
The CLRS Algorithmic Reasoning Benchmark

Petar Veličković 1 Adrià Puigdomènech Badia 1 David Budden 1

Razvan Pascanu 1 Andrea Banino 1 Misha Dashevskiy 1 Raia Hadsell 1 Charles Blundell 1

Abstract

Learning representations of algorithms is an
emerging area of machine learning, seeking to
bridge concepts from neural networks with clas-
sical algorithms. Several important works have
investigated whether neural networks can effec-
tively reason like algorithms, typically by learning
to execute them. The common trend in the area,
however, is to generate targeted kinds of algorith-
mic data to evaluate specific hypotheses, making
results hard to transfer across publications, and
increasing the barrier of entry. To consolidate
progress and work towards unified evaluation, we
propose the CLRS Algorithmic Reasoning Bench-
mark, covering classical algorithms from the In-
troduction to Algorithms textbook. Our bench-
mark spans a variety of algorithmic reasoning
procedures, including sorting, searching, dynamic
programming, graph algorithms, string algorithms
and geometric algorithms. We perform extensive
experiments to demonstrate how several popular
algorithmic reasoning baselines perform on these
tasks, and consequently, highlight links to several
open challenges. Our library is readily available at
https://github.com/deepmind/clrs.

1. Introduction
Neural networks and classical algorithms are two techniques
that operate on diametrically opposite (and complementary)
sides of problem-solving: neural networks can adapt and
generalise to raw inputs, automatically extracting appro-
priate features and a single neural network setup is often
applicable to many separate tasks (Zamir et al., 2018). How-
ever, they are hard to interpret, notoriously unreliable when
extrapolating outside of the dataset they have been trained
on, and rely on massive quantities of training data. On

1DeepMind. Correspondence to: Petar Veličković
<petarv@deepmind.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

the other hand, algorithms trivially strongly generalise to
inputs of arbitrary sizes, and can be verified or proven to
be correct, with interpretable step-wise operations. Their
shortcoming is that inputs must be made to conform to a par-
ticular algorithm specification, and looking at a separate task
often requires coming up with an entirely new algorithm
(Veličković & Blundell, 2021).

Bringing the two sides closer together can therefore yield
the kinds of improvements to performance, generalisation
and interpretability that are unlikely to occur through archi-
tectural gains alone. Accordingly, algorithmic modelling
as a domain for testing neural networks has been gaining
popularity over the last few years (Zaremba & Sutskever,
2014; Kaiser & Sutskever, 2015; Trask et al., 2018; Vinyals
et al., 2015; Kool et al., 2018; Freivalds et al., 2019; Dwivedi
et al., 2020; Chen et al., 2020; Tang et al., 2020; Veličković
et al., 2019; Yan et al., 2020; Deac et al., 2020) due to its
ability to highlight various reasoning limitations of existing
architectures.

Earlier work (Zaremba & Sutskever, 2014; Kaiser &
Sutskever, 2015) focused on the need of long-term mem-
ory capabilities when executing algorithms, which offered
a good test-bed for various recurrent and memory architec-
tures. Recently, algorithmic tasks have been used to high-
light the efficiency of graph neural networks (Dwivedi et al.,
2020; Chen et al., 2020; Veličković et al., 2019; Yan et al.,
2020; Corso et al., 2020; Tang et al., 2020; Georgiev & Lió,
2020; Veličković et al., 2020) and to distinguish between
different variations of them, typically through the lens of
algorithmic alignment—architectures that align better with
the underlying algorithm can be proven to have better sam-
ple complexity (Xu et al., 2019). Unfortunately, many of
these works remain disconnected in terms of the algorithms
they target, how the data is presented to the model or through
the training and testing protocols they use, making direct
comparison somewhat difficult.

To make a first step towards a unified benchmark for al-
gorithmic reasoning tasks, we propose a comprehensive
dataset which we will refer to as The CLRS Algorithmic
Reasoning Benchmark, in homage to the Introduction to Al-
gorithms textbook by Cormen, Leiserson, Rivest and Stein
(Cormen et al., 2009).

https://github.com/deepmind/clrs

The CLRS Algorithmic Reasoning Benchmark

Within this benchmark, we propose and evaluate on CLRS-
30: a dataset containing trajectories—a trajectory is formed
of inputs, the corresponding outputs and optional interme-
diary targets—of 30 classical algorithms covering various
forms of reasoning, including sorting, searching, dynamic
programming, geometry, graphs and strings. Some of these
algorithms are depicted in Figure 1. The appeal and moti-
vation for such a benchmark goes beyond unifying or pro-
viding a common ground for previous works, as we will
describe. We believe that CLRS-30 is well positioned to ex-
plore out-of-distribution (OOD) generalization and transfer
(as potentially part of a meta-learning setting) given the ex-
plicit and known relationship between different algorithms
(e.g. what subroutines are shared and so forth).

2. Motivation

1 2 4 5 6 3
1 2 3 4 5 6

a2

a1

a3

a1

a4

a1

b a c b a b a b a a b c b a b T

a b a b a c a Ss

q

0

7

4

-2

6

7

9

2

2
-4

-38
7

-2

5

A) B)

C) D)

Figure 1. Example of four algorithms within CLRS-30. A) in-
sertion sort; B) string matching; C) greedy task scheduling; D)
shortest paths.

