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Abstract
Multi-group agnostic learning is a formal learning
criterion that is concerned with the conditional
risks of predictors within subgroups of a popu-
lation. The criterion addresses recent practical
concerns such as subgroup fairness and hidden
stratification. This paper studies the structure of
solutions to the multi-group learning problem, and
provides simple and near-optimal algorithms for
the learning problem.

1. Introduction
Despite its status as the de facto selection criterion for ma-
chine learning models, accuracy is an aggregate statistic
that often obscures the underlying structure of mistaken
predictions. Oakden-Rayner et al. (2020) recently raised
this concern in the context of medical image analysis. Con-
sider the problem of diagnosing an image as cancerous or
not. Certain types of aggressive cancers may be less com-
mon than some non-aggressive types. Thus, classifiers that
concentrate their errors on images of these rarer and more
aggressive cancers can achieve higher overall accuracy than
classifiers that spread their errors more evenly over all types
of cancer. However, choosing classifiers that concentrate
their errors on these rarer cancers is clearly not ideal, as
it could lead to harmful misdiagnoses for those who need
treatment the most. Oakden-Rayner et al. refer to this
general phenomenon as the hidden stratification problem,
where there is some latent grouping of the data domain and
performance on these latent groups is just as important as
performance on the entire domain.

Similar scenarios arise in areas where fairness is a con-
cern (see, e.g., Hardt et al., 2016). Here, the concern is that
for applications such as credit recommendation or loan ap-
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proval the errors of models may be concentrated on certain
demographic groups and potentially exacerbate pre-existing
social disadvantages. This issue can persist even when pro-
tected class information such as race or age is not explicitly
included in the model, as other features often serve as good
proxies for protected class information.

The multi-group (agnostic) learning setting, formalized by
Rothblum & Yona (2021a), is a learning-theoretic model
for addressing these scenarios. This setting is specified by a
collection of groups G, where each group g ∈ G is a subset
of the input space, and a set of reference predictorsH. Here,
the groups in G can overlap in arbitrary ways, and |G| need
not be finite. The multi-group learning objective is to find a
predictor f such that, for all groups g ∈ G simultaneously,
the average loss of f among examples in g is comparable
with that of the best predictor hg ∈ H specific to g. This
learning objective thus pays attention to the group that is
worst off with respect to H. Note that because a good
reference predictor hg for one group g may be very poor
for another group g′, a successful multi-group learner may
need to choose its predictor f from outside ofH.

Rothblum & Yona (2021a) obtained initial results for multi-
group learning (and, in fact, study a broader class of objec-
tives compared to what we consider here), but they leave
open several theoretical questions that we address in this
paper. First, while it is known that uniform convergence
of empirical risks with respect toH is necessary and suffi-
cient for the standard agnostic learning model, it is not clear
whether the same holds for multi-group learning, let alone
whether the sample complexities are equivalent. Second,
Rothblum & Yona focus on finite G, but the motivation from
hidden stratification may require the use of rich and infinite
families of groups in order to well-approximate the poten-
tially unknown strata of importance. Finally, Rothblum &
Yona obtained their algorithm via a blackbox reduction to
a more general problem, leaving open the possibility of
simpler algorithms and prediction rules with multi-group
learning guarantees.

1.1. Summary of results

We introduce some notation in order to state our results.
Given n i.i.d. training examples drawn from a distribution



Algorithms for hidden stratification and multi-group learning

D over X × Y , let #n(g) for a group g ⊆ X denote the
number of training examples (x, y) with x ∈ g. For a
predictor f : X → Z and a group g ⊆ X , let

L(f | g) = E(x,y)∼D[`(f(x), y) | x ∈ g]

denote the conditional risk of f on g, and ` : Z×Y → [0, 1]
is a bounded loss function.

Our first multi-group learning result is an algorithm to learn
simple predictors with per-group conditional risk guarantees.
Here, the class of ‘simple predictors’ we consider is the
collection of decision lists in which internal (decision) nodes
are associated with membership tests for groups from G,
and leaf (prediction) nodes are associated with reference
predictors fromH.
Theorem 4 (Informal). There is an algorithm A such that
the following holds for any hypothesis set H and set of
groups G. Given n i.i.d. training examples from D, A pro-
duces a decision list f such that, with high probability,

L(f | g) ≤ inf
h∈H

L(h | g) +O

((
log |H||G|
γn ·#n(g)

)1/3
)

for all g ∈ G, where γn := ming∈G #n(g)/n is the mini-
mum empirical probability mass among groups in G.1

When H and G are infinite, a version of Theorem 4 also
holds when the complexities ofH and G are appropriately
bounded; see Theorem 6 for a formal statement.

Though the algorithm and resulting predictors of Theorem 4
and Theorem 6 are quite simple, the per-group excess error
rates are suboptimal. Statistical learning theory suggests
that if we knew a priori which group g we would be tested
on, empirical risk minimization (ERM) on the i.i.d. training
examples restricted to g would lead to an excess risk of
O(
√

log(|H|)/#n(g)) in the finite setting (Shalev-Shwartz
& Ben-David, 2014). The rates in Theorem 4 have two
undesirable properties when compared to this theoretical
rate: they have a worse exponent, and they depend on the
minimum probability mass among all the groups.

Our next result shows that the theoretical rate suggested by
per-group ERM can be achieved in the multi-group learning
setting, modulo a logarithmic factor in |G|.
Theorem 8 (Informal). There is an algorithm A such that
the following holds for any finite hypothesis setH and finite
set of groups G. Given n i.i.d. training examples from D,
A produces a randomized predictor f such that, with high
probability,

L(f | g) ≤ inf
h∈H

L(h | g) +O

((
log(|H||G|)

#n(g)

)1/2
)

1Here and in the rest of the paper, big-O notation is only used
to conceal constants. So, a = O(b) should be read as ‘There exists
an absolute constant C > 0 such that a ≤ Cb.’

for all g ∈ G.

The improved rates of Theorem 8 come at the expense of
increased complexity in both learning procedure and predic-
tion algorithm.

In our final result, we show that in the group-realizable set-
ting, where each group has a corresponding perfect predictor,
this trade-off between optimal rates and simple algorithms
is unnecessary.

Theorem 10 (Informal). There is an algorithm A such that
the following holds for any finite hypothesis setH and finite
set of groups G such that for all g ∈ G there exists an
h ∈ H satisfying L(h | g) = 0. Given n i.i.d. training
examples from D, A produces a predictor f such that, with
high probability,

L(f | g) ≤ O

(
log(|H||G|)

#n(g)

)
for all g ∈ G.

1.2. Related work

There are a number of areas of active research that intersect
with the present paper.

Distributionally robust optimization. The field of dis-
tributionally robust optimization, or DRO, focuses on the
problem of optimizing some cost function such that the cost
of the solution is robust to perturbations in the problem
instance (Ben-Tal et al., 2009). In the context of machine
learning and statistics, the idea is to use data from some
training distribution to learn a predictor that will perform
well when used on a worst-case choice of test distribution
from some known class. In this field, the class of test distri-
butions is typically a small perturbation of the training dis-
tribution (Bertsimas et al., 2018; Duchi et al., 2021; 2020).

A special case of DRO of particular relevance to the cur-
rent work is group-wise DRO. Here, the class of test dis-
tributions is fixed to be a finite set of distributions, and the
goal is to find a predictor whose worst-case conditional risk
over any of these test distributions is minimized. Several
solutions for this problem have been proposed, including
mirror descent (Mohri et al., 2019), group-wise regulariza-
tion (Sagawa et al., 2020a), group-wise sample reweight-
ing (Sagawa et al., 2020b), and two-stage training proce-
dures (Liu et al., 2021).

Group and individual fairness. As discussed above, pre-
diction mistakes committed by machine-learned models can
lead to widespread social harms, particularly if they are
concentrated on disadvantaged social groups. To address
this, a recent, but large, body of work has emerged to define
fairness criteria of predictors and develop machine learning
methods that meet these criteria. While many criteria for
fair predictors abound, they can typically be broken into two
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categories. The first of these is group-wise fairness (Hardt
et al., 2016; Agarwal et al., 2018; Donini et al., 2018) in
which a classifier is trained to equalize some notion of harm,
such as false-negative predictions, or benefit, such as true-
positive predictions, across predefined groups. The second
category of fairness notion is individual fairness (Dwork
et al., 2012; Dwork & Ilvento, 2018), in which there is a
distance function or notion of similarity among points, and
the objective is to give similar predictions for similar points.

Of particular relevance to the present paper is the work of
Kearns et al. (2018), which studied group fairness for a
large (potentially infinite) number of (potentially overlap-
ping) groups. The authors assumed boundedness of the
VC-dimensions for both the hypothesis class and the class
of groups, as well as access to an oracle for solving certain
cost-sensitive classification problems. Under these assump-
tions, they provided an algorithm that solves for a convex
combination of hypotheses from the hypothesis class that
respects certain notions of fairness for all groups and is
competitive with the best such fair convex combination.

Online fairness. There is a growing body of work at the
intersection of online learning and fairness (Gillen et al.,
2018; Noarov et al., 2021; Gupta et al., 2021). The most
relevant to the present paper is the work of Blum & Lyk-
ouris (2020), which studies an online version of multi-group
learning where the goal is to achieve low regret on each of
the groups simultaneously. That work gives a reduction to
sleeping experts, showing that for a particular choice of ex-
perts, the regret guarantees of the sleeping experts algorithm
directly translates to a per-group regret guarantee. Inspired
by this observation, in Section 4 we show that the offline
multi-group learning problem can also be reduced to the
sleeping experts problem. The online-to-batch conversion
argument we use requires some care, however, since there
are multiple objectives (one for each group) that need to
be satisfied, in contrast to standard online-to-batch settings
where only a single objective needs to be met.

Multicalibration, multiaccuracy, and outcome distin-
guishability. Also motivated by fairness considerations, a
recent line of work is centered on calibrating predictions to
be unbiased on a collection of groups or subpopulations.

Given a class of groups G, multiaccuracy requires that the
expectation of a predictor is close to expectation of the out-
come y when conditioned on any g ∈ G (Hébert-Johnson
et al., 2018; Diana et al., 2021). Kim et al. (2019) showed
that for an appropriate choice of groups, multiaccuracy im-
plies a type of multi-group learnability result. Unfortunately,
the upper bound they show for the per-group error rate is
only non-trivial when the best rate achievable at that group
is small. In Appendix E, we show that this looseness is
inherent to this type of multiaccuracy reduction.

