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Abstract
Bayesian neural networks (BNNs) promise im-
proved generalization under covariate shift by
providing principled probabilistic representations
of epistemic uncertainty. However, weight-
based BNNs often struggle with high computa-
tional complexity of large-scale architectures and
datasets. Node-based BNNs have recently been
introduced as scalable alternatives, which induce
epistemic uncertainty by multiplying each hidden
node with latent random variables, while learn-
ing a point-estimate of the weights. In this pa-
per, we interpret these latent noise variables as
implicit representations of simple and domain-
agnostic data perturbations during training, pro-
ducing BNNs that perform well under covariate
shift due to input corruptions. We observe that the
diversity of the implicit corruptions depends on
the entropy of the latent variables, and propose a
straightforward approach to increase the entropy
of these variables during training. We evaluate
the method on out-of-distribution image classifica-
tion benchmarks, and show improved uncertainty
estimation of node-based BNNs under covariate
shift due to input perturbations. As a side effect,
the method also provides robustness against noisy
training labels.

1. Introduction
Bayesian neural networks (BNNs) induce epistemic uncer-
tainty over predictions by placing a distribution over the
weights (MacKay, 1992; 1995; Hinton & van Camp, 1993;
Neal, 1996). However, it is challenging to infer the weight
posterior due to the high dimensionality and multi-modality
of this distribution (Wenzel et al., 2020; Izmailov et al.,
2021b). Alternative BNN methods have been introduced
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to avoid the complexity of weight-space inference, which
include combining multiple maximum-a-posteriori (MAP)
solutions (Lakshminarayanan et al., 2017), performing infer-
ence in the function-space (Sun et al., 2019), or performing
inference in a lower dimensional latent space (Karaletsos
et al., 2018; Pradier et al., 2018; Izmailov et al., 2020; Dusen-
berry et al., 2020).

A recent approach to simplify BNNs is node stochasticity,
which assigns latent noise variables to hidden nodes of the
network (Kingma et al., 2015; Gal & Ghahramani, 2016;
Karaletsos et al., 2018; Karaletsos & Bui, 2020; Dusenberry
et al., 2020; Nguyen et al., 2021). By restricting inference to
the node-based latent variables, node stochasticity greatly re-
duces the dimension of the posterior, as the number of nodes
is orders of magnitude smaller than the number of weights
in a neural network (Dusenberry et al., 2020). Within this
framework, multiplying each hidden node with its own ran-
dom variable has been shown to produce great predictive
performance, while having dramatically smaller computa-
tional complexity compared to weight-space BNNs (Gal &
Ghahramani, 2016; Kingma et al., 2015; Dusenberry et al.,
2020; Nguyen et al., 2021).

In this paper, we focus on node-based BNNs, which rep-
resent epistemic uncertainty by inferring the posterior dis-
tribution of the multiplicative latent node variables while
learning a point-estimate of the weight posterior (Dusen-
berry et al., 2020; Trinh et al., 2020). We show that node
stochasticity simulates a set of implicit corruptions in the
data space during training, and by learning in the presence
of such corruptions, node-based BNNs achieve natural ro-
bustness against some real-world input corruptions. This
is an important property because one of the key promises
of BNNs is robustness under covariate shift (Ovadia et al.,
2019; Izmailov et al., 2021b), defined as a change in the
distribution of input features at test time with respect to that
of the training data. Based on our findings, we derive an en-
tropy regularization approach to improve out-of-distribution
generalization for node-based BNNs.

In summary, our contributions are:

1. We demonstrate that node stochasticity simulates data-
space corruptions during training. We show that the di-
versity of these corruptions corresponds to the entropy
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of the latent node variables, and training on more di-
verse generated corruptions produce node-based BNNs
that are robust against a wider range of corruptions.

2. We derive an entropy-regularized variational inference
formulation for node-based BNNs.

3. We demonstrate excellent empirical results in predic-
tive uncertainty estimation under covariate shift due
to corruptions compared to strong baselines on large-
scale image classification tasks.

4. We show that, as a side effect, our approach provides
robust learning in the presence of noisy training labels.

Our code is available at https://github.com/
AaltoPML/node-BNN-covariate-shift.

2. Background
Neural networks. We define a standard neural network
f(x) with L layers for an input x as follows:

f0(x) = x (1)

hℓ(x) = Wℓf ℓ−1(x) + bℓ (2)

f ℓ(x) = σℓ
(
hℓ(x)

)
, ∀ℓ = 1, . . . , L (3)

f(x) = fL(x), (4)

where the parameters θ = {Wℓ,bℓ}Lℓ=1 consist of the
weights and biases, and the {σℓ}Lℓ=1 are the activation func-
tions. For the ℓ-th layer, hℓ and f ℓ are the pre- and post-
activations, respectively.

Node-based Bayesian neural networks. Probabilistic
neural networks constructed using node stochasticity have
been studied by Gal & Ghahramani (2016); Kingma et al.
(2015); Louizos & Welling (2017); Karaletsos et al. (2018);
Karaletsos & Bui (2020); Dusenberry et al. (2020); Trinh
et al. (2020); Nguyen et al. (2021). We focus on inducing
node stochasticity by multiplying each hidden node with its
own random latent variables, and follow the framework of
Dusenberry et al. (2020) for optimization. A node-based
BNN fZ(x) is defined as:

f0Z(x) = x (5)

hℓ
Z(x) = (Wℓ(f ℓ−1

Z (x) ◦ zℓ) + bℓ) ◦ sℓ (6)

f ℓZ(x) = σℓ
(
hℓ
Z(x)

)
, ∀ℓ = 1, . . . , L (7)

fZ(x) = fLZ (x), (8)

where zℓ and sℓ are the multiplicative latent random vari-
ables of the incoming and outgoing signal of the nodes of

Figure 1. A sketch depicting the connection between the output
distribution at the ℓ-th layer induced by node stochasticity (purple)
centered on the average output ( ), and the output shifts generated
by input corruptions ( , ). We expect good performance under
mild corruption g0, as the resulting shift remains inside the high-
density region of p(f ℓZ), and worse results under severe corruption
g1.

the ℓ-th layer, and ◦ denotes the Hadamard (element-wise)
product. We collect all latent variables to Z = {zℓ, sℓ}Lℓ=1.1

To learn the network parameters, we follow Dusenberry
et al. (2020) and perform variational inference (Blei et al.,
2017) over the weight parameters θ and latent node vari-
ables Z . We begin by defining a prior p(θ,Z) = p(θ)p(Z).
We set a variational posterior approximation qθ̂,ϕ(θ,Z) =

qθ̂(θ)qϕ(Z), where qθ̂(θ) = δ(θ − θ̂) is a Dirac delta dis-
tribution and qϕ(Z) is a Gaussian or a mixture of Gaus-
sians distribution. We infer the posterior by minimizing
the Kullback-Leibler (KL) divergence between variational
approximation q and true posterior p(θ,Z|D). This is equiv-
alent to maximizing the evidence lower bound (ELBO):

L(θ̂, ϕ) = Eqϕ(Z)

[
log p(D|θ̂,Z)

]
−KL

[
qϕ(Z) || p(Z)

]
+ log p(θ̂). (9)

In essence, we find a MAP solution for the more numerous
weights θ, while inferring the posterior distribution of the
latent variables Z . We refer the reader to Appendix A for
detailed derivations.

