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Abstract
Distributed Mean Estimation (DME) is a central
building block in federated learning, where clients
send local gradients to a parameter server for av-
eraging and updating the model. Due to commu-
nication constraints, clients often use lossy com-
pression techniques to compress the gradients,
resulting in estimation inaccuracies.

DME is more challenging when clients have di-
verse network conditions, such as constrained
communication budgets and packet losses. In
such settings, DME techniques often incur a sig-
nificant increase in the estimation error leading to
degraded learning performance.

In this work, we propose a robust DME tech-
nique named EDEN that naturally handles het-
erogeneous communication budgets and packet
losses. We derive appealing theoretical guaran-
tees for EDEN and evaluate it empirically. Our
results demonstrate that EDEN consistently im-
proves over state-of-the-art DME techniques.

1. Introduction
In the Distributed Mean Estimation (DME) problem, each
of n senders has a d-dimensional vector of real numbers.
Each sender sends information over the network to a central
receiver, who uses this information to estimate the mean
of these vectors. This problem is a central building block
in many federated learning scenarios, where at each train-
ing round, a parameter server averages clients’ parame-
ter updates (i.e., neural network gradients) and updates its
model (McMahan et al., 2017). As neural network gradients
are often large (e.g., can exceed a billion dimensions (Dean
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et al., 2012; Shoeybi et al., 2019; Huang et al., 2019)), trans-
mission over the network is often a bottleneck, and thus
applying lossy compression to the gradients can be essential
to adhere to client communication constraints, reduce the
training time, and allow better inclusion and scalability.

Typically, the desired design property is that the receiver’s
resulting estimate will be unbiased. That is, the receiver’s
derived estimate x̂ for a sender’s vector x ∈ Rd should
satisfy E[x̂] = x. Unbiasedness is attractive because, under
natural conditions (including independence of estimates), as
it yields a Mean Squared Error (MSE) between the mean of
the received estimates and the mean of the true vectors that
decays linearly with respect to the number of clients (e.g.,
see Vargaftik et al. (2021)). Besides being a useful property
for DME in isolation, in federated learning contexts this can
remove the need for error feedback mechanisms that are
commonly used to deal with biased estimates (Seide et al.,
2014; Karimireddy et al., 2019), but are often not practical
due to client participation patterns (Kairouz et al., 2021).

For unbiasedness, modern DME techniques employ random-
ized rounding techniques, commonly known as stochastic
quantization (SQ), to map each vector coordinate to one of a
limited number of possibilities, yielding a compressed form.

Some SQ-based techniques have known issues when used
in DME. In particular, the resulting error is sensitive to the
vector’s distribution and the difference between the largest
and smallest coordinates. This is specifically problematic in
federated learning, where neural network gradients’ coordi-
nates can differ by orders of magnitude, rendering vanilla
SQ inapplicable for accurate DME in many settings.

To address this limitation, recent works suggest the vector
be randomly rotated prior to stochastic quantization (Suresh
et al., 2017). That is, the clients and the parameter server
draw rotation matrices according to some known distribution
(e.g., uniform); the clients then send the quantization of the
rotated vectors while the parameter server applies the inverse
rotation on the estimated rotated vector. Intuitively, the
coordinates of a vector rotated by uniform random rotation
are identically distributed (albeit weakly dependent) and are
closely concentrated around their mean, leading to a small
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expected difference between the coordinates that allows
for an accurate quantization. For x ∈ Rd, this approach
achieves a Normalized MSE (NMSE )1 of O( log d

n ) using
O(1) bits per coordinate per client (i.e., O(nd) bits in total).

Another approach makes use of Kashin’s representa-
tion (Lyubarskii & Vershynin, 2010; Caldas et al., 2018b;
Safaryan et al., 2020). Roughly speaking, it allows repre-
senting a d-dimensional vector using larger vectors with
λ · d coefficients for some λ > 1, where each coefficient
is smaller. Applying stochastic quantization to the Kashin
coefficients allows anNMSE of O( 1n ) using O(λ) bits per
coordinate. Compared with (Suresh et al., 2017), using
Kashin’s representation yields a lowerNMSE at the cost of
increased computational complexity (Vargaftik et al., 2021).

Recent works propose algorithms that rely on clients’ gradi-
ent similarity to improve guarantees. For example, (Davies
et al., 2021) suggests an algorithm where if all clients’ gra-
dients have pairwise Euclidean distances of at most a ∈ R,
the resultingNMSE is O(a2) using O(1) bits per coordi-
nate on average. This solution provides a good bound when
gradients are similar (and thus a is small). However, it may
be less efficient for federated learning, where clients often
have different data distributions (and thus a may be large).

The recently introduced DRIVE (Vargaftik et al., 2021) is
a state-of-the-art DME algorithm that uses a single bit per
coordinate. Formally, DRIVE offers anNMSE of O

(
1
n

)
using (1 + o(1)) bits per coordinate and improves over ex-
isting DME techniques utilizing a similar communication
budget both analytically and empirically. DRIVE’s improve-
ment stems from employing a deterministic quantization
instead of a stochastic one after a random rotation, yielding
an asymptoticNMSE improvement. DRIVE still produces
unbiased estimates by adequately scaling the gradients.

A communication budget of one bit per coordinate has been
thoroughly studied (Seide et al., 2014; Wen et al., 2017;
Bernstein et al., 2018; Karimireddy et al., 2019; Ben-Basat
et al., 2021; Vargaftik et al., 2021), and used to accelerate
distributed learning systems (Jiang et al., 2020; Bai et al.,
2021). However, one bit per coordinate does not support
many federated learning scenarios where clients have dif-
ferent communication budgets and network conditions. We
expand on alternative compression approaches, which are
not directly applicable to DME, in Appendix A.

In this work, we propose Efficient DME for diverse
Networks (EDEN) – a robust DME technique that supports
heterogeneous communication budgets and packet loss rates.
EDEN achieves anNMSE of O

(
1
n

)
using b bits per coor-

dinate, for any constant b, including for b < 1, i.e., less than
one bit per coordinate. An additional feature of EDEN is

1The normalized MSE is the mean’s estimate MSE normal-
ized by the mean clients’ gradient squared norms (§2.1).

that it naturally handles packet loss without retransmission
by replacing lost coordinates with 0 values. We extend our
theoretical results to this setting for constant packet loss
rates and empirically demonstrate this robustness.

EDEN achieves improved accuracy using a novel formaliza-
tion of the quantization framework. While previous work
defines the quantization via a set of quantization points, our
solution requires choosing a set of intervals whose union
covers the real interval. Then, each point is quantized to
the center of mass of its interval and not to the closest
quantization point, which is counter-intuitive. That is, our
solution may quantize some points to quantization levels
farther away from them than the closest. Nonetheless, such
a method can reduce the entropy of the quantized vector,
allowing for better NMSE given a communication budget.

We implement and evaluate EDEN in PyTorch (Paszke et al.,
2019) and TensorFlow (Abadi et al., 2015)2 and show that
EDEN can compress vectors with more than 67 million
coordinates within 61 ms. Compared with state-of-the-art
DME techniques, EDEN consistently provides better mean
estimation, which translates to higher accuracy in various
federated and distributed learning tasks and scenarios.

2. EDEN
We start with preliminaries, overview EDEN, and then de-
scribe the complete details and guarantees.

2.1. Preliminaries

We assume that each sender has access to randomness that is
shared with the central receiver. This assumption is standard
(e.g., Suresh et al. (2017); Ben-Basat et al. (2021); Vargaftik
et al. (2021)) and can be implemented by having a shared
seed for a PseudoRandom Number Generator (PRNG). Im-
portantly, each sender uses a different seed and thus its
shared randomness is independent of that of other senders.

Formally, we are interested in efficiently solving the DME
problem. In this problem, we have a set of n ∈ N+ senders
and a central receiver. Each sender c ∈ {1, . . . , n} has its
own vector xc ∈ Rd, xc ̸= 0,3 and sends a message to
the receiver. The receiver then produces an estimate of the
average of these sender vectors. In particular, we focus on
the setting where each sender message yields an estimate
of each sender’s vector x̂c, and the receiver computes the
average of the x̂c as an estimate of the average of the xc,

2Our PyTorch and TensorFlow implementations are available as
open source at https://github.com/amitport/EDEN-
Distributed-Mean-Estimation.

3For ease of exposition, we hereafter assume that xc ̸= 0 for all
c since this case can be handled with one additional bit. Further, in
ML applications, zero gradients essentially never occur in practice.

https://github.com/amitport/EDEN-Distributed-Mean-Estimation
https://github.com/amitport/EDEN-Distributed-Mean-Estimation
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with the goal of minimizing itsNMSE defined as,

NMSE ≜
E
[∥∥ 1

n

∑n
c=1 x̂c − 1

n

∑n
c=1 xc

∥∥2
2

]
1
n ·∑n

c=1 ∥xc∥22
.

In federated learning and other techniques based on stochas-
tic gradient descent (SGD) and its variants (e.g., McMahan
et al. (2017); Li et al. (2020); Karimireddy et al. (2020)),
each round includes a mean estimation of the local vectors.
Indeed, the NMSE affects the convergence rate and often
the final accuracy of the models. Further, the provable con-
vex convergence rates for compressed SGD have a linear
dependence on the NMSE (Bubeck (2015), Theorem 6.3).

2.2. EDEN’s Overview

Figure 1 depicts a high-level illustration of EDEN.

2.2.1. SENDERS.

To compress a vector, each sender employs three consecu-
tive steps: rotation, quantization, and scaling.

Random Rotation. Each sender uses the shared random-
ness with the receiver to randomly rotate its vector and to
do so independently from other senders. Rotation can be
expressed by multiplying the vector by a rotation matrix. In
particular, a rotation matrix R ∈ Rd×d satisfies RTR = I ,
which also implies that for any x ∈ Rd : ∥Rx∥2 = ∥x∥2.
For ease of notation, we use R(x) to denote Rx when R is
selected uniformly at random; in §5 we present an efficient
implementation. Similarly, R−1(x) denotes the inverse
rotation, i.e., R−1x = RTx. For sender c and its vector
xc ∈ Rd, we denote its rotated vector by Rc(xc).

Deterministic Quantization. To encode a real-valued gra-
dient using a finite number of bits, one must quantize it.
To design the quantization, we leverage the fact that after
randomly rotating a vector, all its coordinates are identically
distributed. This distribution quickly converges to a normal
distribution with the vector’s dimension. Specifically, for
a vector x ∈ Rd, we have that as d tends to infinity, the
distribution of each R(x)’s coordinate tends to a normal

distribution N (0,
∥x∥2

2

d ) (Vargaftik et al., 2021).

Leveraging this, we can calculate the best quantization to ap-
proximate the standard normal distribution5 N (0, 1) offline.
Then, at run time, each sender multiplies its rotated vector
by a factor of ηx =

√
d

∥x∥2
and finds the best quantization for

its own rotated coordinates’ distribution. We now formalize
the above, starting with defining a family of deterministic
quantizations for the normal distribution.

Let I be a set of intervals with disjoint interiors such that
∪I∈II = R. We further require two properties:

1. I is symmetric; that is, [a, a′] ∈ I =⇒ [−a′,−a] ∈ I.
2. [−a, a] ∈ I =⇒ a < 1.

For ease of exposition, we first consider finite sets I; in
§4.3 and the appendix, we relax this and allow certain in-
finite interval families. For example, two such partitions
are {(−∞, 0], [0,∞)} and

{
(−∞,− 1

2 ], [− 1
2 ,

1
2 ], [

1
2 ,∞)

}
.

(Note a, a′ can be (minus or plus) infinity in our definition.)

Next, for each such interval I = [a, a′] ∈ I, we denote its
center of mass by qI = E[z|z ∈ I] where z ∼ N (0, 1),

i.e., qI =
∫ a′
a

t·e−
1
2
t2dt∫ a′

a
e−

1
2
t2dt

. Also, for z ∈ R, let I(z) de-

note the interval that encompasses z.4 We then define the
quantization operator QI(z) = qI(z). When clear from
context, we omit the subscript I and write Q. That is, z is
quantized to the center of mass of the interval in which it
lies. This definition generalizes seamlessly to vector quan-
tization, where for y = (y[1], . . . , y[d]) ∈ Rd we denote
Q(y) =

(
Q(y[1]), . . . ,Q(y[d])

)
. Also, by the properties

of I , we obtain Q(−y) = −Q(y) and y[j] ·Q(y[j]) ≥ 0 for
all j ∈ {1, . . . , n} leading to ⟨y,Q(y)⟩ ≥ 0 for all y ∈ Rd.

