kutyniok, 2016).

Lasso penalized regression (Tibshirani, 1996) has been suc-
cessful in ignoring irrelevant predictors in a regression prob-
lem. Some extensions for classification have been proposed
in (Diamond & Boyd, 2016; Lee et al., 2006; El Ghaoui
et al., 2010; Musa, 2014; Koh et al., 2007; Meier et al., 2008;
Van de Geer, 2008). Lasso penalized estimation raised the
question of the optimal choice of the hyperparameter which
promotes sparsity of the model in practical situations. The
standard solution of cross-validation is computational ex-
pensive, therefore asking for the design of a proper and
reliable cross validation scheme.

Yet, a large and rapidly growing literature (Candès et al.,
2006; Beck & Teboulle, 2009) is devoted to developing
fast algorithms for solving the Lasso optimization problem.
However, despite countless theoretical efforts, the under-
standing of the Lasso in the context of high dimensional
statistics remains rather lacking. The authors in (Candès
et al., 2006) have derived upper bound for the reconstruction
of a sparse signal providing then guarantees for the Lasso
or similar convex optimization methods. Work by Candès &
Tao (2007) on the analogous Dantzig selector proposed an
upper bound on the reconstruction error to within one con-
stant. With the rise of deep learning, unfolding algorithms
like ISTA as neural networks has become a popular research
area (Gregor & LeCun, 2010). Recently, this approach has
been investigated from a statistical learning perspective as
well (Behboodi et al., 2021; Schnoor et al., 2021), but fo-
cussing on reconstruction (i.e., a regression problem), and
using different tools (generalization error bounds based on
the Rademacher complexity), in a non-asymptotic setting.

Based on techniques from Approximate Message Passing,
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(Bayati & Montanari, 2011; Huang, 2020; Gerbelot et al.,
2020; Celentano et al., 2020) derive exact asymptotic expres-
sions for the reconstruction error. These works have been
complemented by an analysis using the Convex Gaussian
Min-max Theorem (Thrampoulidis et al., 2015; Alrashdi
et al., 2020). The present paper is part of this line of work
employing an asymptotic analysis of the Lasso. However,
unlike previous works, we are interested in a different set-
ting, that of classification, and we propose to derive the
analytical expression of the classification error using a spar-
sity a priori on the separating hyperplane. Furthermore,
we use different tools, namely the powerful leave-one-out
approach (Chen et al., 2019; El Karoui et al., 2013; Ding &
Chen, 2018).

From a technical point of view, our work is similar to the
analysis of machine learning algorithms, among which we
find the high dimensional analysis of logistic regression
(Mai et al., 2019; El Karoui et al., 2013), support vector ma-
chine (Mai & Liao, 2019; Mai & Couillet, 2018) and more
recently Softmax classifier (Seddik et al., 2021). However,
unlike previous studies, the difficulty of the Lasso lies in the
non-differentiability of the cost function and the complex
iterative procedure used to solve the minimization problem.
From this point of view, the technical difficulty inherent in
the study of the Lasso is intrinsically more challenging.

Reproducibility. Python codes for reproducing the results
of the paper are available in the supplementary materials.

Notation. Matrices will be represented by bold capital let-
ters (i.e., matrix A). Vectors will be represented in bold mi-
nuscule letters (i.e., vector v) and scalars will be represented
without bold letters (i.e., variable a). The index pair i, `
refers to any data sample i in the class `. Furthermore, the
jth ISTA iteration will be denoted by a superscript j. (See
details below.) The notationD(A) for a matrix A is a vector
containing the diagonal elements of A. The notation Ā for
random matrices (and random vectors) stands for Ā = E[A].
1n ∈ Rn is the vector of all ones. For a random vector
v ∈ Rn, the matrix Σv ∈ Rn×n denotes its covariance ma-
trix. Specifically, Σv = Cov(v) = E

[
(v − v̄)(v − v̄)T

]
,

and we will use the shortcut notation σv = D(Σv) to rep-
resent the diagonal elements of the covariance matrix Σv.
For p ≥ 1, ‖ . ‖p denotes the `p-norm for vectors. The zero
vector in Rp is denoted by 0p, and the identity matrix by Ip.

2. Model and Assumptions
2.1. Lasso Classification Formalism

Optimization problem. Suppose we have n data sam-
ples x1, . . . ,xn ∈ Rp gathered as columns in the data
matrix X = [x1, . . . ,xn] ∈ Rp×n. The data matrix
consists of two (nonempty) data classes C1 and C2 corre-

sponding to the labels ±1, i.e., X = [X(1),X(2)] where
X(`) = [x

(`)
1 , . . . ,x

(`)
n` ], ` = 1, 2, and n1 + n2 = n. Each

data point x
(`)
i is associated with its label y

(`)
i , and we de-

note by y = [y
(1)
1 , . . . , y

(1)
n1 , y

(2)
1 , . . . , y

(2)
n2 ]T ∈ {−1, 1}n

the vector containing all labels. Given a new test datum
x, the goal is to predict its associated label y using Lasso
regression as follows. We aim to find the best separating
hyperplane parametrized by ω? ∈ Rp for which the training
classification error ‖y −XTω‖22 is minimized, but Lasso
adds an `1-constraint (or regularization) on ω?. Formally, it
means to solve the following minimization problem given by

ω? = arg min
ω∈Rp

1

2
‖y −XTω‖22 s.t. ‖ω‖1 ≤ λ′, (1)

for some λ′ > 0. Or, equivalently, for an appropriate choice
of the regularization parameter λ > 0, the Lasso problem
boils down to the mere `1-regularized least-squares problem

ω? = arg min
ω∈Rp

1

2
‖y −XTω‖22 + λ‖ω‖1. (2)

We should interestingly mention that we use on purpose a
least square loss for the label fidelity term ( 1

2‖y−XTω‖22).
One could have used other loss functions (e.g., hinge or
logistic loss, again with an `1-regularization) at the cost
of more complicated analysis. Indeed, the asymptotic
performances to be set for improved classification have
simple expressions under a least square framework. This
ensures a full control on the performances and a better
understanding of the proposed approach. The analysis of a
loss hinge or logistics is possible using the same framework
by combining the approach proposed in this article and
previous studies that propose an asymptotic analysis of
the hinge and logistic loss (Mai et al., 2019; Mai & Liao,
2019; Kammoun & Alouini, 2021) in a framework of a
`2-regularization. This study, however, will present greater
complexity and formulas that will be less easy to interpret
what justifies the choice of the restriction to a least square
loss. Moreover, by a now well-established universality ar-
gument in large dimensional statistics, it has been shown in
closely related works (Mai & Liao, 2019) that quadratic cost
functions are asymptotically optimal (as the data dimension
and number increase) and uniformly outperform alternative
costs (such as SVM or logistic approaches), even in a
classification setting (the proof was in fact obtained in the
precise large dimensional setting which we consider here).
We have confirmed in Section C.5 of the supplementary
materials this observation on several datasets.

Given the optimal separating hyperplane ω?, the classifica-
tion is traditionally performed by considering the sign of
g(x) = ω?Tx. Intuitively, ω? will encode the important
features for the classification trained from the training set X
and will infer, through the projection ω?Tx, the class of a
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new test datum x relying solely on the selected features. The
difficulties inherent to the statistical analysis of the Lasso
problem lie in the lack of an explicit expression for ω?,
and more importantly, in the infeasibility of gradient-based
methods since the `1-norm is not differentiable. To bypass
this problem, several algorithms have been designed among
which the iterative soft-thresholding algorithm (ISTA) plays
an important role and will be employed by us.

Iterative soft-thresholding algorithm. For a sparse min-
imization of the differentiable function h(ω) = 1

2‖y −
XTω‖22, ISTA is the iterative algorithm, starting with an
initialization of typically ω0 = 0p, and for with j ≥ 1,

Gradient step: zj = ωj−1 − τ∇h
(
ωj−1

)
,

Sparsity step: ωj = Sτλ
(
zj
)
,

(3)

with τ the step size and Sτλ the soft threshold function de-
fined below. This leads to the following iterative procedure

ωj+1 = Sτλ
[
ωj + τX

(
y −XTωj

)]
,

with the initialization ω0 = 0p. In the classical ISTA, the
shrinkage operator Sλ (applied entrywise) is defined as

Sλ(x) = sign(x) ·max(0, |x| − λ). (4)

Note that when we refer to the function itself, we write Sλ
for some threshold λ > 0; instead, if it is applied in the
context of ISTA, the stepsize τ > 0 is included so that we
write Sτλ then. We set τ = 1/‖X‖22→2, as ISTA is known
to converge for τ‖X‖22→2 < 2 (Daubechies et al., 2004).

2.2. Large-Dimensional Framework

We aim to find the distribution of g(x) = ω?Tx for a new
test datum x under the following large dimensional regime.
Assumption 1 (Growth Rate). As n → ∞, p → ∞, we
assume p/n→ c0 > 0 and n`/n→ c` ∈ (0, 1), ` = 1, 2.

This assumption of the commensurable relationship between
the number of samples and their dimension corresponds to
a realistic regime and differs from classical asymptotics
where the number of samples is often assumed to be expo-
nentially larger than the feature size, which is very unlikely
in real-life applications. Moreover, although the theoreti-
cal study was carried out in an asymptotic framework (as
p → ∞), the empirical classification error converges to-
wards the asymptotic classification at the rate of O(1/

√
p),

which allows an application to real datasets as stipulated in
the experiments of Sections 3 and 4. Furthermore, we will
assume the following concentration property on the data.
Assumption 2 (Distribution of X and x). There exist two
constants C, c > 0 (independent of n, p) such that, for any
1-Lipschitz function f : Rp×n → R,

P(|f(X)−mf(X)| ≥ t) ≤ Ce−(t/c)2 ∀t > 0,

wheremZ is a median of the random variable Z. We require
that the columns of X are independent and that for ` ∈
{1, 2}, x

(`)
1 , . . . ,x

(`)
n` are i.i.d. such that Cov(x

(`)
i ) = Ip.

We further denote the mean and covariance for the columns
of X respectively as µ` ≡ E[x

(`)
1 ] and C` = Ip + µ`µ

T
` .

Assumption 2 notably encompasses the following scenar-
ios: the columns of X are (i) independent Gaussian random
vectors with identity covariance, (ii) independent random
vectors uniformly distributed on the Rp sphere of radius

√
p,

and, most importantly, (iii) any Lipschitz continuous trans-
formation thereof. Scenario (iii) is of particular relevance
for practical data settings as it was recently shown (Seddik
et al., 2020). Indeed, random data generated by GANs (for
example, images) can be modeled as in case (iii).

The assumption of the covariance matrix being the identity
matrix will be used throughout the main paper to prevent
the presentation from becoming even more technical. In the
supplementary material, the simple isotropic model will be
relaxed to the more realistic setting of generic covariances.