Timely posed benchmarks have led to a significant progress
in the field, from the impact of ImageNet (Russakovsky
et al., 2015) on the vision community, to that of Wikipedia
and Penn Treebank in popularizing neural networks for lan-
guage modelling (Merity et al., 2016; Mikolov et al., 2011)
or Atari-2600 for deep reinforcement learning (Bellemare
et al., 2013). The prevalence of recent works focusing on al-
gorithmic reasoning1, as well as a history of disparate work
on a variety of bespoke benchmarks (Graves et al., 2014;
Zaremba & Sutskever, 2014; Kaiser & Sutskever, 2015;
Trask et al., 2018), suggests significant utility in a bench-
mark covering a wide-range of classical CS algorithms.

Learning to mimic an algorithm also provides an opportu-
nity to extensively test the limitations of architectures both
in terms of their representation capacity and processing.
This can then be related back directly onto underlying oper-
ations and qualities of the well-studied CS algorithms being
mimicked as we are aware of both the process used to gen-
erate the inputs and the specifics of the underlying function

1Concurrent works published at the same venue include: (Xu
et al., 2019; Veličković et al., 2019) at ICLR’20 and (Veličković
et al., 2020; Corso et al., 2020; Tang et al., 2020) at NeurIPS’20.

producing the corresponding outputs. Hence, benchmarking
in this area can be used to better understand the limitations
of current architectures and the optimisation schemes used.
This benchmarking can come in many forms:

Data can be easily generated, allowing the neural network
behaviour to be probed under different regimes: from few-
shot learning all the way to infinite-data.

Algorithms can be used to understand the efficiency of dif-
ferent inductive biases and neural components. For example,
a recent study (Tang et al., 2020) has demonstrated the direct
benefits of choosing inductive biases that align well with
iterative algorithms. Algorithms have also been used to high-
light the importance of attention mechanisms (Graves et al.,
2014) or to disambiguate various message passing mecha-
nisms for graph neural networks (Richter & Wattenhofer,
2020; Joshi et al., 2020; Veličković et al., 2019).

Algorithms can require repeated computation, recursion,
or performing very different forms of computations con-
ditioned on the input, providing an excellent test-bed for
evaluating compositionality; i.e. whether an algorithm ex-
ecutor can effectively exploit these repeated computations.

One can control the amount of memory required to solve
a problem instance, hence test the memorization ability of
neural networks. Moreover, one can build a curriculum
of tasks of increasing memory requirements (Zaremba &
Sutskever, 2014).

Control over the difficulty of problem instances also allows
the behaviour of a trained model to be tested on OOD sam-
ples. While neural networks are highly efficient on solving
complex perceptual tasks, current theoretical understanding
suggests that their power relies on their ability to interpo-
late (Liu et al., 2020; Belkin et al., 2019; Jacot et al., 2018),
limiting them to in-distribution generalisation. General rea-
soning systems, however, need to be able to expand beyond
this type of generalization. OOD generalization (Li et al.,
2020) is paramount, as generally one can not control the
distribution a model will face over time when deployed.

Understanding how algorithms operate on corner cases is
a standard approach for analysing their correctness. Sim-
ilarly, understanding the behaviour of a trained model on
larger instances of the problem, or instances that expose
such corner cases that were not covered in the training set,
can elucidate to what degree the model has truly learned the
algorithm (as opposed to overfitting to specific statistics of
the training data). Particularly, we can control how far from
the training distribution a test instance is, potentially allow-
ing us to understand to what extent the model generalizes
OOD, and under which circumstances. In turn, this can offer
insight into the effectiveness of different inductive biases,
highlighting what kinds of inductive biases are useful for
mimicking reasoning processes.

The CLRS Algorithmic Reasoning Benchmark

One would also expect a general reasoning system to be
able to reuse parts of learned computations when learning
a new task, and to compose learnt computational subrou-
tines (Lake, 2019; Griffiths et al., 2019; Alet et al., 2018).
These forms of generalization have been the aim of several
learning paradigms from transfer learning to meta-learning
and continual learning or domain adaptation. However,
many of these paradigms rely on the concept of a task, and
measuring or understanding the ability of a learned sys-
tem to reuse or compose requires the ability to decompose
a task into sub-tasks and to be able to relate tasks among
themselves. In many scenarios, such decompositions are am-
biguous. Without a clear segmentation into sub-tasks, there
can be no clearly defined distance metric between tasks (Du
et al., 2018). Conversely, algorithms are built based on
subroutines that tend to be extensively shared, providing a
good playground for formalizing and measuring reuse and
composition, making an algorithmic reasoning benchmark
potentially attractive to meta-learning practitioners.