Neural networks under covariate shift. In this paper, we
focus on covariate shift from input corruptions, following
the setting of Hendrycks & Dietterich (2019). To simulate
covariate shift, one can take an input x assumed to come
from the same distribution as the training samples and apply

1In this paper, we use a slightly more general definition of
node-based BNN with two noise variables per node, and compare
it with single-variable variants in Section 5.

https://github.com/AaltoPML/node-BNN-covariate-shift
https://github.com/AaltoPML/node-BNN-covariate-shift
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an input corruption g0 to form a shifted version xc of x:

xc = x+ g0(x). (10)

For instance, x could be an image and g0 can represent the
shot noise corruption (Hendrycks & Dietterich, 2019). The
input corruption g0(x) creates a shift in the output of each
layer gℓ(x) (see Fig. 1). We can approximate these shifts
by first-order Taylor expansion (see Appendix C for full
derivation),

shift︷ ︸︸ ︷
gℓ(x) =

corrupted output︷ ︸︸ ︷
f ℓ(xc) −

clean output︷ ︸︸ ︷
f ℓ(x) (11)

≈ Jσ

[
hℓ(x)

](
Wℓgℓ−1(x)

)
, (12)

where Jσℓ = ∂σℓ/∂hℓ denotes the (diagonal) Jacobian of
the activation σℓ with respect to hℓ. While g0 causes ac-
tivation shifts in every layer of the network, we focus on
the shift in the final output layer gL. The approximation
in Eq. (12) shows that this shift depends on the input x,
the network’s architecture (e.g., choice of activation func-
tions) and parameters θ. We measure the robustness of a
network with respect to a corruption g0(·) on the dataset
D = {xn,yn}Nn=1 by the induced mean square shift,

MSSg =
1

N

N∑
n=1

||gL(xn)||22, (13)

where MSSg is the average shift on the data. Ideally, we
want MSSg to be small for the network to still provide
nearly correct predictions given corrupted inputs. When the
training data and the architecture are fixed, MSSg depends
on the parameters θ. A direct approach to find θ minimiz-
ing MSSg is to apply the input corruption g0 to each input
xn during training to teach the network to output the cor-
rect label yn given g0(xn). However, this approach is not
domain-agnostic and requires defining a list of corruptions
beforehand. In the next sections, we discuss the usage of
multiplicative latent node variables as an implicit way to
simulate covariate shifts during training.

3. Characterizing implicit corruptions
In this section, we demonstrate that multiplicative node
variables correspond to implicit input corruptions. We show
how to extract and visualize these new corruptions.

3.1. Relating input corruptions and multiplicative nodes

The node-based BNN of Eqs. (5)-(8) induces the predictive
posterior p(f ℓZ(x)) over the ℓ-th layer outputs by marginal-
izing over the variational latent parameter posterior q(Z≤ℓ).
Optimization of the variational objective in Eq. (9) enforces
the model to achieve low loss on the training data despite

each layer output being corrupted by noise from q(Z), rep-
resented by the expected log likelihood term of the ELBO.
Let f̂ ℓ(x) denote the mean predictive posterior,

f̂ ℓ(x) = Eq(Z)

[
f ℓZ(x)

]
, ∀ℓ = 1, . . . , L, (14)

and where we denote the final output f̂(x) = f̂L(x). If
the shifted output f̂ ℓ(x+ g0(x)) = f̂ ℓ(x) + gℓ(x) caused
by corrupting a training sample x using g0 lies within the
predictive distribution of f ℓZ(x) (blue dot in Fig. 1), then
the model can map this corrupted version of x to its correct
label. This implies robustness against the space of implicit
corruptions generated by q(Z), which indirectly leads to
robustness against real corruptions. However, standard vari-
ational inference will converge to a posterior whose entropy
is calibrated for the variability in the training data, but does
not necessarily account for corruptions caused by covariate
shifts. Thus, the posterior might cover the corruption with
low severity g0 (blue dot in Fig. 1), but not the one with
higher severity g1 (green dot in Fig. 1). To promote predic-
tive distributions that are more robust to perturbations, we
propose to increase the entropy of p(f ℓZ(x)) by increasing
the entropy of the variational posterior q(Z).

Empirical demonstration. To illustrate our intuition, we
present an example with two node-based BNNs, one with
high entropy and one with lower entropy. We use the ALL-
CNN-C architecture of Springenberg et al. (2014) and CI-
FAR10 (Krizhevsky et al., 2009). We initialize the standard
deviations of q(Z) for the low-entropy model using the
half-normal N+(0.16, 0.02), while we use N+(0.32, 0.02)
for the high-entropy model. For brevity, we refer to the
former model as M16 and the latter model as M32. In
the left plot of Fig. 3, we show that, after training, M32

retains higher variational posterior entropy than M16 due
to having higher initial standard deviations for q(Z).2 We
use principal component analysis (PCA) to visualize the
samples from the output distribution p(f ℓZ(x)) of the ℓ-th
layer with respect to one input image x, as well as the out-
put {f̂ ℓ(x + gi(x))}95i=1 under the real image corruptions
{gi}95i=1 from Hendrycks & Dietterich (2019). There are
19 corruption types with 5 levels of severity, totalling 95
corruption functions. Fig. 2 shows the activations of the
last layer, projected into a two-dimensional subspace with
PCA for visualization. From this figure, we can see that
there is more overlap between samples from p(f ℓZ(x)) and
the shifted outputs {f̂ ℓ(x+ gi(x))}95i=1 for M32 in Fig. 2b
than for M16 in Fig. 2a. This indicates that during training
the posterior of M32 is able to simulate a larger number of
implicit corruptions bearing resemblance to the real-world
corruptions than the posterior of M16, leading to better neg-

2Obtaining high-entropy models by starting with high-entropy
initializations is a simple heuristic for the purpose of this example.
We introduce a principled approach in Section 4.
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Figure 2. PCA plots of the last layer’s outputs of models (a) M16

and (b) M32 with respect to one sample from CIFAR-10 (included
in the top left panel). Grey circles are samples from the output
distribution induced by q(Z), while the red ellipse shows their 99
percentile. The red circle denotes the expected output f̂ ℓ(x) =
Eq(Z)[f

ℓ
Z(x)] of the test point. Other colored circles represents the

expected output f̂ ℓ of the 19 corrupted versions of the test point
under 5 levels of severity Hendrycks & Dietterich (2019). Most of
the mild corruptions reside inside the predictive posterior of both
models (filled color circles). By contrast, only the higher-entropy
M32 model encapsulates a large fraction of the severe corruptions
– empirically demonstrating the intuition sketched in Fig. 1 and
described in Section 3.1.

ative log-likelihood (NLL) accross all level of corruptions
as well as on the clean test set in Fig. 3. This example sup-
ports our intuition that increasing the entropy of the latent
variables Z allows them to simulate more diverse implicit
corruptions, thereby boosting the model’s robustness against
a wider range of input corruptions.