3. Main Result and Proof Sketch
3.1. Outline of the Main Technical Steps

Preliminaries. Let X ∈ Rp×n be some random data ma-
trix as per Assumption 2 and let y ∈ Rn be the associated
labels. At any iteration j ≥ 0 and given an initial value
of the separating hyperplane ω0 ∈ Rp, the ISTA update
scheme writes as ωj+1 = Sτλ

(
ωj − τXXTωj + τXy

)
.

Since the data matrix X is random, so is the associated
optimal separating hyperplane ω?. We want to track its
random behavior as a function of the statistical properties of
X and the parameters of the model. As the decision score
g(x) = ω?Tx for classifying each test datum x turns out to
be asymptotically Gaussian (Lemma 1 in the appendix) and
depends on ω?, and by independence of the training and
test dataset, our main focus will be on computing the mean
and the covariance of ω? to derive the classification error.

Computing the statistics of ω?. The main challenge of
computing E[ω?] and Cov(ω?) arises from the intricate
dependency introduced through ISTA (3). At iteration j, let
us denote the random vector zj = ωj − τXXTωj + τXy.
Our approach is to construct an iterative scheme such that

E
[
ωj+1

]
= E

[
Sτλ(zj)

]
.

Under Assumptions 1 and 2, in the large-dimensional limit
of p and n, we prove in Appendix B.2.1 that zj is equivalent
to a Gaussian random vector. For random vectors v ∼
N (v̄,Σv), we recall the definition of the diagonal of its
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covariance matrix by σv = D(Σv) and define the function

ϕ : R>0 × Rp × Rp → Rp,

(λ, v̄,σv) 7→ Ev∼N (v̄,Σv)[Sλ(v)].

Note that Sλ is applied entrywise, and the expectation is
taken entrywise as well, so it is convenient just to pass σv

(i.e., containing the variances of all the single components
of v) as an argument to ϕ. Therefore, for every iteration j,

E
[
ωj+1

]
= ϕ

(
τλ, z̄j ,σzj

)
.

Interestingly from a computational point of view, the func-
tion ϕ has a closed form expression which is provided in
Lemma 3 in Appendix B.3. To evaluate E[ωj+1], the main
task is to estimate the quantities z̄j and σzj . For the sake of
simplicity, we just expose the proof strategy for estimating
z̄j and defer the derivation for σzj to Section B.2.3 in the
supplementary material. By linearity of the expectation,

z̄j = E
[
ωj − τXXTωj + τXy

]
= ω̄j − τ

n∑
i=1

E
[
(ωj

T
xi)xi

]
+ τE[Xy],

where the expectation is taken with respect to the data distri-
bution (Assumption 2). The dependency between the vector
ωj at iteration j and the (columns of the) data matrix X pre-
vents a straightforward calculation of E[ωj

T
xi] required to

evaluate E[(ωj
T
xi)xi]. As such, to handle these statistical

dependencies, we rely on a leave-one-out procedure. More
precisely, our approach is to approximate E[ωj

T
xi] for both

classes using the functions

ζCπ(i)

(
E
[
xT
i ω

j
−i

])
, π(i) ∈ {1, 2}, (5)

where π(i) ∈ {1, 2} denotes the index of the class of xi.
ζCπ(i)

: R → R is deterministic and ωj−i ∈ Rp is calcu-
lated similarly to ωj , but deprived of the contribution of xi.
Formally, ωj−i is defined through the fixed point system,

ωj−i = Sτλ

(
ωj−i − τX−iXT

−iω
j
−i + τX−iy−i

)
,

where X−i = [x1, . . . ,xi−1,0,xi+1, . . . ,xn] ∈ Rp×n and
y−i = [y1, . . . , yi−1, 0, yi+1, . . . , yn] ∈ Rn. Therefore, the
estimation of E[ωj

T
xi] consists in finding the deterministic

functions ζCπ(i)
, since ζCπ(i)

(E[xT
i ω

j
−i]) is estimated given

the independence between xi and ωj−i and using Stein’s
lemma (Bridle, 1990). Following similar arguments as in
(Seddik et al., 2021), the functions ζCπ(i)

are established
through determining the difference between ωj−i and ωj .
We introduce the following parameterized fixed point system

ωj−i(t) = Sτλ

(
ωj−i(t) + τX−i

(
y−i −XT

−iω
j
−i(t)

)
+ τtxi(yi − ωj−i(t)Txi)

)
, t ∈ [0, 1],

which yields a function that interpolates between the regular
solution of ISTA, with ωj = ωj−i(1), and the one obtained
through the leave-one-out approach, ωj−i = ωj−i(0), for
varying parameter t, each after j iterations. Specifically,
their difference expresses as

ωj − ωj−i = ωj−i(1)− ωj−i(0) =

∫ 1

0

∂ωj−i(t)

∂t
dt ∈ Rn,

where
∂ωj−i(t)

∂t is the derivative of ωj−i(t) with respect to t.
It has a closed form solution (which is provided in Appendix
B.2.2, together will all other ommited technical details) that
allows us to find

ζC`(r) =
r + (−1)`κ`

1 + κ`
, (6)

where κ` = τ tr(C`D̄Q̄) with C`, ` = 1, 2, being defined
in Assumption 2, and D̄ and Q̄ defined in Theorem 1 below.

Let us remark that, more rigorously, the functions ζC` , ` ∈
{1, 2}, are actually updated iteratively, as the involved terms
are updated in the iteration described below in Theorem 1.
Note that the iteratively updated functions ζC` appear in (7)
in Theorem 1 below.

These findings are obtained by considering leave-one-out
perturbation arguments commonly used in the literature
(see (El Karoui et al., 2013; Seddik et al., 2021; Mai et al.,
2019)). For the computation of σzj , we further need to in-
troduce the mappings Γ(λ, v̄,σv) = Ev∼N (v̄,Σv)[Sλ(v)2]

and ψ(λ, v̄,σv) = Ev∼N (v̄,Σv)[S
′

λ(v)] appearing in the
update of D̄ and Q̄. (Note that Sλ is not differentiable, but
differentiable almost everywhere so that the derivative S

′

λ

can be defined in a meaningful way as in (35). Alternatively,
to avoid technical problems, one may use the fact Sλ can
be approximated with arbitrary precision by a smooth func-
tion). The closed form expressions of the functions ϕ, ψ
and Γ are provided in Appendix B.3.

3.2. Main Result - Theoretical Classification Error

Theorem 1. The theoretical classification error (expected
test error with respect to the 0/1 loss) ε is given as

ε = Q

(
m2 −m1

σT
ω1p

)
, Q(t) =

1√
2π

∫ t

−∞
e−

x2

2 dx.

Here, Q is the Gaussian Q-function and m`, ` ∈ {1, 2}, and
σω are given as the limits of the iteration described below.
We initialize ω̄(0),σ

(0)
z ,σ

(0)
ω ,k

(0)
` and the scalar quantities

κ
(0)
` ,m

(0)
` , ` ∈ {1, 2}, and then proceed as follows. We do

the following iteration that consists in iteratively updating

m
(j)
` → m

(j+1)
` , σ(j)

ω → σ(j+1)
ω .
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(For an index `, the calculation is always performed for both
classes ` ∈ {1, 2}.) Firstly, the updates for m(j)

` → m
(j+1)
` :

a
(j)
` =

m
(j)
` + (−1)`κ

(j)
`

1 + κ
(j)
`

µ` +
1

1 + κ
(j)
`

ω̄(j), (7)

z̄(j) = ω̄(j) − τ
2∑
`=1

n`

(
a

(j)
` + (−1)`µ`

)
, (8)

ω̄(j) = ϕ
(
λτ, z̄(j),σ(j)

z

)
, m

(j+1)
` = ω̄(j)Tµ`. (9)

Secondly, the updates for σ(j)
ω → σ

(j+1)
ω are calculated via

E(j)
` = κ

(j)
` − σ(j)

ω

T
1p + (−1)`

(
1 + κ

(j)
`

)
m

(j+1)
` ,

(10)

B(j)
` = κ

(j)
`

2
+ σ(j)

ω

T
1p, (11)

σ
(j)
1 = −

2∑
`=1

2τn`

1 + κ
(j)
`

σ(j)
ω +

E(j)
`(

1 + κ
(j)
`

)2 k
(j)
` , (12)

σ
(j)
2 = τ2n1p +

2∑
`=1

1− (−1)`m
(j+1)
`

1 + κ
(j)
`

k
(j)
` , (13)

σ
(j)
3 =

τ2n2(
1 + κ

(j)
1

)(
1 + κ

(j)
2

)σ(j)
ω

+

2∑
`=1

τ2n`B(j)
` D(C`), (14)

σ(j+1)
z =

3∑
i=1

σ
(j)
i , (15)

σ(j+1)
ω = Γ

(
λτ, z̄(j),σ(j+1)

z

)
. (16)

In the final steps, the update for high dimensional biases as

D̄(j) = ψ
(
λτ, z̄(j),σ(j+1)

z

)
, (17)

Q̄(j) =

(
Ip − D̄(j) +

2∑
`=1

τn`C`D̄
(j)

)−1

, (18)

k
(j+1)
` = τD

(
C`D̄

(j)Q̄(j)
)
, κ

(j+1)
` = k

(j)
`

T
1p. (19)

Regarding the termination of the algorithm being described
in Theorem 1, we use a simple criterion to stop the iteration
as soon as all of the involved parameters are not changed
anymore by another update (i.e., iteration step), up to some
certain prescribed tolerated deviation (measured by the `2-
norm for vectors, and by the absolute value for scalar quan-
tities).

Algorithm 1 Theoretical classification of ISTA 1

Input: Parameters λ, τ ; estimated means µ̂` of classes
of size n`, ` = 1, 2.
For ` ∈ {1, 2}, initialize k`, ω̄,σω,σz = 0p and
m`, κ` = 0; calculate a` as per equation (10).
repeat

Compute z̄ = ω̄ −
2∑̀
=1

τn`
(
a` + (−1)`µ̂`

)
.

Compute B`, E` as per equations (10) and (11).
Compute variance σ1, σ2, σ3 and as per equations
(12), (13), (14).
Compute the ridge-less variance σz = σ1 +σ2 +σ3.
Compute D̄ and Q̄ as per equations (18) and update
κ` = τ tr

(
C`D̄Q̄

)
.

Update ω̄ = ϕ(λ, z̄,σz) and σω = Γ(λ, z̄,σz).
Update m` = ω̄Tµ` and a` = ζC`(m`)µ` + 1

1+κ`
ω̄.

until Convergence (criterion met).
Output: Classification error ε = Q

(
m2−m1

σT
ω1p

)
.

The iterative procedure described in the rather technical
theorem above is summarized in Algorithm 1.

On the iterative process of Theorem 1. Although the
theorem is highly technical and difficult to grasp on first
glance, its structure and its understanding resemble that of
the underlying iterative soft-thresholding algorithm, with
one gradient-descent-like and one sparsity-promoting step
(3). The process is also iterative, starting from a random
initialization of the involved parameters. Let us note that the
quantity κ` is generally used in Random Matrix Theory to
correct for large biases in high dimensions (for more details,
refer to Section B.2 of the appendix); the vectors ω̄ and σω
are the statistics of the hyperplane obtained through ISTA.