Lastly and fundamentally, computer scientists rely on a rela-
tively small2 number of algorithms to address an extremely
vast set of problems. They can be seen as a very powerful
basis that spans most forms of reasoning processes. On one
hand, this means that any generic reasoning system likely
has to be able to reproduce all such kinds of procedures,
hence, building a system that properly learns all of them
is a major stepping stone towards generic reasoning. On
the other hand, this means that they can be used to discover
inductive biases that will enable tackling more complex
problems. This is either because these complex problems
can be seen as a combination of several algorithms, or be-
cause learning certain algorithms can provide a reliable way
for the model to learn how to access its own memory or how
to attend to its input or other such internal mechanisms. So
by first training on algorithms—potentially controlling the
difficulty of training instances—one can pre-train for tasks
where full trajectories may not be available (Veličković et al.,
2021). One such example is discovering novel polynomial-
time heuristics for combinatorial optimisation (Bengio et al.,
2020; Cappart et al., 2021; Khalil et al., 2017) or reinforce-
ment learning (Deac et al., 2021). Note that our focus with
this benchmark lies in learning the basic algorithms them-
selves only–this in itself proves sufficiently challenging for
neural networks, and is itself a useful outcome for the rea-
sons highlighted above. However, we speculate that once a
neural network can learn not only individual algorithms but
novel combinations of multiple algorithms or even discover
new algorithms, such networks will be useful in a wide
variety of problems from scientific problems such as pro-
tein folding and genomics to simulated environments such
as those used by reinforcement learning and control–much

2The entire Introduction to Algorithms textbook (Cormen et al.,
2009) proposes and discusses ∼100 algorithms in total.

as classic CS algorithms already make in-roads into these
domains but lack the ability to learn from data.

Guided by these observations, we regard CLRS-30 as a first
step towards a pragmatic setting to test many of these dif-
ferent aspects of current architectures. While we do not
directly target all of the scenarios outlined above, the bench-
mark was built with ease of expansion in mind; enabling
for extensive tweaking of training/testing setups, kinds of
information captured in algorithm trajectories, as well as
including additional algorithms, which we aim to do consis-
tently over time.

3. CLRS Algorithmic Reasoning Benchmark
Owing to its name, CLRS-30 consists only of algorithms
which may be encountered in the CLRS textbook (Cormen
et al., 2009). Further, all algorithm trajectories and relevant
variables have been designed to match the pseudocode in
the textbook as closely as possible. We begin by describing
the selection criteria we applied when determining which
algorithms to include in CLRS-30.

Our initial survey of the textbook yielded 94 algorithms and
data structures of interest. From this point, we set out to
filter this set to algorithms suitable for inclusion in the initial
version of our benchmark. The criteria we applied, with
justification and remarks, are as follows:

We want to be able to reliably generate ground-truth outputs
for large inputs. As such, NP-hard tasks (and approximation
algorithms thereof) have been excluded. Our decision is
backed up by theoretical work suggesting impossibility of
accurately modelling NP-hard problems using polynomial-
time samplers, unless NP=co-NP (Yehuda et al., 2020).

Tasks requiring numerical outputs have been excluded. Eval-
uating their performance is ambiguous, and may be depen-
dent on the way architectures choose to represent numbers.
For example, Yan et al. (2020) (which represents numbers
in binary) and Veličković et al. (2019) (which represents
them in floating-point) report different metrics on predicting
shortest-path lengths. This excludes most number-theoretic
algorithms, linear programming, and max-flow3. It does not
exclude shortest-path algorithms: we can treat them as tasks
of finding edges belonging to the shortest path, as was done
in Veličković et al. (2019); Tang et al. (2020). The numeri-
cal values of path lengths are then treated as intermediate
parts of the trajectory, and not directly evaluated on.

Standalone data structures do not directly represent a task4.

3It should be noted that, by the max-flow min-cut theorem
(Ford Jr & Fulkerson, 2015), any max-flow problem can be cast as
finding the minimum cut containing the source vertex. This is a
discrete decision problem over input vertices, which hence doesn’t
violate our constraints, and could be included in future iterations.

4In programming language terms, their algorithms tend to be

The CLRS Algorithmic Reasoning Benchmark

Rather, their target is appropriately updating the internal
state of the data structure. Hence, we don’t include their
operations, unless they appear as components of algorithms.
We, of course, look forward to including them in subsequent
versions of the dataset, as they can provide useful building
blocks for learning complex algorithms.

Lastly, there are representational issues associated with dy-
namically allocated memory—it may be unclear what is the
best way to represent the internal memory storage and its
usage in algorithm trajectories. One example of the ambi-
guity is in asking whether the algorithm executor should
start with a “scratch space” defined by the space complexity
of the problem that gets filled up, or dynamically generate
such space5 (Strathmann et al., 2021). As such, we for now
exclude all algorithms that require allocating memory which
cannot be directly attached to the set of objects provided
at input time. This excludes algorithms like merge sort,
Hierholzer’s algorithm for finding Euler tours (Hierholzer
& Wiener, 1873), or string matching using finite automata.

All of the above applied, we arrive at the 30 algorithms that
are selected into CLRS-30, which we categorize as follows:

Sorting: Insertion sort, bubble sort, heapsort (Williams,
1964), quicksort (Hoare, 1962).

Searching: Minimum, binary search, quickselect (Hoare,
1961).

Divide and Conquer (D&C): Maximum subarray
(Kadane’s variant (Bentley, 1984)).

Greedy: Activity selection (Gavril, 1972), task scheduling
(Lawler, 1985).

Dynamic Programming: Matrix chain multiplication,
longest common subsequence, optimal binary search tree
(Aho et al., 1974).