For sender c and its rotated vector Rc(xc), its quantized
vector is Q(ηxc

· Rc(xc)). That is, the sender multiplies its
rotated vector by ηxc before applying the quantization.

We note that it always holds that Q(ηxc
· Rc(xc)) ̸= 0.

Namely, the quantization process, by design, cannot nul-
lify a client’s vector. This is because ∥ηxc · Rc(xc)∥22 = d,
which means that the absolute value of at least one coordi-
nate is at least 1. Thus, by the second property of I , this co-
ordinate cannot lie in an interval that maps it to 0. In turn, by
property 1, it also implies ⟨Rc(xc),Q(ηxc

· Rc(xc))⟩ > 0.

In §3, we detail how to optimize I for different communica-
tion budgets and how to perform the quantization efficiently.

Scaling. After rotation and quantization, each sender c
calculates a scale Sc ∈ R+ that is used by the receiver to
scale the estimate. As we detail in §2.3, scaling is the key
for removing the bias introduced by the quantization.

Finally, each sender c sends a representation of Q(ηxc
·

Rc(xc)) and Sc to the receiver. This can be done with
⌈log2 |I|⌉ ·d+ o(d) bits, i.e., using the log of the number of
quantization values many bits per quantized value, and repre-
senting the scale using a sub-linear number of bits in the vec-
tor’s dimension (in practice, we use a fixed number of bits,
e.g., 64, to send the scale and ignore the rounding error).

2.2.2. RECEIVER

The receiver reconstructs each sender’s c vector by first
performing the inverse rotation, i.e., it uses the shared ran-
domness to generate the same rotation matrix and computes
R−1

c (Qc(ηxc
· Rc(xc))). Then, the result is scaled by Sc to

obtain the estimate, i.e., x̂c = Sc · R−1
c (Q(ηxc

· Rc(xc))).

4If z is an endpoint of intervals, the one closer to zero is chosen.
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Send: 𝒬 𝜂𝑥𝑐 ⋅ ℛ𝑐 𝑥𝑐 , 𝑆𝑐
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−1 𝒬 𝜂𝑥𝑐 ⋅ ℛ𝑐 𝑥𝑐
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𝑛


𝑐=1

𝑛

ො𝑥𝑐

3

𝑥𝑐 - 𝑐’s Input vector
ℛ𝑐- 𝑐’s Random rotation
𝑆𝑐 - 𝑐’s Scale 
𝒬 - Deterministic quantization

Figure 1. EDEN’s compress and decompress methods.

Finally, the receiver averages the results from all senders
and obtains the estimate of the mean, i.e., 1

n

∑n
c=1 x̂c.

EDEN also supports network packet losses without the need
for retransmitting the lost coordinates (detailed in §4).

2.3. EDEN’s Scale

An appealing property of EDEN we establish in this work
is that each sender can efficiently calculate the scale Sc to
make its estimate unbiased even though it uses a biased
quantization technique. In particular, each sender c uses:

Sc =
∥xc∥22

⟨Rc(xc),Q(ηxc
· Rc(xc))⟩

.

With this scale, we obtain the following formal guarantee
whose proof appears in Appendix B.

Theorem 2.1. For all x ∈ Rd, using EDEN with the scale
S =

∥x∥2
2

⟨R(x),Q(ηx·R(x))⟩ results in E[x̂] = x .

Intuitively, this scale ensures that the reconstructed vector x̂c

lies on a hyperplane tangent to the original vector’s xc point
on the sphere. Since the rotation has no preferred direction,
the expected value of the reconstructed vector produces
precisely the original one. Specifically, the proof relies on
this property by showing that for each rotation, there exists
a matching rotation with the same bias but the opposite sign,
and each such pair’s average yields the original vector.

2.4. EDEN’sNMSE

We start with the following definition. For estimation of a
single vector x, we define the vector-NMSE (vNMSE ) as

vNMSE ≜
E
[
∥x− x̂∥22

]
∥x∥22

.

For a sender c, we use vNMSE (c) to denote its vNMSE .
Now, since the estimates of the sender vectors are inde-
pendent (as senders sample their rotation matrices indepen-

dently) and unbiased (according to Theorem 2.1), we obtain
the following result whose proof appears in Appendix C.

Lemma 2.2. Consider n senders. It holds that

NMSE =

∑n
c=1 vNMSE (c) · ∥xc∥22
n ·∑n

c=1 ∥xc∥22
.

Observe that for the special case where all senders use
the same set I, it holds that NMSE = 1

n · vNMSE since
vNMSE (c) is the same for all senders.

Accordingly, we obtain a bound on the NMSE by bounding
each client’s vNMSE using the following theorem,
whose proof appears in Appendix D. The proof relies
on a novel mathematical framework that leverages the
fact that the rotated vector’s distribution is that of a
vector of independent N (0, 1) random variables Z ∈ Rd

multiplied by the input vector’s norm and divided by Z’s
norm (Vargaftik et al., 2021). Specifically, we define events
that control quantities of interest (e.g., that the norm of
Z is highly concentrated around its mean). We then show
that these events hold with high probability and infer that
our vNMSE converges to the following function of the
quantization error of a single N (0, 1) variable.

Theorem 2.3. Let z ∼ N (0, 1). For all x ∈ Rd, with

S =
∥x∥2

2

⟨R(x),Q(ηx·R(x))⟩ , EDEN satisfies:

vNMSE ≤ 1

E
[
(Q(z))

2
] − 1 +O

(√
log d

d

)
.

Also, E [zQ(z)] =E
[
Q(z) ·

[
E [z]

∣∣Q(z)
]]

=E
[
(Q(z))

2
]

and thus E
[
(Q(z))

2
]
= 1 − E

[
(z−Q(z))2

]
. This means

that minimizing the vNMSE bound is achieved by minimiz-
ing the quantization’s MSE with respect to z ∼ N (0, 1).

Next, we obtain the following corollary.

Corollary 2.4. For d → ∞, the vNMSE upper bound in
Theorem 2.3 approaches 1

E[(Q(z))2]
−1, where z ∼ N (0, 1).
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Our proofs have focused on the upper bound, but Corol-
lary 2.4 is tight; our proofs could be extended to a lower
bound, and our experiments coincide with this claim.

We later give examples of these guarantees and how they
relate to the number of bits used per coordinate in §3.

3. Optimal 2b-Values Quantization
With b bits per coordinate, we can use 2b quantization values.
Since our goal is to minimize the MSE from a standard
normal random variable to its quantization, we precalculate
the optimal quantization for 2b values using the known
Lloyd-Max Scalar Quantizer (Lloyd, 1982; Max, 1960) for
the normal distribution.5

For ease of exposition, for an integer bit budget b ∈ N+,
we denote by Ib the optimal set of 2b intervals and
by QIb

the resulting quantization values. For example,
the intervals and quantization values for b = 1 and b = 2 are:

I1 = {(−∞, 0], [0,∞)} , QI1
=

{
±
√

2

π

}
≈ {±0.79788}.

I2 ≈ {(−∞,−0.9816], [−0.9816, 0], [0, 0.9816], [0.9816,∞)},
QI2

≈ {±0.45278,±1.51042}.
We note that when Q is built using the Lloyd-Max quantizer,
the quantization can be efficiently computed by

Q(x) = argminy∈Qd

∥∥∥∥√d · x

∥x∥2
− y

∥∥∥∥
2

.

Namely, for such quantization value, the center of mass of a
scaled coordinate’s interval is also the closest quantization
value to that coordinate. For clarity, we now show how
Corollary 2.4 applies for QI1

and QI2
.

Example 1. For QI1
we obtain

1

E
[
(QI1

(z))
2
] − 1 =

1∑
I∈I1

q2I · P(z ∈ I)
− 1 =

1

1
2

(√
2
π

)2
+ 1

2

(
−
√

2
π

)2 − 1 =
1
2
π

− 1 ≈ 0.571.

That is, as d → ∞, the vNMSE goes to approximately
0.571, which coincides with the corresponding result for
DRIVE (Vargaftik et al., 2021). In fact, without coordinate

5One can slightly lower the quantization error by optimizing
the quantization values for the actual distribution of the rotated
coordinates (which is a shifted Beta distribution (Vargaftik et al.,
2021)). However, as mentioned there, this distribution approaches
the normal distribution rapidly as d grows (e.g., the difference
is negligible even for d of several hundred), and our focus is on
federated learning where d is considerably larger (e.g., millions).

losses (§4.2), using EDEN with QI1
is equivalent to using

DRIVE since S · QI1
(ηx · R(x)) =

∥x∥2
2

∥R(x)∥1
· sign(R(x)) .

Example 2. For QI2
we have that

Pr [z ∈ [0, 0.9816]] =
1√
2π

∫ 0.9816

0

e−t2/2dt ≈ 0.33685.

Therefore, we obtain:
1

E
[
(QI2

(z))
2
] − 1 =

1∑
I∈I2

q2I · P(z ∈ I)
− 1 ≈

1

2 · 0.33685 · (0.45278)2 + 2 · 0.16315 · (1.51042)2 − 1

≈ 1

0.88228
− 1 ≈ 0.134,

which is an improvement of by more than a factor of 4 in
comparison to Example 1.

In practice, we find that the empirical vNMSE (and the
resultingNMSE ) match that of Corollary 2.4 in all our
experiments, for any d that is larger than a few hundreds.

4. Handling Heterogenity and Loss
We next detail how EDEN operates with general bit budget
constraints and lossy networks, and discuss its compatibility
with variable-length encoding techniques.

4.1. Heterogeneous Sender Bit Budget

Often in federated learning, senders may have differ-
ent resource constraints, particularly networking con-
straints (Nishio & Yonetani, 2019). Therefore, it is ben-
eficial for an algorithm to allow senders to use different
amounts of compression, tuned to their own available com-
munication budget. Accordingly, we provide two general-
izations that maintain the strong guarantees of Theorems 2.1
and 2.3 and allow EDEN’s senders to adapt their bit budget
per coordinate. Specifically, we allow each sender to use
its own set of quantization values and to use a non-integer
number of bits b per coordinate (in expectation).

Super-bit compression (b ≥ 1). For a sender who wishes
to use an integer b bits per coordinate, we simply use QIb

.
For non-integer b > 1, we propose the following generaliza-
tion. We quantize each coordinate using QI⌊b⌋+1

with prob-
ability b−⌊b⌋, and with QI⌊b⌋ with probability 1−(b−⌊b⌋).
This means that each client’s quantization is a distribution
over QI⌊b⌋+1

and QI⌊b⌋ . The choice of which coordinates to
send using more bits are selected using shared randomness
(to simulate independent weighted coin flips). In practice,
this means the actual bit usage may slightly deviate from
(but is concentrated around) its expected value of b. This
approach avoids introducing additional overhead from need-
ing to communicate this information explicitly (although b
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does need to be sent or otherwise agreed upon). We observe
that Theorems 2.1 and 2.3 hold for this scenario (the proofs
are in Appendix B and D respectively).

For example, for b = 1.5, each coordinate is quantized using
QI1 or QI2 with equal probability. The resulting vNMSE
for this case is (for d → ∞):

1
1
2 · E

[
(QI1(z))

2 ]
+ 1

2 · E
[
(QI2(z))

2 ] − 1

≈ 1
1
2 · ( 2π ) + 1

2 · (0.88228) − 1 ≈ 0.317.

We note that the naive solution of simply dividing the vector
into two halves and sending each separately (one half using
EDEN with QI1 and the other with QI2) yields a higher
vNMSE for the reconstructed vector (i.e., 1

2 · 0.571 + 1
2 ·

0.134 = 0.352 instead of 0.317).

Sub-bit compression (b < 1). For sub-bit compression, we
use QI1 with random sparsification. Formally, the random
sparsification procedure has only a single parameter p ∈
(0, 1]. For a vector x ∈ Rd, its random sparsification is 1

p ·
mrs◦x, where mrs ∈ {0, 1}d is a uniformly random sample
of size ∥mrs∥1 = d · p and ◦ stands for the coordinate-
wise product (i.e., mrs is a random mask). For random
sparsification, it holds that

vNMSE =

∑d
i=1(1− p)x[i]2 + p( 1p − 1)2x[i]2

∥x∥22
=

1

p
−1 .