On the convergence of Algorithm 1. Let us remark that
proving the convergence of the iterative algorithm described
in Theorem 1 is beyond the scope of this paper and provides
an interesting avenue for future investigations, possibly by
adapting the original proof for ISTA (Daubechies et al.,
2004). However, Algorithm 1 shows a very favourable
behavior empirically, and remarkably even converges faster
than the empirical ISTA algorithm as shown in Section C of
the appendix (with lower running time and smaller number
of iterations required for convergence). While this may
seem surprising first, we argue this observation is actually
quite natural, supporting the usefulness of the suggested
approach. Indeed, the iterative process of Theorem 1 is

1For simplicity, we discard the iteration index j. Similarly, we
use the simplified notation for ζC` from (6) rather than the more
rigorous formulation in (7).
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fully deterministic and avoids large fluctuations between the
steps of the iteration that are empirically observed for ISTA.
Therefore, the iterative process of Theorem 1 exhibits a
more stable character being completely deterministic which
explains the much faster convergences observed in practice.

The iterations steps in more detail. Similarly to the clas-
sical ISTA (3), Algorithm 1 can be broken into two phases.

1. A phase where the Lasso statistics are computed while
ignoring the soft-thresholding operator temporarily.
This step is similar to computing the statistics of the
separating hyperplane obtained through the ridge-less
regression problem (i.e., the mere least-squares prob-
lem without `1-regularization). For the first order statis-
tics, z̄ represents the key quantity. This quantity de-
fined in equation (8) is mainly dependent on the vector
a` from (7) which is a high dimensional correction of
the mean µ`. Similarly, second order statistics are ma-
terialized by the variance vector σz defined in equation
(16) which depends on three quantities σ1, σ2 and σ3.

2. A sparsity phase realized in Theorem 1 by the functions
ϕ and Γ in equations (9) and (16) to take the soft-
thresholding operator into account. However, here this
step is taken to impose sparsity on statistics z̄ and σz
calculated previously. We discuss these functions in
more detail in Section 3.3 and provide closed-form
solutions in Section B.3 of the supplementary material.

Practical evaluation of Theorem 1. Theorem 1 derives
the classification error as a function of the statistics of the
data and the model parameters. The model parameters, in
particular the regularization parameter λ, are provided as
input (or can be estimated using the procedure described
in Section 4). The only objects requiring estimation are
the data statistics, in particular the means per class µ`,
` ∈ {1, 2}. A simple and natural approach and the one
used in the article consists in estimating the mean using
the empirical mean denoted by µ̂`. This approach has been
shown empirically to be very robust, especially for the eval-
uation of the performance in the Figure 3 or for the choice
of optimal hyperparameters in Section 4. These aspects of
the estimation deserve however a more thorough analysis
which we leave as an interesting avenue for future research.

3.3. Main Theoretical Insights

The regularization parameter λ. The regularization pa-
rameter λmainly appears in the functions ϕ and Γ which are
crucial to take the sparsity constraint into account. There-
fore, the behavior of these functions is sufficient in itself
to understand the functioning of the Lasso. Besides on the
regularization parameter, ϕ and Γ also depend on the argu-
ments z̄ and σz. From a statistical perspective, z̄ and σz can

viewed as the signal and the noise, respectively. Therefore,
their elementwise division z̄ � σz, may be interpreted as
the signal-to-noise ratio, which can be seen as a measure of
the difficulty of the problem. Therefore, the signal-to-noise
ratio on the y axis of Figure 1 will also be referred to as
the task difficulty. The x axis represents the regularization
parameter. The colour map represents the ratio between the
theoretical classification error of the Lasso and the classi-
fication error of the ridge-less classification (i.e., the case
λ = 0). Thus, it shows the relative gain in terms of clas-
sification of Lasso for different values of λ and varying
task difficulties for two different sparsity levels α, i.e., the
(average) fraction of zero values in the mean of the data.
More specifically, to model a sparsity setting, we consider
that µ` = (−1)`b �m where m ∼ N (0, 1

pIp) and b is a
Bernoulli random vector that puts the single entries to zero
with probability α/p. Given the aforementioned setting,
Figure 1 can essentially be divided into three main regions.

• A region where the relative theoretical accuracy of the
classification is lower than one, which implies a de-
crease of performance compared to ridge-less classifi-
cation (which does not impose the sparsity constraint).

• A region where the relative theoretical accuracy is
greater than one, which means an increase in perfor-
mance compared to the ridge-less classification. Spar-
sity constraint has important pertinence in this region.

• A region where the relative theoretical accuracy of
Lasso is one, which is essentially the case for λ = 0.

Figure 2 compares the empirical with the theoretical classi-
fication error of the Lasso-based classification as function
of the regularization parameter λ, for three different values
of the level sparsity α. It is worth remarking that Theorem 1
gives a very close fit between the theoretical and empirical
prediction of ISTA, even in a low-sparsity regime. Yet, as
expected, for larger value of α (thus more zero entries in the
mean of the data; blue curve) and the same task difficulty,
for an appropriately chosen value of λ, a non-trivial gain is
obtained with respect to the ridge-less case, i.e., for λ = 0.

Robustness to real data. As mentioned previously, the
theoretical analysis is carried out under a mixture of concen-
trated random vectors. This family of vectors was shown
to be robust to the real data as it was demonstrated in (Sed-
dik et al., 2020) that (realistic) images generated by GANs
are concentrated random vectors by definition. We confirm
in Figure 3 this conclusion empirically by comparing the
empirical distribution of the decision score g(x) for two
databases versus the distribution as predicted by Theorem
1. The real-world datasets consist in the textual Amazon-
review dataset (Blitzer et al., 2007) and MNIST images
dataset (Deng, 2012) described in detail in Section 4.
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Figure 1. Relative gain in accuracy of the Lasso compared to the
ridge-less classifier as a function of the regularization parameter λ
and the difficulty of the problem (signal-to-noise ratio). The means
are µ` = (−1)`b �m, ` = 1, 2 where m ∼ N (0p,

1
p
Ip), p =

100 and b is a Bernoulli random vector that puts every single entry
to zero with probability α/p for the different settings. (Top) High
sparsity level of the mean of the data α = 0.9. (Bottom) Low
sparsity with α = 0.5. A gain larger than one implies a pertinence
of the Lasso constraint, while a gain smaller than one corresponds
to the region where the sparsity constraint harms the classification.

4. Application to Hyperparameter Selection
In this section, we illustrate one practical application of The-
orem 1 in the context of hyperparameter selection. We use
the computational efficient and precise estimate of the theo-
retical classification error as in Algorithm 1 to perform a grid
search to select the best hyperparameter for Lasso-based
classification. More precisely, we compare the classification
error obtained using the hyperparameter λ found by a grid
search on the theoretical classification error and the more
widespread one using cross validation for different folds
(i.e., different subset size of the data used as validation set).

Figure 4 represents the best classification error using differ-
ent cross validation folds versus the grid search performed
by the theory for different datasets. For each dataset, dif-
ferent tasks are considered and the classification error is
averaged over 30 trials with the minimum and maximum
value of the classification error represented with an error
bar. Although some folds achieve similar performance as
obtained by the theory, in other settings, they can lead to un-

100 101 102 103
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0.6

0.7

Regularization parameter λ

Theory α = 0.95
Empirical α = 0.95

Theory α = 0.9
Empirical α = 0.9

Theory α = 0.2
Empirical α = 0.2

Figure 2. Close fit between the theoretical and empirical (averaged
over 1 000 test samples) classification accuracy (as a function of λ),
for three different values of α (sparsity level). Gaussian mixture
model with class sizes n1, n2 = 500 and x

(`)
i ∼ N (µ`, Ip), for

` = 1, 2, with mean µ` = (−1)`b�m, where m ∼ N (0p,
1
p
Ip),

and where b is a Bernoulli random vector that puts each single
entry to zero with probability α/p, with the feature size p = 100.

predictable results with a high variability, whereas the theory
provides a more reliable means of assessing performance
and can become a reliable alternative to cross-validation.

Furthermore, cross validation requires an optimal choice of
the number of folds which can be painful for the practitioner
whereas the theory does not require any parameter to be
tuned. From a computational point of view, the grid search
performed on the theoretical classification error is compara-
ble to that obtained by the cross validation. This is shown
empirically in Section C of the appendix by a comparison
of the running time between the choice of the model by the
cross validation and the choice of the model by the theory.

The real-world dataset considered in this article are the
Amazon review (textual) dataset encoded in p = 400-
dimensional tf*idf feature vectors of bag-of-words uni-
grams and bigrams, the MNIST dataset classification (Deng,
2012) where we consider all the differents pairs of clas-
sification of digits and the ciphar10 dataset(Krizhevsky
et al., 2009). For Amazon review, the positive vs. nega-
tive reviews of “books (B)”, “dvd (D)”, ’kitchen (K)’
“electronics (E)” products are used respectively for the
classification. For MNIST and ciphar10 dataset, different
images pairs are considered as different classification tasks.

5. Concluding Remarks
In this paper, based on a novel approach from Random
Matrix Theory, we propose a theoretical analysis of a Lasso-
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Figure 3. Empirical versus theoretical density of decision score
g(x) for (Top) Amazon review classification (p = 400, n1 =
n2 = 100) (Bottom) MNIST dataset. A PCA processing is ap-
plied on the MNIST dataset to extract the p = 100 first principal
components and n1 = n2 = 100. For both datasets, 400 samples
are used for the test dataset to compute the empirical histogram.

based classification through the analysis of an iterative algo-
rithm (ISTA). The theoretical analysis not only provides in-
teresting insights into its applicability in a classification con-
text, but also offers a reliable alternative to cross-validation.

This theoretical study opens up theoretical perspectives on
the analysis of iterative processes that induce very strong
dependencies between data. Similar applications are numer-
ous in machine learning and the approach can potentially
be used to analyse advanced algorithms such as stochastic
gradient descent and tensor-based classification algorithms.

From a more practical point of view, this study opens the ex-
ploration of an efficient use of the Lasso in real applications
by appropriately choosing the regularization parameter. Nat-
ural extensions are the imposition of low-complexity data
models like a sparse or low-rank structure (Cai et al., 2010)
of the data in classification algorithms and a judicious study
of those algorithms. The integration of sparsity constraints
in transfer learning algorithms is another avenue of research.
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Abstract
The appendix contains the main technical arguments omitted in the core of the article due to space limitation,
and is organized as follows. Section A recalls the optimization problem of Lasso as well as the main goal of the
theoretical analysis and the assumptions on the data. Section B derives the asymptotic classification error of the
Lasso-based classification. To this end, Section B.1 proves the Gaussian distribution of the classification score
under concentrated random vector assumptions. Section B.2 details the strategy of the derivation of the first and
second order moment of the classification score as well various lemmas related to Gaussian statistics of the soft
threshold functions needed for Theorem 1 of the main paper. Sections B.2.2 and B.2.3 then provide the overall
derivation of the mean and variance, respectively, of the score of decision for the case of generic covariance matrix.
The identity covariance matrix is retrieved as a special case. Section C complements the experimental part of the
main article by providing additional experiments and additional insights to the experiments derived in the main
paper. Section D explains how to use the code provided as supplementary files to reproduce the results of the
paper.