Graphs: Depth-first and breadth-first search (Moore,
1959), topological sorting (Knuth, 1973), articulation points,
bridges, Kosaraju’s strongly-connected components algo-
rithm (Aho et al., 1974), Kruskal’s and Prim’s algorithms
for minimum spanning trees (Kruskal, 1956; Prim, 1957),
Bellman-Ford and Dijkstra’s algorithms for single-source
shortest paths (Bellman, 1958; Dijkstra et al., 1959) (+ di-
rected acyclic graphs version), Floyd-Warshall algorithm
for all-pairs shortest paths (Floyd, 1962).

Strings: Naı̈ve string matching, Knuth-Morris-Pratt (KMP)
string matcher (Knuth et al., 1977).

Geometry: Segment intersection, Convex hull algorithms:
Graham scan (Graham, 1972), Jarvis’ march (Jarvis, 1973).

The chosen algorithms span a wide variety of reasoning

of the void type.
5Akin to malloc-like calls in C++.

procedures, and hence can serve as a good basis for algorith-
mic reasoning evaluation, as well as extrapolation to more
challenging problems.

3.1. Implementation, probes and representation

We have implemented the selected 30 algorithms in an id-
iomatic way, which aligns as closely as possible to the origi-
nal pseudocode from Cormen et al. (2009). This allows us
to automatically generate input/output pairs for all of them,
enabling full control over the input data distribution, so long
as it conforms to the preconditions of the algorithm. Further,
we capture the intermediate algorithm trajectory in the form
of “hints” (detailed in section 3.2), which allow insight into
the inner workings of the algorithm. Such trajectories have
already been extensively used in related work (Veličković
et al., 2019; 2020; Georgiev & Lió, 2020; Deac et al., 2020)
and are typically crucial for OOD generalisation.

In the most generic sense, algorithms can be seen as ma-
nipulating sets of objects, along with any relations between
them (which can themselves be decomposed into binary
relations). If the sets are (partially) ordered (e.g. arrays or
rooted trees), this can be imposed by including predecessor
links. Therefore, algorithms generally operate over graphs.
Motivated by existing theoretical results showing that graph
neural networks align well with dynamic programming-style
computations (Xu et al., 2019; Dudzik & Veličković, 2022),
we propose a graph-oriented way to encode the data.

Generally, our data is represented as a set of n vertices6,
where n is a hyperparameter that is provided as part of the
dataset generation process.

When the semantics of these nodes are not immediately clear
from the task (e.g. graph algorithms naturally operate over a
graph of n nodes), we make an appropriate modification to
derive nodes. For example, in sorting algorithms, we treat
every input list element as a separate node, and in string
matching, we treat each character of the two input strings as
a separate node.

All information over these graphs falls under the following
categorisation:

Stage: Every feature, i.e. observation in the trajectory, is
either part of the input, output, or the hints. As we do not
cover algorithms that perform on-line querying, for all 30
algorithms there will be exactly one snapshot of the input
and output values, whereas hints will be a time-series of
intermediate algorithm states.

Location: Every feature is either present within the nodes,
edges (pairs of nodes) or the graph7.

6Edges are only present to represent the predecessor vertex if
the input is a partially ordered.

7This also determines shapes of each feature, e.g. node features

The CLRS Algorithmic Reasoning Benchmark

Type: Every feature can be of five possible types, which can
determine the appropriate method for encoding/decoding it,
and the appropriate loss function to use when learning to
predict it:

• scalar: Floating-point scalar8 feature. This would
typically be fit using mean-squared error.

• categorical: Categorical feature over K possi-
ble classes. The type corresponds typically to cross-
entropy loss over the classes.

• mask: Categorical feature over two classes. This can
be fit using binary cross-entropy.

• mask one: Categorical feature over two classes,
where exactly one node is active (“one-hot”). One
would generally optimise this argmax operation using
categorical cross-entropy.

• pointer: Categorical feature over the n nodes.
To predict “similarity” score against every node,
and typically optimised using categorical cross en-
tropy (as introduced in Pointer Graph Networks
(PGN) (Veličković et al., 2020)).

Specifying a feature’s stage, location and type fully deter-
mines its role in the dataflow. A tuple (stage, loc,
type, values) is referred to as a probe. Each of the
30 algorithms has a static (w.r.t. stage, location and type)
set of probes, which are considered to be a spec for the
algorithm. We will later describe how these specs may be
used to construct baseline architectures for the benchmark.

Every node is always endowed with a position scalar input
probe, which uniquely indexes it—the values are linearly
spaced between 0 and 1 along the node index. This allows
not only representing the data sequentially (when this is
appropriate), but also serves as a useful tie-breaker when
algorithms could make an arbitrary choice on which node
to explore next—we force the algorithms to favour nodes
with smaller position values.

To illustrate these concepts further, at the end of this section
we will describe the probes in detail for a popular algorithm
(insertion sort).

Note that, while we format the data in a way that clearly
favours graph neural network executors, it can be easily
adapted for different types of neural architectures; for exam-
ple, sequence to sequence models (Sutskever et al., 2014).

are of shape n× f ; edge features are of shape n× n× f ; graph
features are of shape f , where f is the dimension of this feature
(excluding batch axis).

8Given our current restriction on numerical predictions, scalar
types will never be given in the output stage.

Overall, CLRS-30 requires ∼ 1h to generate, and occupies
∼ 4.5GB when uncompressed, across all 30 tasks.

