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Abstract

This paper proposes a self-supervised objective
for learning representations that localize objects
under occlusion - a property known as object per-
manence. A central question is the choice of learn-
ing signal in cases of total occlusion. Rather than
directly supervising the locations of invisible ob-
jects, we propose a self-supervised objective that
requires neither human annotation, nor assump-
tions about object dynamics. We show that object
permanence can emerge by optimizing for tempo-
ral coherence of memory: we fit a Markov walk
along a space-time graph of memories, where the
states in each time step are non-Markovian fea-
tures from a sequence encoder. This leads to a
memory representation that stores occluded ob-
jects and predicts their motion, to better localize
them. The resulting model outperforms existing
approaches on several datasets of increasing com-
plexity and realism, despite requiring minimal
supervision, and hence being broadly applicable.

1. Introduction
Object permanence – the notion that objects, such as the
person in Figure 1, continue to exist even when occluded –
is a crucial component of perception. It is fundamental in
development (Baillargeon et al., 1985; Spelke, 1990), and
critical for perception and control in partially observable
environments like the physical world (Kaelbling et al., 1998;
Grabner et al., 2010; Schmidt et al., 2014; Garg et al., 2020;
Tokmakov et al., 2021). Yet, modern machine learning
models for object recognition are mostly limited by instan-
taneous observations and struggle with occlusions (He et al.,
2017; Zhou et al., 2019). Recent video-based methods (Xiao
& Jae Lee, 2018; Shamsian et al., 2020; Tokmakov et al.,
2021) have the capacity to localize fully invisible instances
by modeling sequential structure. For example, Tokmakov
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Figure 1. An example from the KITTI dataset with outputs of our
method (object detection on the left and belief state on the right).
We demonstrate that by fitting a Markov walk along an evolving
spatial memory, a spatial belief state that codes object permanence
emerges without explicit supervision.

et al. (2021) use a spatial recurrent network (Ballas et al.,
2016) to accumulate a representation of a scene and localize
instances – both visible and invisible – using this representa-
tion. Nevertheless, a key question that remains is the choice
of learning signal in cases of total occlusion.

While Shamsian et al. (2020) propose to supervise the model
with the ground truth locations of invisible instances, such
labels are hard to obtain in the real world and often sub-
optimal (Tokmakov et al., 2021). For example, consider
the sequence in Figure 1, in which a person walks behind a
street sign. Without additional observations, it is impossible
to predict their exact location, even for a human, let alone
for a machine learning model, only that they are somewhere
behind that sign.

Rather than directly supervising the locations of invisible
objects, in this work we propose a self-supervised objec-
tive that encourages object permanence to naturally emerge
from data (see Figure 2). To this end, we leverage the recent
Contrastive Random Walk objective of Jabri et al. (2020),
which models space-time correspondence as a Markov walk
on a spatio-temporal graph of patches (i.e. from a video). In-
stead of supervising the walker at each step, which requires
temporally dense annotation, they supervise every k steps,
providing implicit supervision for the trajectory. Our key
insight is that object permanence emerges by fitting such a
Markov walker along an evolving spatial memory, provided
that the states in each time step are features produced by a
sequence encoder, so as to overcome partial observability.

We propose a self-supervised loss function that can be ap-
plied to any video object detection model that maintains
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Figure 2. How to model object location under total occlusion?
While prior work considers heuristic dynamics priors such as con-
stant velocity, we propose to learn priors from data. Instead of
relying on pseudo-targets, we enforce a Markov assumption on
the spatial memory representation, implicitly supervising multiple
hypotheses about the occluded object location.

a spatial memory (i.e. a sequence of 2D latents). Con-
cretely, we consider the spatio-temporal graph of memory
states, where nodes correspond to potential object locations
(Figure 3). For visible instances, transition probability is
supervised directly (i.e. we assume labels for visible ob-
jects during training). During occlusions, we employ the
objective of Jabri et al. (2020), supervising the walk with
ground truth object locations before and after the occlusion
(see Figure 4). By optimizing for correspondence on the
resulting graph of memories, we learn a representation that
stores object-centric information in a spatially-grounded
manner even for unlabeled, invisible objects.

We demonstrate that object permanence naturally emerges
in this process, evaluating our approach on several dataset
of increasing complexity and realism (see Figures 5, 6). We
begin with the synthetic LA-CATER benchmark (Sham-
sian et al., 2020) for invisible object localization on which
our self-supervised objective is able to discover object per-
manence patterns from the data, outperforming a fully-
supervised baseline. We then evaluate our method on
a synthetic multi-object tracking benchmark introduced
in (Tokmakov et al., 2021), and demonstrate that it is ef-
fective at handling occlusions despite requiring less super-
vision. Finally, we show that our method generalizes to
real world videos in the KITTI multi-object tracking bench-
mark (Geiger et al., 2012), and provide a detailed ablation
analysis. Source code, models, and data are publicly avail-
able at https://tri-ml.github.io/RAM.

2. Related Work
Our work addresses the problem of localizing and asso-
ciating occluded objects (commonly referred to as object
permanence) in a spatio-temporal video representation via
self-supervised learning of correspondence. Below, we re-

view the most relevant approaches in each of these fields.

Object permanence has been mostly studied in the con-
text of multi-object tracking (Luo et al., 2020), where local-
izing invisible objects is crucial for re-associating them after
the occlusion. The majority of the modern trackers operate
in the tracking-by-detection paradigm (Bewley et al., 2016;
Wojke et al., 2017), where objects are first localized with a
frame-level detector, and the resulting detections are then
associated based on bounding box overlap (Bewley et al.,
2016), or feature similarity (Wojke et al., 2017; Tang et al.,
2017; Xu et al., 2019).