A. Lasso-based classification algorithm
Given a data matrix X = [x1, . . . ,xn] ∈ Rp×n of n data points of feature size p and its associated label vector y =
[y1, . . . , yn] ∈ Rn denoted as the training dataset, the goal is to predict the label y for a new test datum x ∈ Rp. Since
in this article we tackle a binary classification problem, yi ∈ {−1, 1} for i = 1, . . . , n. The multi-class setting can be
retrieved by an application of the one-versus-all approach which uses binary classifiers. For this reason we focus on
binary classification. Specifically, X is a classification problem from the training samples X = [X(1),X(2)] ∈ Rp×n with
X(`) = [x

(`)
1 , . . . ,x

(`)
n` ] ∈ Rp×n` the n` vectors of class C`, ` ∈ {1, 2}. In particular, n = n1 + n2. The Lasso-based

classification algorithm consists in deriving an optimal separating hyperplane ω? (or an approximation thereof) as the
solution of the `1-regularized least squares problem

ω? = arg min
ω∈Rp

1

2
‖y −XTω‖22 + λ‖ω‖1, (20)

where ‖ . ‖1 denotes the `1-norm, and λ > 0 is the regularization parameter. Although being convex, the optimization
problem (20) is not differentiable due to the non-differentiability of the `1-norm. An efficient algorithm to solve it is called
the iterative soft-thresholding algorithm (ISTA, (Daubechies et al., 2004)), which means to solve the fixed point equation

ω = Sτλ
(
ω − τX

(
XTω − y

))
, (21)

where τ > 0 is the step size. The fixed point equation has been proved to converge under appropriate choice of the step size
τ in (Daubechies et al., 2004). Specifically τ = 1/‖X‖22→2. The classification decision score then unfolds based on the sign
of the decision score g(x) = ω?Tx on the test datum x. Note that no bias is considered, since the data matrix X can be
centered therefore removing the bias of the decision score. The centering is generally performed through

X̊ = X

(
In −

1

n
1n1

T
n

)
. (22)

The goal of this work is to predict the theoretical classification error. To that end, one needs to understand the statistical
behavior of the decision score g(x) and in particular its distribution (Section B.1) and its first and second order moments
(Section B.2.2 and B.2.3), as explained in Section 3. Let us formally recall the Assumptions 1 and 2 from the main paper.
Assumption 1 (Growth Rate). As n→∞ and p→∞, we assume p/n→ c0 > 0 and n`/n→ c` > 0 for ` = 1, 2.
Assumption 2 (Distribution of X and x). There exist two constants C, c > 0 (independent of n, p) such that, for any
1-Lipschitz function f : Rp×n → R,

P(|f(X)−mf(X)| ≥ t) ≤ Ce−(t/c)2 ∀t > 0,

where mZ is a median of the random variable Z. We further impose that the columns of X are independent. These
conditions guarantee the existence of a mean and covariance for the columns of X and we denote, for all i ∈ {1, . . . , n`},

µ` ≡ E[x
(`)
i ],

Σ` ≡ Cov(x
(`)
i ).
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Furthermore, we write C` = Σ` + µ`µ
T
` and use the dummy variable x ∈ Rp for testing, which is independent of X.

B. Large dimensional analysis of ISTA
Under the aforementioned setting and assumptions, the goal of this section is precisely to understand the statistical behavior
of g(x) = ω?Tx for a new test datum x, which is at the heart of the derivation of the classification error. Specifically, we
will look at the distribution of g(x) first in Section B.1, explain the high level strategy of the proof as well as provide the
necessary lemmas in Section B.2 and finally and compute its first (Section B.2.2) and second order moment (Section B.2.3).

The standard decision for x to be allocated to class C1 (x→ C1) or to class C2 (x→ C2) is obtained by the following test

g(x) = ω?Tx
C2
≷
C1
η,

with η ∈ R a chosen threshold, the classification error rate ε of which (assuming equal prior class probability) is given by
ε = 1

2P (x→ C1|x ∈ C2) + 1
2P (x→ C2|x ∈ C1). Assuming that g(x) = ω?Tx has a normal distribution N (m1, σ

2
1) for

x ∈ C1 and a normal distribution N (m2, σ
2
2) for x ∈ C2, we obtain

1

2
P (x→ C1 |x ∈ C2) +

1

2
P (x→ C2 |x ∈ C1)

=
1

2
P
(
ω?Tx > η |x ∼ N

(
m1, σ

2
1

))
+

1

2
P
(
ω?Tx < η |x ∼ N

(
m2, σ

2
2

))
=

1

2

1√
2π

∫ 0

−∞
exp

(
− (x− η + m1)2

2σ2
1

)
dx+

1

2

1√
2π

∫ 0

−∞
exp

(
− (x−m2 + η)2

2σ2
2

)
dx

=
1

2
Q

(
m1 − η
σ1

)
+

1

2
Q

(
−m2 − η

σ2

)
=

1

2
Q

(
m1 − η
σ1

− m2 − η
σ2

)
.

with Q(t) = 1√
2π

∫ t
−∞ e−

x2

2 dx the Gaussian Q-function. For equal covariance matrix per class (Σ1 = Σ2), the variance
of the decision score is the same for class 1 and 2, i.e., σ1 = σ2 ≡ σ (see more details in Section (B.2.3)) and the
classification error is given by ε = 1

2Q
(
m1−m2

σ

)
, similar to the main theorem. Furthermore, when additionally the data

(assuming equal prior class probability) is centered (i.e., E[x |x ∈ C1] + E[x |x ∈ C2] = 0) as per equation (22), then also
E[g(x) |x ∈ C1] = −E[g(x) |x ∈ C2] so that the optimal threshold is η = 0 and the decision is given by η = 0, i.e.,

g(x)
C2
≷
C1

0.

B.1. Distribution of the classification score

The following Lemma ensures we can use the Gaussian Q function to predict the classification error in Theorem 1.

Lemma 1. Under concentrated random vector assumption on the random vector x1, . . . ,xn ∈ Rp as p, n→∞, g(x) =
ωTx converges in probability to a Gaussian random variable.

Proof. Under a Gaussian mixture assumption for the input data X, the convergence in distribution of the statistics of the
classification score gi(x) is immediate as the projection of the deterministic vector ω on the Gaussian random vector x, it
follows that ωTx is asymptotically Gaussian. Since conditionally on the training data X, the classification score g(x) is
expressed as the projection of the deterministic vector ω on the concentrated random vector x, the following central limit
theorem (CLT) version for concentrated vector unfolds by proving that projections of deterministic vector on concentrated
random vector is asymptotically gaussian. This is ensured by the following result, Theorem 2 (see more details also in
(Seddik et al., 2021; Tiomoko et al., 2020)).

Theorem 2 (CLT for concentrated random vectors (Klartag, 2007; Fleury et al., 2007)). If x ∈ Rp is a concentrated
random vector with E[x] = 0, E[xxT] = Ip with an observable diameter of order O(1) and σ be the uniform measure on
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the sphere Sp−1 ⊂ Rp of radius 1, then for any integer k, small compared to p, there exist two constants C, c and a set
Θ ⊂ (Sp−1)k ⊂ Rp×k such that σ ⊗ . . .⊗ σ︸ ︷︷ ︸

k

(Θ) ≥ 1−√pCe−c
√
p and for all θ = (θ1, . . . ,θk) ∈ Θ,

sup
t∈R

∣∣P(aTθTx ≥ t)− F0,1(t)
∣∣ ≤ Cp− 1

4 ∀a ∈ Rk,

where F0,1 is the cumulative distribution function of the standard normal distribution N (0, 1); see equation (46).

Then the result unfolds naturally. Since g(x) is asymptotically Gaussian by Lemma 1, we will focus on computing its first
and second order moments. Before we lay out the technical details, we explain the overall proof strategy in the next section.

B.2. Proof strategy

Given an initial value of the separating hyperplane ω0 ∈ Rp, and a random data matrix X ∈ Rp×n according to Assumption
2, with labels y ∈ Rn, we recall that the optimal hyperplane through the ISTA is obtained by the fixed point equation (21).
Due to the randomness of the data matrix X, the separating hyperplane ω? obtained from the iterative scheme will have
a random behavior with the statistics we want to track as function of the statistics of X and the parameters of the model.
Therefore, our focus will be on computing the first and second order statistics of the separating hyperplane ω?. Due to the
independence between the training set (used to obtain the feature selector ω? through ISTA) and the test set, the mean and
variance of g(x), for any test point x belonging to either class C`, ` = 1, 2, can be easily computed to be

E[g(x)] = E[ω?Tx] = ω̄?
T

E[x] = ω̄?
T

µ`, (23)

Var(g(x)) = E[g(x)2]− E[g(x)]2 = tr (ΣωΣ`) +O(n−1/2), (24)

where we use the shortcut notation ω̄? = E[ω?]. Furthermore, we recall that µ` and Σ` denote the mean and the covariance
of the data of the class C`, respectively. The main challenge of computing the mean and the variance of g(x) arises from the
computation of ω̄? = E[ω?] and Σω = Cov(ω?). The main challenge of computing E[ω?] and Cov(ω?) arises from the
intricate dependency introduced by the iterative scheme. At the iteration j of the fixed point equation (but before applying
the soft-thresholding function), let us denote the random vector

zj = ωj − τXXTωj + τXy. (25)

In order to find (23) and (24), our strategy is to construct an iterative scheme such that

E[ωj+1] = E[Sτλ(zj)], (26)

Cov(ωj+1) = E[Sτλ(zj)Sτλ(zj)T]. (27)

Since the soft-thresholding function is applied entrywise, to proceed and compute the quantities provided in equations (26)
and (27), the following steps are carried out:

• Prove that each element of the vector zj is Gaussian.

• Provide closed form solutions for Gaussian integrals over soft threshold functions.

• Compute the statistics of zj using the leave-one out approach and derive E[ωj+1] and Cov(ωj+1) from the two
previous steps.

B.2.1. GAUSSIAN DISTRIBUTION FOR ENTRIES OF zj

Lemma 2. Under concentrated random vector assumption on the random vector x1, . . . ,xn ∈ Rp as p, n → ∞, zjk
converges in probability to a Gaussian random variable for each component 1 ≤ k ≤ p.

Proof. We need to find the limiting distribution as p, n→∞ for every iteration j of the random scalar quantity zjk, the ith
entry of zj . Denoting the kth standard basis vector by ek, it holds that

zji = ωj
T
ek − τ

n∑
i=1

(
ωj

T
xi − yi

)
xik.
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Using the results on concentration of solution to random equations from (Seddik et al., 2021; Couillet & Louart, 2020), we
can deduce that ωj is a concentrated random vector with an observable diameter of O(1/

√
p), which means that for every

deterministic vector v of unit norm, Var(ωTv) = O(1/
√
p). This proves that asymptotically in the limit of p, n→∞, the

random vectors ωjTxi and ωjTek are deterministic with respect to the random variable xik for which the variance is of
order 1. The result then unfolds from a mere application of the central limit theorem to the sum of independent random
variables.