Multicalibration is a more stringent notion than multiac-
curacy that requires these expectations to be close when
conditioned both on the group and the value of the predic-
tion. Even more stringent is outcome indistinguishability, a
family of criteria that requires the predictions of a function
f : X → [0, 1] to be indistinguishable against the true prob-
abilities of positive versus negative outcomes with respect
to classes of distinguishing algorithms with varying levels
of access to the underlying distribution (Dwork et al., 2021).

Using a reduction to the outcome indistinguishability frame-
work, Rothblum & Yona (2021a) provided an algorithm
with a multi-group learning guarantee. Specifically, they
showed that for a given finite hypothesis classH and finite
set of groups G, one can produce a predictor f : X → R
such that L(f | g) ≤ minh∈H L(h | g) + ε for all g ∈ G
with probability 1 − δ.2 The sample complexity of their
approach is O

(
mH(ε,δ)4

δ4γ log |H||G|ε

)
, where mH(ε, δ) is

the sample complexity of agnostically learning a classifier
h ∈ H with excess error ε and failure probability δ (Roth-
blum & Yona, 2021b). Standard ERM arguments give us
mH(ε, δ) = O

(
1
ε2 log |H|δ

)
, leading to an overall sample

complexity of O
(

1
ε8δ4γ poly log |H||G|εδ

)
.

In independent and concurrent work, Globus-Harris et al.
(2022) also considered a multi-group learning setup under
the framework of ‘bias bug bounties.’ In this setting, there
is some deployed model and outsiders are incentivized to
find groups on which the model does worse than Bayes
optimal. If such a group is found, one can submit the group
as well as a certificate of suboptimality to receive a bounty,
and the model will be updated to improve performance on
the affected group. Interestingly, the algorithm developed
by Globus-Harris et al. to update their model (which they
call LISTUPDATE) is equivalent to one of the algorithms
presented in the present paper (PREPEND). Beyond the
development of the concept of bias bug bounties, Globus-
Harris et al. are primarily concerned with the computational
complexity of finding such bounties, whereas the present
work is focused on the statistical sample complexity of
multi-group learning.

Hidden stratification. The hidden stratification problem
refers to settings where there are meaningful subgroups or
divisions of the data space, but they are unknown ahead
of time. The fear, as illustrated by Oakden-Rayner et al.
(2020), is that prediction errors can be concentrated on some
important subgroup and lead to real-world harms. Sohoni
et al. (2020) proposed addressing this problem by clustering

2In fact, their results apply to more general types of objectives
that need not be decomposable; see (Rothblum & Yona, 2021a,
Section 2) for details. In this paper, we focus only on objectives of
the form L(f | g), which are decomposable in their sense.
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a dataset and solving a DRO problem as if the resulting
clusters were the true known subgroups.

Transfer learning and covariate shift. Broadly speaking,
transfer learning studies the problem of learning a predictor
given many samples from a source distribution P and rela-
tively few (or perhaps no) samples from a target distribution
Q, where the predictor will ultimately be evaluated on Q.
The results in this area depend on what is allowed to change
between P and Q. Some works study the setting of covari-
ate shift, where only the covariate distribution is allowed to
change (Shimodaira, 2000; Zadrozny, 2004; Cortes et al.,
2010; Kpotufe & Martinet, 2018; Hopkins et al., 2021).
Others focus on label shift, where only the marginal label
distribution changes, leaving the class conditional distri-
butions unchanged (Azizzadenesheli et al., 2018). Finally,
in the most general setting, P and Q may differ in both
covariates and labels (Ben-David et al., 2010).

Of these transfer learning settings, the covariate shift frame-
work most closely resembles the multi-group learning set-
ting. However, the two key differences are that (1) the trans-
fer learning setting is typically concerned with performance
on a single target distribution and (2) the target distributions
that arise in multi-group learning are restricted to condi-
tional distributions of the source distribution. Importantly,
in the multi-group learning setup, the target distributions
never have support that is outside of the source distribution.
Because of this restriction, we can achieve a much stronger
performance guarantee compared to what is possible in the
setting of general covariate shift.

One work that deviates from the single-target distribution
framework is that of Hopkins et al. (2021), whose notion
of covariate shift error is the maximum error over a set of
target distributions, similar to the multi-group learning setup.
However, in the covariate shift setting of Hopkins et al.
(2021), there is only a single such benchmark hypothesis for
all possible shifts, whereas in our multi-group setting, the
benchmark hypothesis is allowed to depend on the group.
Thus the guarantees in the setting of Hopkins et al. (2021)
are not comparable to those in our setting.

Boosting. Boosting is a classical machine learning tech-
nique for converting weak learners, i.e., learners that output
predictors that are only marginally more accurate than ran-
dom guessing, into strong learners, i.e., learners that output
predictors with very high accuracy (Schapire, 1990; Freund,
1995). Many of the algorithms for achieving multiaccuracy,
multicalibration, and outcome indistinguishability can be
viewed as boosting algorithms (Hébert-Johnson et al., 2018;
Kim et al., 2019; Dwork et al., 2021). For instance, the
algorithm of Kim et al. (2019) is based on the boosting
algorithm of Trevisan et al. (2009). One of the algorithms
proposed in this paper, PREPEND, is no exception here and

may also be viewed as a boosting algorithm.

1.3. Paper outline

The remainder of the paper is organized as follows. In Sec-
tion 2, we formalize the multi-group learning setting. In
Section 3 we present a simple algorithm for the multi-group
learning problem that achieves a suboptimal generalization
bound. In Section 4, we give a reduction to the online sleep-
ing experts problem. The resulting algorithm achieves the
correct generalization rate, though this comes at the expense
of a significantly more complicated learning algorithm. Fi-
nally, in Section 5, we consider a setting in which each
group has a corresponding perfect classifier. Here we show
that there is no need to trade off simplicity and optimality: a
relatively simple algorithm achieves the optimal per-group
performance guarantee.

All proofs are presented in the appendix.

2. Setting and notation
Let X denote an input space, Y denote a label space, and
Z denote a prediction space. Let D denote a distribution
over X × Y . Throughout, H ⊆ {h : X → Z} denotes
a (benchmark) hypothesis class. A group g is a subset of
the space X . We overload notation by identifying a group
g ⊆ X with the binary function g : X → {0, 1} that
indicates membership in g. We denote the set of groups
of interest by G, and let P (g) := E(x,y)∼D[g(x)] for any
group g. Let ` : Z ×Y → [0, 1] be a bounded loss function,
and for a predictor f : X → Z , the conditional risk of f
given g is

L(f | g) := E(x,y)∼D[`(f(x), y) | x ∈ g].

For an i.i.d. sample (x1, y1), . . . , (xn, yn) ∼ D, we de-
fine the following empirical quantities: let #n(g) :=∑n
i=1 g(xi), Pn(g) := #n(g)/n, and

Ln(f | g) :=
1

#n(g)

n∑
i=1

g(xi)`(f(xi), yi).

The (unconditional) risk and empirical risk of f are L(f) :=
E(x,y)∼D[`(f(x), y)] and Ln(f) := 1

n

∑n
i=1 `(f(xi), yi).

2.1. Multi-group agnostic learning

At a high level, the objective in the multi-group (agnostic)
learning setting is to find a predictor f such that the condi-
tional risk is not much larger than infh∈H L(h | g) for all
g ∈ G. This setting was formalized by Rothblum & Yona
(2021a); they require, for a given ε > 0, that the excess
conditional risks be uniformly small over all groups g ∈ G:

L(f | g) ≤ inf
h∈H

L(h | g) + ε for all g ∈ G. (1)
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Note that the best hypothesis in the benchmark class hg ∈
H for a particular group g may not be the same as that
for a different group g′. Indeed, there may be no single
h ∈ H that has low conditional risk for all groups in G
simultaneously. Hence, a learner may typically need to
choose a predictor f from outside ofH.

We will give non-uniform bounds on the excess conditional
risks (discussed below), where ε is replaced by a quantity
εn(g) depending on both the size n training set and the
specific group g ∈ G in question:

L(f | g) ≤ inf
h∈H

L(h | g) + εn(g) for all g ∈ G. (2)

The quantity εn(g) will be a decreasing function of #n(g),
and it will be straightforward to determine a minimum sam-
ple size n (in terms of a prescribed ε > 0) such that Eq. (2)
implies Eq. (1).

2.2. Convergence of conditional risks

For a class of {0, 1}-valued functions F defined over a
domain X , the k-th shattering coefficient, is given by

Πk(F) := max
x1,...,xk∈X

∣∣{(f(x1), . . . , f(xk)) : f ∈ F}
∣∣ .

For a class of real-valued functions F defined over a domain
X , the thresholded class is given by

Fthresh := {x 7→ 1[f(x) > τ ] : f ∈ F , τ ∈ R}.

Finally, for a hypothesis classH and a loss function ` : Z ×
Y → [0, 1], the loss-composed class is

` ◦ H := {(x, y) 7→ `(h(x), y) : h ∈ H}.

The following theorem shows that the empirical conditional
risks converge uniformly to their population counterparts.
This can be seen as a generalization of a result by Balsub-
ramani et al. (2019), which demonstrated universal conver-
gence of empirical conditional probabilities.

Theorem 1. LetH be a hypothesis class, let G be a set of
groups, and let ` : Z × Y → [0, 1] be a loss function. With
probability at least 1− δ,

|L(h | g)− Ln(h | g)| ≤ 9

√
D

#n(g)
∀(h, g) ∈ H × G,

where D = 2 log
(
Π2n((` ◦ H)thresh)Π2n(G)

)
+ log(8/δ).