Why latent variables at every layer? In principle, we
could have introduced latent variables only to the first layer
of the network, as the shift simulated in the first layer will
propagate to subsequent layers. However, modern NNs
contain asymmetric activation functions such as ReLU or
Softplus, which can attenuate the signal of the shift in the
later layers. Thus, the latent variables in every layer (after
the first one) maintain the strength of the shift throughout the
network during the forward pass. Moreover, by using latent
variables at every layer – as opposed to only the first layer
– we can simulate a more diverse set of input corruptions,
since we can map each sample Z from q(Z) to an input
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Figure 3. (Left) Example evolution of H[q(Z)] during training,
which shows that the variational entropy decreases over time.
(Right) Performance of two models under different corruption
levels (level 0 indicates no corruption). The model with higher
entropy M32 performs better than the one with lower entropy
M16 across all corruption levels. For each result in both plots, we
report the mean and standard deviation over 25 runs. The error
bars in the left plot are too small to be seen.

(a) λ = 0.03 (b) λ = 0.10 (c) λ = 0.30

Figure 4. Implicit corruptions generated from model M32 with
respect to one image by minimizing the loss in Eq. (16) under
varying λ. Top row are the resulting images from the corruptions
below. We can see that λ controls the severity of the generated
corruptions.

corruption as shown in the following section.

3.2. Visualizing the implicit corruptions

Next, we show how to find the explicit image corruptions
that correspond to the stochasticity of the predictive poste-
rior. Let Z be a sample drawn from q(Z). If we assume
that Z corresponds to an input corruption g(x):

fZ(x) = f̂(x+ g(x)) (15)

then we can approximately solve for g(x) = xc − x by
finding xc that minimizes

L(xc) =
1

2

∣∣∣∣∣∣fZ(x)− f̂(xc)
∣∣∣∣∣∣2
2
+

λ

2

∣∣∣∣g(x)∣∣∣∣2
2

(16)

using gradient descent. The second term with a coefficent
λ ≥ 0 regularizes the norm of g(x). This approach is simi-
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Figure 5. Negative log-likelihood (NLL) on 1024 test images of
CIFAR-10 corrupted by the implicit corruptions generated by M16

and M32, whose intensities are controlled by λ in Eq. (16). For
each result, we report the mean and standard deviation over 10 runs.
(Left) Each model is tested on the corruptions that it generated.
Dashed lines are results on the clean images for reference. Each
model is resistant to its own corruptions, as evidenced by the slight
decrease in performance under different λ. (Right) Each model
is tested on the corruptions produced by the other. The model
with higher entropy M32 is more robust against the corruptions of
the one with lower entropy M16 than the reverse, which further
supports the notion that higher entropy provides better robustness
against input corruptions.

lar to the method of finding adversarial examples of Goodfel-
low et al. (2014). Fig. 4 visualizes the corruptions generated
by M32 on a test image of CIFAR10 under different λ. We
can see that λ controls the severity of the corruptions, with
smaller λ corresponding to higher severity.

Is a model robust against its own corruptions? We use
both models M16 and M32 to generate corruptions on a
subset of 1024 test images of CIFAR10. We generate 8 cor-
ruptions per test image. The left plot of Fig. 5 shows that
each model is robust against its own implicit corruptions
even when the corruption is severe, as evidenced by the
small performance degradation under different λ. By com-
paring the right plot to the left plot, we can see that each
model is less resistant to the corruptions generated by the
other model than its own corruptions. Crucially, however,
the performance of M32 under the corruptions generated by
M16 is better than the reverse. This example thus suggests
that while each model is resistant to its own corruptions, the
model with higher entropy shows better robustness against
the corruptions created by the other model.3

4. Maximizing variational entropy
The previous sections motivated the usage of variational
posteriors with high entropy from the perspective of simu-
lating a diverse set of input corruptions. In this section, we
discuss a simple method to increase the variational entropy.

3We note that this a proof of concept and more experiments are
needed to verify if these results hold true in general.

4.1. The augmented ELBO

Our goal is to find posterior approximations that have high
entropy. In the previous section, we considered a heuristic
approach of initializing q(Z) with high entropy (Fig. 3).
However, if the initial entropy of q(Z) is too high, training
will converge slowly due to high variance in the gradients.

Here we consider the approach of augmenting the original
ELBO in Eq. (9) with an extra γ-weighted entropy term,
adapting Mandt et al. (2016). The augmented γ-ELBO is

Lγ(θ̂, ϕ) = L(θ̂, ϕ) + γH
[
qϕ(Z)

]
(17)

= Eqϕ(Z)

[
log p(D|θ̂,Z)

]
︸ ︷︷ ︸

expected log-likelihood

−H
[
qϕ(Z), p(Z)

]︸ ︷︷ ︸
cross-entropy

(18)

+ (γ + 1)H
[
qϕ(Z)

]︸ ︷︷ ︸
variational entropy

+ log p(θ̂)︸ ︷︷ ︸
weight prior

, (19)

where we decompose the KL into its cross-entropy and
entropy terms. γ ≥ 0 controls the amount of extra entropy,
with γ = 0 reducing to the classic ELBO in Eq. (9). We
can interpret the terms in Eq. (19) as follows: the first term
fits the variational parameters to the dataset; the second and
fourth terms regularize ϕ and θ̂ respectively; the third term
increases the entropy of the variational posterior.

4.2. Tempered posterior inference

One could also arrive at Eq. (19) by minimizing the KL
divergence between the approximate posterior qϕ(θ̂,Z) and
the tempered posterior pγ(θ,Z|D) (Mandt et al., 2016):

pγ(θ,Z|D) =
p(D|θ,Z)τp(Z, θ)τ

pγ(D)
(20)

pγ(D) =

∫
θ

∫
Z
p(D|θ,Z)τp(Z, θ)τdZdθ, (21)

where the temperature τ = 1/(γ + 1). The tempered poste-
rior variational approximation

argmin
θ̂,ϕ

1

τ
KL
[
qϕ(θ̂,Z) || pγ(θ,Z|D)

]
(22)

is equivalent to tempered ELBO maximization

argmax
θ̂,ϕ

Lγ(θ̂, ϕ)− log pγ(D)
1
τ . (23)

We refer the reader to Appendix B for detailed derivations.
The entropy-regularized γ-ELBO thus corresponds to the
family of tempered variational inference, and with positive
γ > 0, to ‘hot’ posteriors (Wenzel et al., 2020). In the next
section, we will demonstrate empirically the benefits of such
hot posteriors in node-based BNNs.
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(c) Corruption 1, 2, 3
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Figure 6. Results of (VGG16 / CIFAR100 / out) with different K.
The results in (c) are averaged over the first three levels of corrup-
tion, and those in (d) are averaged over the last two levels. Notice
that we rescale γ by K in the x-axis to provide better visualization,
as we find that larger K requires higher optimal γ. We report the
mean and standard deviation over 5 runs for each result. Overall,
more components provide better optimal performance on OOD
data. Higher γ provides better OOD performance as the cost of ID
performance.