Since zj is asymptotically (as p, n→∞ with p = O(n)) a Gaussian random vector, computing the mean and the variance in
equations (26) and (27) then rely on computing statistics of a functional of gaussian random variables. For v ∼ N (v̄,Σv),
we denote the diagonal of its covariance matrix by σv = D(Σv) and

ϕ(λ, v̄,σv) = Ev∼N (v̄,Σv)[Sλ(v)], (28)

Γ(λ, v̄,σv) = Ev∼N (v̄,Σv)[Sλ(v)Sλ(v)T]. (29)

Note that Sλ on the right-hand side is applied entrywise, and the expectation is taken entrywise as well. Therefore, it is
convenient just to pass σv (i.e. containing the variances of all single components of v, rather than the entire covariance
matrix Σv) as arguments to the two functions ϕ and Γ. Therefore,

E[ωj+1] = ϕ(λτ, z̄j ,σzj ),

Cov(ωj+1) = Γ(λτ, z̄j ,σzj ).

Finally, one needs first to compute the statistics of zj and second to compute the functions ϕ and Γ. The closed form solution
for ϕ and Γ from (28) and (29) will be given below in Section B.3. We focus for now on computing the statistics of zj .

B.2.2. COMPUTING E[zj ]

The goal of this section is to find at each iteration the mean of zj = ωj + τX
(
y −XTωj

)
, which can be rewritten by

discarding the index j for simplicity of exposition as

z̄ = ω̄ + τ

n∑
i=1

µπ(i)yi − τ
n∑
i=1

E
[
xix

T
i ω
]
, (30)

where we recall that π(i) ∈ {1, 2} denotes the class (C1 or C2, respectively) of the sample i; compare also (5). The intrinsic

difficulty inherent to the calculus of z̄ arises from the computation of
n∑
i=1

E
[
xix

T
i ω
]

due to the non-trivial dependency

between ω and xi. Specifically we will first tackle xT
i ω, and then the whole expression

n∑
i=1

E
[
xix

T
i ω
]

will be obtained

after an application of the Stein identities. To handle this dependency, we propose to write

xT
i ω = ωTxi = ωT

−ixi + ωT
∆xi, (31)

where ω−i is the vector of regression of the Lasso optimization deprived from the contribution of the ith sample, rigorously
defined by the solution of the following iterative scheme

ω−i = Sτλ
(
ω−i + τX−i

(
y−i −XT

−iω−i
))

∈ Rp,

with X−i = [x1, . . . ,xi−1,0,xi+1, . . . ,xn] ∈ Rp×n and y−i = [y1, . . . , yi−1, 0, yi+1, . . . , yn]T ∈ Rn the data matrix and
label vector to each the sample i has been removed. Therefore ω−i is deprived of the sample xi is independent of xi which
allows to handle easily the term ωT

−ixi. We focus now on the second term ωT
∆xi. To that end let us define the parameterized

fixed point system (with a parameter t ∈ [0, 1])

ω−i(t) = Sτλ
(
ω−i(t) + τX−i

(
y−i −XT

−iω−i(t)
)

+ τtxi(yi − xT
i ω−i(t))

)
(32)

= Sτλ
(
ω−i(t) + τX−i

(
y−i −XT

−iω−i(t)
)

+ ρi(t)
)
, (33)

with ρi(t) = tτ
(
yi − ω−i(t)Txi

)
, such that ω−i(0) = ω−i and ω−i(1) = ω. This mapping can be seen as a path

between the two weight vectors ω = ω−i(0) and ω−i = ω−i(1) of the Lasso classifier, with and without applying the
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leave-one-out approach. To derive (32) in more detail, we use the original fixed point equation and split up the argument of
the soft-thresholding function in two parts, one deprived of the ith component (leave-one-out approach) and a second one
that makes up for the difference. Formally,

ω = Sτλ
(
ω + τX

(
y −XTω

))
= Sτλ

(
ω + τ

n∑
i=1

xi
(
yi − xT

i ω
))

= Sτλ

ω + τ

n∑
k 6=i

xk
(
yk − xT

kω
)

+ τxi
(
yi − xT

i ω
)

= Sτλ
(
ω + τX−i

(
y−i −XT

−iω
)

+ τxi
(
yi − xT

i ω
))
,

and now including a factor t in the third summand leads to (32). By the uniqueness of the fixed points (by the convergence
proof for ISTA (Daubechies et al., 2004)) for t ∈ [0, 1], t 7→ ω−i(t) given implicitly in (32) defines a function. Furthermore,
this function is continuous, and by the fundamental theorem of calculus, the difference between ω and its leave-one-out
approximation ω−i can be expressed as

ω∆ = ω − ω−i = ωj−i(1)− ωj−i(0) =

∫ 1

0

∂ω−i(t)

∂t
dt ∈ Rp, (34)

where ∂ω−i(t)
∂t is the derivative of ω−i(t) with respect to t. Using the function ρi introduced in equation (33) then leads to

∂ω−i(t)

∂t
=

[
∂ω−i(t)

∂t
− τX−iXT

−i
∂ω−i(t)

∂t
+
∂ρ(t)

∂t
xi

]
� S′τλ

(
ω−i(t) + τX−i

(
y−i −XT

−iω−i(t)
)

+ ρi(t)xi
)
,

where � is the Hadamard product, i.e. multiplication entrywise. Note that the soft-thresholding function Sλ is differentiable
almost everywhere, except for the points ±λ. Its derivative is defined piecewise with the points ±λ being assigned to either
of the neighboring intervals on which Sλ is being linear (or, more formally, applying the notion of subgradients), for instance

S′λ : R→ R, x 7→


1 if x ≤ −λ,
0 if |x| < λ,

1 if x ≥ λ.
(35)

To make the proof more precise, one could also work with the notion of subgradients or use a smooth approximations of Sλ.
However, to avoid the presentation becoming even more technical, we simply use the definition given above. In order to
pass from this notation to a matrix times vector multiplication, let us define for convenience

Di(t) = diag
(
S
′

τλ

(
ω−i(t) + τX−i

(
y−i −XT

−iω−i(t)
)

+ ρi(t)xi
))
.

Then we can rewrite the above equation as

∂ω−i(t)

∂t
=

[
Di(t)

∂ω−i(t)

∂t
− τDi(t)X−iX

T
−i
∂ω−i(t)

∂t
+ Di(t)

∂ρi(t)

∂t
xi

]
,

and by summarizing terms we finally obtain

[
Ip −Di(t) + τDi(t)XiX

T
i

] ∂ω−i(t)
∂t

= Di(t)
∂ρi(t)

∂t
xi ←→ Q−1

i (t)
∂ω−i(t)

∂t
= Di(t)

∂ρi(t)

∂t
xi,

which leads to a closed form solution for ∂ω−i(t)∂t given by

∂ω−i(t)

∂t
=
∂ρi(t)

∂t
Qi(t)Di(t)xi, (36)
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where Qi(t) =
(
Ip −Di(t) + τDi(t)X−iX

T
−i
)−1

. Relying on concentration of measure arguments and similarly as
proved in (Couillet & Louart, 2020; Seddik et al., 2021), Qi(t)Di(t)xi is almost constant with respect to t, and therefore,
the leave-one-out approach will give us a good approximation. Now, plugging (36) into the integral in (34), and by ρi(0) = 0,

ω∆ =

∫ 1

0

∂ρi(t)

∂t
Qi(t)Di(t)xi dt = ρi(1)QDxi = τ(yi − ωTxi)QDxi,

where Q := Qi(1) and D := Di(1). Inserting the obtained expression of ω∆ into equation (31), we obtain

E[ωTxi] = E[ωT
−ixi + τ(yi − ωTxi)x

T
i DQxi]

= E[ωT
−ixi] + E[τyix

T
i DQxi]− E[τωTxix

T
i DQxi]. (37)

Let us denote κ̄i = τE[xT
i DQxi] and the associated vector κ̄ = [κ̄1, . . . , κ̄n], we deduce after some simplifications and

particularly using Steins Lemma, equation (39) in Proposition 1 below (see also (Seddik et al., 2021, Remark A.9))

E[ωTxi] = E[ωT
−ixi] + yiκ̄i − κ̄iE[ωTxi] +O(n−1/2).

By collecting terms and rearranging, we are able to express E[ωTxi] as a function of E[ωT
−ixi], i.e. using the leave-one-out

approach to obtain the closed form solution

E[ωTxi] =
E[ωT

−ixi] + yiκ̄i

1 + κ̄i
+O(n−1/2).

Therefore, we will denote E[ωTxi] = ζCπ(i)
(E[ωT

−ixi]), as used in the main paper in equation (6), as follows by

ζCπ(i)
(r) =

r + yiκ̄i
1 + κ̄i

.

We are now ready to compute the expectation of zj using the Stein identities (reformulated for our purposes, using the
soft-thresholding function) as depicted by Proposition 1 as follows.
Proposition 1 (Stein identities). Given x ∈ Rp, a Gaussian random vector satisfying x ∼ N (µ,Σ), then for any v,ω ∈ Rp

and A ∈ Rp×p,

E[Sτλ(ωTx)vTx] = E[Sτλ(ωTx)]vTµ+ E[S
′

τλ(ωTx)]vTΣω, (38)

E[Sτλ(ωTx)xTAx] = E[Sτλ(ωTx)] tr (AΣ) +O(n−1/2). (39)

Recalling that C` = Σ` + µ`µ
T
` for ` = 1, 2 (cf. Assumption 2), from the first Stein identity (38) in Proposition 1, it is

immediate that for any xi belonging to class C` and for any v ∈ Rp, we have (with κi being defined just after (37) above)

E[ωTxiv
Txi] =

vTC`ω̄ + yiκ̄iv
Tµ`

1 + κ̄i
. (40)

Next, let us recall the concept of deterministic equivalents, a classical object in random matrix theory (Couillet & Debbah,
2011, Chapter 6), for the matrices Q and D which are at the core of the formulation of κ̄i. More precisely, a deterministic
matrix F̄ ∈ Rn×p is said to be a deterministic equivalent of a given random matrix F ∈ Rn×p, if for any deterministic
linear functional f : Rn×p → R of bounded norm (uniformly over p, n), f(F − F̄) → 0 almost surely as n, p → ∞.
(Analogously, one may define deterministic equivalents for row or column vectors by fixing either p = 1, n→∞ or n = 1,
p→∞.) In particular, for u,v of unit `2-norm, uT(F− F̄)v

a.s.−→ 0 and, for A ∈ Rp×n deterministic of bounded operator
norm, 1

n tr A(F− F̄)
a.s.−→ 0. We will shortly write F↔ F̄ to indicate that F̄ is a deterministic equivalent for F. Deriving

deterministic equivalents of the various objects under consideration will be a crucial tool to derive the main result Theorem
1. To begin with, the deterministic equivalent z̄ of z is obtained using equation (30), further denoting by a` the deterministic
equivalent of ωTxixi for xi in class C`, that is, by (40),

z̄ = ω̄ − τ
2∑
`=1

n`
(
a` + (−1)`µ`

)
,

a` =
C`ω̄ + (−1)`κ`µ`

1 + κ`
, ` = 1, 2,

κ` = τE [tr (C`DQ)] , ` = 1, 2. (41)
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Since x
(`)
1 , . . . ,x