In the standard agnostic binary classification setting, it is
known that, in general, the best achievable error rate of a
learning algorithm is on the order of the uniform conver-
gence rate of the empirical risks of the entire hypothesis
class (Shalev-Shwartz & Ben-David, 2014, Chapter 6). This
can be seen as a statistical equivalence between learning and

Algorithm 1 PREPEND

input Groups G, hypothesis class H, i.i.d. examples
(x1, y1), . . . , (xn, yn) from D, error bound εn : G → R+.

output Decision list fT ∈ DLT [G;H].
Compute h0 ∈ argminh∈H Ln(h)
Set f0 = [h0] ∈ DL0[G;H].
for t = 0, 1, . . . , do

Compute

(gt+1, ht+1) ∈ argmax
(g,h)∈G×H

Ln(ft | g)−Ln(h | g)− εn(g).

if Ln(ft | gt+1)− Ln(ht+1 | gt+1) ≥ εn(gt+1) then
Prepend (gt+1, ht+1) to ft to obtain

ft+1 := [gt+1, ht+1, gt, ht, . . . , g1, h1, h0].

else
return ft.

end if
end for

estimation. Theorem 1 raises the question of whether such
an equivalence can also be established in the multi-group
learning setting. In this work, we make partial progress
towards establishing such an equivalence, providing a learn-
ing algorithm whose per-group error rate enjoys the same
upper bound as the convergence rates in Theorem 1.

3. A simple multi-group learning algorithm
In this section we will show that there is a particularly simple
class of predictors for solving the multi-group learning prob-
lem: decision lists in which internal (decision) nodes are as-
sociated with functions from G, and leaf (prediction) nodes
are associated with functions fromH. We denote the set of
such decision lists of length t by DLt[G;H]. The function
computed by ft = [gt, ht, gt−1, ht−1, . . . , g1, h1, h0] ∈
DLt[G;H] is as follows: upon input x ∈ X ,

if gt(x) = 1 then return ht(x) else if gt−1(x) = 1
then return ht−1(x) else if · · · else return h0(x).

This computation can be recursively specified as

ft(x) =

{
ht(x) if gt(x) = 1

ft−1(x) if gt(x) = 0

where ft−1 = [gt−1, ht−1, . . . , g1, h1, h0] ∈ DLt−1[G;H].
(We identify DL0[G;H] withH.)

We propose a simple algorithm, called PREPEND (Al-
gorithm 1), for learning these decision lists. PREPEND
proceeds in rounds, maintaining a current decision list
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ft ∈ DLt[G;H]. At each round, it searches for a group
gt+1 ∈ G and a hypothesis ht+1 ∈ H that witnesses an
empirical violation of Eq. (2). If such a violation is found,
ft is updated to ft+1 by prepending the pair (ht+1, gt+1) to
the front of ft. If no violation is found, then we claim that
ft is good enough, and terminate.

We first bound the number of iterations executed by Algo-
rithm 1 before it terminates.

Lemma 2. Suppose that every g ∈ G satisfies Pn(g) ·
εn(g) ≥ εo and say that minh∈H Ln(h) ≤ α. Then Al-
gorithm 1 terminates after at most t ≤ α/εo rounds and
outputs a predictor ft ∈ DLt[G;H] such that

Ln(ft | g) ≤ inf
h∈H

Ln(h | g) + εn(g) for all g ∈ G.

3.1. Sample complexity

The key step in bounding the sample complexity of Al-
gorithm 1 is in controlling the complexity of DLT [G;H],
whereupon Theorem 1 can be applied. To see how this is
done, consider the case where |G| and |H| are finite. In this
setting, there are T decision nodes, each of which can be
chosen from G, and there are T + 1 prediction nodes chosen
fromH. Thus, |DLT [G;H]| ≤ |G|T |H|T+1.

To apply this observation, we first note that for any f =
[gT , hT , . . . , g1, h1, h0] ∈ DLT [G;H], if there are rounds
t < t′ such that gt = gt′ , then f is functionally equivalent to
f ′ ∈ DLT−1[G;H] where f ′ simply removes the occurrence
of ht, gt in f . Thus, when the number of groups is finite, we
can always pretend as if DLT [G;H] is the set of decision lists
of length exactly |G|. The next result follows immediately.

Proposition 3. Suppose |G| and |H| are finite. The follow-
ing holds with probability at least 1− δ. If Algorithm 1 is
run until convergence, it will terminate with a predictor f
that satisfies

L(f | g) ≤ min
h∈H

L(h | g) + εn(g)

+O

√ |G| log(|H||G|) + log(1/δ)

#n(g)


for all g ∈ G.

Proposition 3 suggests that when |G| is small, a reasonable
approach is to take

εn(g) = O

√ |G| log(|H||G|) + log(1/δ)

#n(g)

 ,

in which case we will terminate with a predictor whose
excess conditional error on any group g is O(εn(g)). Thus,
when the number of groups is small, estimation error and
learning error are within a factor of

√
|G|.

If the number of groups is very large, or infinite, Proposi-
tion 3 may be vacuous. However, if we have a lower bound
on the empirical mass of any group (or perhaps restrict our-
selves to such groups), then we can give a result that remains
useful. To do so, we introduce the notation

Gn,γ = {g ∈ G : #n(g) ≥ γn}.

Given this notation, we have the following result.

Theorem 4. Suppose that H and G are finite, and γ > 0
is given. There is a setting of εn(·) such that the following
holds. If Algorithm 1 is run with groups Gn,γ , then with
probability 1− δ, it terminates with a predictor f satisfying

L(f | g) ≤ min
h∈H

L(h | g)+O

 3

√
K/γ

#n(g)
+

√
log(1/δ)

#n(g)


for all g ∈ Gn,γ , where K := log(|G|||H|). In addition,
with probability 1 − δ, all g ∈ G satisfying P (g) ≥ γ +√

log(|G|/δ)
n will lie in Gn,γ .

Theorem 4 implies the following sample complexity to
achieve the error bound of the type in Eq. (1).

Corollary 5. There is an absolute constant c > 0 such that
the following holds. Suppose that H and G are finite, and
γ := ming∈G P (g). There is a setting of εn(·) such that the
following holds. If

n ≥ c

ε3γ2
log

(
|G||H|
δ

)
then with probability 1− δ, Algorithm 1 terminates with a
predictor f satisfying

L(f | g) ≤ min
h∈H

L(h | g) + ε for all g ∈ G.

PREPEND can also handle the setting where both the number
of groups and the number of hypotheses are infinite, so long
as the pseudo-dimension of ` ◦ H and the VC-dimension of
G are bounded.

Theorem 6. Suppose that both the pseudo-dimension of
` ◦ H and the VC-dimension of G are bounded above by d,
and γ > 0 is given. There is a setting of εn(·) such that the
following holds. If Algorithm 1 is run with groups Gn,γ , then
with probability 1− δ, it returns a predictor f satisfying

L(f | g) ≤ min
h∈H

L(h | g)+O

 3

√
d log n

γ#n(g)
+

√
log(1/δ)

#n(g)


for all g ∈ Gn,γ . Moreover, with probability 1−δ, all g ∈ G
satisfying P (g) ≥ γ +

√
d log(2n)+log(4/δ)

n lie in Gn,γ .
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3.2. Inadmissibility of evaluation functions

One interpretation of decision lists in the class DLt[G;H]
is that they correspond to orderings of the set G ×H. That
is, for any f ∈ DLt[G;H] there is a corresponding ordering
(g1, h1), (g2, h2), . . . where for a given x ∈ X , we first find

i(x) = min{i : gi(x) = 1}

and classify according to hi(x)(x). Given this alternate
perspective, one can ask whether it is possible to calculate
such orderings directly. We will show a negative result here
for the approach of evaluation functions.

An evaluation function s : H× G × (X × Y)∗ → R takes
as input h ∈ H, g ∈ G and a sample (x1, y1), . . . , (xn, yn)
and outputs a real number as a score. The ordering induced
by an evaluation function is then simply the ordering of
the corresponding scores, with ties being broken by some
(possibly randomized) rule. We say that s is an order-1
evaluation function if s(h, g, (x1, y1), . . . , (xn, yn)) is only
a function of n, Pn(g) and Ln(h | g).

By Theorem 1, Pn(g) and Ln(h | g) converge to their
expectations as n grows to infinity. Thus, in the limit, an
order-1 evaluation function is a function of P (g) and L(h |
g). Unfortunately, there exist two scenarios where these
statistics are identical but no decision list solves the multi-
group learning problem for both scenarios simultaneously.
Proposition 7. There exist H = {h1, h2}, G = {g1, g2},
and distributions D1 and D2 such that the following holds.

• PD1
(g) = PD2

(g) and LD1
(h | g) = LD2

(h | g) for
all h ∈ H, g ∈ G.

• For any decision list f ∈ DLt[G;H], there exists an
i ∈ {1, 2} and g ∈ G such that

LDi(f | g) ≥ min
h∈H

LDi(h | g) +
1

8
.

Here, the subscript Di denotes taking probabilities with
respect to Di.

4. A reduction to sleeping experts
In this section, we will show that the rate suggested by
Theorem 1 is achievable via a reduction to the sleeping
experts problem, similar to the result of Blum & Lykouris
(2020). The sleeping experts problem is an online expert
aggregation problem such that during every round, some
experts are ‘awake’ and some are ‘asleep’ (Blum, 1997;
Freund et al., 1997). The goal for a learner in this setting is
to achieve low regret against every expert on those rounds
in which it was awake.

To reduce the multi-group learning problem to a sleeping
experts problem, we create an expert for every pair (h, g) ∈

Algorithm 2 Reduction to sleeping experts

input Groups G, hypothesis class H, 2n i.i.d. examples
(x1, y1), . . . , (xn, yn), (x′1, y

′
1), . . . , (x′n, y

′
n) from D.

output Randomized predictor Q.
Run MLC-HEDGE on (x1, y1), . . . , (xn, yn) using ex-
perts H × G with uniform initial probabilities, and per-

expert learning rates ηh,g = min
{√ log(|H||G|)∑n

i=i g(x
′
i)
, 1
}

. Let
p1, . . . , pn be the internal hypotheses of MLC-HEDGE.

output Q = uniform distribution over p1, . . . , pn.

H×G. In each round t, we feed an example xt and say that
expert (h, g) is awake if and only if g(xt) = 1, in which
case the expert prediction is h(xt) and the revealed loss is
`(h(xt), yt). Formally, the reduction looks as follows:

For t = 1, 2, . . . , n:

– Input xt is revealed.
– If g(xt) = 1, then expert (h, g) is awake and

predicts h(xt). Otherwise, (h, g) is asleep.
– The learner produces a distribution pt over the

experts such that
∑
h,g g(xt)pt(h, g) = 1.