5. Experiments
In this section, we present experimental results of node-
based BNNs on image classification tasks. For the datasets,
we use CIFAR (Krizhevsky et al., 2009) and TINYIMAGENET
(Le & Yang, 2015), which have corrupted versions of the
test set provided by Hendrycks & Dietterich (2019). We
use VGG16 (Simonyan & Zisserman, 2014), RESNET18 (He
et al., 2016a) and PREACTRESNET18 (He et al., 2016b) for
the architectures. We test three structures of latent variables:
in, where we only use the input latent variables {zℓ}Lℓ=1;
out, where we only use the output latent variables {sℓ}Lℓ=1;
and both, where we use both {zℓ}Lℓ=1 and {sℓ}Lℓ=1. We
use K ∈ {1, 2, 4} Gaussian component(s) in the variational
posterior. For each result, we report the mean and standard
deviation over multiple runs.

5.1. Effects of γ on covariate shift

In this section, we study the changes in performance of the
model trained with the γ-ELBO objective as we increase
γ. We perform experiments with VGG16 on CIFAR100,
and use the corrupted test set of CIFAR100 provided by
Hendrycks & Dietterich (2019). In Fig. 6, we show the out
model’s behaviour under a different number of Gaussian
components K. In Fig. 7, we show the results of a model
with K = 4 components under the different latent variable

0 20 40
/ K

0.9

1.0

1.1

N
LL

 

(a) Validation

0 20 40
/ K

0.9

1.0

1.1

(b) Test

0 20 40
/ K

1.6

1.8

2.0

N
LL

 

(c) Corruption 1, 2, 3
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Figure 7. Results of VGG16 on CIFAR100 with different latent
variable structures. Here we use K = 4 components. We report
the mean and standard deviation over 5 runs for each result. Over-
all, using either only the latent input variables or latent output
variables requires higher optimal γ than using both. Using only
the latent output variables produces better results than the latent
input variables on OOD data, despite similar ID performance.

structures in, out, and both.

These figures show that performance across different test
sets improves as γ increases up until a threshold and then
degrades afterward. The optimal γ for each set of test im-
ages correlates with the severity of the corruptions, where
more severe corruptions can be handled by enforcing more
diverse set of implicit corruptions during training. However,
learning on a more diverse implicit corruptions requires
higher capacity, and reduces the learning capacity needed
to obtain good performance on the in-distribution (ID) data.
The entropy coefficient γ thus controls the induced trade-
off between ID performance and out-of-distribution (OOD)
robustness.

Fig. 6 shows that for ID data, the optimal performance of the
model (at optimal γ) remains similar under different K. On
OOD data, however, higher K consistently produces better
results as γ varies. The optimal γ is higher for variational
distributions with more components. This finding is likely
because with more mixture components, the variational
posterior can approximate the true posterior more accurately,
and thus it can better expand into the high-density region of
the true posterior as its entropy increases.

Fig. 7 shows the optimal performance on ID data is quite
similar between different latent architectures. On OOD, the
optimal performance of using both input and output latent
variables is similar to using only output latent variables,
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Figure 8. Results of RESNET18 on two subsets of CIFAR10 train-
ing samples with clean and noisy labels. Here we use K = 4
components and only the latent output variables. We denote the
percentage of training samples with corrupted labels under each
subfigure. We report the mean and standard deviation over 5 runs
for each result. As γ increases, the NLL of noisy labels increases
much faster than that of clean labels even when the majority of
labels are wrong (c), indicating that higher γ prevents the model
from memorizing random labels.
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Figure 9. Results of RESNET18 on clean CIFAR10 test sets under
different percentages of noise in training labels. We report the
mean and standard deviation over 5 runs for each result. As high γ
prevents learning from noisy labels as demonstrated in Fig. 8, it
leads to improved performance on clean test sets.

while using only input latent variables produces slightly
worse optimal performance. The optimal γ is lower when
the model uses both types of latent variables (z, s), because
the entropy of the product of two latent variables increases
rapidly as we increase the entropy of both latent variables.

We also observe these patterns in other architectures and
datasets (see Appendix I). In summary, from our experimen-
tal results we find that using only output latent variables with
a sufficient number of components (e.g., K = 4) achieves
excellent results for node-based BNNs in our benchmark.

5.2. Effects of γ on robustness against noisy labels

Learning wrong labels amounts to memorizing random pat-
terns, which requires more capacity from the model than
learning generalizable patterns (Arpit et al., 2017). We
hypothesize that if we corrupt wrongly labelled training
samples with sufficiently diverse implicit corruptions, we
overwhelm the neural network making it unable to mem-

orize these spurious patterns during training. To test this
intuition, we follow the experiment in Jiang et al. (2018),
where we take a percentage of training samples in CIFAR10
and corrupt their labels. We thus split the training set into
two parts: D1 containing only samples with correct labels,
and D2 including those with wrong labels. We then track
the final NLL of D1 and D2 under different γ, and visualize
the results in Fig. 8. This figure shows that as γ increases,
the NLL of D2 (noisy labels) increases much faster than
that of D1 (clean labels), indicating that the network fails
to learn random patterns under simulated corruptions. As a
consequence, the model generalizes better on the test set, as
shown in Fig. 9.

5.3. Benchmark results

Figs. 10 and 11 present the results of node-based BNNs and
baselines on CIFAR10/CIFAR100 and TINYIMAGENET. We
choose SWAG (Maddox et al., 2019), cSG-HMC (Zhang
et al., 2020) and ASAM (Kwon et al., 2021) as our baselines.
These are strong baselines, as both SWAG and cSG-HMC
have demonstrated state-of-the-art uncertainty estimation,
while ASAM produce better MAP models than stochastic
gradient descent by actively seeking wide loss valleys. We
repeated each experiment 25 times with different random
seeds. For each method, we also consider its ensemble ver-
sion where we combine 5 models from different runs when
making predictions. For the ensemble versions, each experi-
ment is repeated 5 times. We use 30 Monte Carlo samples
for node-based BNNs, SWAG, cSG-HMC and their ensem-
ble versions to estimate the posterior predictive distribution.
We use standard performance metrics of expected calibra-
tion error (ECE) (Naeini et al., 2015), NLL and predictive
error. We use RESNET18 for CIFAR10/CIFAR100 and PRE-
ACTRESNET18 for TINYIMAGENET. We also include the
result of VGG16 on CIFAR10/CIFAR100 in Appendix G. For
evaluation, we use the corrupted test images provided by
Hendrycks & Dietterich (2019).

On CIFAR100, node-based BNNs outperform the baselines
in NLL and error, however SWAG performs best on CI-
FAR10. Interestingly, in CIFAR100, node-based BNNs and
their ensembles have worse ECE than the baselines on ID
data, however as the test images become increasingly cor-
rupted, the ECEs of the baselines degrade rapidly while
the ECE of node-based BNNs remains below a threshold.
Similar behaviors are observed on TINYIMAGENET, with
the node-based BNNs produce the lowest NLL and error
while not experiencing ECE degradation under corruptions.