(`)
n` , ` = 1, 2, are i.i.d. data vectors, we impose the natural constraint of equal κ̄1 = . . . = κ̄n` (with κi

being defined just after (37)) within every class ` = 1, 2. As such, we may reduce the complete score vector κ̄ ∈ Rn under
the form

κ̄ = [κ11T
n1
, κ21T

n2
]T = [κ1, . . . , κ1︸ ︷︷ ︸

n1 times

, κ2, . . . , κ2︸ ︷︷ ︸
n2 times

]T. (42)

Thus, deterministic equivalents are particularly suitable to handle bilinear forms involving the random matrix F, so in
particular the statistics of κk, seen as bilinear forms involving the random matrices Q and D. A deterministic equivalent for
D denoted D̄ is easily obtained by computing the expectation

E [D] = E
[
diag

(
S
′

τλ

(
zj
))]

= diag
(
ψ
(
τλ, z̄j ,σzj

))
, (43)

with zj ≡ ωj + τX
(
y −XTωj

)
and where ψ(λ, v̄,σv) = Ev∼N (v̄,Σv)

[
S
′

λ(v)
]
. The deterministic equivalent for Q is

retrieved similarly as provided in (Louart & Couillet, 2018, Section 3.2) and given as

Q̄ =

(
Ip − D̄ +

2∑
`=1

τn`
1 + κ`

C`D̄

)−1

.

B.2.3. COMPUTING Cov(zj)

By discarding the index j in equation (25) for simplicity of the exposition, we will compactly write z = ω− τX(XTω−y)
in the sequel. In order to compute Cov(z) = E[zzT]− z̄z̄T, we by calculating both zzT and z̄z̄T as follows. Firstly, for zzT,

zzT =
[
ω − τX(XTω − y)

] [
ω − τX(XTω − y)

]T
= ωωT − τωωTXXT + τωyTXT − τXXTωωT + τXyωT

+ τ2XXTωωTXXT − τ2XXTωyTXT − τ2XyωTXXT + τ2XyyTXT, (44)

by standard linear algebra. Similarly, including the expectation, we obtain for zz̄T by the linearity of the expected value

z̄z̄T = E
[
ω − τX(XTω − y)

]
E
[
ω − τX(XTω − y)

]T
= ω̄ω̄T − τ ω̄E[ωTXXT] + τ ω̄E[yTXT]− τE[XXTω]ω̄T

+ τE[Xy]ω̄T + τ2E[XXTω]E[ωTXXT]− τ2E[XXTω]E[yTXT]− τ2E[Xy]E[ωTXXT] + τ2E[XyyTXT].
(45)

Next, we pass to the expectation in (44) and combine it with (45) to obtain an expression for Cov(z). Let us recall, however,
that we are essentially interested in tr (Cov(z)Σ`) from (24). Therefore we will compute E [tr(PCov(z))] for any matrix
P of bounded norm (asymptotically, in the sense of finding an deterministic equivalent for Cov(z)). By taking the trace,
while combining (44) and (45), note that we are able to summarize some terms. Namely whenever both some matrix and
its transpose appear in the calculation above. For instance, ωωTXXT and its transpose XXTωωT both appearing in (44)
have the same trace, and similarly ω̄E[ωTXXT] and E[XXTω]ω̄T in (45). Therefore, those terms can be summarized in a2

below; similar for the other terms.

E[tr(PCov(z))]

=E[tr(PzzT)]− tr(Pz̄z̄T)

= E
[
tr
(
PωωT −Pω̄ω̄T

)]︸ ︷︷ ︸
a1

−2τE
[
tr
(
PXXTωωT − E

[
PXXTω

]
ω̄T
)]︸ ︷︷ ︸

a2

+ 2τE
[
tr
(
PXyωT − E [PXy] ω̄T

)]︸ ︷︷ ︸
a3

+ τ2E
[
tr
(
PXXTωωTXXT − E

[
PXXTω

]
E
[
ωTXXT

])]︸ ︷︷ ︸
a4

+−2τ2E
[
tr
(
PXXTωyTXT + E

[
PXXTω

]
E
[
yTXT

])]︸ ︷︷ ︸
a5

+ τ2E
[
tr
(
PXyyTXT − E[PXy]E[yTXT]

)]︸ ︷︷ ︸
a6

.
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The calculation of the terms a1, . . . , a6 will enable us to find the deterministic equivalent Āi satisfying ai = tr(PĀi) for
any P ∈ Rp×p of asymptotically bounded norm. To begin with, the very first term Ā1 = Σω is easily obtained since it
corresponds to the definition of the covariance matrix. Throughout the calculation, we need to find a random equivalent for
ωTPxi that we handle using the decomposition of ω = ω−i + ω∆ previously performed (compare (31) and (34)),

ωTPxi = ωT
−iPxi + ωT

∆Pxi = ωT
−iPxi + τ

(yi − ωT
−ixi)x

T
i PDQxi

1 + κ̄i
.

Furthermore, we define K` = τE
[
xT
i PDQxi|xi ∈ C`

]
= τ tr

(
C`PD̄Q̄

)
and the associated matrix K` = τC`PD̄Q̄ and

its diagonal elements k` = D(K`). Before we continue with the laborious derivations, let us also recall κl from (41) and κ̄
from (42). Using straightforward algebraic calculations, we obtain successively

a2 = −2τ tr
(
E[PXXTωωT]

)
+ 2τ tr

(
E[PXXTω

]
E
[
ωT]

)
= −2τ

(
E[ωTPXXTω]

)
+ 2τE

[
ω̄TPXXTω

]
= −2τ

n∑
i=1

E[ωTPxix
T
i ω] + 2τ

2∑
`=1

n`ω̄
TPa`

= −2τ

n∑
i=1

E

[(
ωT
−iPxi +

yiKi −Kiω
T
−ixi

1 + κ̄i

)(
xT
i ω−i + yiκ̄i

1 + κ̄i

)]
+ 2τ

2∑
`=1

n`ω̄
TPa`

= −2τ

2∑
`=1

n`
tr(PC`Cω)

1 + κ`
− 2τ

2∑
`=1

yiκ̄i tr
(
Pµ`ω̄

T
)

1 + κ`
− 2τ

2∑
`=1

(−1)`K`ω̄
Tµ`

(1 + κ`)2
− 2τ

2∑
`=1

κ`K`ω̄
Tµ`

(1 + κ`)2

+ 2τ

2∑
`=1

Ki tr (CωC`)

(1 + κ`)2
+ 2τ

2∑
`=1

(−1)`κ`K`ω̄
Tµ`

(1 + κ`)2
+ 2τ

2∑
`=1

Pω̄

[
ω̄Tµ`µ

T
`

1 + κ`
+

(−1)`κ`µ
T
`

1 + κ`
+
ω̄TΣ`

1 + κ`

]

= −2τ

2∑
`=1

n`
tr(PΣ`Σω)

1 + κ`
− 2τ

2∑
`=1

n`(−1)`κ` tr
(
Pµ`ω̄

T
)

1 + κ`
− 2τ

2∑
`=1

n`(−1)`K`ω̄
Tµ`

(1 + κ`)2
− 2τ

2∑
`=1

n`κ`K`ω̄
Tµ`

(1 + κ`)2

+ 2τ

2∑
`=1

n`K` tr (CωC`)

(1 + κ`)2
+ 2τ

2∑
`=1

n`(−1)`κ`K`ω̄
Tµ`

(1 + κ`)2

+ 2τ

2∑
`=1

n` tr

(
Pω̄

[
ω̄Tµ`µ

T
`

1 + κ`
+

(−1)`κ`µ
T
`

1 + κ`
+
ω̄TΣ`

1 + κ`

])
.

where Cω = Σω + ω̄ω̄T. Thus, we obtain the deterministic equivalent Ā2

Ā2 =

2∑
`=1

−2τn`Σ`Σω
1 + κ`

− 2
τn`(−1)`κ`µ`ω̄

T

1 + κ`
− 2

n`τ(−1)`ω̄Tµ`K`

(1 + κ`)2
− 2

τn`κ`K`

(1 + κ`)2
+ 2

τn` tr (ΣωΣ`) K`

(1 + κ`)2

+ 2
τn`(−1)`(ω̄Tµ`)K`

(1 + κ`)2
+ 2

τn`ω̄aT
`

(1 + κ`)
.

Next, for a3 we obtain

a3 = 2τE
[
tr
(
PXyωT

)]
− 2τE

[
tr
(
PXyω̄T

)]
= 2τ

n∑
i=1

yiE
[
ωTPxi

]
− 2τyiE

[
ω̄TPxi

]
= 2τ

n∑
i=1

yiE

[
ωT
−iPxi +

yiKi −Kiω
T
−ixi

1 + κ̄i

]
− 2τyiE

[
ω̄TPxi

]
= 2

2∑
`=1

τn`K`

(
1− (−1)`ω̄Tµ`

)
1 + κ`

.
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Therefore, the deterministic equivalent Ā3 is given by

Ā3 = 2

2∑
`=1

τn`K`

(
1− (−1)`ω̄Tµ`

)
1 + κ`

.

For a4 we get

a4 = τ2E
[
tr
(
PXXTωωTXXT

)]
− τ2E

[
tr
(
PXXTωE

[
ωTXXT

])]
= τ2

n∑
i,j=1

E
[
ωTxiω

Txjx
T
i Pxj

]
− τ2 tr

(
PE
[
XXTω

]
E
[
ωTXXT

])
= τ2

n∑
i=1

E
[
(ωTxi)

2xT
i Pxi

]
+ τ2

n∑
i 6=j

E
[
ωTxiω

Txjx
T
i Pxj

]
− τ2 tr

(
PE
[
XXTω

]
E
[
ωTXXT

])
= τ2

n∑
i=1

E
[
(ωTxi)

2xT
i Pxi

]
+ τ2

n∑
i 6=j

E
[
ωTxiω

Txjx
T
i Pxj

]
− τ2 tr

(
PE
[
XXTω

]
E
[
ωTXXT

])
.