A key limitation of these approaches is that a frame-level
detector can only localize visible instances, thus most of
them had to resort to heuristics to model object permanence.
Some of the early methods include (Huang & Essa, 2005;
Papadourakis & Argyros, 2010), which attempted to localize
occluded objects by modeling inter-occlusion relationships,
and the approach of Grabner et al. (2010), which captured
the correlation between the motion of visible and invisible
instances. However, in practice most methods relied on a
more robust constant velocity heuristic (Yu et al., 2007; Bre-
itenstein et al., 2009; Mitzel et al., 2010), which propagates
the last observed object location with a linear motion model
in the frame coordinates.

Recently, Shamsian et al. (2020) proposed a learning-based
method which takes bounding boxes for visible objects in
a video as input, and passes them through a sequence of
LSTMs (Hochreiter & Schmidhuber, 1997) that are trained
to localize the occluded object. This approach successfully
learns to capture complex relationship between visible and
occluded instances. However, it requires ground truth labels
for invisible objects for training and relies on the assumption
that the location of an occluded object is fully determined by
the bounding box of the occluder. In contrast, our method
does not require any labels for invisible objects, does not
make assumptions about their dynamics, and still outper-
forms the approach of Shamsian et al. (2020). The method
of Tokmakov et al. (2021) also learns to localize occluded
objects, but uses a spatio-temporal representation.

Spatio-temporal video representation learning allows
to jointly model visible and occluded instances by capturing
temporal context. Several methods (Feichtenhofer et al.,
2017; Bergmann et al., 2019; Zhou et al., 2020) operate on
frame pairs to improve robustness, but are neither capable
of, nor trained for handling full occlusions. Some video
object detection (Kang et al., 2017; Xiao & Jae Lee, 2018)
and segmentation (Bertasius & Torresani, 2020; Wang et al.,
2021) methods take longer sequences as input, but are also
not trained to localize invisible objects.

Very recently, Tokmakov et al. (2021) extended the model
of Zhou et al. (2020) to videos of arbitrary length. In par-
ticular, they used a Convolutional Gated Recurrent Unit

https://tri-ml.github.io/RAM
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(ConvGRU) (Ballas et al., 2016) to aggregate a spatial mem-
ory representation that is capable of encoding both visible
and invisible objects. Following (Zhou et al., 2020), they
then represented objects with their centers in the frame coor-
dinates and trained the model to localize and associate them
using the memory state regardless of visibility.

The key question is the choice of the learning signal for
fully occluded instances. The authors of (Tokmakov et al.,
2021) trained their model on synthetic videos, where ground
truth labels for invisible objects are available, but found that
this form of supervision is sub-optimal as the exact location
of an invisible object is often impossible to predict. In-
stead, they used deterministic pseudo-groundtruth obtained
by propagating object location in the 3D world with a con-
stant velocity and projecting it to the camera frame. While
this approach simplifies convergence, the resulting model
often fails at test time when object behaviour deviates sig-
nificantly from the constant velocity. In this work, we adopt
the architecture proposed in (Tokmakov et al., 2021), but
demonstrate that occluded object localization can be learned
without direct supervision by optimizing for a Markov walk
along an evolving spatial memory state. Our self-supervised
objective outperforms the method of Tokmakov et al. (2021)
on both synthetics and real-world videos.

Self-supervised learning of motion correspondence has
emerged recently as a way to capitalize on temporal con-
sistency in videos for representation learning (Wang et al.,
2019b;a; Jabri et al., 2020). The key idea is to utilize cycle-
consistency in time (Zhou et al., 2016; Dwibedi et al., 2019)
to learn to establish correspondences between patches in
consecutive frames. In particular, given a randomly selected
patch in the first frame, these methods first track forward in
time, then backward, with the aim of ending up where they
started. Earlier approaches (Wang et al., 2019b;a) relied on
hard attention, limiting them to sampling and learning from
one path at a time. Recently (Jabri et al., 2020) have pro-
posed the Contrastive Random Walk objective which com-
putes soft-attention at every time step, considering many
paths to obtain a dense learning signal.

While these objectives are beneficial for general representa-
tion learning, they have found wider success in video object
segmentation (Pont-Tuset et al., 2017), where a region in
the first frame needs to be propagated through the video.
However, since these methods operate on individual image
encodings, they can only establish correspondences based
on appearance. Thus, similarly to tracking-by-detection ap-
proaches described above, they can not handle occlusions.
In this work, we adapt the objective of Jabri et al. (2020) to
learn to localize occluded objects in a self-supervised way.
We apply it to sequence-level representations (Tokmakov
et al., 2021) in order to enforce temporal coherence of spa-
tial memory, even during occlusion, and show that object
permanence naturally emerges in this process.

3. Approach
3.1. Preliminaries

We study the problem of localizing entities as they transform
in space and time, both when they are visible and after
they become fully occluded. Given a sequence of frames
{I1, I2, ..., In}, we follow the formalism recently proposed
in (Zhou et al., 2019; 2020) and model objects oti with their
centers in image coordinates pt

i ∈ R2.

We consider models that maintain a spatial memory M t ∈
RD×H′×W ′

. Typically, images It ∈ R3×H×W are mapped
by an encoder f to feature maps F t = f(It). These
instantaneous observations are then aggregated using a
sequence model. While this can be achieved in a va-
riety of manners, including encoders with global self-
attention (Vaswani et al., 2017; Bertasius et al., 2021), we
consider the ConvGRU (Ballas et al., 2016), a spatial re-
current network that is efficient, performant, and online:
M t = ConvGRU(F t,M t−1), where M t,M t−1 represent
the current and the previous spatial memory states respec-
tively. The state M t is thus informed by prior context of
extant objects when integrating updates F t from the current
frame, and can encode the locations of both visible and
invisible objects.