6. Related works
Multiplicative latent node variables in BNNs. There
have been several earlier works that utilize multiplicative
latent node variables, either as a primary source of pre-
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Figure 10. Results of RESNET18 on CIFAR10 (top) and CIFAR100
(bottom). We use K = 4 and only the latent output variables
for node-based BNNs. We plot ECE, NLL and error for different
corruption levels, where level 0 indicates no corruption. We report
the average performance over 19 corruption types for level 1 to 5.
We denote the ensemble of a method using the shorthand ens in
front of the name. Each result is the average over 25 runs for non-
ens versions and 5 runs for ens versions. The error bars represent
the standard deviations across different runs. Node-based BNNs
and their ensembles (blue) perform best across all metrics on OOD
data of CIFAR100, while having competitive results on CIFAR10.
We include a larger version of this plot in Appendix G.

dictive uncertainty such as MC-Dropout (Gal & Ghahra-
mani, 2016), Variational Dropout (Kingma et al., 2015),
Rank-1 BNNs (Dusenberry et al., 2020) and Structured
Dropout (Nguyen et al., 2021); or to improve the flexibility
of the mean-field Gaussian posterior in variational inference
(Louizos & Welling, 2017). Here we study the contribution
of these latent variables to robustness under covariate shift.

BNNs under covariate shift. Previous works have eval-
uated the predictive uncertainty of BNNs under covariate
shift (Ovadia et al., 2019; Izmailov et al., 2021b), with
the recent work by Izmailov et al. (2021b) showing that
standard BNNs with high-fidelity posteriors perform worse
than MAP solutions under covariate shift. Izmailov et al.
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Figure 11. Results of PREACTRESNET18 on TINYIMAGENET. We
use K = 4 and only the latent output variables for node-based
BNNs. We plot ECE, NLL and error for different corruption levels,
where level 0 indicates no corruption. We report the average
performance over 19 corruption types for level 1 to 5. We denote
the ensemble of a method using the shorthand ens in front of
the name. Each result is the average over 25 runs for non-ens
versions and 5 runs for ens versions. The error bars represent
the standard deviations across different runs. Node-based BNNs
and their ensembles (blue) perform best accross all metrics on
OOD data, while having competitive performance on ID data. We
include a larger version of this plot in Appendix G.

(2021a) attributed this phenomenon to the absence of pos-
terior contraction on the null-space of the data manifold.
This problem is avoided in node-based BNNs as they still
maintain a point-estimate for the weights.

Dropout as data augmentation. Similar to our study, a
previous work by Bouthillier et al. (2015) studied Dropout
from the data augmentation perspective. Here we study
latent variables with more flexible posterior (mixture of
Gaussians) and focus on simulating input corruptions for
OOD robustness.

Adversarial robustness via feature perturbations. Data-
space perturbations have been investigated as a means to
defend neural networks against adversarial attacks (Li et al.,
2018; Jeddi et al., 2020; Vadera et al., 2020).

Tempered posteriors. Tempered posteriors have been
used in variational inference to obtain better variational
posterior approximations (Mandt et al., 2016). A recent
study put the focus on the cold posterior effect of weight-
based BNNs (Wenzel et al., 2020). We have shown that our
approach of regularizing the variational entropy is equiva-
lent to performing variational inference with a hot posterior
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as the target distribution. Tempered posteriors have also
been studied in Bayesian statistics as a means to defend
against model misspecification (Grünwald, 2012; Miller &
Dunson, 2019; Alquier & Ridgway, 2020; Medina et al.,
2021). Covariate shift is a form of model misspecification,
as model mismatch arises from using a model trained under
different assumptions about the statistics of the data.

7. Conclusion
We analyzed node-based BNNs from the perspective of us-
ing latent node variables for simulating input corruptions.
We showed that by regularizing the entropy of the latent vari-
ables, we increase the diversity of the implicit corruptions,
and thus improve performance of node-based BNNs under
covariate shift. Across CIFAR10, CIFAR100 and TINYIM-
AGENET, entropy regularized node-based BNNs produce
excellent results in uncertainty metrics on OOD data.

In this study, we focused on variational inference, leaving
the study of implicit corruptions under other approximate
inference methods as future work. Furthermore, our work
shows the benefits of hot posteriors and argues for an inher-
ent trade-off between ID and OOD performance in node-
based BNNs. It is an interesting future direction to study
these questions in weight-based BNNs. Finally, our work
presented entropy as a surprisingly useful summary statistic
that can partially explain the complex connection between
the variational posterior and corruption robustness. One
important research direction is to develop more informative
statistics that can better encapsulate this connection.
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Arpit, D., Jastrzębski, S., Ballas, N., Krueger, D., Bengio,
E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville,
A., Bengio, Y., and Lacoste-Julien, S. A closer look at
memorization in deep networks. In ICML, pp. 233–242.
PMLR, 2017.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-

tional inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877,
2017.

Bouthillier, X., Konda, K., Vincent, P., and Memisevic,
R. Dropout as data augmentation. arXiv preprint
arXiv:1506.08700, 2015.

Dusenberry, M., Jerfel, G., Wen, Y., Ma, Y., Snoek, J.,
Heller, K., Lakshminarayanan, B., and Tran, D. Efficient
and scalable Bayesian neural nets with rank-1 factors. In
ICML, pp. 2782–2792, 2020.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approxi-
mation: Representing model uncertainty in deep learning.
In ICML, 2016.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Grünwald, P. The Safe Bayesian. In International Con-
ference on Algorithmic Learning Theory, pp. 169–183.
Springer, 2012.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European conference on
computer vision, pp. 630–645. Springer, 2016b.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and pertur-
bations. Proceedings of the International Conference on
Learning Representations, 2019.

Hinton, G. E. and van Camp, D. Keeping the neural net-
works simple by minimizing the description length of the
weights. In COLT, pp. 5–13, 1993.

Izmailov, P., Maddox, W. J., Kirichenko, P., Garipov, T.,
Vetrov, D., and Wilson, A. G. Subspace inference for
Bayesian deep learning. In UAI, pp. 1169–1179, 2020.

Izmailov, P., Nicholson, P., Lotfi, S., and Wilson, A. G.
Dangers of Bayesian model averaging under covariate
shift. arXiv preprint arXiv:2106.11905, 2021a.

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A. G.
What are Bayesian neural network posteriors really like?
arXiv preprint arXiv:2104.14421, 2021b.

Jebara, T. and Kondor, R. Bhattacharyya and expected like-
lihood kernels. In Learning theory and kernel machines,
pp. 57–71. Springer, 2003.



Tackling covariate shift with node-based BNNs

Jebara, T., Kondor, R., and Howard, A. Probability product
kernels. The Journal of Machine Learning Research, 5:
819–844, 2004.

Jeddi, A., Shafiee, M. J., Karg, M., Scharfenberger, C., and
Wong, A. Learn2Perturb: an end-to-end feature pertur-
bation learning to improve adversarial robustness. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1241–1250, 2020.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L.
MentorNet: Learning data-driven curriculum for very
deep neural networks on corrupted labels. In ICML, 2018.

Karaletsos, T. and Bui, T. D. Hierarchical Gaussian pro-
cess priors for Bayesian neural network weights. arXiv
preprint arXiv:2002.04033, 2020.