– Label yt is revealed, and the learner suffers loss
ˆ̀
t =

∑
h,g pt(h, g)g(xt)`(h(xt), yt).

There are several suitable algorithms in the literature for the
sleeping experts problem. Most convenient for our purposes
is MLC-HEDGE, originally proposed by Blum & Mansour
(2007) and further analyzed by Gaillard et al. (2014). In Ap-
pendix C, we present MLC-HEDGE and state the learning
guarantees proven by Gaillard et al. (2014).

To convert this online learner into a batch learning algorithm,
we follow the strategy of Helmbold & Warmuth (1995).
We do this by keeping track of the internal hypotheses of
the online learner. That is, let pt(· ; x) be the distribution
that the learner at time t would produce if fed the example
x. Given these internal hypotheses, the final predictor is
as follows: on input x, draw t uniformly at random from
{1, . . . , n}, draw (h, g) from pt(· ; x), and predict h(x).

For a collection of internal hypotheses p1, . . . , pn and a
distribution Q over such hypotheses, we use the notation

L(pt | g) := E(x,y)

[
E(h̃,g̃)∼pt(· ; x)

[
`
(
h̃(x), y

)] ∣∣ g]
L(Q | g) := Ept∼Q

[
L(pt | g)

]
.

To run MLC-HEDGE, we need to specify an initial probabil-
ity distribution over the experts and a set of expert-specific
learning rates. Our initial distribution is uniform distribu-
tion over the experts. For the learning rates, we use half the
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Algorithm 3 Consistent majority algorithm

input Groups G, binary classifiers H, n i.i.d. examples
from a group-realizable distribution.

output Group-conditional majority vote predictor f .
For each g ∈ G, let ĥg ∈ argminh∈H Ln(h | g).

output Predictor x 7→ sign
(∑

g∈G g(x)ĥg(x)
)

.

sample to estimate the empirical probability masses of each
group and set the learning rates to optimize an upper bound
on the per-expert regret (Gaillard et al., 2014, Theorem 16).
Algorithm 2 presents the full method.
Theorem 8. Let Q be the randomized predictor returned
by Algorithm 2. Then

L(Q | g) ≤ min
h∈H

L(h | g) +O

√ log(|G||H|/δ)
#n(g)


for all g ∈ G with probability at least 1− δ.

Theorem 8 implies the following corollary.
Corollary 9. There is an absolute constant c > 0 such that
the following holds. Suppose P (g) ≥ γ > 0 for all g ∈ G.
Let Q be the randomized predictor returned by Algorithm 2.
If

n ≥ c

ε2γ
log
|G||H|
δ

,

then with probability at least 1− δ,

L(Q | g) ≤ min
h∈H

L(h | g) + ε for all g ∈ G.

The dependence on log |H| in Theorem 8 and Corollary 9
can be replaced by the pseudo-dimension of ` ◦ H (up to
a log n factor) using a slight modification to Algorithm 2.
Simply use half of the training data to find, for each g ∈ G,
a hypothesis ĥg ∈ H satisfying

L(ĥg | g) ≤ inf
h∈H

L(h | g)+O

√d log n+ log(|G|/δ)
#n(g)


(say, using ERM); and then execute Algorithm 2 using {ĥg :
g ∈ G} instead ofH, along with the other half of the training
data. Removing the dependence on log |G| is algorithmically
less straightforward.

5. The group-realizable setting
We restrict our attention now to the case where Y = Z =
{−1,+1} and `(z, y) = 1[z 6= y] is the binary zero-one
loss. In the group-realizable setting, each group has an
associated perfect classifier:

min
h∈H

L(h | g) = 0 for all g ∈ G.

Note that realizability is the stronger assumption
minh∈H L(h) = 0. Realizability implies group-
realizability, but not vice versa. In this setting, the arguments
from Section 4 can be adapted to show that the randomized
predictor produced by Algorithm 2 achieves error

L(Q | g) ≤ O

(
log(|G||H|)

#n(g)

)
with high probability for all g ∈ G. However, in the group-
realizable setting, one can achieve this rate using a simpler
approach.

Algorithm 3 shows the algorithm for the group-realizable
setting. The idea is to use ERM to fit a classifier to every
group. Since the distribution is group-realizable, all of these
classifiers will be consistent on the data from their respective
groups. Given a data point to predict on, we collect all the
groups it lies in and predict using the majority vote of the
associated groups.
Theorem 10. Suppose Algorithm 3 is run on n i.i.d. ex-
amples from a group-realizable distribution and returns f .
With probability at least 1− δ,

L(f | g) ≤ O

(
log
(
|G||H|/δ

)
#n(g)

)
for all g ∈ G.

The function class used by Algorithm 3 is simple but seem-
ingly quite powerful. One natural question is whether one
could use this class to solve the multi-group learning prob-
lem in the general agnostic setting, for example via some
sample splitting approach. The following result shows that
this not possible in general.
Proposition 11. There is a set of hypothesesH = {h, h′},
a set of groups G = {g1, g2, g3} and a distribution D such
that the following holds. IfF is the set of possible predictors
produced by Algorithm 3, then for all f ∈ F , there exists
some g ∈ G such that

L(f | g) > min
h∈H

L(h | g) +
1

4

where the loss is zero-one loss.

6. Discussion and open problems
In this work, we presented simple and near-optimal algo-
rithms for multi-group learning. Here we point to some
interesting directions for future work.

Computation. It is not clear if any of the algorithms con-
sidered in this work can be made efficient, as they seem
to rely either on enumeration or on complicated opti-
mization subroutines. Thus, it is an interesting open
problem to devise multi-group learning algorithms that
are efficient for some specific choices ofH and G and
some restrictions on the marginal distribution over X .
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Representation. Through Algorithm 1, we have addressed
the question of representational complexity for multi-
group learning: we showed that decision lists of the
form in DLT [G;H] are sufficient. However, the full
expressivity of this class is not necessary in all cases
(such as in the group-realizable setting). An expanded
investigation of these representational issues should
address this gap.

Simplicity and optimality. Finally, it remains an inter-
esting open problem is to design an algorithm that is
simple like Algorithm 1 but that also enjoys the perfor-
mance guarantees of Algorithm 2.

Acknowledgements
We thank Kamalika Chaudhuri for helpful initial discus-
sions about hidden stratification. We acknowledge support
from NSF grants CCF-1740833 and IIS-1563785, and a JP
Morgan Faculty Award. Part of this work was completed
while CT was at Columbia University.

References
Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., and

Wallach, H. A reductions approach to fair classification.
In International Conference on Machine Learning, pp.
60–69, 2018.

Azizzadenesheli, K., Liu, A., Yang, F., and Anandkumar,
A. Regularized learning for domain adaptation under
label shifts. In International Conference on Learning
Representations, 2018.

Balsubramani, A., Dasgupta, S., Freund, Y., and Moran, S.
An adaptive nearest neighbor rule for classification. In
Advances in Neural Information Processing Systems, pp.
7579–7588, 2019.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning
from different domains. Machine learning, 79(1):151–
175, 2010.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. Robust
optimization. Princeton university press, 2009.

Bertsimas, D., Gupta, V., and Kallus, N. Data-driven robust
optimization. Mathematical Programming, 167(2):235–
292, 2018.

Blum, A. Empirical support for winnow and weighted-
majority algorithms: Results on a calendar scheduling
domain. Machine Learning, 26(1):5–23, 1997.

Blum, A. and Lykouris, T. Advancing subgroup fairness via
sleeping experts. In Innovations in Theoretical Computer
Science Conference (ITCS), 2020.

Blum, A. and Mansour, Y. From external to internal regret.
Journal of Machine Learning Research, 8(6), 2007.

Boucheron, S., Bousquet, O., and Lugosi, G. Theory of
classification: A survey of some recent advances. ESAIM:
probability and statistics, 9:323–375, 2005.

Cesa-Bianchi, N., Conconi, A., and Gentile, C. On the gen-
eralization ability of on-line learning algorithms. IEEE
Transactions on Information Theory, 50(9):2050–2057,
2004.

Cortes, C., Mansour, Y., and Mohri, M. Learning bounds for
importance weighting. In Advances in Neural Information
Processing Systems, pp. 442–450, 2010.

Cortes, C., Greenberg, S., and Mohri, M. Relative deviation
learning bounds and generalization with unbounded loss
functions. Annals of Mathematics and Artificial Intelli-
gence, 85(1):45–70, 2019.

Diana, E., Gill, W., Kearns, M., Kenthapadi, K., Roth,
A., and Sharifi-Malvajerdi, S. Multiaccurate proxies for
downstream fairness. arXiv preprint arXiv:2107.04423,
2021.

Donini, M., Oneto, L., Ben-David, S., Shawe-Taylor, J., and
Pontil, M. Empirical risk minimization under fairness
constraints. In Advances in Neural Information Process-
ing Systems, pp. 2796–2806, 2018.

Duchi, J., Hashimoto, T., and Namkoong, H. Distribution-
ally robust losses for latent covariate mixtures, 2020.

Duchi, J. C., Glynn, P. W., and Namkoong, H. Statistics of
robust optimization: A generalized empirical likelihood
approach. Mathematics of Operations Research, 2021.

Dwork, C. and Ilvento, C. Individual fairness under com-
position. Proceedings of Fairness, Accountability, Trans-
parency in Machine Learning, 2018.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,
R. Fairness through awareness. In Proceedings of the 3rd
innovations in theoretical computer science conference,
pp. 214–226, 2012.

Dwork, C., Kim, M. P., Reingold, O., Rothblum, G. N., and
Yona, G. Outcome indistinguishability. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pp. 1095–1108, 2021.

Freedman, D. On tail probabilities for martingales. The
Annals of Probability, 3(1):100–118, 1975.

Freund, Y. Boosting a weak learning algorithm by majority.
Information and computation, 121(2):256–285, 1995.



Algorithms for hidden stratification and multi-group learning

Freund, Y., Schapire, R. E., Singer, Y., and Warmuth, M. K.
Using and combining predictors that specialize. In Pro-
ceedings of the twenty-ninth annual ACM Symposium on
Theory of Computing, pp. 334–343, 1997.

Gaillard, P., Stoltz, G., and Van Erven, T. A second-order
bound with excess losses. In Conference on Learning
Theory, pp. 176–196. PMLR, 2014.