However, the choice of the learning signal for the cases of
total occlusion remains a central question. In (Tokmakov
et al., 2021) the authors propose to treat visible and invis-
ible instances uniformly, directly supervising their center
locations {pt

1,p
t
2, ...,p

t
N} on the learned projection of the

spatial memory P t = fp(M
t) ∈ [0, 1]H

′×W ′
. We adopt

this approach for visible object, but propose a novel self-
supervised framework for learning to localize the invisible
ones in the next section. It is based on a Contrastive Random
Walk (Jabri et al., 2020) along the memory state M t and
learns to estimate the locations of occluded object centers
without explicit supervision.

3.2. Walking along Memory

The main idea is to learn object permanence by fitting
a random walk along memory (RAM). We construct a
spatio-temporal graph over the memory state, shown in
Figure 3, with pixels on the feature map Qt = fq(M

t) as
nodes {qt

1,q
t
2, ...,q

t
m}. Only nodes in consecutive frames

Qt, Qt+1 are sharing an edge. The strength of an edge
is determined by the similarity of the node embeddings
d(qt

i,q
t+1
j ) = <qt

i,q
t+1
j >, which is converted into non-

negative affinities by applying a softmax over edges origi-
nating from each node:

At+1
t (i, j) = softmax(Qt, Qt+1)ij

=
exp(d(qt

i,q
t+1
j )/τ)∑N

l=1 exp(d(q
t
i,q

t+1
l )/τ)

(1)
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Figure 3. We consider the spatio-temporal graph of an evolving
spatial memory; here, we show one transition in time. To over-
come partial observability, states Qt are computed with a sequence
encoder, allowing for transition probability At+1

t to model object
permanence. Only a subset of the edges is shown for readability.

where τ is the temperature parameter. In contrast to (Jabri
et al., 2020), in this work we build the graph over the evolv-
ing memory M t, not over independently encoded features
F t. As a result, the nodes can represent invisible objects
and the transition probability is not solely determined by
similarity of instantaneous appearance.

Fitting the walk. For each training sequence, the model
receives a set of objects annotations {O1, O2, ..., ON} as in-
put, where an object is represented with its visible bounding
box centers Oi = {p0

i ,p
1
i , ∅, ∅, ...,pt

i, ...,p
T
i }, and empty

annotations ∅ correspond to frames in which the object is
occluded. For each object Oi we consider the random walk
originating from the first visible object center p0

i (shown in
Figure 4; we assume the object is visible in the first frame
of the sequence). In particular, we initialize the walker state
matrix X0

i with 1 at p0
i and 0 everywhere else, and compute

the distribution of the object location at time t as

Xt
i = X0

i

t−1∏
j=0

Aj+1
j . (2)

That is, Xt
i is a conditional probability matrix with Xt

i (p) =
P(Ot

i = p|O0
i ) representing the probability that object i is

at position p at time t, given its initial position p0
i . Ground

truth boxes of visible objects supervise the walker via loss

LNLL(X
t
i ,p

t
i) = − logXt

i (p
t
i), (3)

where LNLL is the negative log likelihood of the correct
position. The total loss for the object Oi is defined as

LRAM (Oi) =

T∑
t=1

1(pt
i)LNLL(X

t
i ,p

t
i), (4)

where 1(pt
i) is the indicator function which is equal to 1 for

non-empty object center labels pt
i and is 0 otherwise. The

final objective is averaged over all the instances in the scene:
LRAM = 1

N

∑N
i=1 LRAM (Oi).

The loss above directly supervises the object centers in
frames in which the object is visible (as in (Tokmakov et al.,
2021)). In cases of occlusion, there are many potential paths
through the graph that link the object’s locations before and
after occlusion. Minimizing the RAM objective in Equa-
tion 4 shifts the probabilities towards the paths which are
most likely to result in correctly localizing the object when
it re-appears (shown in blue and red in Figure 4). The lo-
cations of invisible objects are thus implicitly supervised
without the need for any labels and with minimal assump-
tions about dynamics. The resulting encoder learns to store
the spatially-grounded object-centric information in mem-
ory M t to guide the walker along typical trajectories. Next,
we discuss a more efficient variant of this approach that
exploits smoothness and locality.

3.3. Local Attention on Memory

Notice that computing the edge weights matrix At+1
t ∈

RH′W ′×H′W ′
is the most computationally and memory

intensive operation in the RAM objective. It requires
D ×H ′W ′ ×H ′W ′ multiplications and the size of the ma-
trix can get prohibitively large for large resolution frames.
To mitigate this constraint, we exploit smoothness in videos
and assume that between any pair of consecutive frames
It, It+1 the pixels can only shift by a limited distance r.

Given a node qt
i with coordinates pt

i, its corresponding row
in the (now sparse) matrix A∗t+1

t (i, :) is:

A∗t+1
t (i, j) =

{
At+1

t (i, j), if ||pt
i − pt+1

j ||1 < r

∅, otherwise,
(5)

where At+1
t (i, j) is defined in Equation 1, with softmax

applied over non-zero edges only. That is, we only compute
local attention between qt

i and the nodes in its neighbour-
hood in Qt+1, which can be efficiently implemented with
local correlation operations (Dosovitskiy et al., 2015). As
we will see, with a sufficiently large r this modification does
not limit the performance of the approach, while reducing its
computational complexity. In the next section, we conclude
by discussing the final details of our objective.

3.4. Optimization and Objective

So far, for any given walker state Xi we have only con-
strained it at frames in which the corresponding object is
visible. We now demonstrate how additional information
about the problem can be incorporated into the state to sim-
plify convergence and improve tracking performance.
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Initial state Target state
Figure 4. Illustration of our objective on a sequence from LA-CATER. We initiate a random walk on the graph originating from a visible
object center. While the object remains visible the walker state is supervised directly. During occlusions the walker is free to take any path
as long as it terminates at the object center at the time of disoclusion (shown with a star in the last frame). Multiple hypothesis about the
object trajectory (shown in blue and red) are thus implicitly supervised.