Karaletsos, T., Dayan, P., and Ghahramani, Z. Probabilistic
meta-representations of neural networks. arXiv preprint
arXiv:1810.00555, 2018.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. In NIPS,
pp. 2575–2583, 2015.

Kolchinsky, A. and Tracey, B. D. Estimating mixture en-
tropy with pairwise distances. Entropy, 19(7), 2017. ISSN
1099-4300. doi: 10.3390/e19070361. URL https:
//www.mdpi.com/1099-4300/19/7/361.

Krizhevsky, A., Nair, V., and Hinton, G. CIFAR-10 and
CIFAR-100 datasets. URl: https://www. cs. toronto.
edu/kriz/cifar. html, 6(1):1, 2009.

Kwon, J., Kim, J., Park, H., and Choi, I. K. ASAM: Adap-
tive sharpness-aware minimization for scale-invariant
learning of deep neural networks. arXiv preprint
arXiv:2102.11600, 2021.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In NIPS, pp. 6405–6416, 2017.

Le, Y. and Yang, X. S. Tiny ImageNet visual recognition
challenge. 2015.

Li, B., Chen, C., Wang, W., and Carin, L. Certified ad-
versarial robustness with additive noise. arXiv preprint
arXiv:1809.03113, 2018.

Louizos, C. and Welling, M. Multiplicative normalizing
flows for variational Bayesian neural networks. In In-
ternational Conference on Machine Learning, pp. 2218–
2227. PMLR, 2017.

MacKay, D. J. C. A practical Bayesian framework for
backpropagation networks. Neural Computation, 4(3):
448–472, May 1992. ISSN 0899–7667.

MacKay, D. J. C. Probable networks and plausible pre-
dictions - a review of practical Bayesian methods for
supervised neural networks. Network: Computation in
Neural Systems, 6(3):469–505, 1995.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and
Wilson, A. G. A simple baseline for Bayesian uncertainty
in deep learning. In Advances in Neural Information
Processing Systems, pp. 13153–13164, 2019.

Mandt, S., McInerney, J., Abrol, F., Ranganath, R., and Blei,
D. Variational tempering. In Artificial Intelligence and
Statistics, pp. 704–712. PMLR, 2016.

Medina, M. A., Olea, J. L. M., Rush, C., and Velez, A.
On the robustness to misspecification of α-posteriors
and their variational approximations. arXiv preprint
arXiv:2104.08324, 2021.

Miller, J. W. and Dunson, D. B. Robust Bayesian
Inference via Coarsening. Journal of the Ameri-
can Statistical Association, 114(527):1113–1125, July
2019. ISSN 0162-1459. doi: 10.1080/01621459.2018.
1469995. URL https://doi.org/10.1080/
01621459.2018.1469995. Publisher: Taylor &
Francis.

Naeini, M. P., Cooper, G. F., and Hauskrecht, M. Obtaining
well calibrated probabilities using Bayesian binning. In
AAAI, 2015.

Neal, R. M. Bayesian Learning for Neural Networks. Lec-
ture Notes in Statistics. Springer-Verlag, New York, 1996.
ISBN 978-0-387-94724-2.

Nguyen, S., Nguyen, D., Nguyen, K., Than, K., Bui, H.,
and Ho, N. Structured dropout variational inference for
Bayesian neural networks. In NeurIPS, 2021.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J. V., Lakshminarayanan, B., and
Snoek, J. Can you trust your model’s uncertainty? Eval-
uating predictive uncertainty under dataset shift. arXiv
preprint arXiv:1906.02530, 2019.

Pradier, M. F., Pan, W., Yao, J., Ghosh, S., and Doshi-Velez,
F. Projected BNNs: Avoiding weight-space patholo-
gies by learning latent representations of neural network
weights. arXiv preprint arXiv:1811.07006, 2018.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. Striving for simplicity: The all convolutional
net. arXiv preprint arXiv:1412.6806, 2014.

https://www.mdpi.com/1099-4300/19/7/361
https://www.mdpi.com/1099-4300/19/7/361
https://doi.org/10.1080/01621459.2018.1469995
https://doi.org/10.1080/01621459.2018.1469995


Tackling covariate shift with node-based BNNs

Sun, S., Zhang, G., Shi, J., and Grosse, R. Functional
variational Bayesian neural networks. arXiv preprint
arXiv:1903.05779, 2019.

Trinh, T., Kaski, S., and Heinonen, M. Scalable Bayesian
neural networks by layer-wise input augmentation. arXiv
preprint arXiv:2010.13498, 2020.

Vadera, M. P., Shukla, S. N., Jalaian, B., and Marlin, B. M.
Assessing the adversarial robustness of Monte Carlo and
distillation methods for deep Bayesian neural network
classification. arXiv preprint arXiv:2002.02842, 2020.

Wenzel, F., Roth, K., Veeling, B. S., Świątkowski, J., Tran,
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A. Original ELBO derivation
Here we provide a detail derivation of the ELBO in Eq. (9). We assume a prior p(θ,Z) = p(θ)p(Z) for the parameters
θ and latent variables Z , and we assume a variational posterior qϕ,θ̂(θ,Z) = δ(θ − θ̂)qϕ(Z) where δ(.) is a Dirac delta
distribution. We arrive at the ELBO in Eq. (9) by minimizing the KL divergence between the variational approximation and
the true posterior with respect to the variational parameters (θ̂, ϕ):

argmin
ϕ,θ̂

KL
[
qϕ,θ̂(θ,Z)||p(θ,Z|D)

]
(24)

= argmin
ϕ,θ̂

Eqϕ,θ̂(θ,Z)

[
log qϕ,θ̂(θ,Z)− log p(D|θ,Z)− log p(θ,Z) + log p(D)

]
(25)

= argmin
ϕ,θ̂

Eqϕ(Z)

[
− log p(D|θ̂,Z)

]
+KL [qϕ(Z)||p(Z)]− log p(θ̂) + log p(D) (26)

= argmin
ϕ,θ̂

−L(θ̂, ϕ) (27)

B. Tempered ELBO derivation
Here we show a connection between the tempered posterior with temperature τ = 1/(γ + 1) in Eq. (20) and the augmented
ELBO in Section 4.1:

argmin
ϕ,θ̂

1

τ
KL
[
qϕ,θ̂(θ,Z) || pγ(θ,Z|D)

]
(28)

= argmin
ϕ,θ̂

1

τ
Eqϕ,θ̂(θ,Z)

[
log qϕ,θ̂(θ,Z)− τ log p(D|θ,Z)− τ log p(θ,Z) + log pγ(D)

]
(29)

= argmin
ϕ,θ̂

Eqϕ,θ̂(z,θ)

[
1

τ
log qϕ,θ̂(θ,Z)− log p(D|θ,Z)− log p(θ)− log p(Z)

]
+

1

τ
log pγ(D) (30)

= argmin
ϕ,θ̂

−Eqϕ(Z)

[
log p(D|θ̂,Z)

]
+KL [qϕ(Z)||p(Z)]− γH [qϕ(Z)]− log p(θ̂) +

1

τ
log pγ(D) (31)

= argmin
ϕ,θ̂

−Lγ(θ̂, ϕ) + log pγ(D)
1
τ (32)