There are two ways to apply the random sparsification: be-
fore or after the rotation. In practice, we find that the result-
ing vNMSE is similar in both cases and use the sparsifica-
tion prior to rotation which is more efficient since it reduces
the dimension of the compressed vector.

For example, for b = 0.7, we sparsify uniformly at ran-
dom 30% of the coordinates (i.e., set p = 0.7), multiply
the remaining coordinates by a factor of 1

0.7 to preserve
unbiasedness, and then compress them using EDEN with
QI1

(i.e., a single bit per coordinate). In turn, the receiver
decodes the compressed sparsified vector and then restores
the original using the same random mask (i.e., generating
the same random mask using the shared randomness).

We strengthen the above choice using the following formal
result whose proof appears in Appendix E.

Lemma 4.1. Consider two unbiased compression tech-
niques A and B (i.e., ∀x : E[A(x)] = E[B(x)] = x) with
independent randomness. Then,

1. ∀x :
E[∥x−A(x)∥]22

∥x∥2
2

≤ A and E[∥x−B(x)∥]22
∥x∥2

2

≤ B =⇒
∀x :

E[∥x−B(A(x))∥]22
∥x∥2

2

≤ A+AB +B .

2. ∀x :
E[∥x−A(x)∥]22

∥x∥2
2

≥ A and E[∥x−B(x)∥]22
∥x∥2

2

≥ B =⇒
∀x :

E[∥x−B(A(x))∥]22
∥x∥2

2

≥ A+AB +B .

Accordingly, we get that EDEN with sparsification has

vNMSE ≤ π
2·p −1+O

(√
log d
d·p2

)
and obtain the following.

Corollary 4.2. EDEN’s vNMSE with constant b ∈ (0, 1]
bits per coordinate satisfies

lim
d→∞

vNMSE =
π

2 · b − 1 .

For example, using b = 0.1 yields a vNMSE of ≈ 14.707.
More generally, for any fixed bit budget b > 0 we have that
vNMSE = O(1) and thus we get NMSE = O( 1n ) .

4.2. Lossy Networks

Distributed and federated learning systems (e.g., Bai et al.
(2021); Jiang et al. (2020)) typically assume reliable packet
delivery, e.g., using TCP to retransmit lost packets or using
RDMA or RoCEv2, which rely on a lossless fabric. How-
ever, it is useful to design algorithms that can cope with
packet loss on standard IP networks. Indeed, a recent effort
by Ye et al. (2021) extends SGD to support packet loss.

We model packet loss as a sparsification with parameter
p ∈ (0, 1], so a fraction p of the coordinates arrive at the
receiver. Hence this modeling is similar to that of the sub-bit
regime, but there are inherent differences: (1) The sparsifi-
cation may not be random. Instead, we assume an oblivious
adversary may pick any subset of packets to drop. That is,
the adversary may choose to drop packets based only on the
packet indices, without any knowledge about the content of
the packets; (2) The sparsification is done after the rotation;
(3) The quantization scheme is not restricted to using I1.

To support this scheme, no changes at the sender are re-
quired. For the receiver, before employing the inverse rota-
tion and scaling, it simply treats any lost coordinates as 0 and
multiplies the reconstructed rotated vector by 1

p (the receiver
determines p by counting the number of received coordi-
nates). This scheme preserves our theoretical guarantees due
to the following Lemma, which is proven in Appendix F.

Lemma 4.3. Let x ∈ Rd and let mds ∈ {0, 1}d be a
deterministic mask. Denote p =

∥mds∥1

d and let Rds(x) =
1
p ·mds ◦ R(x). Then, using EDEN with Rds(x) instead of
R(x) results in:

1. E [x̂] = x .

2. vNMSE ≤ 1

p·E[(Q(z))2]
− 1 +O

(√
log d
d·p2

)
.

Lemma 4.3 shows that when performing DME, we can settle
for partial information from all the senders and can replace
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missing information by 0s and rescale each vector accord-
ingly. Of course, this increases the error, but Lemma 4.3
bounds this increase. This feature enables the use of lossy
transport protocols such as UDP (e.g., as proposed by Ye
et al. (2021)), or allows the receiver to avoid waiting for
retransmissions of lost packets. Hence we can trade-off
error and delay (latency) by allowing partial information.
Another benefit is that lossy protocols often have reduced
overheads (e.g., smaller headers) since they do not require
maintaining state and reliable delivery.

4.3. Variable-Length Encoding

A standard approach to compressing vectors with a small
number of possible values that are unequally distributed is
using entropy encoding methods such as Huffman (Huffman,
1952) or arithmetic encoding (Pasco, 1976; Rissanen, 1976).
Intuitively, the number of times each quantization value
appears in Q(ηx ·R(x)) may not be d

|I| . Indeed, for Ib with
b ≥ 2, the probability of the values is not equal.

Formally, denoting by pI = P(z ∈ I) the probability
that a normal variable z ∈ N (0, 1) lies in the interval I ,
HI ≜

∑
I∈I −pI log2(pI) is the entropy of the distribu-

tion induced by I. For example, as discussed in Exam-
ple 2 (§3), for I2, the intervals [−0.9816, 0], [0, 0.9816]
have probability that is more than double than that of
(−∞, 0.9816], [0.9816,∞). The entropy of the distribution
is HI2

≈ 1.91 bits. This suggests that, for a large enough
dimension d, we should be able to compress the vector to at
most HI2

+ ϵ bits per coordinate for any constant ϵ.

Such an encoding may also allow us to use more quanti-
zation values for the same bit budget. For example, using
the Lloyd-Max Scalar Quantizer (Lloyd, 1982; Max, 1960)
with 9 quantization values, we get an entropy of ≈ 2.98
bits, which would allow us to use three bits per coordinate
for large enough vectors. In particular, this would reduce
the vNMSE by nearly 20%, compared to I3, at the cost of
additional computation.

Taking this a step further, it is possible to consider the result-
ing entropy when choosing the set of intervals. To optimize
the quantization, we are looking for a set I that maximizes
E
[
(QI(z))

2
]

such that its entropy is bounded by b. This
problem is called Entropy-Constrained Vector Quantiza-
tion (ECVQ) (Chou et al., 1989). The algorithm proposed
in Chou et al. (1989) has several tunable parameters that
may affect the output of the algorithm. We implemented
the algorithm and scanned a large variety of parameter val-
ues. For b = 3, for example, the best obtained vNMSE
is ≈ 0.02274, compared to an vNMSE of ≈ 0.03572 for
EDEN with I3 and without entropy encoding.

We propose a simpler approach that is more computation-
ally efficient. Given a bandwidth constraint b > 0, let

∆b > 0 denote the smallest real number such that HI∆b
≤ b

where I∆b
=
{
[∆b · (n− 1

2 ),∆b · (n+ 1
2 )] | n ∈ Z

}
.This

choice of I respects the properties that are required by The-
orems 2.1 and 2.3 for any fixed ∆b ∈ (0, 2).

For example, using b = 3, we have ∆3 ≈ 0.5224. Then,
the resulting vNMSE is ≈ 0.022741 (within 0.1% from
the ECVQ solution), an improvement of ≈ 20% over
the Lloyd-Max Scalar Quantizer with 9 quantization val-
ues (which we can encode with b = 3 bits per coordi-
nate by applying entropy encoding) and of ≈ 36% over
8 quantization values (which is encodable with b = 3
without entropy encoding). A benefit of our approach
is that it allows computing the quantization much faster
as each a ∈ R is efficiently mapped into the interval[
∆b ·

(⌊
a
∆b

⌉
− 1

2

)
,∆b ·

(⌊
a
∆b

⌉
+ 1

2

)]
, where ⌊·⌉ rounds

to the nearest integer (i.e., the interval’s index is n =
⌊

a
∆b

⌉
).

Rate-distortion theory implies a lower bound on
E
[
(z−QI(z))

2
]

for any quantization interval set I (Cover,
1999). Specifically, it implies that E

[
(z−QI(z))

2
]
≥ 4−b

for any I such that HI ≤ b. Note that since
E
[
(QI(z))

2
]

= 1 − E
[
(z−QI(z))

2
]
, we get that

the lower bound on the vNMSE attainable using any
quantization is 1

1−4−b −1 = 4−b

1−4−b . Also, in Appendix G.1,
we illustrate the different quantization values and their
expected squared error (Figure 4) and show that our I∆b

approach is close to the lower bound while allowing
computationally efficient quantization. In practice, the
entropy HI may deviate from its expectation since the
frequency of a quantization value, qI , may not be exactly
pI · d. However, due to concentration, this has minimal
effect. We elaborate on this in Appendix G.2.

5. Evaluation

We evaluate EDEN using different federated and distributed
learning tasks. We compare with a non-compressed base-
line that uses 32-bit floating-point representation for each
coordinate (Float32) and the following DME techniques: (1)
Stochastic quantization (SQ) applied after the randomized
Hadamard transform (Hadamard + SQ) (Suresh et al., 2017;
Konečnỳ & Richtárik, 2018)6; (2) SQ applied over the vec-
tor’s Kashin’s representation (Kashin + SQ) (Lyubarskii &
Vershynin, 2010; Caldas et al., 2018b; Safaryan et al., 2020);
and (3) QSGD (Alistarh et al., 2017), which normalizes the
input vector by its euclidean norm and separately sends its
sign and its quantized (using SQ) absolute values.

6SQ (Barnes et al., 1951; Connolly et al., 2021) normalizes the
vector into the range [0, 2b − 1] (using min-max normalization),
adds uniform noise in (−0.5, 0.5), and then rounds to the nearest
integer. thus providing an unbiased estimate of each coordinate.
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(c) b = 6 bit budget.

Hadamard + SQ Kashin + SQ QSGD EDEN

Figure 2. The vNMSE and compression time as a function of the dimension d for LogNormal(0,1) distribution.

We exclude methods that involve client-side memory since
these can often work in conjunction with all tested meth-
ods (e.g., Karimireddy et al. (2019); Richtárik et al. (2021))
and are less applicable in cross-device federated scenar-
ios (Kairouz et al., 2021). Also, we omit DRIVE (Vargaftik
et al., 2021) since its performance is identical to that of
EDEN with I1 and no packet losses.

Unless otherwise noted, we evaluate the algorithms without
variable-length encoding which increases encoding time.
We compare with SQGD + Elias Omega encoding (Alis-
tarh et al., 2017) and optimized stochastic quantization +
Huffman (Suresh et al., 2017) in Appendix G.1.

Similarly to Hadamard + SQ, Kashin + SQ, and DRIVE,
instead of using a uniform random rotation (which requires
O(d3) time and O(d2) space) to rotate the vector, we use the
randomized Hadamard transform (a.k.a. structured random
rotation (Suresh et al., 2017; Ailon & Chazelle, 2009)) that
admits a fast, in-place, parallelizable, and GPU-friendly,
O(d log d) time implementation (Fino & Algazi, 1976; Li
et al., 2018; Ailon & Chazelle, 2009). As with these prior
works, we find essentially negligible difference in our evalu-
ation between using the Hadamard rotations and fully ran-
dom rotations. We discuss this further and show supporting
empirical measurements in Appendix H.

5.1. Implementation Optimization

In a natural implementation, EDEN has additional complex-
ity when using b ̸= 1 bits per coordinate. Indeed, for b < 1,
we need to sample the sparsification mask, and for b > 1,
we need to identify the interval each rotated coordinate lies
in and take its center of mass. The latter can be efficiently
done using a binary search - e.g., torch.bucketize,

leading to an encoding complexity of O(d · b)).
Instead, we implement EDEN using a fine-grained lookup
table with a resulting encoding complexity of O(d) (i.e.,
independent of b). That is, we map each value z to an in-
teger nz =

⌊
z
γ

⌋
for a suitably selected small value γ, and

our lookup table maps nz to the message the sender sends.
Similarly, we have a receiver lookup table that maps nz

to an estimated value. The choice of γ provides a trade-
off between space and accuracy. We note that, even with
tables whose size is small compared to the encoded vec-
tor (e.g., 0.1%), the table’s granularity is fine enough to
get that the additional error is negligible (e.g., less than
0.01%) compared with the error of the algorithm. Further,
it does not affect the unbiasedness of the algorithm, which
is guaranteed by taking the correct scale (see Theorem 2.1).
This approach allows us to encode and decode coordinates
with minimal computation, especially when variable length
encoding is not used.