Label smoothing. Node features qt
i are extracted from a

spatial memory state computed with a convolutional back-
bone, and nodes that are spatially close to each other have
highly correlated representations. Yet, minimizing the con-
trastive objective in Equation 4 encourages the transition
matrix At

t−1(i, :) to have low entropy, such that nodes in
the direct vicinity of the ground truth node qt

i are very hard
negatives that may hinder optimization.

To mitigate this issue, we relax the objective by scaling
the loss applied on state matrix Xt

i to ignore transitions to
nodes around the ground-truth object center. Concretely, we
multiply Xt

i by a mask Ht
i ∈ [0, 1]H

′×W ′
before passing it

to the loss in Equation 4. The mask is computed according
to (Zhou et al., 2019) and decreases the walker probability
for the nodes within the immediate vicinity of qt

i. This
amounts to reducing their effect as negatives, akin to label
smoothing around the center.

Avoiding overlap. At inference time, we follow (Zhou
et al., 2020) and associate objects based on distances be-
tween their centers in consecutive frames. For an occluded
object Oi we estimate its object center at time t+ k as

p̂t+k
i = argmax

p
Xt+k

i (p) (6)

and match it to the centers of the detected boxes in that frame
(see Section 3.5 for details). If a match is found, we assume
the object has re-appeared and terminate the walk. However,
in practice the estimated center p̂t+k

i might overlap with the
center of the occluder, leading to an incorrect association.
To avoid this, during training we penalize the walker state
of an occluded object if it overlaps with visible centers:

Lover(X
t
i ,p

t
: ) =

∑
j ̸=i

Xt
i (p

t
j), (7)

where Xt
i (p

t
j) is the value of the walker state at the location

corresponding to the ground truth center of the visible object
j. Note that pt

j might in fact be the correct location for the

center of the occluded object i, but avoiding this point in the
frame space allows us to prevent an incorrect association. To
fully address the center overlap issue frame representations
would have to be mapped to the BEV space, which is a
major challenge. Our approach allows for a simple and
effective (even if not principled) way to avoid overlaps,
while remaining in the image plane.

Objective. The overall training objective is then defined
as follows:

L = LPT + λ1LRAM + λ2Lover, (8)

where LPT represents the losses adopted from Perma-
Track (Tokmakov et al., 2021) for localization and associa-
tion of the visible objects, and λ1, λ2 are hyper-parameters
that balance the contribution of the corresponding losses in
the overall objective.

3.5. Inference Algorithm

To conclude, we describe the algorithm used in our work to
localize occluded object at test time. Overall, we follow the
greedy association strategy proposed in (Zhou et al., 2020),
which maintains a history of the locations of previously
seen objects and matches them with the new detections
in frame t based on center distances. Unmatched tracks
then corresponds to objects for which no detection could be
associated, usually due to an occlusion. We summarize our
approach for handling such trajectories in Algorithm 1.

We begin by initializing a walker state Xt−1
i with the last

observed object center p̂t−1
i for each occluded object indi-

vidually. We then update the walker states with the tran-
sition probability matrix At

t−1 and obtain the maximum
likelihood hypothesis of each occluded object location by
taking argmax of the resulting distribution Xt

i . Note that
the transition matrix is shared between the walkers, and
only individual states need to be maintained, improving
scalability of the approach. Center location hypotheses are
used to match the trajectories to the detections in the current
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frame with a greedy strategy similar to (Zhou et al., 2020).
If no match is found, the walker continues forward in the
same way, and is terminated if its confidence falls below a
threshold conf th or the trajectory goes out of frame.

Algorithm 1 A step of the inference algorithm in Python style.

for t in unmatched_tracks: # t: track hypothesis
if "walk" not in t:
#occlusion start, initialize the walker state
t["walk"] = init_walk(t["center"])

#update the walker with transition probabilities A
t["walk"] = t["walk"] * A

#Maximum likelihood confidence and location
conf, ind = t["walk"].max()

#drop unreliable hypotheses
if conf < conf_th or at_boundary(ind):
continue

#greedy matching with detections
is_matched, det = match(ind, detections)
if is_matched:
#use visible object location if a match is found
t["center"] = det["center"]

else:
#otherwise store walker hypothesis
t["center"] = ind

#add track to the active pool
tracks += t

4. Experimental Evaluation
4.1. Datasets and Evaluation

We use three datasets of increasing complexity and real-
ism: a synthetic LA-CATER benchmark (Shamsian et al.,
2020), a photo-realistic synthetics PD dataset (Tokmakov
et al., 2021), and a real-world, multi-object tracking KITTI
dataset (Geiger et al., 2012). Below, we describe each of
these benchmarks in more detail together with their metrics.

LA-CATER is based on the CATER dataset (Girdhar &
Ramanan, 2020) which is procedurally generated using the
Blender 3D engine (Bacone, 2012). The generated scenes
consist of a random number of geometric shapes (cube,
sphere, cylinder, or cone) placed on a plain background. An
additional golden sphere is added to every scene. All the
objects are set to move randomly, occluding each other and
the sphere (see Figure 5). A special form of occlusion -
containment, is introduced by cones covering the sphere.

In (Shamsian et al., 2020), the authors converted CATER to
an object permanence benchmark by generating ground truth
boxes for all the objects and labeling each frame with the
state of the golden sphere (visible, occluded, contained, or
carried). Containment corresponds to it being fully covered
by another object, and carried frames are those in which the
container is moving with the sphere underneath. The task
is then to localize the golden sphere in every frame. Each
video is 10-seconds long. There are 9300 training, 3327
validation and 1371 test videos respectively. Performance

is measured with intersection over union (IoU) between
ground-truth and predicted boxes (Everingham et al., 2010).