C. Derivation of layer-wise activation shifts due to input corruptions
Here we explain in detail the approximation of layer-wise activation shifts in Eq. (12). To simulate covariate shift, one can
take an input x assumed to come from the same distribution as the training samples and apply a corruption g0 to form a
shifted version xc of x:

xc ≜ x+ g0(x) (33)

For instance, x could be an image and g0 can represent the shot noise corruption as seen in Hendrycks & Dietterich (2019).
The corruption g0(x) creates a shift in the activation of the first layer f1 which can be approximated using the first-order
Taylor expansion:

g1(x) = f1(xc)− f1(x) (34)

= σ
(
W1(x+ g0(x)) + b1

)
− σ

(
W1x+ b1

)
(35)

≈ Jσ

[
h1(x)

] (
W1g0(x)

)
(36)

where Jσ = ∂σ/∂h denotes the Jacobian of the activation σ with respect to pre-activation outputs h. Similarly, the
approximation of the activation shift in the second layer is:

g2(x) = f2(xc)− f2(x) (37)

= σ
(
W2f1(xc) + b2

)
− σ

(
W2f1(x) + b2

)
(38)

= σ
(
W2(f1(x) + g1(x)) + b2

)
− σ

(
W2f1(x) + b2

)
(39)

≈ Jσ

[
h2(x)

] (
W2g1(x)

)
(40)
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Table 1. The ALL-CNN-C architecture

ALL-CNN-C

Input 32× 32 RGB images

3× 3 conv. with 96 output filters, ReLU
3× 3 conv. with 96 output filters, ReLU

3× 3 conv. with 96 output filters and stride r = 2, ReLU

3× 3 conv. with 192 output filters, ReLU
3× 3 conv. with 192 output filters, ReLU

3× 3 conv. with 192 output filters and stride r = 2, ReLU

3× 3 conv. with 192 output filters, ReLU
1× 1 conv. with 10 output filters, ReLU

Global average pooling
10-way softmax

Generally, one can approximate the shift in the output of the ℓ-th layer caused by g(x) as:

gℓ(x) = f ℓ(xc)− f ℓ(x) ≈ Jσ

[
hℓ(x)

] (
Wℓgℓ−1(x)

)
(41)

D. Details on small-scale experiments
For the small-scale experiments in Section 3, we use the ALL-CNN-C architecture from Springenberg et al. (2014). We
describe this architecture in Table 1. We train the model for 90 epochs, and only use the output latent variables and a
posterior with 1 Gaussian component for this experiment

E. Additional visualization of outputs at each layer
In Section 3, we provide a PCA visualization of the outputs from the last layer of a node-based ALL-CNN-C BNN on one
sample of CIFAR10. Here we also provide the same visualizations for the first two and the last two layers of the network.
We use the same input image as Fig. 2.

F. Additional details on the experiments and hyperparameters
F.1. Approximation for the KL divergence with mixture variational posterior

We use a mixture of Gaussians (MoG) distribution with K equally-weighted components to provide a flexible approximation
of the true posterior in the latent space:

q(Z) =
1

K

K∑
k=1

qk(Z) (42)

qk(Z) =

L∏
ℓ=1

qk,ℓ(Zℓ) (43)

qk,ℓ(Zℓ) = N (µk,ℓ,diagσ
2
k,ℓ). (44)

where L is the number of layers. We use a Gaussian prior with global scalar variance s2 for the latent prior,

p(Z) = N (1, s2I). (45)
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The KL divergence decomposes into cross-entropy and entropy terms,

KL[q(Z) || p(Z)] = H[q, p]−H[q] =
1

K

K∑
k=1

H[qk, p]−H[q], (46)

where the cross-entropy reduces into tractable terms H[qk, p] for Gaussians. The mixture entropy H[q] remains intractable,
but admits a lower bound (Kolchinsky & Tracey, 2017),

H[q] ≥ 1

K

K∑
k=1

H[qk]−
1

K

K∑
k=1

log

(
1

K

K∑
r=1

BC(qk, qr)

)
≜ Ĥ[q] (47)

where
BC(q, q′) =

∫ √
q(z)

√
q′(z)dz ≤ 1 (48)

is the Bhattacharyya kernel of overlap between two distributions (Jebara & Kondor, 2003; Jebara et al., 2004), and has a
closed form solution for a pair of Gaussians q, q′. The Bhattacharyya kernel has the convenient normalization property
BC(q, q) = 1. The lower bound considers unary and pairwise component entropies.

F.2. Experimental details and hyperparameters

We actually maximizes the following objective to train the node-based BNNs on large-scale experiments:

Lγ,β(θ̂, ϕ) = Eqϕ(Z)

[
log p(D|θ̂,Z)

]
+ log p(θ̂) + β

(
−H
[
qϕ(Z), p(Z)

]
+ (γ + 1)Ĥ

[
qϕ(Z)

])
(49)

which is the augmented ELBO in Eq. (19) with additional coefficient β for the cross-entropy and variational entropy term.
We also replace the intractable mixture entropy H[q] with its tractable lower bound Ĥ[q] presented in Eq. (47). During
training, we will anneal β from 0 to 1. We found this to have ease optimization and produce better final results. For all
experiments, we estimate the expected log-likelihood in the loss function using 4 samples.

For all the experiments on CIFAR10/CIFAR100, we run each experiment for 300 epochs, where we increase β from 0 to 1
for the first 200 epochs. We use SGD as our optimizer, and we use a weight decay of 0.0005 for the parameters θ. We use a
batch size of 128. For all the experiments on TINYIMAGENET, we run each experiment for 150 epochs, where we increase β
from 0 to 1 for the first 100 epochs. We use a batch size of 256. Bellow, we use λ1 and λ2 to denote the learning rate of the
parameters θ and ϕ respectively.

For VGG16, we set the initial learning rate λ1 = λ2 = 0.05, and we decrease λ1 linearly from 0.05 to 0.0005 from epoch
150 to epoch 270, while keeping λ2 fixed throughout training. We initialize the standard deviations with N+(0.30, 0.02)
and set the standard deviation of the prior to 0.30.

For RESNET18, we set the initial learning rate λ1 = λ2 = 0.10, and we decrease λ1 linearly from 0.10 to 0.001 from epoch
150 to epoch 270, while keeping λ2 fixed throughout training. We initialize the standard deviations with N+(0.40, 0.02)
and set the standard deviation of the prior to 0.40.

For PREACTRESNET18, we set the initial learning rate λ1 = λ2 = 0.10, and we decrease λ1 linearly from 0.10 to 0.001
from epoch 75 to epoch 135, while keeping λ2 fixed throughout training. We initialize the standard deviations with
N+(0.30, 0.02) and set the standard deviation of the prior to 0.30.

F.3. Runtime

We report the average running times of different methods in Table 2. We used similar number of epochs for all methods in
each experiment. All experiment were performed on one Tesla V100 GPU. Overall, node BNNs took 4 times longer to train
than SWAG since we use 4 Monte Carlo samples per training sample to estimate the expected log-likelihood in the γ-ELBO.
ASAM took 2 times longer to train than SWAG since they require two forward-backward passes per minibatch.