Using the second Stein identity, 39 in Proposition 1 (see also (Seddik et al., 2021, Remark A.9)), we have

E
[
(ωTxi)

2xT
i Pxi

]
= E

[
(ωTxi)

2
]

tr (PCi) +O(n−1/2)

E
[
ωTxiω

Txjx
T
i Pxj

]
=

(
ω̄Tµi + yiκ̄i

1 + κ̄i
µi +

Σiω̄

1 + κ̄i

)T

P

(
ω̄Tµi + yiκ̄i

1 + κ̄i
µi +

Σiω̄

1 + κ̄i

)
+

tr (ΣiPΣjΣω)

(1 + κ̄i)(1 + κ̄j)
+O(n−1/2)

By denoting

E` = E
[
(ωTxi)

2|xi ∈ C`
]

=
tr (ΣωΣ`) + 2(−1)`κ`ω

Tµ` + κ2
`

(1 + κ`)2
,

we obtain

Ā4 =
τ2n2

1Σ1ΣωΣ1

(1 + κ1)2
+ 2

τ2n1n2Σ1ΣωΣ2

(1 + κ1)(1 + κ2)
+
τ2n2

2Σ2ΣωΣ2

(1 + κ2)2
+

2∑
`=1

τ2n`E`C`.

In the next step, we obtain a5 given by

a5 =− 2τ2E
[
tr
(
PXXTωyTXT

)]
+ 2τ2E tr

(
P
[
XXTω

]
E
[
yTXT

])
=− 2τ2

n∑
i,j=1

yjE
[
tr
(
ωTxix

T
i Pxj

)]
+ 2τ2E tr

(
P
[
XXTω

]
E
[
yTXT

])
=− 2τ2

n∑
i=1

yiE
[
tr
(
ωTxix

T
i Pxi

)]
− 2τ2

n∑
i 6=j

yjE
[
tr
(
ωTxix

T
i Pxj

)]
+ 2τ2E tr

(
P
[
XXTω

]
E
[
yTXT

])
=− 2τ2

n∑
i=1

yi
ω̄Tµi + yī̄κi

1 + κ̄i
tr (PCi)− 2τ2

n∑
i 6=j

(
ω̄Tµi + yiκ̄i

1 + κ̄i
µi +

Σiω̄

1 + κ̄i

)T

Pµj

+ 2τ2E tr
(
P
[
XXTω

]
E
[
yTXT

])
=− 2τ2

2∑
`=1

n`(−1)`
ω̄Tµ` + (−1)`κ`

1 + κ`
tr (PC`) ,

so that we obtain the deterministic equivalent Ā5,

Ā5 = −2

2∑
`=1

n`τ
2(−1)`

(
ωTµ` + (−1)`κ̄`

)
C`

(1 + κ`)
.
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Finally, the deterministic equivalent Ā6 is given by

Ā6 = n`τ
2Σ`.

Remark 1 (Special case of identity covariance matrix Σ1 = Σ2 = Ip). In this case, only the diagonal element of Σ` is
important since Var (g(x)) = tr (Σ) = σω1p with σω = D(Σω). Therefore, one only needs the deterministic equivalent
of the diagonal elements of Āi which we denote by σi. Similarly, we define k` = D(K`). A direct application of the
deterministic equivalent obtained for Ai allows to obtain

σ1 = σω,

σ2 =

2∑
`=1

−2
τn`σω
1 + κ`

− 2
τn`(−1)`ωTµ`k`

(1 + κ`)2
− 2

τn`κ`k`
(1 + κ`)2

+ 2
τn`σω1pk`
(1 + κ`)2

+ 2τ
n`(−1)`κ`ω

Tµ`k`
(1 + κ`)2

,

σ3 = 2

2∑
`=1

τn`
(
1− (−1)`ωTµ`

)
k`

1 + κ`
,

σ4 =
n2τ2σω

(1 + κ1)(1 + κ2)
+ τ2

2∑
`=1

n`E`D(C`),

σ5 + σ6 = nτ21p −
2∑
`=1

2
τ2n`(−1)`

(
ωTµ` + (−1)`κ`

)
D(C`)

1 + κ`
.

Furthermore, the result of Theorem 1 of the main paper unfolds by rearranging the terms.

B.3. Explicit formulas for the functions ϕ, ψ and Γ

In the proof, we used the three help functions ϕ, ψ and Γ. The goal of this section is to obtain precise and simplified
expressions for those functions that are easy to interprete and enable an efficient calculation. Even though already introduced
before in equations (28), (29) and (43), let us recall the functions for completeness and in the interest of better readability.

ϕ(λ, µ, σ) = Ez∼N (µ,σ2)[Sλ(z)],

ψ(λ, µ, σ) = Ez∼N (µ,σ2)[S
′
λ(z)],

Γ(λ, µ, σ) = Ez∼N (µ,σ2)[Sλ(z)2].

Next, let us recall the density function fµ,σ2(y) and the distribution function Fµ,σ2(y) of the univariate normal distribution
N (µ, σ2) as well as the error function erf and their various properties that will be needed in the proofs below.

fµ,σ2(y) =
1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
,

erf(x) =
2√
π

∫ x

0

e−τ
2

dτ, erf ′(x) =
2√
π
e−x

2

, erf(−x) = − erf(x),

erf(a, b) =
2√
π

∫ b

a

e−τ
2

dτ, erf(a, b) = erf(b)− erf(a),

Fµ,σ2(y) =
1

2

(
1 + erf

(
y − µ√

2σ2

))
, (46)

erf(0) = 0, lim
x→∞

erf(x) = 1, lim
x→−∞

erf(x) = −1.

Furthermore, in the sequel we will make use of the anti-derivative Hµ,σ2 of the function y 7→ y · fµ,σ2(y) as well as the
anti-derivative Gµ,σ2(y) of the function y 7→ y2 · fµ,σ2(y). They are given by given by

Hµ,σ2(y) =
σ

2

(
−µ
σ

erf

(
µ− y√

2σ

)
−
√

2

π
exp

(
− (y − µ)2

2σ2

))
, (47)

Gµ,σ2(y) = −µ
2 + σ2

2
erf

(
µ− y√

2σ2

)
− σ (µ+ y)√

2π
exp

(
− (µ− y)

2

2σ2

)
. (48)
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The following Lemmas 3, 4 and 5 will provide the desired formulas for the three help functions ϕ, ψ and Γ.

Lemma 3 (Mean of Sλ(z).). Let z ∼ N (µ, σ2) and Sλ be the soft-thresholding operator with λ > 0. Furthermore, denote
by fµ,σ2 the density function of N (µ, σ2). Then, the ϕ(λ, µ, σ) = E[Sλ(z)] is given by

ϕ(λ, µ, σ) =µ+
σ√
2π

[
exp

(
− (µ− λ)2

2σ2

)
− exp

(
− (µ+ λ)2

2σ2

)]
+

(µ− λ)

2
erf

(
(µ− λ)√

2σ

)
− (µ+ λ)

2
erf

(
(µ+ λ)√

2σ

)
.

Note that limλ→0 E[Sλ(z)] = µ, and furthermore limλ→∞ E[Sλ(z)] = 0. Indeed, note that the summands containing the
erf function can be rewritten as

(µ− λ)

2
erf

(
(µ− λ)√

2σ

)
− (µ+ λ)

2
erf

(
(µ+ λ)√

2σ

)
=
µ

2

(
erf

(
µ− λ√

2σ

)
− erf

(
µ+ λ√

2σ

))
− λ

2

(
erf

(
µ− λ√

2σ

)
+ erf

(
µ+ λ√

2σ

))
By passing to the limit for λ→∞, using basic properties of the erf function and using the rule of de L’Hospital for the
second summand, we obtain

lim
λ→∞

[
µ

2

(
erf

(
µ− λ√

2σ

)
− erf

(
µ+ λ√

2σ

))
− λ

2

(
erf

(
µ− λ√

2σ

)
+ erf

(
µ+ λ√

2σ

))]
= −µ,

which cancels with the other summand µ, while the exponentials vanish in the limit λ→∞.

Proof. Since Sλ is a piecewise linear (or even constant zero) function on the intervals (−∞,−λ], [−λ,−λ] and [λ,∞), the
mean Ez∼N (µ,σ2)[Sλ(z)] can be easily obtained by integration via∫ ∞

−∞
Sλ(y)fµ,σ2(y) dy =

∫ −λ
−∞

(y + λ)fµ,σ2(y) dy +

∫ λ

−λ
0 · fµ,σ2(y) dy +

∫ ∞
λ

(y − λ)fµ,σ2(y) dy

=

∫ −λ
−∞

(y + λ)fµ,σ2(y) dy +

∫ ∞
λ

(y − λ)fµ,σ2(y) dy

=

∫ 0

−∞
yfµ,σ2(y − λ) dy +

∫ ∞
0

yfµ,σ2(y + λ) dy

=

∫ 0

−∞
yfµ+λ,σ2(y) dy +

∫ ∞
0

yfµ−λ,σ2(y) dy. (49)

Let us first focus on the second summand and use (47) (replacing µ by µ− λ, and using basic properties of the involved
functions): ∫ ∞

0

yfµ−λ,σ2(y) dy =
[
Hµ−λ,σ2(y)

]∞
0

=

[
σ

2

(
− (µ− λ)

σ
erf

(
−y − (µ− λ)√

2σ

)
−
√

2

π
exp

(
− (y − (µ− λ))2

2σ2

))]∞
0

=

[
σ

2

(µ− λ)

σ

]
−
[
σ

2

(
− (µ− λ)

σ
erf

(
(µ− λ)√

2σ

)
−
√

2

π
exp

(
− (µ− λ)2

2σ2

))]

=
σ

2

[
(µ− λ)

σ
+

(µ− λ)

σ
erf

(
(µ− λ)√

2σ

)
+

√
2

π
exp

(
− (µ− λ)2

2σ2

)]

=
(µ− λ)

2
+

(µ− λ)

2
erf

(
(µ− λ)√

2σ

)
+

σ√
2π

exp

(
− (µ− λ)2

2σ2

)
.
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Next, we deal with the first summand above and again use (47) (this time replacing µ by µ+ λ); similar to above, we obtain

∫ 0

−∞
yfµ+λ,σ2(y) dy =

[
Hµ+λ,σ2(y)

]0
−∞

=

[
σ

2

(
− (µ+ λ)

σ
erf

(
−y − (µ+ λ)√

2σ

)
−
√

2

π
exp

(
− (y − (µ+ λ))2

2σ2

))]0

−∞

=

[
σ

2

(
− (µ+ λ)

σ
erf

(
(µ+ λ)√

2σ

)
−
√

2

π
exp

(
− (µ+ λ)2

2σ2

))]
+

[
(µ+ λ)

2

]
=− (µ+ λ)

2
erf

(
(µ+ λ)√

2σ

)
− σ√

2π
exp

(
− (µ+ λ)2

2σ2

)
+

(µ+ λ)

2
.

Altogether, we obtain the closed-form solution of ϕ(λ, µ, σ),∫ ∞
−∞

Sλ(y)fµ,σ2(y) dy =µ+
σ√
2π

[
exp

(
− (µ− λ)2

2σ2

)
− exp

(
− (µ+ λ)2

2σ2

)]
+

(µ− λ)

2
erf

(
(µ− λ)√

2σ

)
− (µ+ λ)

2
erf

(
(µ+ λ)√

2σ

)
.

finishing the proof.