In LA-CATER, the camera position is fixed for all the videos,
making the problem less challenging. In this work, we
generated a variant of the dataset with randomized camera
motion, which we refer to as LA-CATER-Moving. This
benchmark has the same statistics and annotations as the
original LA-CATER, allowing us to re-train the baselines
from (Shamsian et al., 2020) and compare to their method
in a more realistic environment.

PD dataset is collected by Tokmakov et al. (2021) using
a state-of-the-art ParallelDomain synthetic data generation
service (par, 2021). The dataset contains 210 photo-realistic,
10-seconds long videos with driving scenarios in city envi-
ronments captured at 20 FPS. Each scene contains dozens
of objects, including pedestrians, cars, bicycles, etc., and
features lots of occlusion and disocclusion scenarios (only
people and cars are used for evaluation). The videos are
captured by three independent cameras, effectively increas-
ing the dataset size to 630. Following (Tokmakov et al.,
2021), we use 583 videos for training and 48 for evaluation,
and employ the Track AP metric (Russakovsky et al., 2015;
Yang et al., 2019; Dave et al., 2020) as a proxy measure of
the model’s ability to capture object permanence.

KITTI is a real-world, multi-object tracking benchmark
with city-driving scenarios (Geiger et al., 2012). The videos
are captured at 10 FPS and vary in length. Bounding box
annotations are provided for visible parts of the trajectories
of people, cars, and a few other categories, but only people
and cars are used for evaluation. Following (Tokmakov
et al., 2021), we split the 21 labeled videos in half to obtain
a validation set and use the Track AP metric for evaluation.
For completeness, we report test set results with the standard
metrics used in this dataset in Appendix D.

4.2. Implementation Details

Our implementation builds on top of the architecture of (Tok-
makov et al., 2021) and we leave all the components and the
hyper-parameters of their model unchanged. Here we only
provide the values of the new hyper-parameters. Details of
our training and the inference procedures are reported in
Appendix A.

The node embedding head fq is implemented with a max
pooling layer followed by two 1 × 1 convolutional layers
with with ReLU non-linearities and an L2-normalization
layer. We use max pooling layer with kernel 3 on PD and
KITTI and omit pooling on LA-CATER due to low res-
olution of the frames. The temperature parameter τ in
Equation 1 is set to 0.1. We use focal loss (Lin et al.,
2017) when computing the cross entropy in Equation 3.
Radius r in Equation 5 is set to 0.2 ·H ′ to balance the rep-
resentational power of the resulting spatio-temporal graph
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Table 1. Comparison of occluded object localization methods on the test set of LA-CATER using mean IoU. We evaluate on the original
version of the benchmark (left) and on the variant with a moving camera (right). Our self-supervised approach outperforms both self- and
fully-supervised baselines in almost all scenarios, the gap being especially large on the most challenging Carried task.

LA-CATER Static LA-CATER Moving

Visible Occluded Contained Carried Visible Occluded Contained Carried

OPNet 88.9 78.9 76.8 56.0 87.0 69.3 40.0 30.8
OPNet Self. Sup. 89.0 81.8 69.0 27.5 88.0 58.0 25.8 8.5
Heuristic 90.1 47.0 55.4 55.9 86.7 28.6 25.4 23.3
RAM (Ours) 91.7 79.3 82.2 63.3 90.0 62.5 55.1 51.8

Figure 5. Qualitative results on sequences from the test set of LA-CATER-Moving (see link for full results). The model’s belief about
the location of the invisible object is visualized with a heatmap overlaid on the frames. Our approach successfully handles examples of
occlusion (top), containment (middle), and carrying (bottom) without using any invisible object labels for training.

with computational efficiency. Finally, the individual loss
weights λRAM , λover in Equation 8 are set to 0.5 and 50
respectively using the validation set of PD.

4.3. Analysis of Emerging Object Permanence

In this section, we explore the object permanence hypothe-
ses discovered by our algorithm on LA-CATER. We com-
pare to OPNet - a fully-supervised approach proposed
in (Shamsian et al., 2020), as well as to their self-supervised
variant (referred to as OPNet Self. Sup.) and a heuristic-
based algorithm from the same paper. The self-supervised
baseline is trained to memorize the last visible location of
the occluded object, and, the heuristic is designed to predict
the target at the center of the closest visible object (pre-
sumably, the occluder). Note that, unlike RAM, all these
methods operate on pre-computed bounding boxes, and thus
detach object permanence reasoning from perception. Ex-
perimental results are reported in Table 1.

Firstly, we observe that on the original version of the bench-

mark (left half of Table 1) our method achieves top results
in almost all scenarios. In particular, we outperform the
self-supervised variant by 35.8 mIoU points in the most
challenging Carried category. Their objective assumes that
the target remains static once it is not visible. This assump-
tion is very effective for the short-term Occluded scenario,
but does not generalize. In contrast, by optimizing for our
RAM objective, generic object permanence patterns emerge
from the data. For example, our method discovers that once
an object becomes a part of another object their locations
are tied (see Figure 5). Without explicit supervision it out-
performs both the fully-supervised OPNet and the Heuristic
which manually encodes this rule by 7 mIoU points.

On the more more challenging version of the dataset with
a moving camera (right half of Table 1) the performance
of all the methods decreases. However, the margins of our
approach increase. The variants that do not use labels for
invisible objects (OPNet Self. Sup. and Heuristic) encode
the fixed camera assumption, which hinders their general-
ization abilities. In contrast, our method does not make such

https://youtu.be/W9lsSG55Xzw


Object Permanence Emerges in a Random Walk along Memory

Table 2. Comparison to the state-of-the-art on the validation sets of PD and KITTI using Track AP. All the methods share a detector,
tracking algorithm and training data, thus the differences are mainly due to better handling of occlusions. Results for CenterTrack with
constant velocity post-processing on KITTI are not reported in prior literature. Our method outperforms both heuristic and learning-based
methods in synthetic and real environments despite requiring less supervision.