3.2. Hints

Hints are an important component of our benchmark, which
we find fundamental in order to make progress on algorith-
mic reasoning. As we previously argued, the advantage of
algorithms as a task is our understanding of their behaviour,
and our ability to decompose them into useful subroutines
that can be shared or repeatedly applied.

While, implicitly, we hope that such a decomposition would
happen in any learned system, even when trained just using
inputs and outputs (as studied in Xu et al. (2019)), the degree
to which we can measure or encourage this is limited in the
typical end-to-end learning process, and often most of the
generalisation happens only in-distribution (as observed by
Veličković et al. (2019); Xu et al. (2020); Bevilacqua et al.
(2021)). The underlying algorithm may not be statistically
identifiable from a small set of input/output pairs.

Conversely, a perfect decomposition of a task into small
subtasks can be generated for algorithmic problems. Then,
individual models for each subtask may be trained and re-
composed into a solution. Such an approach will, by con-
struction, provide strong decompositional benefits: as stud-
ied by Yan et al. (2020), perfect OOD generalisation can
be observed with such models, and they can even gener-
alise zero-shot to test algorithms that reuse their modules.
However, the downstream applicability of this is potentially
limited; when faced with a novel task which cannot be easily
decomposed into subtasks, it can be hard to decide how to
reuse the learnt modules.

We believe hints to lie in-between these two approaches. On
one hand, they represent intermediate targets which the net-
work should be able to predict if it performs reasoning simi-
lar9 to the ground truth algorithm it is supposed to mimic.
Indeed, several lines of recent work (Veličković et al., 2019;
Georgiev & Lió, 2020; Veličković et al., 2020; Deac et al.,
2020) make favourable conclusions about using them, when
it comes to achieving stronger OOD generalisation. Further-
more, models leveraging hints are still end-to-end models;
when faced with a novel task at test-time, we don’t need
explicit knowledge of that task’s hints in order to re-use the
weights learnt on a task which had them.

Algorithms specify one way of attacking a problem, that is
explicitly detailed through the hints. In this sense, insertion
sort (to be presented shortly) is one way of implementing

9Note that architectures supervised in this way usually don’t
model the hints perfectly, and will deviate from the target algorithm
in subtle ways—Veličković et al. (2020) perform a qualitative study
which shows GPU-specialised data structures could emerge as a
result of such setups.

The CLRS Algorithmic Reasoning Benchmark

5 2 4 3 1 5 2 4 3 1 5 2 4 3 1 5 2 4 3 1 5 2 4 3 1

Figure 2. A sequence of hints for insertion sorting a list [5, 2, 4, 3, 1]. Green pointers correspond to the predecessor pointers (specifying
the list’s state throughout the algorithm’s execution. Note how the head of the list always points to itself, by convention. Further, note how,
at every step, the list is rewired such that the node selected by the blue pointer (slot) will point to the current iterator (pointed in red).

a sorting function: all sorting algorithms model sorting
functions, and will hence have identical outputs for identical
inputs. The aspects that set the different sorting algorithms
apart are exposed through their hints.

Being mindful of the fact that neural networks commonly
run on parallelisable architectures, we have made efforts
to “compress” the hints as much as possible. For example,
if a single for loop is used to sweep the data and detect
the node which optimises a certain quantity (without doing
any order-sensitive computations), that for loop can typi-
cally be entirely “skipped” when recording hints: as parallel
architectures may typically examine all the nodes at once.
Further, we make every effort possible that the hint at step
t + 1 will be predictable from the hints at step t by using
only a single step of message passing.

3.3. Worked example: insertion sort

To illustrate all of the concepts outlined above, we observe
the trajectories extracted by our data collection procedure
on an example: insertion sorting the array [5, 2, 4, 3, 1].

Insertion sort uses one pointer (j) to scan through the array,
and then another pointer (i) to slot the j-th item into the
correct place within [0..j]. This ascertains the invariant that,
after k steps, the subarray of the first k elements is com-
pletely sorted. Hence the trajectory (with i and j marked)
is: [5i,j , 2, 4, 3, 1] → [2i, 5j , 4, 3, 1] → [2, 4i, 5j , 3, 1] →
[2,3i, 4, 5j , 1]→ [1i, 2, 3, 4, 5j]. Here, at each step, j scans
along the array, and i indicates the correct place for the
element that was j-th at the start of each iteration.

Converting this trajectory into a graph representation re-
quires some considerations. Requiring the model to perform
explicit swapping of node values would, ultimately, require
numerical predictions. To avoid it, we ask the model to
predict the predecessor pointer of each node (by conven-
tion, the head of the array points to itself). Hence the actual
recorded trajectory can be realised as depicted in Figure 2.
In this figure, green pointers correspond to the predecessor
pointers, red ones point to j, and blue ones point to i. i and
j are realised as type mask one, whereas predecessors are
of type pointer—and all three are stored in the nodes.
The red and blue pointers represent the “hints” for this task.

Finally, note that the original insertion sort pseudocode
mandates that, at each iteration, i starts at position j and
shifts backward until the right position is found. However,
this procedure can be performed in one step by a GNN, as
it can locate the correct position by examining all relevant
positions, and we can omit all of those intermediate steps.