5.2. vNMSE , NMSE , and Encoding Speed

We next evaluate the vNMSE and encoding speed of EDEN,
comparing to three other DME techniques. In Figure 2, we
provide representative results for a bit budget b = 2, 4, 6 for
vectors that are drawn from a LogNormal(0,1) distribution.
Each data point is averaged over 100 trials. EDEN offers
the best vNMSE and is faster than Kashin + SQ, which
offers the second lowest error. In line with theory, the
vNMSE of Hadamard + SQ and the fast QSGD increases
with the dimension. In all experiments, EDEN’s encoding
time accounts to less than 1% of the computation of the
gradient. Appendix I.1 provides further experiments of
NMSE and encode speeds, all indicating similar trends.
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Figure 3. FedAvg over the EMNIST and Shakespeare tasks
(columns) at various bit budgets (rows). We report training ac-
curacy per round with a smoothing rolling mean window of 200
rounds. Sparsification is done using a random mask as described
in §4.1. Plots are zoomed-in on the last 100 rounds (note the y-axis
differences). A zoom-out version is included in Appendix I.2.

5.3. Federated Learning

We evaluate EDEN over the federated versions of the
EMNIST (Cohen et al., 2017) image classification task and
the Shakespeare (Shakespeare) next-word prediction task.
We excluded QSGD, which was less competitive in these ex-
periments. We run FedAvg (McMahan et al., 2017) with the
Adam server optimizer (Kingma & Ba, 2015) and sample
n = 10 clients per round. We re-use code, client parti-
tioning, models, and hyperparameters from the federated
learning benchmark of Reddi et al. (2021). Those are re-
stated for convenience in Appendix I.2.

Figure 3 shows how EDEN compares with other compres-
sion schemes at various bit budgets. We notice that EDEN
considerably outperforms other methods at the lower bit
regimes. At 4 bits, all methods converge near the baseline,
while EDEN still maintains a relative advantage.

5.4. Additional Evaluation

Due to space limits, we defer additional evaluation results
to the Appendix. In particular, we provide experiments
for variable-length encoding (Appendix G.1); structured
rotation performance against the theory of uniform rotation
(Appendix H); NMSE , vNMSE , and encoding speed (Ap-
pendix I.1); distributed logistic regression (Appendix I.3);
comparison of sub-bit compression and network loss (Ap-
pendix I.4); distributed power iteration (Appendix I.5); ho-
mogeneous federated learning (Appendix I.6); and cross-
device federated learning (Appendix I.7).

To summarize these experiments, we show EDEN out-
performs its competitors in nearly all cases, offering a
combination of speed, accuracy, overall compression, and
robustness, and we believe that this will make it the best
choice for many applications.

6. Conclusions
In this paper, we presented EDEN, a robust and accurate dis-
tributed mean estimation technique. EDEN suits various net-
work scenarios, including packet losses and heterogeneous
clients. Further, we proved strong accuracy guarantees for
a wide range of usage scenarios, including using entropy
encoding to compress quantized vectors further and working
over lossy networks while maintaining high precision. Our
evaluation results indicate that EDEN considerably outper-
forms all tested techniques in nearly all settings.

As future work, we propose to study how to combine EDEN
with techniques that provide fast receiver decode proce-
dures, e.g., using a single rotation for all senders to avoid
inverse rotating individual vectors. Another direction is to
combine EDEN with techniques such as secure aggregation
and differential privacy. It is also interesting to explore if
EDEN can be adapted to all-reduce techniques, which ben-
efit large-scale distributed deployments where a parameter
server might be a bottleneck. Finally, while EDEN natu-
rally extends to linear schemes such as weighted mean, we
propose to study how to incorporate non-linear aggregation
functions, such as approximate geometric median, that may
improve the training robustness (Pillutla et al., 2022).

Our source code is available at:
https://github.com/amitport/EDEN-
Distributed-Mean-Estimation.
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Suresh, A. T., and Bacon, D. Federated Learning: Strate-
gies for Improving Communication Efficiency. arXiv
preprint arXiv:1610.05492, 2017.

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images. Master’s thesis, University of Toronto, 2009.

Laurent, B. and Massart, P. Adaptive Estimation of a
Quadratic Functional by Model Selection. Annals of
Statistics, pp. 1302–1338, 2000.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
Based Learning Applied to Document Recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

LeCun, Y., Cortes, C., and Burges, C. MNIST Hand-
written Digit Database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Li, C., Farkhoor, H., Liu, R., and Yosinski, J. Measuring
the Intrinsic Dimension of Objective Landscapes. In
International Conference on Learning Representations,
2018. Code available at: https://github.com/
uber-research/intrinsic-dimension.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar,
A., and Smith, V. Federated Optimization in Heteroge-
neous Networks. Proceedings of Machine Learning and
Systems, 2:429–450, 2020.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, B. Deep
Gradient Compression: Reducing the Communication
Bandwidth for Distributed Training. In International
Conference on Learning Representations, 2018.

Lloyd, S. Least Squares Quantization in PCM. IEEE trans-
actions on information theory, 28(2):129–137, 1982.

Lyubarskii, Y. and Vershynin, R. Uncertainty Principles and
Vector Quantization. IEEE Transactions on Information
Theory, 56(7):3491–3501, 2010.

Malinovskiy, G., Kovalev, D., Gasanov, E., Condat, L.,
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A. Alternative Compression Methods
In this paper, we focus on the DME problem, in which the participants do not keep state, and the estimate of each vector is
desired to be unbiased for the NMSE to decrease linearly with respect to the number of senders. We give a few examples of
other approaches (i.e., works that do not directly address the DME problem).

Some works (e.g., Beznosikov et al. (2020)) investigate the convergence rate of Stochastic Gradient Decent (SGD) for
biased compression (which are known to achieve lower error). Another approach to leverage the lower error of biased
compression is using Error Feedback (EF). Namely, if the senders are persistent (the same devices are used over multiple
rounds) and have the memory to store the error of their compressed gradient, they can use this information to compensate
for the estimation error between rounds. Indeed, works such as Seide et al. (2014); Alistarh et al. (2018); Richtárik et al.
(2021) show that EF-based approaches can greatly increase the accuracy of the learned models and ensure convergence of
biased compressors such as Top-k (Stich et al., 2018) and SketchedSGD (Ivkin et al., 2019).

For a setting with persistent clients, recent works (e.g., Mishchenko et al. (2019); Gorbunov et al. (2021)) also suggest
encoding the difference between the current gradient and the one from the previous round. Intuitively, when the mini-batch
sizes are sufficiently large, the sampled gradients are less noisy, and encoding the differences allows faster convergence.
This approach is orthogonal to EDEN which can encode the difference in such a setting.

For distributed cluster learning, some works aim at optimizing streaming aggregation (i.e., All-Reduce operations) via
programmable hardware (Sapio et al., 2021) or taking advantage of data sparsity (Fei et al., 2021). These approaches are
known to be orthogonal to (and can work in conjunction with) compression techniques (Vargaftik et al., 2021; Fei et al.,
2021). For example, if the input is sparse (or is sparsified), one can use EDEN to encode only the non-zero coordinates.

Deep gradient compression (Lin et al., 2018) leverages redundancy in neural network gradients to reduce the number of
transmitted bits. They leverage momentum correction, local gradient clipping, momentum factor masking, and warm-up
training, and report compression ratios of 270x-600x.

For further overview we refer the reader to Konečný et al. (2017); Kairouz et al. (2021); Wang et al. (2021).

B. EDEN’s Unbiasedness
For clarity, we restate the theorem.

Theorem 2.1. For all x ∈ Rd, using EDEN with the scale S =
∥x∥2

2

⟨R(x),Q(ηx·R(x))⟩ results in E[x̂] = x .

Proof. Our proof follows similar lines to that of Vargaftik et al. (2021). Denote x′ = (∥x∥2 , 0, . . . , 0)T and let Rx�x′ ∈
Rd×d be a rotation matrix such that Rx�x′ · x = x′. Further, denote Rx = RR−1

x�x′ . Using these definitions we have that,

x̂ =R−1
x�x′ ·Rx�x′ · x̂ = S ·R−1

x�x′ ·Rx�x′ ·R−1 · Q (ηx ·R · x)
=S ·R−1

x�x′ ·R−1
x · Q (ηx ·Rx ·Rx�x′ · x) = S ·R−1

x�x′ ·R−1
x · Q (ηx ·Rx · x′) .

Let Ci be a vector containing the values of the i’th column of Rx. Then, Rx · x′ = ∥x∥2 · C0 and we obtain,

R−1
x · Q (ηx ·Rx · x′) = (⟨C0,Q (ηx · ∥x∥2 · C0)⟩ , . . . , ⟨Cd−1,Q (ηx · ∥x∥2 · C0)⟩)T .

Now, observe that

⟨R · x,Q(ηx ·R · x)⟩ = ⟨Rx · x′,Q(ηx ·Rx · x′)⟩ = ∥x∥2 · ⟨C0,Q(ηx · ∥x∥2 · C0)⟩ .

This yields,

x̂ = R−1
x�x′ · ∥x∥2 ·

(
1,

⟨C1,Q (ηx · ∥x∥2 · C0)⟩
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

, . . . ,
⟨Cd−1,Q (ηx · ∥x∥2 · C0)⟩
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

)T

. (1)

Now, consider an algorithm EDEN’ that operates exactly as EDEN but, instead of directly using the sampled rotation matrix
R = Rx ·R−1

x�x′ it calculates and uses the rotation matrix R′ = Rx · I ′ ·R−1
x�x′ = Rx�x′ ·R · I ′ ·R−1

x�x′ where I ′ is identical
to the d-dimensional identity matrix with the exception that I ′[0, 0] = −1 instead of 1.
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Since both Rx�x′ and I ′ ·R−1
x�x′ are fixed rotation matrices, R′ and R follow the same distribution.

Now, consider a run of both algorithms where x̂ is the reconstruction of EDEN for x with a sampled rotation R and x̂′ is the
corresponding reconstruction of EDEN’ for x with the rotation R′.

According to (1) it holds that: x̂+ x̂′ = R−1
x�x′ · ∥x∥2 · (2, 0, . . . , 0)

T
= 2 · x. This is because both runs are identical except

that the first column of Rx and Rx · I ′ have opposite signs and thus for all i ∈ {1, 2, . . . , d− 1}:

⟨Ci,Q (ηx · ∥x∥2 · C0)⟩
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

+
⟨Ci,Q (ηx · ∥x∥2 · −C0)⟩
⟨−C0,Q (ηx · ∥x∥2 · −C0)⟩

=
⟨Ci,Q (ηx · ∥x∥2 · C0)⟩
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

− ⟨Ci,Q (ηx · ∥x∥2 · C0)⟩
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

= 0.

Finally, it holds that E [x̂+ x̂′] = 2 · x. Also, since Rx and Rx · I ′ follow the same distribution, due to the linearity of
expectation, both algorithms have the same expected value. This yields E [x̂] = E [x̂′] = x, and concludes the proof.

C. EDEN’s NMSE

Lemma C.1. Consider n senders. It holds that

NMSE =

∑n
c=1 vNMSE (c) · ∥xc∥22
n ·∑n

c=1 ∥xc∥22
.

Proof. It holds that,

MSE = E

∥∥∥∥∥ 1n ·
n∑

c=1

xc −
1

n
·

n∑
c=1

x̂c

∥∥∥∥∥
2

2

 =
1

n2
·
∑
c,c′

E [⟨xc − x̂c, xc′ − x̂c′⟩]

=
1

n2
·
∑
c

E [⟨xc − x̂c, xc − x̂c⟩] +
1

n2
·
∑
c ̸=c′

E [⟨xc − x̂c, xc′ − x̂c′⟩]

=
1

n2

∑
c

E
[
∥xc − x̂c∥22

]
=

1

n2
·
∑
c

∥xc∥22 · E
[
∥xc − x̂c∥22

∥xc∥22

]
=

1

n2
·
∑
c

∥xc∥22 · vNMSE (c) .