Parallel Domain KITTI

Car AP Person AP mAP Car AP Person AP mAP

CenterTrack 66.2 54.4 60.3 77.2 51.6 64.4
CenterTrack + Const. v. 67.6 54.9 61.2 - - -
PermaTrack 71.0 63.0 67.0 84.7 56.3 70.5
RAM (Ours) 74.2 69.7 72.0 87.5 64.0 75.7

Figure 6. Qualitative results on sequences from the validation sets of PD and KITTI (see link for full results). The model’s belief about
the location of the invisible objects is visualized with a heatmap overlaid on the frames. Our method forms accurate hypotheses about the
locations of occluded objects, resulting in a correct re-identification at the time of disocclusion.

assumptions and is entirely learned from the data. While the
fully-supervised OPNet shows better results, our approach
still outperforms it on the most challenging Contained and
Carried categories by 15.1 and 21.0 mIoU respectively.

Finally, we qualitatively analyze object permanence repre-
sentation learned by our model on the test set of LA-CATER-
Moving in Figure 5. First we show a challenging example
of occlusion, where the golden sphere, the red cube and the
camera are all in motion. Our model’s uncertainty increases,
as the scene unfolds. In the end a small part of the object
becomes visible, collapsing the walker hypothesis. Next,
we show an example of containment, where the target object
is consequently covered by brown and blue cones. Despite
strong camera motion our model correctly estimates that
the sphere remains under the cones. In the last row we can
observe another example of double containment followed
by carrying. Our approach correctly estimates that as the
two cones move the golden sphere moves with them.

4.4. Capturing Object Permanence in the Real World

We now demonstrate that our approach is able to discover
object permanence patterns in complex, street driving scenes

of synthetic PD and real-world KITTI datasets. We compare
to CenterTrack (Zhou et al., 2020) and PermaTrack (Tok-
makov et al., 2021) which share the same detector architec-
ture, tracking algorithm and training data with our model.
Thus, the observed differences reported in Table 2 are mostly
due to the ability of these methods to handle occlusions. In
particular, CenterTrack is only trained on visible instances,
and has to rely on heuristic post-processing. PermaTrack is
a video-based model, which is trained to detect and track
invisible objects using explicit supervision in synthetic PD.

We begin our analysis on the PD dataset. CenterTrack is
not capable of handling full occlusions and thus serves as a
natural baseline. Applying the standard 2D constant veloc-
ity heuristic (denoted with ’CenterTrack + Const. v.’ in the
table) does result in minor improvements, but overall it is
not adequate for driving videos due to strong ego-motion.
PermaTrack learns to propagate occluded objects with a con-
stant velocity in the 3D world, compensating for ego-motion
changes and thus achieves superior results. Our method out-
performs PermaTrack by a significant margin, with improve-
ments being especially noticeable on the more challenging
Person category. On the real-world KITTI benchmark the

https://youtu.be/PGGNyiu4X54
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Table 3. Analysis of the components of our objective using Track
AP on the validation set of PD. We ablate graph connectivity,
pooling kernel, label smoothing and avoiding center overlaps.

Edges Pool Smooth Over. Car Person mAP
Global 5× 5 ✗ ✗ 68.9 63.5 66.2
Local 5× 5 ✗ ✗ 68.8 65.7 67.2
Local 3× 3 ✗ ✗ 70.1 64.8 67.9
Local 3× 3 ✓ ✗ 72.7 67.8 70.2
Local 3× 3 ✓ ✓ 74.2 69.7 72.0

observations are similar, confirming that our approach is
able to effectively discover object permanence patterns in
both synthetic and real environments without explicit super-
vision or assumptions about object dynamics.

We illustrate the hypotheses about the location of occluded
objects discovered by our model on PD and KITTI in Fig-
ure 6. In the first sequence from the validation set of PD,
our model learns to accurately estimate the location of the
person occluded by the moving car, resulting in a correct
re-identification. In the second sequence, the yellow car
starts to turn right before it gets occluded by the ambulance.
As the behaviour of the invisible object is unknown to the
model, it maintains two distinct hypotheses - one that the car
kept moving forward, and another that it continued with the
turn. This probabilistic approach allows it to correctly com-
plete the trajectory once the yellow car is revealed. Finally,
in the last sequence from the real world KITTI benchmark
we illustrate that our model can successfully reason about
several occluded objects at a time.

4.5. Ablation Analysis

We conclude by analyzing the importance of various com-
ponents of our objective on the validation set of PD dataset
in Table 3. We use PD for this study due to its balance of
scale and realism. Firstly, we observe that the global variant
of RAM already achieves comparable results to PermaTrack
(row 3 in Table 2) without requiring explicit supervision for
invisible objects. Using a more computationally efficient
form of the objective described in Section 3.3 (row 2 in the
table) does not decrease the performance, confirming our
intuition that object motion between consecutive frames is
bounded in practice.

Only considering a local node neighborhood during the
random walk allows us to decrease the size of the pooling
kernel in the node embedding head fq, increasing the fea-
ture resolution and thus improving the accuracy of invisible
object localization. As we demonstrate in row 3 of Table 3,
this translates into higher tracking accuracy due to fewer
mistakes during re-identification.

Next, we evaluate the effect of the label smoothing in the
RAM objective (see Section 3.4 for details) in row 4 of the

table. The relaxed objective is indeed easier to optimize,
resulting in a significant performance improvement for both
categories. Finally, in the last row of Table 3 we demonstrate
that overlaps between centers of an occluded object and an
occluder are indeed a significant issue and introducing a
simple constraint into the objective allows our model to
learn to avoid them at inference time, achieving top results.