Gillen, S., Jung, C., Kearns, M., and Roth, A. Online learn-
ing with an unknown fairness metric. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, pp. 2605–2614, 2018.

Globus-Harris, I., Kearns, M., and Roth, A. Beyond the
frontier: Fairness without privacy loss. arXiv preprint
arXiv:2201.10408, 2022.

Gupta, V., Jung, C., Noarov, G., Pai, M. M., and Roth,
A. Online multivalid learning: Means, moments, and
prediction intervals. arXiv preprint arXiv:2101.01739,
2021.

Hardt, M., Price, E., and Srebro, N. Equality of opportunity
in supervised learning. Advances in neural information
processing systems, 29:3315–3323, 2016.

Hébert-Johnson, U., Kim, M., Reingold, O., and Rothblum,
G. Multicalibration: Calibration for the (computationally-
identifiable) masses. In International Conference on Ma-
chine Learning, pp. 1939–1948, 2018.

Helmbold, D. P. and Warmuth, M. K. On weak learning.
Journal of Computer and System Sciences, 50(3):551–
573, 1995.

Hopkins, M., Kane, D., Lovett, S., and Mahajan, G.
Realizable learning is all you need. arXiv preprint
arXiv:2111.04746, 2021.

Kearns, M., Neel, S., Roth, A., and Wu, Z. S. Preventing
fairness gerrymandering: Auditing and learning for sub-
group fairness. In International Conference on Machine
Learning, pp. 2564–2572, 2018.

Kim, M., Ghorbani, A., and Zou, J. Multiaccuracy: Black-
box post-processing for fairness in classification. In Pro-
ceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, pp. 247–254, 2019.

Kpotufe, S. and Martinet, G. Marginal singularity, and the
benefits of labels in covariate-shift. In Conference On
Learning Theory, pp. 1882–1886, 2018.

Liu, E. Z., Haghgoo, B., Chen, A. S., Raghunathan, A.,
Koh, P. W., Sagawa, S., Liang, P., and Finn, C. Just train
twice: Improving group robustness without training group
information. In International Conference on Machine
Learning, pp. 6781–6792. PMLR, 2021.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic feder-
ated learning. In International Conference on Machine
Learning, pp. 4615–4625, 2019.

Noarov, G., Pai, M., and Roth, A. Online multiobjective
minimax optimization and applications. arXiv preprint
arXiv:2108.03837, 2021.

Oakden-Rayner, L., Dunnmon, J., Carneiro, G., and Ré, C.
Hidden stratification causes clinically meaningful failures
in machine learning for medical imaging. In Proceedings
of the ACM conference on health, inference, and learning,
pp. 151–159, 2020.

Rothblum, G. and Yona, G. Multi-group agnostic pac learn-
ability. In International Conference on Machine Learning,
pp. 9107–9115, 2021a.

Rothblum, G. and Yona, G. Personal communication,
2021b.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gen-
eralization. In International Conference on Learning
Representations, 2020a.

Sagawa, S., Raghunathan, A., Koh, P. W., and Liang, P. An
investigation of why overparameterization exacerbates
spurious correlations. In International Conference on
Machine Learning, pp. 8346–8356. PMLR, 2020b.

Schapire, R. E. The strength of weak learnability. Machine
learning, 5(2):197–227, 1990.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Shimodaira, H. Improving predictive inference under covari-
ate shift by weighting the log-likelihood function. Jour-
nal of statistical planning and inference, 90(2):227–244,
2000.

Sohoni, N. S., Dunnmon, J. A., Angus, G., Gu, A., and Ré,
C. No subclass left behind: Fine-grained robustness in
coarse-grained classification problems. arXiv preprint
arXiv:2011.12945, 2020.

Trevisan, L., Tulsiani, M., and Vadhan, S. Regularity, boost-
ing, and efficiently simulating every high-entropy distribu-
tion. In 24th Annual IEEE Conference on Computational
Complexity, 2009.

Zadrozny, B. Learning and evaluating classifiers under
sample selection bias. In International Conference on
Machine Learning, pp. 114, 2004.



Algorithms for hidden stratification and multi-group learning

A. Missing proofs from Section 2
A.1. Proof of Theorem 1

To simplify the proof, we will use the following notation. Let P be a probability distribution over X , letH be a family of
[0, 1]-valued functions over X , and let G be a family of {0, 1}-valued functions over X . Given a sample x1, . . . , xn drawn
from P , we make the following definitions:

P (h | g) :=
P (hg)

P (g)
:=

E[h(x)g(x)]

E[g(x)]

Pn(h | g) :=
Pn(hg)

Pn(g)
:=

∑n
i=1 h(xi)g(xi)

#n(g)
.

Given this notation, we will prove the following theorem, which directly implies Theorem 1.

Theorem 12. Let P be a probability distribution over X , letH be a family of [0, 1]-valued functions over X , and let G be a
family of {0, 1}-valued functions over X . Then with probability at least 1− δ,

∣∣P (h | g)− Pn(h | g)
∣∣ ≤ min

9

√
D

#n(g)
, 7

√
DPn(h | g)

#n(g)
+

16D

#n(g)


for all h ∈ H, g ∈ G, where D = 2 log Π2n(Hthresh) + 2 log Π2n(G) + log(8/δ).

To prove Theorem 12, we will provide relative deviation bounds on [0, 1]-valued functions of the following form: with
probability 1− δ,

|P (h)− Pn(h)| ≤
√
Pn(h)comp(H) log(1/δ)

n
+

comp(H) log(1/δ)

n

for all h ∈ H, where comp(H) is some complexity measure ofH.

To establish this relative deviation bound, we first reduce the problem from [0, 1]-valued functions to {0, 1}-valued functions.

Lemma 13. IfH is a class of [0, 1]-valued function, then

Pr

(
sup
h∈H

P (h)− Pn(h)√
P (h)

> ε

)
≤ Pr

(
sup

h′∈Hthresh

P (h′)− Pn(h′)√
P (h′)

> ε

)

Pr

(
sup
h∈H

Pn(h)− P (h)√
Pn(h)

> ε

)
≤ Pr

(
sup

h′∈Hthresh

Pn(h′)− P (h′)√
Pn(h′)

> ε

)
.

Proof. The proof is inspired by the proof of Theorem 3 of Cortes et al. (2019). For h ∈ H, t ∈ [0, 1], we use the notation

P (h > t) = E[1[h(x) > t]]

Pn(h > t) =
1

n

n∑
i=1

1[h(xi) > t].

To prove the lemma, it will suffice to prove the following two implications

∀h ∈ H, t ∈ [0, 1], P (h > t)− Pn(h > t) ≤ ε
√
P (h > t) −→ ∀h ∈ H, P (h)− Pn(h) ≤ ε

√
P (h)

∀h ∈ H, t ∈ [0, 1], Pn(h > t)− P (h > t) ≤ ε
√
Pn(h > t) −→ ∀h ∈ H, Pn(h)− P (h) ≤ ε

√
Pn(h).

We will prove the first statement, as the second can be proven symmetrically. Assume that

P (h > t)− Pn(h > t) ≤ ε
√
P (h > t)
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for all h ∈ H and t ∈ [0, 1]. Since h is [0, 1]-valued, we can write

P (h) =

∫ 1

0

P (h > t) dt

Pn(h) =

∫ 1

0

Pn(h > t) dt.

Thus,

P (h)− Pn(h) =

∫ 1

0

P (h > t)− Pn(h > t) dt

≤
∫ 1

0

ε
√
P (h > t) dt

≤ ε

√∫ 1

0

P (h > t) dt

= ε
√
P (h)

where the first inequality is by assumption and the second is by Jensen’s inequality.

The following result, found for example in Boucheron et al. (2005), provides uniform convergence bounds on the relative
deviations of {0, 1}-valued functions.
Lemma 14. If F is a class of {0, 1}-valued function, then

Pr

(
sup
f∈F

Pn(f)− P (f)√
Pn(f)

> ε

)
≤ 4Π2n(F) exp

(
−ε

2n

4

)

Pr

(
sup
f∈F

P (f)− Pn(f)√
P (f)

> ε

)
≤ 4Π2n(F) exp

(
−ε

2n

4

)
where Πk(F) is the k-th shattering coefficient of F .

Combining these two results, we have the following.
Lemma 15. IfH is a class of [0, 1]-valued function, then with probability 1− δ,

P (h)− Pn(h) ≤ 2

√
Pn(h)

log Π2n(Hthresh) + log(8/δ)

n
+ 4

log Π2n(Hthresh) + log(8/δ)

n

P (h)− Pn(h) ≥ −2

√
Pn(h)

log Π2n(Hthresh) + log(8/δ)

n

for all h ∈ H.

Proof. Combining Lemmas 13 and 14, we immediately have that with probability 1− δ

Pn(h)− P (h)√
Pn(h)

≤ 2

√
log Π2n(Hthresh) + log(8/δ)

n

P (h)− Pn(h)√
P (h)

≤ 2

√
log Π2n(Hthresh) + log(8/δ)

n

for all h ∈ H. Let us condition on this occurring.

Using the standard trick that for A,B,C ≥ 0, the inequality A ≤ B
√
A+ C entails the inequality A ≤ B2 +B

√
C + C,

we can observe from the second inequality above that

P (h) ≤ Pn(h) + 2

√
Pn(h)

log Π2n(Hthresh) + log(8/δ)

n
+ 4

log Π2n(Hthresh) + log(8/δ)

n
.

Combined with the first inequality, we have the lemma statement.



Algorithms for hidden stratification and multi-group learning

Now we turn to the proof of Theorem 12.

Proof of Theorem 12. The proof is similar to the proof of Theorem 5 of Balsubramani et al. (2019). Let F = G ∪ {hg :
h ∈ H, g ∈ G}. Note that for g ∈ G, h ∈ H and t ∈ R, we have

1[h(x)g(x) > t] = g(x)1[h(x) > t].

Thus, if we let C = {hg : h ∈ H, g ∈ G}, we observe that

log Πn(Fthresh) ≤ log Πn(G) + log Πn(Cthresh)

≤ log Πn(G) + log Πn(Hthresh)Πn(G)

≤ 2 log Πn(Hthresh)Πn(G).