Here, we used E [⟨xc − x̂c, xc′ − x̂c′⟩] = 0. This holds since the estimates of the different clients are unbiased (by Theorem
2.1) and independent. Finally, dividing the result by 1

n ·∑c ∥xc∥22 yields the result.

D. EDEN’s vNMSE

We devide the proof into two parts. First, we prove the main result in §D.1. Then, for better readability, we defer auxiliary
lemmas to §D.2.

D.1. Theorem proof

For clarity, we restate the theorem.

Theorem 2.3. Let z ∼ N (0, 1). For all x ∈ Rd, with S =
∥x∥2

2

⟨R(x),Q(ηx·R(x))⟩ , EDEN satisfies:

vNMSE ≤ 1

E
[
(Q(z))

2
] − 1 +O

(√
log d

d

)
.

Proof. We begin with bounding the sum of squared errors (SSE).

The SSE in estimating R(x) using S · Q(ηx · R(x)) equals that of estimating x using x̂. Therefore,

∥x− x̂∥22 = ∥R(x− x̂)∥22 = ∥R(x)−R(x̂)∥22 =
∥∥R(x)−R(R−1

(
S · Q(ηx · R(x))

))∥∥2
2

= ∥R(x)− S · Q(ηx · R(x))∥22 = ∥R(x)∥22 − 2S ⟨R(x),Q(ηx · R(x))⟩+ S2∥Q(ηx · R(x))∥22
= ∥x∥22 − 2S ⟨R(x),Q(ηx · R(x))⟩+ S2∥Q(ηx · R(x))∥22 .
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Using S =
∥x∥2

2

⟨R(x),Q(ηx·R(x))⟩ , the SSE becomes:

∥x− x̂∥22 = ∥x∥22 − 2S ⟨R(x),Q(ηx · R(x))⟩+ S2∥Q(ηx · R(x))∥22

=
∥x∥42 ∥Q(ηx · R(x))∥22
⟨R(x),Q(ηx · R(x))⟩2

− ∥x∥22 .

Thus, the resulting vNMSE in this case is:

E

[
∥x− x̂∥22
∥x∥22

]
= E

[
∥x∥22 ∥Q(ηx · R(x))∥22
⟨R(x),Q(ηx · R(x))⟩2

]
− 1 .

Next, since R(x) is uniformly distributed on a sphere with a radius ∥x∥2, its distribution is given by ∥x∥2 · Z
∥Z∥2

where

Z = (z1, . . . , zd) such that {zi}di=1 are i.i.d random variables and zi ∼ N (0, 1) ∀ i. This yields

∥x∥22 ∥Q(ηx · R(x))∥22
⟨R(x),Q(ηx · R(x))⟩2

d
=

∥x∥22
∥∥∥Q(

√
d · Z

∥Z∥2
)
∥∥∥2
2〈

∥x∥2 · Z
∥Z∥2

,Q(
√
d · Z

∥Z∥2
)
〉2 =

d ·
∥∥∥Q(

√
d · Z

∥Z∥2
)
∥∥∥2
2〈√

d · Z
∥Z∥2

,Q(
√
d · Z

∥Z∥2
)
〉2 =

d ·
∥∥∥Q(Z̃)

∥∥∥2
2〈

Z̃,Q(Z̃)
〉2 ,

where d
= means equality in distribution and we denote Z̃ =

√
d · Z

∥Z∥2
. Thus, our goal is to upper-bound:

E

d ·
∥∥∥Q(Z̃)

∥∥∥2
2〈

Z̃,Q(Z̃)
〉2
 .

For some 0 < α, β < 1
2 , denote the events

A =
{
d · (1− α) ≤ ∥Z∥22 ≤ d · (1 + α)

}
, B =


〈
Z̃,Q(Z̃)

〉
>

E
[ ∥∥∥Q(Z̃)

∥∥∥2
2

]
√
1 + β

 .

Further denote

f(Z) ≜
d ·
∥∥∥Q(Z̃)

∥∥∥2
2〈

Z̃,Q(Z̃)
〉2 .

Then,

f(Z) ≤E [f(Z) · 1A∩B ] + sup
Z

(f(Z)) · P(Ac ∪Bc)

≤E [f(Z) · 1A∩B ] + sup
Z

(f(Z)) · (P(Ac) + P(A ∩Bc)) .

Next, it holds that

E [f(Z) · 1A∩B ] ≤ E

d ·
∥∥∥Q(Z̃)

∥∥∥2
2〈

Z̃,Q(Z̃)
〉2 · 1A∩B

 = E

 (1 + β) · d
E
[ ∥∥∥Q(Z̃)

∥∥∥2
2

] · 1A∩B

 ≤ 1 + β

E
[
(Q(z))

2
]
− 1

2 · α ·M(I)
.

In the above, we used Lemma D.4 by which given that A holds, it holds that

E
[ ∥∥∥Q(Z̃)

∥∥∥2
2

]
≥ E

[∥∥∥∥Q(
Z√
1 + α

)

∥∥∥∥2
2

]
≥ d ·

(
E
[
(Q(z))

2
]
− (

√
1 + α− 1) ·M(I)

)
,

where M(I) > 0 is a constant that depends on the quantization and we replaced
√
1 + α− 1 ≥ 1

2 · α for any α < 1
2 .

Now, we use three Lemmas whose proofs appear in §D.2:
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1. By Lemma D.1 it holds that supZ (f(Z)) ≤ d2.

2. By Lemma D.2 it holds that P(Ac) ≤ 2 · e−α2

8 ·d.

3. By Lemma D.3, for α = β · 0.005√
M(I)

it holds that P(A ∩Bc) ≤ e−α2·M(I)·d.

These yield

E [f(Z)] ≤ 1 + α · 200 ·
√
M(I)

E
[
(Q(z))

2
]
− 1

2 · α ·M(I)
+ d2 ·

(
2 · e−α2

8 ·d + e−α2·M(I)·d
)

,

where we used β = α ·
√

M(I)
0.005 = α · 200 ·

√
M(I). Next, for some constant k > 0 setting α =

√
k · ln d

d yields

E [f(Z)] ≤
1 +

√
k · ln d

d · 200 ·
√
M(I)

E
[
(Q(z))

2
]
− 1

2 ·
√
k · ln d

d ·M(I)
+ 2 · d2 ·

(
e−

k·ln d
8

)
+ d2 ·

(
e−k·M(I)·ln d

)
.

Let k = 2.5 ·max
{
8, 1

M(I)

}
. This yields

E [f(Z)] ≤ 1 +

√
2.5·max{8, 1

M(I)} ln d

d · 200 ·
√

M(I)

E
[
(Q(z))

2
]
− 1

2 ·
√

2.5·max{8, 1
M(I)} ln d

d ·M(I)
+

3√
d

.

To simplify the asymptotics of the above, we use the lower bound E
[
(Q(z))

2
]
≥ 0.1 (from Lemma D.7). Thus, for

sufficiently large d we find

E [f(Z)] ≤
1 + c1 ·

√
ln d
d

E
[
(Q(z))

2
]
− c2 ·

√
ln d
d

+
3√
d
=

1

E
[
(Q(z))

2
]
− c2 ·

√
ln d
d

+
c1 ·

√
ln d
d

E
[
(Q(z))

2
]
− c2 ·

√
ln d
d

+
3√
d

=

1 +
c2·
√

ln d
d

E
[
(Q(z))2

]
−c2·

√
ln d
d

E
[
(Q(z))

2
] +

1 + c1 ·
√

ln d
d

E
[
(Q(z))

2
]
− c2 ·

√
ln d
d

+
3√
d

=
1

E
[
(Q(z))

2
] + c2 ·

√
ln d
d

E
[
(Q(z))

2
]
·
(
E
[
(Q(z))

2
]
− c2 ·

√
ln d
d

) +
c1 ·

√
ln d
d

E
[
(Q(z))

2
]
− c2 ·

√
ln d
d

+
3√
d

≤ 1

E
[
(Q(z))

2
] + c2 ·

√
ln d
d(

E
[
(Q(z))

2
])2 +

c1 ·
√

ln d
d

E
[
(Q(z))

2
] + 3√

d
=

1

E
[
(Q(z))

2
] +O

(√
ln d

d

)
.

This concludes the proof.

D.2. Lemmas proof

Lemma D.1. It holds that

sup
Z

(f(Z)) = sup
Z

d ·
∥∥∥Q(Z̃)

∥∥∥2
2〈

Z̃,Q(Z̃)
〉2
 ≤ d2 .
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Proof. We can rewrite and obtain

d ·
∥∥∥Q(Z̃)

∥∥∥2
2〈

Z̃,Q(Z̃)
〉2 =

1

⟨ Z
∥Z∥2

, Q(Z̃)

∥Q(Z̃)∥
2

⟩2
≤ 1(

1
d

)2 = d2 .

We used the fact that the maximal absolute value entry in a unit vector is at least 1√
d

and that the maximal entry in both
vectors has the same: (1) sign, due the symmetry of the quantization; (2) index, since for any a1, a2 ∈ R it holds that
a1 ≥ a2 =⇒ Q(a1) ≥ Q(a2).

Lemma D.2. P(Ac) ≤ 2 · e−α2

8 ·d .

Proof. We use a result from Laurent & Massart (2000) (Lemma 1) which we restate here for clarity:

Let U be chosen according to a chi-squared distribution with D degrees of freedom. Then, for any λ > 0:

P(U −D ≥ 2
√
Dλ+ 2λ) ≤ e−λ and P(D − U ≥ 2

√
Dλ) ≤ e−λ .

First, observe the above lemma yields that for any λ > 0:

P(|U −D| ≥ 2
√
Dλ+ 2λ) ≤ 2 · e−λ .

We want to bound P(Ac) = P
(∣∣ ∥Z∥22 − d

∣∣ ≥ α · d
)

. First, observe that α · d ≥ 2 ·
√

d · α2·d
8 +2 · α2·d

8 . Next, since ∥Z∥22
is chi-squared we obtain,

P(Ac) = P
(∣∣ ∥Z∥22 − d

∣∣ ≥ α · d
)
≤

P

(∣∣ ∥Z∥22 − d
∣∣ ≥ 2 ·

√
d · (α

2 · d)
8

+ 2 · (α
2 · d)
8

)
≤ 2 · e− (α2·d)

8 .

Lemma D.3. P(A ∩Bc) ≤ e−α2·M(I)·d where M(I) is a constant that depends on I and α = β · 0.005√
M(I)

.

Proof. Observe that we cannot use a concentration bound directly on
〈
Z̃,Q(Z̃)

〉
since its entries are not independent (i.e.,

they are normalized by ∥Z∥2). Instead, we rely on event A and use that

P(A ∩Bc) ≤ P

(〈
Z√
1 + α

,Q
(

Z√
1 + α

)〉
≤ 1√

1 + β
· E
[∥∥∥∥Q( Z√

1− α

)∥∥∥∥2
2

])
.

Our goal is to use the following result from Chung & Lu (2006) (Theorem 3.5) which we restate here for clarity:

If X1, X2, ..., Xn are nonnegative independent random variables, we have the following bounds for the sum X =
∑n

j=1 Xj :

P(X ≤ E [X]− λ) ≤ e
− λ2

2
∑n

j=1
E[X2

j ] .

To do so, we use that, according to Lemmas D.4 and D.5,

• E
[〈

Z√
1+α

,Q
(

Z√
1+α

)〉]
≥ 1√

1+α
· E
[
∥Q(Z)∥22

]
− (

√
1 + α− 1) ·M1(I) · d .

• E
[∥∥∥Q( Z√

1−α

)∥∥∥2
2

]
≤ 1√

1−α
E
[
∥Q (Z)∥22

]
+ (1−

√
1− α) ·M2(I) · d .
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where Mi(I) for i = 1, 2 are finite constants that depend on I.