In order to further illustrate how these hints are collected,
we also provide an informal pseudocode for collecting hints
for insertion sort in Algorithm 1:

Algorithm 1 Hint updates for Insertion Sort
Input :Input array val, Positions pos
Hints :Predecessors pred, Iterator iter, swap slot slot

pred[i]←
{
0 i = 0

i− 1 i > 0
; // Initialise list

slot← 0, iter← 0

while iter < n do
iter← iter+ 1

max node← argmax
j : pos[j]<pos[iter]

val[j]

if val[max node] < val[iter] then
slot← max node

pred[i]←
{
slot i = iter

pred[i] otherwise

else
slot← argmin

j : pos[j]<pos[iter],val[j]≥val[iter]
val[j]

pred[i]←

iter i = slot

iter i=iter∧pred[slot]=slot

pred[slot] i=iter∧pred[slot]6=slot

max node pred[i] = iter

pred[i] otherwise

end
end
return pred ; // Return final list

In the interest of illustrating the hint structures further, we
provide worked examples of trajectories for three more al-

The CLRS Algorithmic Reasoning Benchmark

gorithms (dynamic programming, path-finding and string
matching) in Appendix B. It should be remarked that we
directly expose all of the hint collection routines as Python
code inside the CLRS library, allowing for direct inspection.

4. Empirical evaluation
Having surveyed the specifics of CLRS-30, we now present
experimental results on it for several proposed algorithmic
reasoning models. We primarily investigate whether a natu-
ral ladder of model performance will emerge when extrapo-
lating to larger inputs. Beyond this, we believe the bench-
mark will be useful for empirically examining many other
properties of algorithmic models, such as evaluating gener-
alisation across different graph types, task types, or various
multi-task (Xhonneux et al., 2021) or continual learning
setups. We make available complete implementations of
our data generating, probing and model training subroutines,
which should make evaluating on such settings simple to
deploy10. We survey several key ways of interacting with
the benchmark (e.g. implementing baselines, modifying
datasets, adding new algorithms) in Appendix A.

4.1. Baseline models

Encode-process-decode For our experimental validation,
we adopt the encode-process-decode paradigm of Hamrick
et al. (2018), which is a common direction for several hint-
based architectures (Veličković et al., 2019; Georgiev & Lió,
2020; Veličković et al., 2020; Deac et al., 2020).

Namely, we consider a setup with inputs xi in nodes, eij
in edges, and g in the graph. We first encode each of these
using linear layers fn, fe, fg , to obtain encodings

hi = fn(xi) hij = fe(eij) hg = fg(g) (1)

We then feed these latents through a processor network to
perform one step of computation. As we are focusing on
graph representation learning in the current data format,
most of our processors will be realised as graph neural net-
works (Gilmer et al., 2017). Most generally, along every
edge (i, j), a message from node i to node j, mij is com-
puted (using a message function fm), and these messages
are then aggregated across all neighbouring nodes using a
permutation-invariant aggregation function,

⊕
. Finally, a

readout network fr transforms these aggregated messages
and the node encodings into processed node encodings:

mij = fm(hi,hj ,hij ,hg) (2)

mi =
⊕
i∈Nj

mji h′i = fr(hi,mi) (3)

Once node encodings are updated, we can decode them to
make various predictions for this step of reasoning, depend-

10https://github.com/deepmind/clrs

ing on the type of the prediction required (using relevant
decoder functions g·), as prescribed in Section 3.1. Further,
we keep track of previous-step node encodings h(t−1)

i , to
explicitly use in a recurrent cell update (exactly as done by
Veličković et al. (2019)). We opt to provide this recurrent
update in order to provide long-range capacity to the model.

Lastly, we need to decide in what capacity will hints be
used. We provide results for the option where hints are
both decoded (used for computing the loss function) and
encoded (considered as part of x, eij and g). At testing
time, the encoded hint is equal to the hints decoded by the
previous step, whereas we can stabilise these trajectories at
training time by performing noisy teacher forcing—inspired
by Noisy Nodes (Godwin et al., 2021), at each step we feed
back ground-truth hints with probability 0.5. The quantity
of hints is still used to determine the number of processor
steps to perform at evaluation time. This requirement of
knowing the hint-size can be lifted by, e.g., using termina-
tion networks (Veličković et al., 2019; Banino et al., 2021)
or aligning to iterative algorithms (Tang et al., 2020).

Processor networks The only remaining component to
specify is the processor network used by our models. As
this component carries the most computational load, it is
also the most obvious module to sweep over. We provide all
implementations and hyperparameters within our codebase.

Unless otherwise specified, we assume fully-connected
graphs, i.e. Ni = {1, 2, . . . , n}, hence every node is con-
nected to every other node. We consider the following
baseline processor networks:

Deep Sets (Zaheer et al., 2017); where each node is only
connected to itself: Ni = {i} (i.e., choice of

⊕
is irrele-

vant). Such a model is popular for summary statistic tasks.

Graph Attention Networks (Veličković et al., 2017),
where the aggregation function

⊕
is self-attention (Vaswani

et al., 2017), and the message function fm merely extracts
the sender features: fm(hi,hj ,hij ,hg) = Whi. We report
the best performance across GAT (Veličković et al., 2017)
and GATv2 (Brody et al., 2021) attention mechanisms.

Message-passing Neural Networks (Gilmer et al., 2017),
which correspond exactly to the formulation in Equation 2,
with

⊕
= max, as prescribed by previous work (Veličković

et al., 2019). As a sanity check, we also attempted
⊕

=
∑

finding it underperformed on all tasks compared to max.