Combining this with Lemma 15, we have with probability 1− δ

Pn(f)− 2

√
Pn(f)

D

n
≤ P (f) ≤ Pn(f) + 2

√
Pn(f)

D

n
+ 4

D

n

for all f ∈ F , where we used the definition D = 2 log
(
Π2n(Hthresh)

)
+ 2 log

(
Π2n(G)

)
+ log(8/δ). Let us condition on

this event holding.

Now fix some h ∈ H and g ∈ G. We can work out

P (h | g) =
P (hg)

P (g)

≤
Pn(hg) + 2

√
Pn(hg)Dn + 4Dn

Pn(g)− 2
√
Pn(g)Dn

=
Pn(hg)

Pn(g)
·

1 + 2
√

D
nPn(hg)

+ 4 D
nPn(hg)

1− 2
√

D
nPn(g)

=
#n(hg)

#n(g)
·

1 + 2
√

D
#n(hg)

+ 4 D
#n(hg)

1− 2
√

D
#n(g)

.

Here, we have used the notation #n(f) = nPn(f). Observe that if #n(g) ≤ 16D, the theorem statement is trivial. Thus,
we may assume that #n(g) > 16D, whereupon the inequality 1

1−x ≤ 1 + 2x for all x < 1/2 implies

1

1− 2
√

D
#n(g)

≤ 1 + 4

√
D

#n(g)
.

Thus, we have

P (h | g) ≤ #n(hg)

#n(g)
·

1 + 2

√
D

#n(hg)
+ 4

D

#n(hg)

1 + 4

√
D

#n(g)


=

#n(hg)

#n(g)
·

1 + 2

√
D

#n(hg)
+ 4

D

#n(hg)
+ 4

√
D

#n(g)
+ 4

D√
#n(hg)#n(g)

+ 16
D3/2

#n(hg)
√

#n(g)


=

#n(hg)

#n(g)
+ 2

√
D#n(hg)

#n(g)
+ 4

D

#n(g)
+ 4

#n(hg)

#n(g)

√
D

#n(g)
+ 4

D
√

#n(hg)

#n(g)3/2
+ 16

D3/2

#n(g)3/2

≤ Pn(h | g) + min

9

√
D

#n(g)
, 7

√
DPn(h | g)

#n(g)
+

8D

#n(g)
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where we have made use of the inequalities #n(hg) ≤ #n(g) and #n(g) > 16D.

In the other direction, we have two cases: #n(hg) < 4D and #n(hg) ≥ 4D. Let us assume first that #n(hg) < 4D. Then
observe that

Pn(h | g)− 9

√
D

#n(g)
=

#n(hg)

#n(g)
− 9

√
D

#n(g)

<
4D

#n(g)
− 9

√
D

#n(g)

=

√
D

#n(g)

4

√
D

#n(g)
− 9

 ≤ 0 ≤ P (h | g)

where we have used the fact that #n(g) > 16D. Similarly, we also have

Pn(h | g)− 7

√
DPn(h | g)

#n(g)
− 8D

#n(g)
=

#n(hg)

#n(g)
− 7

√
D#n(hg)

#n(g)2
− 8D

#n(g)

<
4D

#n(g)
− 7

√
D#n(hg)

#n(g)2
− 8D

#n(g)
≤ 0 ≤ P (h | g)

Thus, we may assume that #n(hg) ≥ 4D, so that we have

P (h | g) =
P (hg)

P (g)

≥
Pn(hg)− 2

√
Pn(hg)Dn

Pn(g) + 2
√
Pn(g)Dn + 4Dn

=
#n(hg)

#n(g)
·

1− 2
√

D
#n(hg)

1 + 2
√

D
#n(g)

+ 4 D
#n(g)

.

Using the inequality 1
1+x ≥ 1− x for all x ≥ 0, we have

P (h | g) ≥ #n(hg)

#n(g)

1− 2

√
D

#n(hg)

1− 2

√
D

#n(g)
− 4

D

#n(g)


≥ #n(hg)

#n(g)

1− 2

√
D

#n(hg)
− 2

√
D

#n(g)
− 4

D

#n(g)


=

#n(hg)

#n(g)
− 2

√
D#n(hg)

#n(g)
− 2

#n(hg)
√
D

#n(g)3/2
− 4

D#n(hg)

#n(g)2

≥ Pn(h | g)−min

5

√
D

#n(g)
, 4

√
DPn(h | g)

#n(g)
+

4D

#n(g)


where we again made use of the inequalities #n(hg) ≤ #n(g) and #n(g) > 16D.

B. Missing proofs from Section 3
B.1. Proof of Lemma 2

We first note that if the algorithm terminates at round t, then we trivially must have

Ln(ft | g) ≤ inf
h∈H

Ln(h | g) + εn(g) for all g ∈ G.
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If the algorithm does not terminate at round t, then we must have found a pair ht+1, gt+1 such that

L(ft | gt+1)− L(ht+1 | gt+1) ≥ εn(gt+1),

and we must have prepended the pair (ht+1, gt+1) onto ft to create ft+1. Observe that this prepending action implies that
ft+1 will agree with ht+1 on gt+1 and agree with ft everywhere else. Thus, we have

Ln(ft)− Ln(ft+1) = E
[
`(ft(x), y)− `(ft+1(x), y)

]
= Pn(gt+1)E

[
`(ft(x), y)− `(ht+1(x), y) | gt+1(x) = 1

]
≥ Pn(gt+1)εn(gt+1) ≥ εo.

Thus, Ln(ft) decreases by εo at every update, and we have Ln(f0) ≤ α. The theorem follows by combining these two
observations.

B.2. Proof of Proposition 3

The discussion before the statement of Proposition 3 implies that |DLT [G;H]| ≤ |H||G|+1|G||G|. Applying Theorem 1, and
utilizing the fact that for any finite classH, we have Πn(H) ≤ |H|, we have with probability at least 1− δ

|L(f | g)− Ln(f | g)| ≤ 9

√
2 log |DLT [G;H]|+ 2 log |G|+ log(8/δ)

#n(g)

≤ 9

√
2(|G|+ 1) log(|H||G|) + log(8/δ)

#n(g)

for all f ∈ DLT [G;H] and g ∈ G. Combined with Lemma 2, we have the proposition statement.

B.3. Proof of Theorem 4

We will actually show the slightly stronger bound of

L(f | g) ≤ min
h∈H

L(h | g) + 22

(
α log(|G||H|)
γ#n(g)

)1/3

+ 18

√
log(8/δ)

#n(g)

where α = minh∈H Ln(h). The theorem follows from the fact that α ≤ 1.

We will take εn(g) to be the function

εn(g) = 362/3
(
α log(|G||H|)

)1/3(n
γ

)1/6(
1

#n(g)

)1/2

.

Then the number of rounds PREPEND takes is bounded as

T ≤ α

ming∈Gn,γ Pn(g)εn(g)

=
α

362/3
(
α log(|G||H|)

)1/3
(n/γ)1/6 ming∈Gn,γ Pn(g)(#n(g))−1/2

= α2/336−2/3
(
log(|G||H|)

)−1/3(n
γ

)−1/6
·
(
n

γ

)1/2

= α2/336−2/3
(
c log(|G||H|)

)−1/3(n
γ

)1/3

.

Observe that since |G| and |H| are finite, we have |DLT [G;H]| ≤ |H|T+1|G|T . Combining Theorem 1 and Lemma 2, we
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have with probability 1− δ

L(f | g) ≤ Ln(f | g) + 9

√
2(T + 1) log(|H||G|) + log(8/δ)

#n(g)

≤ min
h∈H

Ln(h | g) + εn(g) + 9

√
2(T + 1) log(|H||G|) + log(8/δ)

#n(g)

≤ min
h∈H

L(h | g) + εn(g) + 18

√
2(T + 1) log(|H||G|) + log(8/δ)

#n(g)

≤ min
h∈H

L(h | g) + εn(g) + 36

√
T log(|H||G|)

#n(g)
+ 18

√
log(8/δ)

#n(g)
.

Now by our bound on T , we have

36

√
T log(|H||G|)

#n(g)
≤ 36

(
c log(|H||G|)

#n(g)
· α2/336−2/3

(
log(|G||H|)

)−1/3(n
γ

)1/3
)1/2

= 362/3
(
α log(|G||H|)

)1/3(n
γ

)1/6(
1

#n(g)

)1/2

= εn(g).

Thus, we have

L(f | g) ≤ min
h∈H

Ln(h | g) + 2εn(g) + 18

√
log(8/δ)

#n(g)
.

Finally, observe that n/γ ≤ #n(g)/γ2 for all g ∈ Gn,γ . Thus, we have

εn(g) = 362/3
(
α log(|G||H|)

)1/3(n
γ

)1/6(
1

#n(g)

)1/2

≤ 362/3
(
α log(|G||H|)

)1/3(#n(g)

γ2

)1/6(
1

#n(g)

)1/2

≤ 362/3
(
α log(|G||H|)
γ#n(g)

)1/3

.

B.4. Proof of Corollary 5

By Lemma 14, we have with probability 1− δ/2 that

Pn(g) ≥ P (g)− 2

√
P (g)

n
log
(
16|G|/δ

)
for all g ∈ G. For the choice of n in the statement, this implies Pn(g) ≥ γ/2. By Theorem 4, we have with probability
1− δ/2,

L(f | g) ≤ min
h∈H

L(h | g) + 22

(
2 log(16|G||H|/δ)

γ#n(g)

)1/3

for all g ∈ Gn,γ/2. By a union bound, both of these hold with probability at least 1− δ, in which case we have Gn,γ/2 = G.
Plugging in our bound on #n(g) = nPn(g), we have

L(f | g) ≤ min
h∈H

L(h | g) + 22

(
2 log(16|G||H|/δ)

γ#n(g)

)1/3

≤ min
h∈H

L(h | g) + 22

(
4 log(16|G||H|/δ)

γ2n

)1/3

≤ min
h∈H

L(h | g) + ε

where the last line follows from the choice of n in the corollary statement.
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B.5. Proof of Theorem 6

Observe first that every prediction by f ∈ DLT [G;H] is actually done by some h ∈ H. Thus,

Πn((` ◦ DLT [G;H])thresh) ≤ Πn((` ◦ H)thresh)T+1Πn(G)T

≤
(
n

≤ d

)T+1(
n

≤ d

)T
≤ (2n)d(2T+1)

where the second line follows from the definition of pseudo-dimension and the Sauer-Shelah-Perles Lemma, and third line
follows from the inequality

(
a
≤b
)
≤ (2a)b. Thus, with probability 1− δ we have

|L(f | g)− Ln(f | g)| ≤ 18

√
d(T + 1) log(2n) + log(8/δ)

#n(g)
(3)

for all f ∈ DLT [G;H] and g ∈ G. Let us condition on this occurring.