Next, we have

E
[〈

Z√
1 + α

,Q
(

Z√
1 + α

)〉]
− 1√

1 + β
· E
[∥∥∥∥Q( Z√

1− α

)∥∥∥∥2
2

]

≥
(

1√
1 + α

E
[
∥Q(Z)∥22

]
− (

√
1 + α− 1)M1(I) · d

)
− 1√

1 + β

(
1√

1− α
E
[
∥Q(Z)∥22

]
+ (1−

√
1− α)M2(I) · d

)
= E

[
∥Q(Z)∥22

]
·
(

1√
1 + α

− 1√
1 + β

√
1− α

)
− d ·

(
M2(I) ·

(1−
√
1− α)√

1 + β
+M1(I) · (

√
1 + α− 1)

)
=

(
0.1√
1 + α

− 0.1√
1 + β

√
1− α

)
− d ·

(
M2(I) ·

(1−
√
1− α)√

1 + β
+M1(I) · (

√
1 + α− 1)

)
= d ·

(
0.1√
1 + α

− 0.1√
1 + β

√
1− α

−M2(I) ·
(1−

√
1− α)√

1 + β
−M1(I) · (

√
1 + α− 1)

)
≜ d · Φ(α, β, I) .

Here, we used that by Lemma D.7 it holds that E
[
∥Q(Z)∥22

]
≥ 0.1 · d and that our choice of α, β results in 0.1√

1+α
−

0.1√
1+β

√
1−α

> 0 (we later show that the constant M(I) is lower bounded by 0.0065). Now, we use Taylor expansions
around 0 to simplify Φ(α, β, I). In particular, for 0 ≤ a ≤ 1

2 :

• 1 + a
4 ≤

√
1 + a ≤ 1 + a

2 .

• 1− a ≤
√
1− a ≤ 1− a

2 .

Also, recall that α, β ≤ 1
2 . This yields

Φ(α, β, I) = 0.1√
1 + α

− 0.1√
1 + β

√
1− α

−M2(I) ·
(1−

√
1− α)√

1 + β
−M1(I) · (

√
1 + α− 1)

≥ 0.1

(1 + α
2 )

− 0.1

(1 + β
4 )(1− α)

− (M1(I) +M2(I)) · (α+
α

2
)

≥ 0.1(1 + β
4 )(1− α)− 0.1(1 + α

2 )− 3
2 (M1(I) +M2(I))α(1 + β

4 )(1− α)(1 + α
2 )

(1 + β
4 )(1− α)(1 + α

2 )

≥ 0.025 · β − α · (0.1625 + 2.109375(M1(I) +M2(I)))
0.84375

≥ 0.029 · β − α · (0.2 + 2.5(M1(I) +M2(I))) .

Now, if α ≤ 0.0145·β
0.2+2.5(M1(I)+M2(I)) , we have Φ(α, β, I) ≥ 0.0145 · β. Now we can use the concentration bound and obtain

P(A ∩Bc) ≤ P

(〈
Z√
1 + α

,Q
(

Z√
1 + α

)〉
≤ 1√

1 + β
· E
[∥∥∥∥Q( Z√

1− α

)∥∥∥∥2
2

])
≤ e−

(0.0145·β)2·d
6 = e−M(I)·α2·d .

Here, we denoted M(I) = (0.2+2.5(M1(I)+M2(I)))2
6 and used that according to Lemma D.6, E

[(
z√
1+α

· Q
(

z√
1+α

))2]
≤

E
[
(z · Q (z))

2
]
= 3 . Observe that M(I) ≥ (0.2)2

6 ≥ 0.0065 and thus α = β · 0.005√
M(I)

respects both 0.1√
1+α

− 0.1√
1+β

√
1−α

>

0 and α ≤ 0.0145·β
0.2+2.5(M1(I)+M2(I)) .
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Lemma D.4. It holds that,

• E
[〈

Z√
1+α

,Q
(

Z√
1+α

)〉]
≥ 1√

1+α
· E
[
∥Q(Z)∥22

]
− (

√
1 + α− 1) ·M1(I) · d .

• E
[ ∥∥∥Q( Z√

1+α
)
∥∥∥2
2

]
≥ E

[
∥Q(Z)∥22

]
− (

√
1 + α− 1) ·M1(I) · d .

Proof. Due to the linearity of expectation, it is sufficient to show that

E
[

z√
1 + α

· Q
(

z√
1 + α

)]
≥ 1√

1 + α
· E
[
(Q(z))

2
]
− (

√
1 + α− 1) ·M1(I) ,

and

E

[(
Q
(

z√
1 + α

))2
]
≥ E

[
(Q(z))

2
]
− (

√
1 + α− 1) ·M1(I) .

Recall the set of intervals I and denote:

• I− = {I ∈ I|I ⊂ R− ∪ {0}} .

• I+ = {I ∈ I|I ⊂ R+ ∪ {0}} .

First, using the law of total expectation,

E
[

z√
1 + α

· Q
(

z√
1 + α

)]
= E

[
qI · E

[
z√

1 + α

] ∣∣∣∣ z√
1 + α

∈ I

]
≥ 1√

1 + α

∑
I∈I

q2I · P(
z√

1 + α
∈ I) =

1√
1 + α

· E
[(

Q
(

z√
1 + α

))2
]

.

Here, we used E[z| z√
1+α

∈ I] ≥ E[z|z ∈ I] = qI .

Next, by definition, E
[(

Q
(

z√
1+α

))2]
=
∑

I∈I+ q2I · P( z√
1+α

∈ I) +
∑

I∈I− q2I · P( z√
1+α

∈ I). Also, since the

distribution of z and the set of intervals I are symmetric around 0,
∑

I∈I+ q2I · P( z√
1+α

∈ I) =
∑

I∈I− q2I · P( z√
1+α

∈
I). For an interval I ∈ I+, denote aI = min(I). Now, we can write

∑
I∈I+ q2I · P( z√

1+α
∈ I) ≥ ∑

I∈I+ q2I ·(
P(z ∈ I)− P

(
z ∈

[
aI , aI ·

√
1 + α

]))
.

Next, we upper-bound
∑

I∈I+ q2I ·
(
P
(
z ∈

[
aI , aI ·

√
1 + α

]))
. First, qI =

∫
x∈I

x·e−
x2

2 dx∫
x∈I

e−
x2
2 dx

≤
∫ ∞
a

x·e−
x2

2 dx∫ ∞
a

e−
x2
2 dx

≤ aI +
√

2
π .

Here, the last inequality follows from the fact that the derivative of the hazard rate function of the normal distribution is
bounded above by 1 on the positive reals. Next, we obtain

q2I · P(z ∈
[
aI , aI ·

√
1 + α

]
) ≤

(
aI +

√
2

π

)2

·
(

1√
2π

∫ aI ·
√
1+α

aI

e−
x2

2 dx

)
≤

√
1 + α− 1√

2π
· aI ·

(
aI +

√
2

π

)2

· e−
a2
I
2 .

Thus,
∑

I∈I+ q2I ·
(
P
(
z ∈

[
aI , aI ·

√
1 + α

]))
≤

√
1+α−1√

2π

∑
I∈I+

(
aI ·

(
aI +

√
2
π

)2
· e−

a2
I
2

)
.

Denoting M1(I) = 2 · 1√
2π

∑
I∈I+

(
aI ·

(
aI +

√
2
π

)2
· e−

a2
I
2

)
(we omitted

√
1 + α from the denominator since it only

decreases this term) concludes the proof.

We note that M1(I) is finite for any I with a strictly positive and fixed lower bound δI on an interval size. To see this, denote

M = maxa∈R+

((
a ·
(
a+

√
2
π

)2
· e− a2

2

))
, (M ≈ 0.589505) and a∗ the corresponding argument (a∗ ≈ 0.69479).
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Then, since for any a > a∗ this function is monotonically decreasing,

∑
I∈I+

aI ·
(
aI +

√
2

π

)2

· e−
a2
I
2

 ≤ M + δI
δI

+

∞∑
n=0

(a∗ + n · δI +

√
2

π
)3 · e

−(a∗+nδI)2

2 ,

and the summation converges for any fixed δI > 0.

Lemma D.5. E
[∥∥∥Q( Z√

1−α

)∥∥∥2
2

]
≤ 1√

1−α
E
[
∥Q (Z)∥22

]
+ (1−

√
1− α) ·M2(I) · d .

Proof. Recall the sets of intervals I, I−, I+ and for an interval I ∈ I+, denote aI = min(I).

By definition, E
[(

Q( z√
1−α

)
)2]

=
∑

I∈I+ q2I · P( z√
1−α

∈ I) +
∑

I∈I− q2I · P( z√
1−α

∈ I). Also, since the distribution of

z and the set of intervals I are symmetric around 0,
∑

I∈I+ q2I · P( z√
1−α

∈ I) =
∑

I∈I− q2I · P( z√
1−α

∈ I). Now, we can

write
∑

I∈I+ q2I · P( z√
1−α

∈ I) ≤∑I∈I+ q2I ·
(
P(z ∈ I) + P

(
z ∈

[
aI ·

√
1− α, aI

]))
.

Next, we upper-bound
∑

I∈I+ q2I ·
(
P
(
z ∈

[
aI ·

√
1− α, aI

]))
. First, we again use qI ≤ aI +

√
2
π and obtain

q2I · P(z ∈
[
aI ·

√
1− α, aI

]
) ≤

(
aI +

√
2

π

)2

·
(

1√
2π

∫ aI

aI ·
√
1−α

e−
x2

2 dx

)
≤ 1−

√
1− α√
2π

· aI ·
(
aI +

√
2

π

)2

· e−
a2
I ·(1−α)

2 .

Thus,
∑

I∈I+ q2I ·
(
P
(
z ∈

[
aI ·

√
1− α, aI

]))
≤ 1−

√
1−α√
2π

∑
I∈I+

(
aI ·

(
aI +

√
2
π

)2
· e−

a2
I
4

)
, where we used α < 1

2 .

Denoting M2(I) = 2 · 1√
2π

∑
I∈I+

(
aI ·

(
aI +

√
2
π

)2
· e−

a2
I
4

)
concludes the proof.

Similarly to the argument in Lemma D.4, for any I with a fixed lower bound on an interval size, M2(I) is finite.

Lemma D.6. For z ∼ N (0, 1) it holds that E
[(

z√
1+α

· Q
(

z√
1+α

))2]
≤ E

[
(z · Q (z))

2
]
≤ 3.

Proof. It holds that
(
z2 − (Q(z))2

)2
= z4 − 2 · z2 · (Q(z))2 + (Q(z))4 ≥ 0.

Also, E
[
z2 · (Q(z))2

]
= E

[
(Q(z))2 · E

[
z2 | Q(z)

]]
and by Jensen’s inequality and property (v) E

[
z2 | Q(z)

]
≥

(E [z | Q(z)])
2
= (Q(z))2. Thus, E

[
z2 · (Q(z))2

]
≥ E

[
(Q(z))4

]
. This yields

0 < E
[(
z2 − (Q(z))2

)2] ≤ E
[
z4
]
− E

[
(Q(z))4

]
.

Next,

E
[
(z · Q(z))2

]
≤ 1

2
· E
[
(z)4

]
+

1

2
· E
[
(Q(z))4

]
≤ E

[
(z)4

]
= 3 .

Observing that z > z√
1+α

and Q(z) ≥ Q
(

z√
1+α

)
for any α > 0 concludes the proof.

Lemma D.7. E
[
∥Q(Z)∥22

]
≥ 0.1 · d.

Proof. Due to the linearity of expectation, it is sufficient to show that E
[
(Q(z))

2
]
≥ (E [Q(z)])

2 ≥ 0.1.

Also, E [Q(z)] =
∑

I∈I qI · P (z ∈ I) =
∑

I∈I

∫
I
t·e−

t2

2 dt∫
I
e−

t2
2 dt

·
∫
I
e−

t2

2 dt =
∑

I∈I
∫
I
t · e− t2

2 dt.

Now,we divide into two cases.
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Case 1: [−a, a] ∈ I. In this case, a < 1 and thus E [(Q(z))] ≥ 2 · 1√
2π

∫∞
a

e
−t2

2 dt > 0.317.

Case 2: [−a, a] ̸∈ I for any a. Thus, E [(Q(z))] = 2 · 1√
2π

∫∞
0

e
−t2

2 dt =
√

2
π .

For both cases, it holds that E
[
(Q(z))

2
]
≥ (0.317)2 ≥ 0.1 .

E. Sub-bit Compression Proofs

Lemma E.1. Consider two unbiased compression techniques A and B (i.e., ∀x : E[A(x)] = E[B(x)] = x) with independent
randomness. Then,

1. ∀x :
E[∥x−A(x)∥]22

∥x∥2
2

≤ A and E[∥x−B(x)∥]22
∥x∥2

2

≤ B =⇒ ∀x :
E[∥x−B(A(x))∥]22

∥x∥2
2

≤ A+AB +B .