Lemma 4. [Mean of S′λ(z).] Let z ∼ N (µ, σ2) and Sλ be the soft-thresholding operator with λ > 0. Furthermore, denote
by fµ,σ2 the density function of N (µ, σ2). Then, the mean E[S′λ(z)] is given by

ψ(λ, µ, σ) = Ez∼N (µ,σ2)[S
′
λ(z)] = 1 +

1

2

(
erf

(
−λ+ µ√

2σ2

)
− erf

(
λ− µ√

2σ2

))
.

Note that by the properties of the erf function, on immediately obtains the limit limλ→∞ E[S′λ(z)] = 0.

Proof. Since S′λ is a piecewise linear constant function on the intervals (−∞,−λ), (−λ,−λ) and (λ,∞), ignoring the
borders as they do not contribute to the integration the mean Ez∼N (µ,σ2)[S

′
λ(z)] can be easily obtained by integration via∫ ∞

−∞
Sλ(y)fµ,σ2(y) dy =

∫ −λ
−∞

1 · fµ,σ2(y) dy +

∫ λ

−λ
0 · fµ,σ2(y) dy +

∫ ∞
λ

1 · fµ,σ2(y) dy

=

∫ −λ
−∞

fµ,σ2(y) dy +

∫ ∞
λ

fµ,σ2(y) dy

=

∫ 0

−∞
fµ,σ2(y − λ) dy +

∫ ∞
0

fµ,σ2(y + λ) dy

=

∫ 0

−∞
fµ−λ,σ2(y) dy +

∫ ∞
0

fµ+λ,σ2(y) dy

=

∫ 0

−∞
fµ−λ,σ2(y) dy + 1−

∫ 0

−∞
fµ+λ,σ2(y) dy

=
1

2

(
1 + erf

(
−λ+ µ√

2σ2

))
+ 1− 1

2

(
1 + erf

(
λ− µ√

2σ2

))
=1 +

1

2

(
erf

(
−λ+ µ√

2σ2

)
− erf

(
λ− µ√

2σ2

))
,

finishing the proof.
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Lemma 5. [Variance of Sλ(z).] Let z ∼ N (µ, σ2) and Sλ be the soft-thresholding operator with λ > 0. Furthermore,
denote by fµ,σ2 the density function of N (µ, σ2). Then, the variance Γ(λ, µ, σ) = Var(Sλ(z)) is given by

Γ(λ, µ, σ) =µ2 + λ2 + σ2 +
(µ+ λ)

2
+ σ2

2
erf

(
µ+ λ√

2σ2

)
+
σ (µ+ λ)√

2π
exp

(
− (µ+ λ)

2

2σ2

)

− (µ− λ)
2

+ σ2

2
erf

(
µ− λ√

2σ2

)
− σ (µ− λ)√

2π
exp

(
− (µ− λ)

2

2σ2

)
− E[Sλ(z)]2,

with E[Sλ(z)] given by Lemma 3.

Proof. The mean Ez∼N (µ,σ2)[S
2
λ(z)] can be easily obtained by integration via∫ ∞

−∞
Sλ(y)2fµ,σ2(y) dy =

∫ −λ
−∞

(y + λ)2fµ,σ2(y) dy +

∫ λ

−λ
0 · fµ,σ2(y) dy +

∫ ∞
λ

(y − λ)2fµ,σ2(y) dy

=

∫ 0

−∞
y2fµ+λ,σ2(y) dy +

∫ ∞
0

y2fµ−λ,σ2(y) dy. (50)

Using the formula for the anti-derivative (48) allows to retrieve for the first summand in (50)∫ 0

−∞
y2fµ+λ,σ2(y) dy =

[
Gµ+λ,σ2(y)

]0
−∞

=

[
− (µ+ λ)

2
+ σ2

2
erf

(
µ+ λ− y√

2σ2

)
− σ (µ+ λ+ y)√

2π
exp

(
− (µ+ λ− y)

2

2σ2

)]0

−∞

=− (µ+ λ)
2

+ σ2

2
erf

(
µ+ λ√

2σ2

)
− σ (µ+ λ)√

2π
exp

(
− (µ+ λ)

2

2σ2

)
+

(µ+ λ)
2

+ σ2

2
.

For the second summand in (50), we obtain in a similar way∫ ∞
0

y2fµ−λ,σ2(y) dy =
[
Gµ−λ,σ2(y)

]∞
0

=

[
− (µ− λ)

2
+ σ2

2
erf

(
µ− λ− y√

2σ2

)
− σ (µ− λ+ y)√

2π
exp

(
− (µ− λ− y)

2

2σ2

)]∞
0

=
(µ− λ)

2
+ σ2

2
erf

(
µ− λ√

2σ2

)
+
σ (µ− λ)√

2π
exp

(
− (µ− λ)

2

2σ2

)
+

(µ− λ)
2

+ σ2

2
.

Therefore, combining our findings finally yields

Ez∼N (µ,σ2)[S
2
λ(z)] =µ2 + λ2 + σ2 +

(µ+ λ)
2

+ σ2

2
erf

(
µ+ λ√

2σ2

)
+
σ (µ+ λ)√

2π
exp

(
− (µ+ λ)

2

2σ2

)

− (µ− λ)
2

+ σ2

2
erf

(
µ− λ√

2σ2

)
− σ (µ− λ)√

2π
exp

(
− (µ− λ)

2

2σ2

)
.

We can then deduce the result by using Varz∼N (µ,σ2)(Sλ(z)) = E
[
S2
λ(z)

]
− E [Sλ(z)]

2.

C. Additional experiments
C.1. Running time comparison of theoretical analysis of ISTA

In this section we illustrate in Figure 5 and 6 the discussion of the complexity of the Theorem 1 by providing the number
of iterations and the running time required for convergence of the deterministic iterative process (see Theorem 1) and the
iterative process of the classical ISTA algorithm. This experiment experimentally confirms the discussion on the iterative
process made in the main article and later in section 4 where the issue of algorithmic complexity was raised.
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Figure 5. Number of iterations required for empirical versus theoretical ISTA as function of the regularization parameter for a tolerance of
e−7. Gaussian mixture model with class sizes n1, n2 = 100 and x

(`)
i ∼ N (µ`, Ip), for ` = 1, 2, with mean µ` = (−1)`b�m, where

m ∼ N (0p,
1
p
Ip), and where b is a Bernoulli random vector that puts each single entry to zero with probability α/p, with the feature

size p = 1000 and α = 0.9.

C.2. On the regularization parameter

To complement the experimental part on the influence of the regularization parameter λ, we represent in Figure 7 as function
of the regularization parameter for different values of the sparsity level of the mean of the data µ`.

C.3. On the influence of the parameter β.

In this section we propose instead of using the soft threshold function Sλ(x) = (sign(x) ·max(0, |x| − λ)) as used in the
main, we propose a weighted version Sβ,λ(x) = β (sign(x) ·max(0, |x| − λ)) in order to infer the influence of β. As
shown in Figure 8, the parameter β does not play any role on the theoretical performance. However, small values of β
generally leads to a faster convergence of the iterative process.

C.4. On different shrinkage functions

One of the advantages of the theoretical study is to provide a way to compare different functions used in the shrinkage phase
of the ISTA algorithm. In this section in Figure 9, we compare two functions: the soft threshold function used in the paper
and the piecewise non linear function defined as

f(x, λ) = (sign(x) ·max(0, |x| − λ))
2
.

As such the theoretical analysis can be used to evaluate the pertinent of any shrinkage function for classifying data under a
sparse constrain on the the separating hyperplane.

C.5. On the use of different loss functions

D. Code Readme
This section explains how to use the code implementing the “Large Dimensional Analysis of Lasso-based Classification”
proposed in the core of the article.
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Figure 6. Running time for empirical versus theoretical ISTA for (left) as function of the feature size p and (right) as a function of the
regularization parameter for a tolerance of e−7. Gaussian mixture model with class sizes n1, n2 = 1 000 and x

(`)
i ∼ N (µ`, Ip), for

` = 1, 2, with mean µ` = (−1)`b�m, where m ∼ N (0p,
1
p
Ip), and where b is a Bernoulli random vector that puts each single entry

to zero with probability α/p with α = 0.9.
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Figure 7. Theoretical versus empirical classification error as function of the regularization parameter, µ` ∼ N (0p, Ip) and components
of µ` put at zeros with probability α = 0.95 (left) and α = 0.5 (right).
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Figure 8. Theoretical versus empirical classification error as function of the regularization parameter µ` ∼ N (0p, Ip) and components of
µ` put at zeros with probability α = 0.9.
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Figure 9. Relative gain in accuracy of the Lasso compared to the ridge-less regression as a function of the regularization parameter and the
difficulty of the problem (inverse of the signal-to-noise ratio) for two different shrinkage function of sparsity for α = 0.9 and (left) soft
thresholding-operator and (right) Function f(x, λ) = (sign(x) ·max(0, |x| − λ))2.
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Figure 10. Synthetic (left); MIT-BIH dataset (middle) and Amazon Review (right). (Similar to Figure 2 in the main paper!)

D.1. Archive content

• The function implementing our method is called ista theory.py which computes the theoretical classification
error as well as the statistics of the decision score g(x).

• The main script comparing the theoretical versus empirical classification error is empirical versus theory.py.
The code is also used to visualize the theoretical histogram and theoretical Gaussian predictions.
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• The main script illustrating the phase diagram illustration the key role of the function ϕ and Γ is
diagram phase lasso.py.

• The main script illustrating the hyperparameter selection using the theoretical classification error
hyperparameter selection.py.

• The script utils: containing all the important functions needed to execute the main scripts.

• Folder data: where the different datasets can be uploaded.

D.2. Code empirique versus theory.py

The different options proposed to execute the script PFA.m are as follows:

• “data” to be chosen between ’Synthetic’, ’Amazon’and MNIST to test the close fit between theory and empirical ISTA
as well as the empirical/theoretical histograms.

• “domain” is the domain of the dataset (for MNIST either ’ciphar’ or ’mnist-like’, for Amazon either ’Books’, ’Kitchen’,
’Elec’, ’DVD’)

D.3. Reproducing the results of the article

The following sections detail the parameter setting to reproduce the experiments of the main article.

D.3.1. FIGURE 1

Script→ diagram phase lasso.py
p→ 100
α→ 0.01/0.5

D.3.2. FIGURE 2

Script→ empirique versus theory.py
dataset→ Synthetic
domain→ ’ciphar’
α→ 0.01/0.05/0.5
p→ 100

D.3.3. FIGURE 3

Script→ empirique versus theory.py
dataset→ Synthetic/Amazon/MNIST
domain→ ’ciphar’/’Books’/’mnist-like’
α→ 0.01
p→ 100

D.3.4. FIGURE 4

Script→ hyperparameter selection.py
dataset→ Amazon/MNIST
domain→ ’Books’, ’Kitchen’, ’DVD’, ’Elec’/’mnist-like’, ’ciphar’
α→ 0.01
p→ 100