We will take εn(g) to be the function

εn(g) =
(

2 · 362d log(2n)
)1/3(n

γ

)1/6(
1

#n(g)

)1/2

.

Then the number of rounds the rewrite algorithm takes is bounded as

T ≤ L0

ming∈Gn,γ Pn(g)εn(g)

=
1(

2 · 362d log(2n)
)1/3

(n/γ)1/6 ming∈Gn,γ Pn(g)(#n(g))−1/2

≤
(

2 · 362d log(2n)
)−1/3(n

γ

)−1/6
·
(
n

γ

)1/2

=
(

2 · 362d log(2n)
)−1/3(n

γ

)1/3

.

Here, we have used the fact that the loss is bounded above by 1. Eq. (3) implies that, for the function f returned by
Algorithm 1, we have for all g ∈ Gn,γ ,

L(f | g) ≤ Ln(f | g) + 18

√
d(T + 1) log(2n) + log(8/δ)

#n(g)

≤ min
h∈H

Ln(h | g) + εn(g) + 18

√
d(T + 1) log(2n) + log(8/δ)

#n(g)

≤ min
h∈H

L(h | g) + εn(g) + 36

√
d(T + 1) log(2n) + log(8/δ)

#n(g)

≤ min
h∈H

L(h | g) + εn(g) + 36

√
2Td log(2n)

#n(g)
+ 36

√
log(8/δ)

#n(g)
.

Now by our bound on T , we have

36

√
2Td log(2n)

#n(g)
≤ 36

√
2d log(2n)

#n(g)

(
2 · 362d log(2n)

)−1/3(n
γ

)1/3

=
(

2 · 362d log(2n)
)1/3(n

γ

)1/6(
1

#n(g)

)1/2

= εn(g).
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Thus, we have

L(f | g) ≤ min
h∈H

Ln(h | g) + 2εn(g) + 36

√
log(8/δ)

#n(g)
.

Finally, observe that n/γ ≤ #n(g)/γ2 for all g ∈ Gn,γ . Thus, we have

εn(g) =
(

2 · 362d log(2n)
)1/3(n

γ

)1/6(
1

#n(g)

)1/2

≤
(

2 · 362d log(2n)
)1/3(#n(g)

γ2

)1/6(
1

#n(g)

)1/2

≤ 14

(
d log(2n)

γ#n(g)

)1/3

.

B.6. Proof of Proposition 7

Let X = {x0, x1, x2} and gi = {x0, xi} for xi = 1, 2. Let the marginal distribution over X be uniform. We will consider
the 3 class classification setting, where h1(x) = 1 and h2(x) = 2 for all x ∈ X . We will consider two scenarios for the
conditional distribution of y given x.

In scenario 1, we have

P (y | x0) =


1/4 if y = 1,

0 if y = 2,

3/4 if y = 3,

P (y | x1) =


3/4 if y = 1,

1/4 if y = 2,

0 if y = 3,

P (y | x2) =

{
1 if y = 2,

0 if y ∈ {1, 3}.

Abusing notation, we have under scenario 1:

L(h1 | x0) = 3/4 L(h1 | x1) = 1/4 L(h1 | x2) = 1

L(h2 | x0) = 1 L(h2 | x1) = 3/4 L(h2 | x2) = 0

L(h1 | g1) = 1/2 L(h1 | g2) = 7/8

L(h2 | g1) = 7/8 L(h2 | g2) = 1/2.

Observe that under scenario 1, for any decision list f ∈ DL[G;H] that does not order (h1, g1) at the beginning there exists
g ∈ G such that

L(f | g) ≥ min
h∈H

L(h | g) + 1/8.
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Algorithm 4 MLC-HEDGE in the multi-group setting

input Groups G, hypothesis classH, learning rates ηh,g ∈ [0, 1].
output Internal hypotheses p1(·; ·), . . . pn(·; ·) .

Initialize weights w(0)
h,g = 1

|H||G| .
for t = 1, 2, . . . , n do

Define

pt((h, g);x) :=
g(x)(1− e−ηh,g )w

(t−1)
h,g∑

h′,g′ g
′(x)(1− e−ηh′,g′ )w(t−1)

h′,g′

.

Receive point (xt, yt) and incur loss

ˆ̀
t =

∑
h,g

g(xt)`(h(xt), yt)pt((h, g);xt).

Update weight vectors

w
(t)
h,g = w

(t−1)
h,g exp

(
ηh,gg(xt)

(
ˆ̀
te
−ηh,g − `(h(xt), yt)

))
.

end for
output p1, . . . , pn.

In scenario 2, we have

P (y | x0) =


0 if y = 1,

1/4 if y = 2,

3/4 if y = 3,

P (y | x1) =

{
1 if y = 1,

0 if y ∈ {2, 3},

P (y | x2) =


1/4 if y = 1,

3/4 if y = 2,

0 if y = 3.

Under scenario 2:

L(h1 | x0) = 1 L(h1 | x1) = 0 L(h1 | x2) = 3/4

L(h2 | x0) = 3/4 L(h2 | x1) = 1 L(h2 | x2) = 1/4

L(h1 | g1) = 1/2 L(h1 | g2) = 7/8

L(h2 | g1) = 7/8 L(h2 | g2) = 1/2.

Conversely, we have that under scenario 2, for any decision list f ∈ DL[G;H] that does not order (h2, g2) at the beginning
there exists g ∈ G such that

L(f | g) ≥ min
h∈H

L(h | g) + 1/8.

C. Missing proofs from Section 4
C.1. MLC-HEDGE algorithm and guarantees

Algorithm 4 displays MLC-HEDGE, as presented by Gaillard et al. (2014), in the multi-group learning setting. Theorem 16
of Gaillard et al. (2014) translates as follows.
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Theorem 16. Let ηh,g ∈ [0, 1] be the learning rate assigned to expert (h, g), and suppose that the initial probabilities are
uniform over the experts. For each expert (h, g), the cumulative loss of MLC-HEDGE satisfies

n∑
t=1

g(xt)(ˆ̀
t − `(h(xt), yt)) ≤

(
e− 1 +

1

ηh,g

)
log(|H||G|) + (e− 1)ηh,g

n∑
t=1

g(xt)`(h(xt), yt).

C.2. An online-to-batch guarantee

For a collection of internal hypotheses p1, . . . , pn and a distribution Q over such hypotheses, we use the notational
conventions

L(pt | g) := E(x,y)

[
E(h̃,g̃)∼pt(· ; x)

[
`(h̃(x), y)

]
| g
]

L(Q | g) := Ept∼Q
[
L(pt | g)

]
.

The following lemma shows that the average population losses of these internal hypotheses can be bounded in terms of their
average empirical performance.

Lemma 17. Suppose the loss function is bounded in the range [0, 1]. Let p1, . . . , pn be a sequence of hypotheses produced
by an online learning algorithm on an i.i.d. sequence (x1, y1), . . . , (xn, yn) with associated losses ˆ̀

1, . . . , ˆ̀
n. Then with

probability at least 1− δ, we have for all g ∈ G simultaneously

1

n

n∑
t=1

L(pt | g) ≤ 1

n

n∑
t=1

g(xt)

P (g)
ˆ̀
t +

√
1

nP (g)
log
|G|
δ

+
2

3nP (g)
log
|G|
δ
.

A key ingredient in the proof of Lemma 17 is Freedman’s inequality (Freedman, 1975).

Theorem 18 (Freedman’s inequality). Let V1, . . . , VT be a martingale difference sequence with respect to filtration Ft such
that there exist constants a, b ≥ 0 satisfying

• |Vt| ≤ a for all t = 1, . . . , T with probability 1 and

•
∑T
t=1 E[V 2

t | Ft−1] ≤ b2.

Then with probability at least 1− δ, we have

T∑
t=1

Vt ≤
2

3
a log

1

δ
+ b

√
2 ln

1

δ
.

Our proof of Lemma 17 is similar to the online-to-batch reduction of Cesa-Bianchi et al. (2004). Namely, fix g ∈ G and
define the random variable

Vt =
1

n
L(pt | g)− 1

nP (g)
g(xt)ˆ̀

t =
1

n
L(pt | g)− 1

nP (g)
g(xt)

∑
h,g′

g′(xt)pt(h, g
′;xt)`(h(xt), yt).

Notice that V1, . . . , Vn form a martingale difference sequence. Moreover, Vt ∈
[
− 1
nP (g) ,

1
nP (g)

]
. Letting Ft denote the
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sigma-field of all outcomes up to time t, we can calculate

E


g(xt)

∑
h,g′

g′(xt)pt(h, g
′;xt)`(h(xt), yt)

2

| Ft−1



= P (g)E

E

∑
h,g′

g′(xt)pt(h, g
′;xt)`(h(xt), yt)

2

| g

 | Ft−1


≤ P (g)E

E
∑
h,g′

g′(xt)pt(h, g
′;xt)`(h(xt), yt)

2 | g

 | Ft−1


≤ P (g)E
[
L(pt | g) | Ft−1

]
= P (g)L(pt | g)

where the first inequality is Jensen’s inequality and the second follows from the fact that the losses lie in [0, 1]. Thus,

E[V 2
t | Ft−1] ≤ 1

n2P (g)
L(pt | g)− 1

n2
L(pt | g)2 ≤ 1

n2P (g)
L(pt | g).

Freedman’s inequality then implies that with probability at least 1− δ/|G|,

1

n

n∑
t=1

L(pt | g) ≤ 1

nP (g)

T∑
t=1

g(xt)ˆ̀
t +

1

n

√√√√ 1

P (g)

n∑
t=1

L(pt | g) log
|G|
δ

+
2

3nP (g)
log
|G|
δ

≤ 1

nP (g)

T∑
t=1

g(xt)ˆ̀
t +

√
1

nP (g)
log
|G|
δ

+
2

3nP (g)
log
|G|
δ
,

where we have again used the fact that the losses lie in [0, 1]. Taking a union bound over G finishes the proof.