2. ∀x :
E[∥x−A(x)∥]22

∥x∥2
2

≥ A and E[∥x−B(x)∥]22
∥x∥2

2

≥ B =⇒ ∀x :
E[∥x−B(A(x))∥]22

∥x∥2
2

≥ A+AB +B .

Proof. For ease of exposition we denote y = A(x) and z = B(A(x)). Using unbiasedness we obtain:

E
[
∥y − z∥22 | y

]
= E

[
∥z∥22 | y

]
− 2 · E [⟨z, y⟩ | y] + E

[
∥y∥22

]
= E

[
∥z∥22 | y

]
− ∥y∥22 =⇒ E

[
∥y − z∥22

]
= E

[
∥z∥22

]
− E

[
∥y∥22

]
.

Similarly, we have that E
[
∥x− y∥22

]
= E

[
∥y∥22

]
− ∥x∥22. Thus, it holds that

E
[
∥x− y∥22

]
+ E

[
∥y − z∥22

]
= E

[
∥z∥22

]
− ∥x∥22 .

Also,
E
[
∥x− z∥22

]
= E

[
∥z∥22

]
− 2 · E [⟨x, z⟩] + ∥x∥22 .

And since,
E [⟨x, z⟩] = E [E [⟨x, z⟩] | y] = E [⟨x, y⟩] = ∥x∥22 ,

we obtain,
E
[
∥x− z∥22

]
= E

[
∥z∥22

]
− ∥x∥22 = E

[
∥x− y∥22

]
+ E

[
∥y − z∥22

]
.

Proof of part 1: we can write:

1.
E[∥x−A(x)∥2

2]
∥x∥2

2

=
E[∥x−y∥2

2]
∥x∥2

2

≤ A .

2. E

[
∥A(x)−B(A(x))∥2

2

∥A(x)∥2
2

∣∣∣∣∣A(x)

]
= E

[
∥y−z∥2

2

∥y∥2
2

∣∣∣∣∣ y
]
≤ B =⇒ E

[
∥y − z∥22

]
≤ B · E

[
∥y∥22

]
.

Using unbiasedness we obtain E
[
∥x− y∥22

]
= E

[
∥y∥22

]
− ∥x∥22 ≤ A · ∥x∥22 and ∥x∥22 ≥ E[∥y∥2

2]
A+1 . Thus,

E
[
∥x− B(A(x))∥22

]
∥x∥22

=
E
[
∥x− z∥22

]
∥x∥22

=
E
[
∥x− y∥22

]
∥x∥22

+
E
[
∥y − z∥22

]
∥x∥22

≤ A+
A+ 1

E
[
∥y∥22

] · E [∥y − z∥22
]
≤ A+

A+ 1

E
[
∥y∥22

] ·B · E
[
∥y∥22

]
= A+AB +B .

This concludes the proof of part 1.
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Proof of part 2: The proof is identical to the first part by flipping all the inequalities. We can write:

1.
E[∥x−A(x)∥2

2]
∥x∥2

2

=
E[∥x−y∥2

2]
∥x∥2

2

≥ A .

2. E

[
∥A(x)−B(A(x))∥2

2

∥A(x)∥2
2

∣∣∣∣∣A(x)

]
= E

[
∥y−z∥2

2

∥y∥2
2

∣∣∣∣∣ y
]
≥ B =⇒ E

[
∥y − z∥22

]
≥ B · E

[
∥y∥22

]
.

Using unbiasedness we obtain E
[
∥x− y∥22

]
= E

[
∥y∥22

]
− ∥x∥22 ≥ A · ∥x∥22 and ∥x∥22 ≥ E[∥y∥2

2]
A+1 . Thus,

E
[
∥x− B(A(x))∥22

]
∥x∥22

= E

[
∥x− z∥22
∥x∥22

]
= E

[
∥x− y∥22
∥x∥22

]
+ E

[
∥y − z∥22
∥x∥22

]

≥ A+
A+ 1

E
[
∥y∥22

] · E [∥y − z∥22
]
≥ A+

A+ 1

E
[
∥y∥22

] ·B · E
[
∥y∥22

]
= A+AB +B .

This concludes the proof of part 2.

F. Lossy Networks Proofs

Lemma F.1. Let x ∈ Rd and let mds ∈ {0, 1}d be a deterministic mask. Denote p =
∥mds∥1

d and let Rds(x) =
1
p ·mds ◦ R(x). Then, using EDEN with Rds(x) instead of R(x) results in:

1. E [x̂] = x .

2. vNMSE ≤ 1

p·E[(Q(z))2]
− 1 +O

(√
log d
d·p2

)
.

Proof. The receiver uses 1
∥mds∥1

· Q(ηx ·R · x) ◦mds instead of Q(ηx ·R · x).

Proof of 1: We revisit Equation (1) in Theorem 2.1 and obtain

x̂ = R−1
x�x′ · ∥x∥2 ·


〈
C0,

1
∥mds∥1

· Q (ηx · ∥x∥2 · C0) ◦mds

〉
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

, . . . ,

〈
Cd−1,

1
∥mds∥1

· Q (ηx · ∥x∥2 · C0) ◦mds

〉
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

T

.

The proof continues similarly to that of Theorem 2.1.

We again consider algorithm EDEN’ from the proof of Theorem 2.1. It holds that:

x̂+ x̂′ = 2 ·R−1
x�x′ · ∥x∥2 ·


〈
C0,

1
∥mds∥1

· Q (ηx · ∥x∥2 · C0) ◦mds

〉
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

, 0, . . . , 0

T

.

In the numerator, we have a sum of random variables whose all subsets of size ∥mds∥1 follows the same distribution. This

means that for any two deterministic masks mds and m
′

ds such that ∥mds∥1 =
∥∥∥m′

ds

∥∥∥
1
, we have that

E


〈
C0,

1
∥mds∥1

· Q (ηx · ∥x∥2 · C0) ◦mds

〉
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

 = E


〈
C0,

1
|m′

ds|
· Q (ηx · ∥x∥2 · C0) ◦m

′

ds

〉
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

 .
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Also, due to linearity of expectation,

∑
m′

ds:

∥m′
ds∥1

=∥mds∥1

E


〈
C0,

1
p · Q (ηx · ∥x∥2 · C0) ◦m′

ds

〉
⟨C0,Q (ηx · ∥x∥2 · C0)⟩

 =

1

p
· E


∑
m′

ds:

∥m′
ds∥1

=∥mds∥1

⟨C0,Q (ηx · ∥x∥2 · C0) ◦m′
ds⟩

⟨C0,Q (ηx · ∥x∥2 · C0)⟩

 =
1

p
· p ·Mds ,

where Mds =
(

d
∥mds∥1

)
is the number of different masks with the same number of 1’s. This means that E [x̂+ x̂′] = 2 · x.

Recall that x̂ and x̂′ follow the same distribution. This concludes the proof.

Intuitively, the reason why unbiasedness is preserved with a deterministic mask is that all coordinates of the rotated
and quantized vector follow the same distribution, and thus after the inverse rotation and scaling, the distribution of the
reconstructed vector depends only on the number of zeros in the mask but not on their indices.

Proof of 2: Due to unbiasedness (i.e., Part 1), it holds that

vNMSE · ∥x∥22 = E
[
∥x− x̂∥22

]
= ∥x̂∥22 − ∥x∥22 .

Now, we examine ∥x̂∥22 = ∥R(x̂)∥22 = 1
∥mds∥2

1

· ∥S · Q(ηx ·R · x) ◦mds∥22.

Similarly to Case 1, we have a sum of random variables whose all subsets of size ∥mds∥1 follows the same distri-

bution. This means that for any two deterministic masks mds and m
′

ds such that ∥mds∥1 =
∥∥∥m′

ds

∥∥∥
1
, we obtain

E
[

1
∥mds∥2

1

· ∥S · Q(ηx ·R · x) ◦mds∥22
]
= E

[
1

∥m′
ds∥2

1

· ∥S · Q(ηx ·R · x) ◦m′
ds∥

2
2

]
.

Let mrs be a random mask such that ∥mrs∥1 = ∥mds∥1. Then,

E

[
1

∥mrs∥21
· ∥S · Q(ηx ·R · x) ◦mrs∥22

]

=
1

Mds
·

∑
m′

ds:

∥m′
ds∥1

=∥mds∥1

E

[
1

∥m′
ds∥

2
1

· ∥S · Q(ηx ·R · x) ◦m′
ds∥

2
2

∣∣∣∣∣mrs = m′
ds

]

= E

[
1

∥mds∥21
· ∥S · Q(ηx ·R · x) ◦mds∥22

]
.

Using the above with Lemma 4.1 concludes the proof.

G. Entropy Compressed EDEN
G.1. Evaluation

As discussed in §4.3, when using Entropy Encoding (EE), EDEN uses the quantization interval set I∆b
={[

∆b ·
(
n− 1

2

)
,∆b ·

(
n+ 1

2

)] ∣∣∣n ∈ Z
}

, for the smallest ∆b such that HI∆b
≤ b.

Figure 4 shows the vNMSE of:

• EDEN with the super-bit compression (§4.1) for b ≥ 1 and the sub-bit compression (§4.1) for b ∈ (0, 1].
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EDEN (LMSQ) + EE
EDEN ( b) + EE
Lower Bound

Figure 4. EDEN’s vNMSE with and without Entropy Encoding for the different quantization schemes. (displayed for b ∈
{0.1 · i | i ∈ {1, . . . , 80}})

• EDEN, with EE applied on the vector resulting from the Lloyd-Max Scalar Quantizer.

• EDEN, with EE applied on the vector resulting from the QI∆b
quantization.

• A lower bound on EDEN, for any I , derived from the Rate-distortion theory (Cover, 1999) over the normal distribution.

As shown, even without EE, EDEN requires less than one bit more than the lower bound. Indeed, using more quantization
values and compressing the resulting vector with EE reduces the error. Switching to our tailored quantization I∆b

reduces
the error further. Also, I∆b

requires at most 0.25 bits more than the rate-distortion lower bound.

Next, we compare EDEN, with and without EE, to two previously suggested variable-length encoding DME schemes.
Specifically, we show the vNMSE of QSGD with Elias Omega encoding (Alistarh et al., 2017), and optimized stocastic
quantization with Huffman encoding (Suresh et al., 2017). Without EE, EDEN uses the Lloyd Max Scalar Quantizer Ib for
b ≥ 1 (§3) while for b ∈ (0, 1] it uses the sub-bit compression (§4.1). When EE is applied, EDEN uses I∆b

(see §4.3).

0 2 4 6 8
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10−5

10−2

101

vN
M

S
E

Normal(0, 1)

SQ + Huffman

QSGD + Elias Omega

EDEN

EDEN + EE
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10−5
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101

vN
M

S
E

LogNormal(0, 1)

SQ + Huffman

QSGD + Elias Omega

EDEN

EDEN + EE

Figure 5. EDEN’s vNMSE with and without Entropy Encoding compared to other Variable-Length schemes. (displayed for b ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8})

As depicted in Figure 5, EDEN, which has a GPU-friendly implementation (i.e., without EE), improves the worst-case
vNMSE . Also, EDEN is robust and has the same error for all distributions (which is aligned with the theoretical results)
and can be further optimized using EE, at the cost of additional computation. The stochastic quantization with Huffman
encoding has a lower vNMSE for some input distributions, e.g., the LogNormal, but its error is input dependent.
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G.2. Variable-Length Encoding Representation Length

In practice, the frequency of a quantization value I ∈ I may not be exactly pI · d. Nonetheless, using arithmetic-coding, we
can get an encoding that uses (HI + ϵ)(1 + o(1)) bits per coordinate on average. A proof sketch, which assumes that the
coordinates are independent (in practice, they are weakly dependent for a sufficiently large dimension d) follows. We defer
the formal proof to future work. As indicated by Mitzenmacher & Upfal (2017) (see Chapter 10), from the fact that each
coordinate j of a vector y ∈ Rd, decreases the length of the encoded interval by a factor of LQ(y[j]), where LQ(y[j]) is the
random variable that represents the quantization value of the interval of y[j]. Therefore, the length of the interval of the
vector is Ly ≜

∏d−1
j=0 LQ(y[j]) which means that the representation of y requires

⌈
log2 (

1
Ly

) + 1
⌉
≤ 2+

∑d−1
j=0 log2

1
LQ(y[j])

.
A standard application of the Chernoff bound suffices to complete the argument.