G. Additional benchmark results
Here we include the benchmark results of VGG16 on CIFAR10 and CIFAR100 in Fig. 13. We also include Fig. 14 and Fig. 15
as larger versions of Fig. 10 and Fig. 11.
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Table 2. Average running times of different methods measured in seconds. All experiments were performed on one Tesla V100 GPU.

Model Dataset Node-BNN SWAG ASAM

VGG16 CIFAR100 13274 3384 6870
CIFAR10 12941 3251 6539

ResNet18 CIFAR100 18093 4528 9086
CIFAR10 17733 4474 8921

PreActResNet18 TinyImagenet 54892 13830 26564

H. The evolution of variational entropy during training
We visualize the progression of the variational entropy when trained using the original ELBO (without the γ-entropy term)
under different settings in Figs. 16-19. We can observe the typical behaviour of variational inference that it tends to reduce
the entropy of the variational posterior over time.

I. Additional results on the effect of γ on performance of node-based BNNs
Here we include Figs. 20-24 to show the effect of γ on performance of node-based BNNs under different architectures and
datasets.
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(a) The outputs of the first two and last two layer in M16. q(Z) is a single Gaussian with the standard deviations initialized from a half
normal N+(0.16, 0.02)
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(b) The outputs of the first two and last two layer in M32 whose posterior q(Z) is a single Gaussian with the standard deviations
initialized from a half normal N+(0.32, 0.02).

Figure 12. PCA plots of the outputs for the first two and last two layers on a node-based ALL-CNN-C BNN with respect to one image from
CIFAR10. Grey unfilled circle are samples from the output distribution induced by the latent variables, while the red ellipse is the 99
percentile of this distribution. The color circle represents the expected output f̂ ℓ under input corruptions, where we fill the circle if it
lies within the ellipse. Each axis label is the component index and its explained variance ratio. In the legend, we denote the severity of
the corruptions and the ratio between number of points lie within the 99 percentile of the output distribution and the total number of
corruption types. We use the corruptions from (Hendrycks & Dietterich, 2019) containing 5 levels of severity and 19 types. For the model
with larger H[q(Z)] in 12b, the number of points lie within the ellipse is higher than the model with smaller H[q(Z)] in 12a.
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Figure 13. Results of VGG16 on CIFAR10 (top) and CIFAR100 (bottom). We use K = 4 and only the latent output variables for
node-based BNNs. We plot ECE, NLL and error for different corruption levels, where level 0 indicates no corruption. We report the
average performance over 19 corruption types for level 1 to 5. We denote the ensemble of a method using the shorthand ens in front of the
name. Each result is the average over 25 runs for non-ens versions and 5 runs for ens versions. The error bars represent the standard
deviations across different runs. Node-based BNNs and their ensembles (blue) perform best in term of ECE and NLL on OOD data, while
having similar accuracy to other methods.
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Figure 14. Results of RESNET18 on CIFAR10 (top) and CIFAR100 (bottom). We use K = 4 and only the latent output variables for
node-based BNNs. We plot ECE, NLL and error for different corruption levels, where level 0 indicates no corruption. We report the
average performance over 19 corruption types for level 1 to 5. We denote the ensemble of a method using the shorthand ens in front of the
name. Each result is the average over 25 runs for non-ens versions and 5 runs for ens versions. The error bars represent the standard
deviations across different runs. Node-based BNNs and their ensembles (blue) perform best across all metrics on OOD data of CIFAR100,
while having competitive results on CIFAR10.
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Figure 15. Results of PREACTRESNET18 on TINYIMAGENET. We use K = 4 and only the latent output variables for node-based BNNs.
We plot ECE, NLL and error for different corruption levels, where level 0 indicates no corruption. We report the average performance
over 19 corruption types for level 1 to 5. We denote the ensemble of a method using the shorthand ens in front of the name. Each result is
the average over 25 runs for non-ens versions and 5 runs for ens versions. The error bars represent the standard deviations across different
runs. Node-based BNNs and their ensembles (blue) perform best accross all metrics on OOD data, while having competitive performance
on ID data.
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Figure 16. The evolution of entropy during training for VGG16 / CIFAR10 when trained using the original ELBO. Each result is averaged
over 5 runs. Each error bar represents one standard deviation but it is too small to be seen.
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Figure 17. The evolution of entropy during training for VGG16 / CIFAR100 when trained using the original ELBO. Each result is averaged
over 5 runs. Each error bar represents one standard deviation but it is too small to be seen.
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Figure 18. The evolution of entropy during training for RESNET18 / CIFAR10 when trained using the original ELBO. Each result is
averaged over 5 runs. Each error bar represents one standard deviation but it is too small to be seen.
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Figure 19. The evolution of entropy during training for RESNET18 / CIFAR100 when trained using the original ELBO. Each result is
averaged over 5 runs. Each error bar represents one standard deviation but it is too small to be seen.
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Figure 20. Results of VGG16 on CIFAR10 under different γ value. K is the number of components. Each row corresponds a different
latent variable structure. We report the mean and standard deviation over 5 runs for each result.
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Figure 21. Results of VGG16 on CIFAR100 under different γ value. K is the number of components. Each row corresponds a different
latent variable structure. We report the mean and standard deviation over 5 runs for each result.
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Figure 22. Results of RESNET18 on CIFAR10 under different γ value. K is the number of components. Each row corresponds a different
latent variable structure. We report the mean and standard deviation over 5 runs for each result.
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Figure 23. Results of RESNET18 on CIFAR100 under different γ value. K is the number of components. Each row corresponds a different
latent variable structure. We report the mean and standard deviation over 5 runs for each result.



Tackling covariate shift with node-based BNNs

0 20 40 60
/ K

1.5

1.6

1.7

N
LL

 (i
n)

Validation

0 20 40 60
/ K

1.4

1.5

1.6

1.7

Test

0 20 40 60
/ K

3.00

3.25

3.50

3.75

4.00

Corruption level 1,2,3

0 20 40 60
/ K

4.0

4.5

5.0

5.5

Corruption level 4,5

K
1
2
4

0 20 40 60
/ K

1.5

1.6

1.7

N
LL

 (o
ut

)

Validation

0 20 40 60
/ K

1.4

1.5

1.6

1.7

Test

0 20 40 60
/ K

3.00

3.25

3.50

3.75

4.00

Corruption level 1,2,3

0 20 40 60
/ K

4.0

4.5

5.0

5.5

Corruption level 4,5

K
1
2
4

0 10 20 30
/ K

1.5

1.6

1.7

N
LL

 (b
ot

h)

Validation

0 10 20 30
/ K

1.4

1.5

1.6

1.7

Test

0 10 20 30
/ K

3.00

3.25

3.50

3.75

4.00

Corruption level 1,2,3

0 10 20 30
/ K

4.0

4.5

5.0

5.5

Corruption level 4,5

K
1
2
4

PreActResNet18 / TinyImageNet

Figure 24. Results of PREACTRESNET18 on TINYIMAGENET under different γ value. K is the number of components. Each row
corresponds a different latent variable structure. We report the mean and standard deviation over 5 runs for each result.