For completeness, we have also trained a variant of our
model supervising the RAM objective with ground truth
locations of invisible instances. It achieves 71.1 mAP points
(compared to 72.0 for our best self-supervised variant). Note
that the exact location of an invisible object is impossible
for a network to predict if the agents’ behaviour is non-
deterministic. Thus, such labels are noisy from the model’s
perspective. This result highlights the main advantage of our
objective, which implicitly supervises multiple hypothesis
about the occluded object location, effectively capturing the
non-deterministic nature of the problem.

5. Conclusion
Localizing invisible objects is an inherently ambiguous task,
making the choice of a learning signal a major challenge. In
this work, we proposed a self-supervised objective based on
a contrastive random walk along an evolving spatial memory.
It is supervised with the ground-truth object centers before
and after the occlusion, encouraging the model to store
object-centric representations in the memory state, in order
to be temporally consistent. We demonstrated that, without
additional constraints nor assumptions of dynamics, object
permanence patterns emerge in this process.
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In this appendix, we provide additional details about our
method which were not included into the main paper due
to space limitations. We begin by reporting the details of
our training and inference procedures in Section A, further
elaborating on the heuristic box refinement strategy used
on LA-CATER in Section B. We then discuss the failure
modes of our approach is Section C. Finally, we conclude
by reporting the results of our method on the test set KITTI
in Section D.

A. Training and Inference Details
Our model is first trained on PD for 28 epochs with with
sequences of length 16, exactly following the optimiza-
tion procedure described in (Tokmakov et al., 2021), but
only using visible object labels. Note that although Tok-
makov et al. (2021) start from a CenterTrack (Zhou et al.,
2020) checkpoint pre-trained for 3D object detection on
NuScenes (Caesar et al., 2020), we have found that start-
ing from an ImageNet or even a self-supervised pre-trained
backbone works just as well. We then fine-tune the resulting
network on KITTI and LA-CATER. Following (Tokmakov
et al., 2021), on KITTI we fine-tune the model jointly with
PD, but, since both datasets include only visible object la-
bels now, we use KITTI sequences of length 12 during
training, in contrast to frame pairs used by (Tokmakov et al.,
2021). We also find that due to larger resulting batches it is
sufficient to fine-tune the model for 3 epochs.

On LA-CATER we are able to use sequences of length 70
due to the lower resolution of the frames. We only sample
sequences that contain occlusion scenarios to speed up con-
vergence. We train the model for 8 epochs with a periodic
schedule with step 4, where an epoch is defined as 1000
iterations. Since many occlusion episodes are longer than
70 frames we further fine-tune the model for 2 epochs with
a frozen backbone and sequences of length 120. We ob-
serve that the objective is harder to optimize on LA-CATER-
Moving, thus we double the number of iterations per epoch
on that dataset. Finally, we set r to 0.1 ∗H ′ and λover to
0 on LA-CATER as we notice that this forces the model to
more precisely localize the occluded object centers, which
is important on this benchmark.

At inference we set the confidence threshold to 0.05 for
PD and KITTI and to 0.005 for LA-CATER due to much
longer occlusions in that dataset. Following (Zhou et al.,
2020) we also use a maximum age threshold for an occluded
trajectory after which it is terminated. It set to 16 frames
for PD and KITTI and to 300 frames for LA-CATER for the
same reasons. These values are selected on the validation
sets of PD and LA-CATER respectively. On LA-CATER
a model is expected to predict precise bounding boxes of
invisible objects, however, our approach only estimates an
approximate location of the object center. To evaluate on this

Table 4. Comparison to the variant of our method without box re-
finement on the test set of LA-CATER-Moving using mAP@0.1.
Our approach outperforms both supervised and unsupervised base-
lines at approximately localizing invisible objects without post-
processing.

Occluded Contained Carried
OPNet 90.1 59.3 48.0
OPNet Self. Sup 83.8 41.7 18.7
Heuristic 68.7 59.7 57.3
RAM (Ours) 90.2 79.8 76.7

benchmark we designed a simple, heuristic box refinement
algorithm which is described in Appendix B.

B. Box Refinement
Recall that on LA-CATER the methods are expected to
exactly localize invisible objects with a bounding box. How-
ever, our algorithm only estimates an approximate location
of invisible object centers on a down-sampled feature map
Q ∈ RD×H′×W ′

. A naive approach to converting these
centers to boxes is to memorize the size of the object before
it was occluded and output a box of the same size around
the predicted center.

In Table 4 we compare our method with this naive box pre-
diction strategy to the baselines from (Shamsian et al., 2020)
on LA-CATER-Moving using a rough mAP@0.1 localiza-
tion metric. We can observe that without any refinement
our approach outperforms all the methods at approximately
localizing the invisible objects, with only fully-supervised
OPNet being comparable to our approach on the easiest Oc-
cluded category. However, our method is not optimized for
exactly localizing invisible objects. Firstly, it only provides
an approximate location of the object center, as the loca-
tion of invisible objects is ambiguous beyond the simplest
scenarios. Secondly, even this approximate localization is
estimated on a down-sampled feature map, which can sig-
nificantly affect precise localization metrics. To address
these issues, we propose a simple, heuristic box refinement
strategy.

Our box prediction approach is summarized in Algorithm 2.
It takes the estimated object track as input, and processes the
predictions sequentially. For the frames in which the object
is visible, its bounding box is returned without changes.
For invisible objects the method uses the center location
estimated with our method to infer the box. To this end, we
use two flags was moving and is static. The former
captures whether the object was moving before occlusion
and the latter whether it is moving in the current frame.
Both are computed based on the changes in the predicted
center coordinates between consecutive frames, and do not



Object Permanence Emerges in a Random Walk along Memory

take camera motion into account. If the object was moving
before the occlusion we simply use the naive box estimation
strategy discussed above. For the special case of static
objects we directly output the last observed bounding box
for a more precise localization. Finally, for objects which
were static, but are moving in the current frame we refine
the bounding box using our proposed heuristic.