H. Structured Rotation
To improve computational efficiency, the randomized Hadamard transform is used in different domains to replace computa-
tionally extensive matrix multiplications. This is now common. For example: in Rader (1969); Thomas (2013); Herendi
et al. (1997), it is used to develop a computationally cheap methods to generate independent normally distributed variables
from simpler (e.g., uniform) distributions; in Yu et al. (2016), it is used in the context of Gaussian kernel approximation,
replacing the random Gaussian matrix; in Choromanski et al. (2018), it is used for gradient estimation in derivative-free
optimization reinforcement learning; in Choromanski et al. (2017), it is used for efficient computation of embeddings.

In our context, it is used by recent DME techniques (Hadamard + SQ (Suresh et al., 2017; Konečnỳ & Richtárik, 2018),
Kashin + SQ (Lyubarskii & Vershynin, 2010; Caldas et al., 2018b; Safaryan et al., 2020) and DRIVE (Vargaftik et al.,
2021)). While (Vargaftik et al., 2021) pointed out an adversarial example for a single transform, we are not aware of
adversarial inputs for more than a single transform. For some use cases, previous works (e.g., Yu et al. (2016); Andoni et al.
(2015)) suggest using 2-3 transforms to avert the dependency on the input. In the case of neural networks, as was indicated
by (Vargaftik et al., 2021), when the input vector is high dimensional and admits finite moments, a single transform performs
sufficiently similar to a uniform rotation. As recently reported by several works, this is indeed the case in common DNN
workloads where gradients and network parameters follow, e.g., the lognormal (Chmiel et al., 2021) or normal (Banner
et al., 2019; Ye et al., 2020) distributions.
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Figure 6. Using a single Hadamard transform (instead of a uniform random rotation) results in a vNMSE that coinsides with the theoretical
bound of Corollary 2.4 for these tested distributions (displayed for b ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8}).

In Figure 6, we show how EDEN’s vNMSE with a single transform aligns with the theoretical bound (Corollary 2.4) for
all tested input distributions (LogNormal, Normal, Exponential, χ2, Half-Normal, Beta, and others not shown) and vector
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(i) b = 1 bit budget.
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(ii) b = 3 bit budget.
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(iii) b = 5 bit budget.
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(iv) b = 7 bit budget.
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Figure 7. The vNMSE and compression time as a function of the dimension d for LogNormal(0,1) distribution.
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Figure 8. NMSE evaluation with c = 10 clients and vector dimension of d = 11, 511, 784 (ResNet18). Sweeping over a bit budget of
1-8 bits per coordinate.

dimensions. As can be seen, even a single randomized Hadamard transform aligns extremely closely with the theoretical
results for a uniform random rotation, so that one cannot visually distinguish the results. For even smaller dimensions
(e.g., d = 16), we observed a slightly higher error for the implementation than the theoretical asymptotic bound, as the

O

(√
log d
d

)
term of Theorem 2.3 is not negligible. However, since our interest is in neural network gradients of large

dimension, this is not important for this application.

I. Additional Simulation Details and Results
I.1. vNMSE , NMSE , and encoding speed

Here, we run the experiment of Figure 2 with different bit budgets b and depict the results in Figure 7. As shown, EDEN
has the lowest vNMSE for all dimension and bit budget combinations, and is also significantly faster than the second most
accurate solution, Kashin + SQ. As in Figure 2, the vNMSE of EDEN and Kashin + SQ is bounded independently of the
dimension while Hadamard + SQ’s and QSGD’s error increases with d.

Our encoding speed measurements are performed using NVIDIA GeForce RTX 3090 GPU. The machine has Intel Core
i9-10980XE CPU (18 cores, 3.00 GHz, and 24.75 MB cache) and 128 GB RAM. We use Ubuntu 20.04.2 LTS operating
system, CUDA release 11.1 (V11.1.105), and PyTorch version 1.10.1.

Next, we conduct experiments with a vector of size d = 11511784 (the number of parameters in a ResNet18 architecture) in
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a DME setting where c = 10 senders send their vectors to a receiver for averaging. We test the different DME techniques
over different distributions. Each data point is repeated 100 times and we report the mean and standard deviation. In
addition, here we also compare against Count-Sketch (Charikar et al., 2002), which is the main building block for some
recent distributed and federated compression schemes (e.g., Ivkin et al. (2019)).

We sweep over a bit budget of 1-8 bits per coordinate. The results, shown in Figure 8, indicate that: (1) as dictated by theory,
EDEN’s NMSE is not sensitive to the specific distribution; (2) EDEN significantly improves over all techniques for all bit
budgets (notice the logarithmic NMSE scale). Moreover, there is no consistent runner-up in this DME experiment since
different competitors are more accurate for different distributions and bit budgets.

Several additional trends are evident: (1) Count-Sketch is competitive for a low communication budget but not for a higher
ones. This is expected since its error guarantee decreases polynomially in b (which linearly affects its number of counters).
In contrast, for other techniques, the error decreases exponentially (i.e., doubling the number of quantization values for
each added bit); (2) For most bit budgets, the most competitive DME algorithm to ours in terms of NMSE is Kashin + SQ.
However, its accuracy is less prominent for high bit budgets constraints where its coefficient representation dominates the
error (which can be improved with more iterations, at the cost of additional computation); (3) QSGD employs uniform
quantization values and therefore performs better for light tailed distributions. For example, for the heavy-tailed Log-Normal
distribution, which is common in machine learning workloads and, in particular, neural network gradients (e.g., Chmiel et al.
(2021)), its performance degrades notably.

Finally, recall that for b = 1 and no coordinate losses, EDEN and DRIVE (Vargaftik et al., 2021) admit the same performance.

I.2. EMNIST and Shakespeare experiments details

The EMNIST and Shakespeare federated learning experiments, presented in §5.3, follow precisely the setup described
in Reddi et al. (2021) for the Adam server optimizer case, which we restate in Table 1.

The client partitioning of these datasets was designed to naturally simulate a realistic heterogeneous federated learning
setting. Specifically, federated EMNIST (Caldas et al., 2018a) includes 749,068 handwritten characters partitioned among
their 3400 writers (i.e., this is the total number of clients), and federated Shakespeare (McMahan et al., 2017) consists of
18,424 lines of text from Shakespeare plays partitioned among the respective 715 speakers (i.e., clients). For EMNIST, a
CNN with two convolutional layers is used (with ≈1.2M parameters), and for Shakespeare, a standard LSTM recurrent
model (Hochreiter & Schmidhuber, 1997) (with ≈820K parameters).

Task Clients per round Rounds Batch size Client lr Server lr Adam’s ϵ
EMNIST 10 1500 20 10−1.5 10−2.5 10−4

Shakespeare 10 1200 4 1 10−2 10−3

Table 1. Hyperparameters for the EMNIST and Shakespeare experiments.

Additionally, for completeness, we include Figure 9, which is a zoomed-out version of Figure 3.

I.3. Distributed Logistic Regression

While the federated learning benchmarks demonstrate the applicability of our method, they are also often noisy and generally
converge with low bit budgets. In contrast, logistic regression allows us to show more fine-grained differences between the
methods for super-bit budgets. We perform an experiment similar to that of Malinovskiy et al. (2020) (§4). In particular, we
use UCI’s Census Income binary prediction task (Kohavi et al., 1996) with the discretization described in (Platt, 1998)7

and divide the data equally among 20 clients. With each compression strategy, we run distributed gradient descent where,
in each round, clients report the full gradient over their share, and the server uses the average of these gradients to take a
step towards the optimum. Given that this is a convex setup, we expect the lower variance unbiased gradient estimates to
consistently move towards the optimum. We run each compression scheme for 100 rounds with different bit budgets and
report the Euclidean distance of the model parameters from the model received without any compression. We present the
results in Figure 10. As hypothesized, EDEN is closer to the optimum than other methods in all the bit budgets we measured.

7Available at https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html#a9a.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
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Figure 10. Logistic regression over UCI’s Census Income task. For every compression scheme and bit budget, we run 100 rounds of
distributed gradient descent and report the Euclidean distance from the baseline model (i.e., Float32).

I.4. Loss vs. Sub-bit

We now measure the vNMSE under network loss and for sub-bit compression. Intuitively, while in both not all coordinates
are received by the receiver, our sub-bit compression selects a uniform random mask of coordinates that are encoded while
packet loss may be arbitrary (e.g., in blocks). A different view point is that sub-bit compression means sparsifying the vector
prior to the random rotation while packet drops means loss of coordinates in the rotated vector. As shown in Figure 11,
the empirical vNMSE of the two is identical (when the same fraction of coordinates is received) and follows the theory of
Corollary 4.2 and Lemma 4.3. Indeed, as shown by Lemma 4.1, the vNMSE equals A+ AB + B (where A is EDEN’s
vNMSE and B is the sparsification’s) regardless of the orders in which A and B are applied.

I.5. Distributed Power Iteration

For some machine learning tasks (e.g., Principal Component Analysis), power iteration, which approximates the dominant
eigenvalues and eigenvectors of a matrix, is used as a sub-routine. We perform an experiment with 10 clients and a server
that jointly compute the top eigenvector in a matrix that is distributed among the clients. In particular, the training occurs in
rounds where in each training round we have the following sequence of events:
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Figure 12. Distributed power iteration of MNIST and CIFAR-10 with 10 clients.

• Each client updates the top eigenvector based on its local data, compresses it, and sends it to the server.

• For each client, the server calculates the diff vector between the eigenvector from the previous round, averages the diffs
and updates the eigenvector estimation using this average scaled by a learning rate of 0.1.

• The server sends the updated eigenvector estimation to all of the clients.

For each compression scheme, we vary the bit budget b from one bit to eight and measure the L2 norm of the diff between
the final eigenvector to the optimal solution (i.e., the achieved eigenvector without compression). Figure 12 presents the
results for the MNIST and CIFAR-10 (Krizhevsky, 2009; LeCun et al., 1998; 2010) datasets. It is evident that in both
datasets, EDEN achieves the lowest L2 error for all values of b.

I.6. Homogeneous federated learning

We simulate two federated scenarios with 10 clients and the CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009). For
both scenarios the data is uniformly distributed among the clients. We use a batch size of 128, an SGD optimizer with
a Cross entropy loss criterion, and each client performs a single training step at each round. For CIFAR-10, we use the
ResNet-9 (He et al., 2016) architecture with learning rate of 0.1, and the bit budget b is set to 0.1. For CIFAR-100, we use
the ResNet-18 (He et al., 2016) architecture with learning rate of 0.05, and the bit budget b is set to 0.5.

Figure 13 presents the test and train accuracy of EDEN and competitive compression schemes, with a smoothing rolling
mean window of 60 rounds. In both scenarios, EDEN achieves the highest accuracy. More specifically, for CIFAR-100,
EDEN is the only compression scheme that converges for such a low bit budget.

I.7. Cross-device federated learning

We simulate two cross-device federated scenarios with 50 clients and the MNIST and CIFAR-10 datasets (Krizhevsky,
2009; LeCun et al., 1998; 2010). For both scenarios, 10 clients are randomly chosen at each training round, and each client
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Figure 13. Homogeneous federated learning of CIFAR-10 and CIFAR-100 with 10 clients.
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Figure 14. Cross-device federated learning of MNIST and CIFAR-10 with 50 clients.

performs five local training steps. We use a batch size of 128, an SGD optimizer with a cross entropy loss criterion, and the
bit budget b is set to 0.05, testing a setting with very aggressive compression.

For MNIST, we use LeNet-5 (LeCun et al., 1998) with a learning rate of 0.05. To simulate severe heterogeneity, each
client holds data instances that belong to a single class (i.e., severe label skew). For the CIFAR-10 configuration, we use
ResNet-9 (He et al., 2016) with a learning rate of 0.1, and the data is uniformly distributed among the clients.

Figure 14 presents the test and train accuracy of EDEN and the competitive compression schemes, with a smoothing rolling
mean window of 30 rounds. In both scenarios, EDEN achieves the highest accuracy. For MNIST, EDEN is only slightly
below the baseline model (without compression).