C.3. Proof of Theorem 8

We will show that with probability at least 1− δ, the predictor Q returned by Algorithm 2 satisfies

L(Q | g) ≤ min
h∈H

L(h | g) + 60

√
D

#n(g)
+

16D

#n(g)
∀g ∈ G,

where D = 2 log(|H||G|) + log 64
δ

Let m = bn/2c, and let (x1, y1), . . . , (xm, ym), (x′1, y
′
1), . . . , (x′m, y

′
m) be the data split utilized by Algorithm 2. For these

two splits of our data, we will use the notation

Sm(g) =

m∑
i=1

g(xi)

S′m(g) =

m∑
i=1

g(x′i)

Lm(h | g) =
1

Sm(g)

m∑
i=1

g(xi)`(h(xi), yi).
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From Theorem 1 and Lemma 15, we have that with probability at least 1− δ/2,

Lm(h | g) ≤ L(h | g) + 9

√
D

Sm(g)

−2
√
Sm(g)D ≤ mP (g)− Sm(g) ≤ 2

√
Sm(g)D + 4D

−2
√
S′m(g)D ≤ mP (g)− S′m(g) ≤ 2

√
S′m(g)D + 4D

−2
√

#n(g)D ≤ nP (g)−#n(g) ≤ 2
√

#n(g)D + 4D

for all h ∈ H and g ∈ G. Moreover, combining Theorem 16 and Lemma 17, we have that with probability at least 1− δ/2,

L(Q | g) =
1

m

m∑
t=1

L(pt | g)

≤ 1

m

m∑
t=1

g(xt)

P (g)
ˆ̀
t +

√
1

mP (g)
log

2|G|
δ

+
2

3mP (g)
log

2|G|
δ

≤ 1

mP (g)

 m∑
t=1

g(xt)`(hg(xt), yt) +

(
e− 1 +

1

ηhg,g

)
log(|H||G|) + (e− 1)ηhg,g

m∑
t=1

g(xt)`(h(xt), yt)


+

√
1

mP (g)
log

2|G|
δ

+
2

3mP (g)
log

2|G|
δ

≤ 1

mP (g)

 m∑
t=1

g(xt)`(h(xt), yt) +

(
2 +

1

ηhg,g

)
log(|H||G|) + 2ηh,gSm(g)


+

√
1

mP (g)
log

2|G|
δ

+
2

3mP (g)
log

2|G|
δ

for all g ∈ G, where hg := argminh∈H L(hg | g) and the last line has used the fact that the losses are restricted to [0, 1]. By
a union bound, with probability at least 1− δ all of the above occurs. Let us condition on this happening.

Pick some g ∈ G. Observe that the theorem trivially holds if #n(g) < 352D+4. Thus, we may assume #n(g) ≥ 352D+4.
In this setting, we can then see that

Sm(g) ≥ mP (g)− 2
√
Sm(g)D + 4D

≥
(
n

2
− 1

)
P (g)− 2

√
Sm(g)D − 4D

≥ 1

2

(
#n(g)− 2

√
#n(g)D

)
− 2
√
Sm(g)D − 4D − 1

≥ 1

2
#n(g)− 3

√
#n(g)D − 4D − 1

≥ 1

4
#n(g).

Here the second-to-last line follows from the fact that Sm(g) ≤ #n(g) and the last line follows from our lower bound on
#n(g). By a similar chain of reasoning, we also have S′m(g) ≥ 1

4#n(g). Given this, we can bound

1

mP (g)

m∑
t=1

g(xt)`(h(xt), yt) ≤
Sm(g)

mP (g)

L(h | g) + 9

√
D

Sm(g)


≤

mP (g) + 2
√
Sm(g)D

mP (g)
L(h | g) +

9
√
DSm(g)

mP (g)

≤ L(h | g) +
11
√
DSm(g)

Sm(g)− 2
√
DSm(g)

≤ L(h | g) + 22

√
D

Sm(g)
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where the last inequality follows from the fact that Sm(g) ≥ 1
4#n(g) > 16D. Similarly, we also have√

S′m(g)

mP (g)
≤ 2

√
1

S′m(g)

and

Sm(g)

mP (g)
≤ 2.

Putting it all together, we have

L(Q | g) ≤ L(h | g) + 22

√
D

Sm(g)
+

2

mP (g)

(
log(|G||H|) +

1

3
log

2|G|
δ

)

+

√
S′m(g) log(|G||H|)

mP (g)
+

2Sm(g)

mP (g)

√
log(|G||H|)
S′m(g)

+

√
1

mP (g)
log

2|G|
δ

≤ L(h | g) + 22

√
D

Sm(g)
+

4D

Sm(g)
+ 2

√
D

S′m(g)
+ 4

√
D

S′m(g)
+ 2

√
D

Sm(g)

≤ L(h | g) + 60

√
D

#n(g)
+

16D

#n(g)
.

D. Missing proofs from Section 5
D.1. Proof of Theorem 10

Let F denote the set of possible predictors produced by Algorithm 3. Since the only degrees of freedom enjoyed by
Algorithm 3 are which classifier to assign to which group, we see that |F| ≤ |G||H|. Moreover, since each of the classifiers
ĥg are consistent with the data in their respective groups, we can conclude that f is consistent with all of the data. In
particular, Ln(f | g) = 0 for all g ∈ G. Theorem 12 then implies that with probability at least 1− δ,

L(f | g) ≤ 16

#n(g)

(
2 log

(
|F||H|

)
+ log(8/δ)

)
≤ 16

#n(g)

(
2 log

(
|G|2|H|

)
+ log(8/δ)

)
for all g ∈ G.

D.2. Proof of Proposition 11

Let X = {x0, x1, x2, x3} with the following probabilities

P ((x0,+1)) = 3/24,

P ((x1,−1)) = 7/24,

P ((x2,−1)) = 7/24,

P ((x3,+1)) = 7/24.

We also take gi = {x0, xi} for i = 1, 2, 3, and letH = {h, h′} where h(x) = +1 and h′(x) = −1 for all x ∈ X .

Now any function f ∈ F corresponds to an assignment σ : G → H of groups to hypotheses. There are two cases to consider
here.

Case 1: σ(g1) = σ(g2) = h′. In this case, we have that f(x0) = −1. Thus,

L(f | g3) ≥ P (x0 | g3) =
3

10
= L(h | g) +

3

10
.
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Case 2: h ∈ {σ(g1), σ(g2)}. Suppose without loss of generality that σ(g1) = h. Then we have f(x1) = +1. Thus,

L(f | g1) ≥ P (x1 | g1) =
7

10
= L(h′ | g) +

4

10
.

E. Insufficiency of multiaccuracy
In the binary prediction setting where Y = {0, 1}, Kim et al. (2019) use the definition that a function f : X → [0, 1] is
α-multiaccurate with respect to C ⊂ [−1,+1]X if

Ex,y
[
c(x)(f(x)− y)

]
≤ α

for all c ∈ C. To simplify the discussion, let us assume that the label y is a deterministic function of the corresponding x, i.e.
there exists η ∈ {0, 1}X such that E[y | x] = η(x). In this setting, Kim et al. showed that multiaccuracy can be translated
into a notion of multi-group learning as follows.

Proposition 19 (Proposition 1 from Kim et al. (2019)). Let C and S ⊆ X be given, and suppose that f : X → [0, 1] is
α-multiaccurate with respect to C. Further define η̂(x) = 1− 2η(x). If there exists a c ∈ C such that

Ex,y[|c(x)− η̂(x)1[x ∈ S]|] ≤ τ,

then
Prx,y

(
sign(f(x)− 1/2) 6= sign(y − 1/2) | x ∈ S

)
≤ 2

P (S)
(α+ τ) .

In the multi-group learning setup whereH ⊂ [−1,+1]X and G ⊂ {0, 1}X , we can take C = {x 7→ h(x)g(x) | h ∈ H, g ∈
G}. Proposition 19 tells us that α-multiaccuracy with respect to C implies

Prx,y
(
sign(f(x)− 1/2) 6= sign(y − 1/2) | x ∈ g

)
≤ 4 inf

h∈H
L(h | g) +

2α

P (g)
for all g ∈ G, (4)

where the loss in L(· | ·) is zero-one loss.

When each group has a corresponding low error classifier in H, Eq. (4) tells us that multiaccuracy leads to reasonably
good predictions across all groups. However, the bound in Eq. (4) devolves to no better than random guessing whenever
infh∈H L(h | g) ≥ 1/8. One may ask if this is due to some slack in the proof of Proposition 19 or if it is some intrinsic
looseness associated with multiaccuracy. The following result shows that multiaccuracy reduction must result in at least
some constant in front of infh∈H L(h | g).

Proposition 20. Suppose |X | ≥ 3 and let ε > 0. There exist η, f, g ∈ {0, 1}X , h ∈ {−1,+1}X , and a marginal distribution
over X such that

• f is 0-multiaccurate with respect to C = {h · g},

• Prx
(
h(x) 6= η(x) | x ∈ g

)
= ε, but

• Prx
(
f(x) 6= η(x) | x ∈ g

)
= 2ε.

Proof. Suppose X = {x0, x1, x2} with P (x0) = 1− 2ε and P (x1) = P (x2) = ε. Let η(x) = g(x) = 1 for all x ∈ X and
define

f(x) =

{
0 if x ∈ {x1, x2}
1 if x = x0

and h(x) =

{
1 if x ∈ {x0, x1}
−1 if x = x2

.

Then we can establish the following facts.

1. Prx
(
h(x) 6= η(x) | x ∈ g

)
= P (x2) = ε.

2. Prx
(
f(x) 6= η(x) | x ∈ g

)
= 1− P (x0) = 2ε.
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3. For c = h · g, we have

E[c(x)(f(x)− η(x))] = E[h(x)f(x)]− E[h(x)] = 1− 2ε− (1− 2ε) = 0.

Thus, f is 0-multiaccurate with respect to C = {c}.

Combining all of the above gives the proposition.

Thus, to get multi-group learning bounds of the form in Eq. (1) or Eq. (2), we must go beyond this type of simple application
of multiaccuracy.