Algorithm 2 Bounding box prediction algorithm in Python style.

for p in track: # p: model prediction in current frame
if p["is_visible"]:
# directly output visible object detections
out += p["box"]
last_visible = p["box"]
continue

# object was moving before occlusion
if p.was_moving:
# adjust box to predicted center
out += get_box(p["center"], last_visible)

# object was and remains static
elif p.is_static:
# output last visible bounding box
out += last_visible

# object was static but is moving now
else:
# refine box around predicted center
out += refine(p["center"], last_visible, others)

The box refinement heuristic (summarized in Algorithm 3)
takes the estimated object center, together with the bounding
box of the target object before occlusion and the predicted
boxes of the other objects in the current frame (marked
with others) as input. It makes the assumption that if
the center of an invisible object starts moving that must be
because it is moving together with the container. To refine
the box location it then finds the center of the closest visible
box and adjusts the estimated center to be directly below
that of the container. Finally, we use the known object size
to compute the box around the adjusted center.

Algorithm 3 Bounding box refinement function in Python style.

def refine(center, last_visible, others):
# find the center of the nearest visible object
closest_center = get_closest(center, others)

# place the target center under occluder center
adjusted_center = adjust(center, closest_center)

# compute the box around adjusted center
return get_box(adjusted_center, last_visible)

We now demonstrate that this simple heuristic is sufficient
to improve the precise localization results of our method on
LA-CATER-Moving in Table 5, reporting the strict mean
IoU metric. Firstly, we observe that that the proposed algo-
rithm indeed improves our method’s localization accuracy
on all categories by a significant margin. Secondly, applying
the same post-processing step to the fully-supervised OP-
Net which is trained for precise object localization actually
decreases its performance on the Occluded category. On

Table 5. Evaluation of our box refinement strategy on the test set
of LA-CATER-Moving using mean IoU. The simple, heuristic
algorithm improves the performance of our method, but has mixed
results when applied to the fully-supervised OPNet. Overall, the
conclusions from the main paper remain unchanged.

Occluded Contained Carried
RAM (Ours) 55.5 40.1 34.4
RAM (Ours) + refine 62.5 55.1 51.8
OPNet 69.3 40.0 30.8
OPNet + refine 64.4 46.9 41.6

the other two categories OPNet’s accuracy improves some-
what, but the margins are smaller and it remains below our
self-supervised approach.

C. Failure Modes
In this section, we discuss the failure modes of our approach,
which are shown in Figure 7. In the first example from the
validation set of KITTI the centers of the bounding boxes of
the three pedestrians overlap in the image plain. As a result,
the identities of the three trajectories (shown with num-
bers in the center of the bounding boxes) switch. Although
our overlap avoidance objective improves the method’s per-
formance by preventing such mix-ups, it does not always
succeed, especially in such challenging cases.

In the second example from LA-CATER-Moving the green
sphere is first covered by the golden cone. Later in the
video a different cone covers the golden sphere. At first our
method correctly estimates which cone contains the target
object, but gets confused over time.

D. Evaluation on KITTI Test
Although in this work we did not focus on the problem of
multi-object tracking, for completeness we evaluate our ap-
proach on the held-out test of the KITTI benchmark, report-
ing the results in Table 6. We compare to published, vision-
based methods using the default metrics for this dataset.

We observe that on the main HOTA metric (Luiten et al.,
2020) our approach outperforms the state-of-the-art by a
significant margin on both categories, despite this metric
being less sensitive to accurate object association over oc-
clusions than the Track AP used in the main paper. We
note that the MOTA (Bernardin & Stiefelhagen, 2008) and
MT/PT/ML (Li et al., 2009) metrics mostly capture object
detection accuracy and recall respectively (see (Luiten et al.,
2020) for analysis), and are loosely affected by association
accuracy.
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Figure 7. Failure modes of our approach on KITTI and LA-CATER-Moving (see link for full results). Model’s belief about the location of
the invisible objects is visualized with a heatmap overlaid on the frames. Our method suffers from center overlap in the complex, three
person occlusion and gets confused when two cones cover two spheres in the direct vicinity from each other.

Car Person
HOTA ↑ MOTA ↑ MT ↑ PT ↓ ML↓ HOTA ↑ MOTA ↑ MT ↑ PT ↓ ML ↓

SRK (Mykheievskyi et al., 2020) - - - - - 50.9 68.0 46.4 44.7 8.9
AB3D (Weng & Kitani, 2020) 69.8 83.5 67.1 21.5 11.4 35.6 38.9 17.2 41.6 41.2
TuSimple (Choi, 2015) 71.6 86.3 71.1 22.0 6.9 45.9 57.6 30.6 44.3 25.1
SMAT (Gonzalez et al., 2020) 71.9 83.6 62.8 31.2 6.0 - - - - -
CenterTrack (Zhou et al., 2020) 73.0 88.8 82.2 15.4 2.5 40.4 53.8 35.4 43.3 21.3
DEFT (Chaabane et al., 2021) 74.2 88.4 84.3 13.5 2.2 - - - - -
PermaTrack (Tokmakov et al., 2021) 78.0 91.3 85.7 11.7 2.6 48.6 66.0 48.8 35.4 15.8
RAM (Ours) 79.5 91.6 86.3 11.2 2.5 52.7 68.4 51.6 34.7 13.8

Table 6. Comparison to the vision-based state of the art on the test set of the KITTI benchmark using aggregate metrics. Some methods
specialize on a single category. Our generic approach outperforms the state-of-the-art on all metrics except for ML (Mostly Lost) which
captures detection recall.

https://youtu.be/lrrOcS9daMM