Pointer Graph Networks (Veličković et al., 2020), which
use only graph neighbourhoods Ni specified by a union
of all node pointer and edge mask hints, and

⊕
=

max. This restricts the model to only reason over the edges
deemed important by the inputs and hints.

Memory Networks (Sukhbaatar et al., 2015) have been

https://github.com/deepmind/clrs

The CLRS Algorithmic Reasoning Benchmark

Figure 3. Validation results on eight representative algorithms in CLRS-30 (activity selector, Bellman-Ford, binary search, find maximum
subarray, Graham scan, insertion sort, matrix chain order, naı̈ve string matcher), averaged over three seeds. In all cases the y-axis is
between [0, 100]%. Legend: MPNN red, PGN purple, Deep Sets blue, GAT orange, Memory Networks green. Validation results for all
30 individual algorithms can be found in Appendix D.

used in the past as baseline for investigating reasoning in
neural networks (e.g. Banino et al., 2020), as they provide
an alternative way to use structural dependencies in a graph
by treating edges as memories and nodes as queries. Here
we used latents representing node features hi as queries
and latents representing edge features hij (where there is a
connecting edge and 0 otherwise) as memory inputs.

4.2. Dataset statistics

For each algorithm in CLRS-30, we provide a canonical set
of training, validation and test trajectories for benchmarking
in- and out-of-distribution generalisation. We obtain these
trajectories by running the algorithms on randomly sampled
inputs that conform to their input specification. This implies,
e.g., that the inputs to most graph algorithms are Erdős-
Rényi graphs (Erdös & Rényi, 2011) with a certain edge
probability. All scalar inputs are sampled from U(0, 1).

For validation, our aim is to measure in-distribution gener-
alisation. Hence we sample inputs of 16 nodes for both, and
generate 1,000 trajectories for training and 32 for validation.
For testing, we measure out-of-distribution generalisation,
and sample 32 trajectories for inputs of 64 nodes. For algo-
rithms where the output is on the graph stage (rather than
node/edge), we generate 64× more trajectories, in order to
equalise the number of targets across tasks.

We optimise our models on the training trajectories in a
teacher-forced fashion, with a batch size of 32, using the
Adam optimiser (Kingma & Ba, 2014) with an initial learn-
ing rate of η = 0.001. We train for 10, 000 steps, early stop-
ping on the validation performance. Our models are trained
on one V100 Volta GPU, requiring roughly between 1h and
30h to train, depending on the algorithm’s time complexity.
For example, linear-time algorithms have significantly fewer
hints—hence message passing steps—than cubic-time ones.

4.3. Validation (in-distribution) performance

We provide the in-distribution performance throughout train-
ing in Figure 3, for eight representative tasks in CLRS-30
(one per each algorithm type); see Appendix D for the full
results on all 30 algorithms. In this regime, the MPNN
appears to dominate for most tasks: achieving over 90% F1

score for nearly all of them.

While this might seem like strong evidence in favour of
the fully-connected MPNNs, their added degrees of free-
dom may also make MPNNs more prone to overfitting
to specifics of the input (e.g. the input graphs’ sizes),
rather than truly learning the underlying reasoning rule. We
present the out-of-distribution results next, in order to make
this distinction clear.

The CLRS Algorithmic Reasoning Benchmark

Table 1. Average test micro-F1 score of all models on all algorithm classes. The full test results for all 30 algorithms, along with a
breakdown of the “win/tie/loss” metric, are given in Appendix C.

Algorithm Deep Sets GAT Memnet MPNN PGN

Divide & Conquer 12.48%± 0.67 24.43%± 0.74 13.05%± 0.00 20.30%± 0.85 65.23%± 4.44
Dynamic Prog. 66.05%± 7.79 67.19%± 5.33 67.94%± 7.75 65.10%± 6.44 70.58%± 6.48
Geometry 64.08%± 6.60 73.27%± 11.18 45.14%± 11.65 73.11%± 17.19 61.19%± 7.01
Graphs 37.65%± 8.09 46.80%± 8.66 24.12%± 5.20 62.79%± 8.75 60.25%± 8.42
Greedy 75.47%± 6.81 78.96%± 4.59 53.42%± 20.73 82.39%± 3.01 75.84%± 6.59
Search 43.79%± 18.29 37.35%± 19.81 34.35%± 21.67 41.20%± 19.87 56.11%± 21.56
Sorting 39.60%± 7.19 14.35%± 4.64 71.53%± 1.09 11.83%± 2.78 15.45%± 8.46
Strings 2.64%± 0.68 3.02%± 1.08 1.51%± 0.21 3.21%± 0.94 2.04%± 0.20

Overall average 42.72% 43.17% 38.88% 44.99% 50.84%
Win/Tie/Loss counts 0/3/27 1/5/24 4/2/24 8/3/19 8/6/16

4.4. Test (out-of-distribution) performance

The averaged out-of-distribution performance (using the
early-stopped model on validation) across each of the eight
algorithm types is provided in Table 1; see Appendix C for
the full results on all 30 algorithms. MPNNs are unable to
transfer their impressive gains to graphs that are four times
larger: in fact, the PGN takes over as the most performant
model when averaged across task types—this aligns well
with prior research (Veličković et al., 2020). The outperfor-
mance is also observed when we count how frequently each
model is among the best-performing models for a given
algorithm, as per our “win/tie/loss” metric, which we ex-
plain in Appendix C. GNN models, additionally, outperform
models like Deep Sets and Memory Nets, reinforcing that
GNNs are a useful primitive for algorithmic reasoning (Xu
et al., 2019; Dudzik & Veličković, 2022).

Aside from all of the above, we note that the OOD version of
the CLRS-30 benchmark is highly challenging and far from
solved for most tasks, making it a meaningful informant of
future progress in the area. In particular, PGNs struggled
on tasks requiring long-range rollouts (such as DFS), or
recursive reasoning (such as Quicksort and Quickselect).
This invites further research in algorithmic reasoners that
can support such computation. It is further revealed that
more specialised inductive biases and training regimes may
be required to deal with string matching algorithms (such as
KMP), and that the processor studied here tended to perform
the best on tasks which were of favourable (sublinear) com-
plexity in terms of hint counts (such as BFS, Bellman-Ford,
and task scheduling).

The specific results we obtain with our baselines validate
several bits of prior research in the area, but also demon-
strate we still have a long way to go, with even simple OOD
scenarios only being fit to about 50% micro-F1 performance.

5. Conclusion
We introduce CLRS-30, a dataset that contains trajectories
from 30 classical algorithms. This benchmark constitutes
an effective way to test out-of-distribution generalization
and transfer, and brings a means to evaluate algorithmic
reasoning learnt by neural network models. The dataset
provides input/output pairs for all algorithms, as well as
intermediate trajectory information (“hints”).

It is our hope that CLRS-30 will be a useful tool to shepherd
future research in algorithmic reasoning, as prior art in the
area largely generated their own datasets, making progress
tracking challenging. Further, we hope that CLRS-30 will
make algorithmic reasoning a more accessible area: one
does not need a background in theoretical computer science
to generate the dataset, and can focus on the modelling.

If we convinced you to try out our library, please consult
Appendix A for detailed instructions on most common ways
to interact with our platform. CLRS is in constant develop-
ment, and we welcome any and all feedback.

Acknowledgements
CLRS-30 was developed over a long time-frame, with many
useful contributions, which we kindly acknowledge here.

We would like to particularly thank Borja Ibarz for nu-
merous fixes and additions, and laying foundation for fu-
ture iterations. Additionally, we warmly thank Jonathan
Godwin, Sadegh Mahdavi, Euan Ong, MohamedElfatih
Salah, Ahmed Elhag, Andreea Deac, Frederik Nijweide,
Andrew Dudzik, Thomas Kipf, Amin Barekatain and Do-
brik Georgiev for their support, and identifying numerous
bugs during development. Finally, we thank Kim Stachen-
feld, Nate Kushman and Daan Wierstra for reviewing the
paper prior to submission, and anonymous reviewers for
their careful feedback, strengthening the paper significantly.

The CLRS Algorithmic Reasoning Benchmark

References
Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The design

and analysis of computer algorithms. Reading, 1974.

Alet, F., Lozano-Perez, T., and Kaelbling, L. P. Modular
meta-learning. volume 87 of Proceedings of Machine
Learning Research. PMLR, 2018.

Banino, A., Badia, A. P., Köster, R., Chadwick, M. J.,
Zambaldi, V., Hassabis, D., Barry, C., Botvinick, M.,
Kumaran, D., and Blundell, C. Memo: A deep net-
work for flexible combination of episodic memories. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rJxlc0EtDr.

Banino, A., Balaguer, J., and Blundell, C. Pondernet: Learn-
ing to ponder. arXiv preprint arXiv:2107.05407, 2021.

Belkin, M., Hsu, D., and Xu, J. Two models of double de-
scent for weak features. arXiv preprint arXiv:1903.07571,
2019.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bellman, R. On a routing problem. Quarterly of applied
mathematics, 16(1):87–90, 1958.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
2020.

Bentley, J. Programming pearls: algorithm design tech-
niques. Communications of the ACM, 27(9):865–873,
1984.

Bevilacqua, B., Zhou, Y., and Ribeiro, B. Size-invariant
graph representations for graph classification extrapola-
tions. In International Conference on Machine Learning,
pp. 837–851. PMLR, 2021.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks? arXiv preprint arXiv:2105.14491,
2021.

Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris,
C., and Veličković, P. Combinatorial optimization and
reasoning with graph neural networks. arXiv preprint
arXiv:2102.09544, 2021.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? arXiv preprint
arXiv:2002.04025, 2020.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to algorithms. MIT press, 2009.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
arXiv preprint arXiv:2004.05718, 2020.

Deac, A., Bacon, P.-L., and Tang, J. Graph neural induc-
tion of value iteration. arXiv preprint arXiv:2009.12604,
2020.

Deac, A.-I., Veličković, P., Milinkovic, O., Bacon, P.-L.,
Tang, J., and Nikolic, M. Neural algorithmic reasoners
are implicit planners. Advances in Neural Information
Processing Systems, 34, 2021.

Dijkstra, E. W. et al. A note on two problems in connex-
ion with graphs. Numerische mathematik, 1(1):269–271,
1959.

Du, Y., Czarnecki, W. M., Jayakumar, S. M., Pascanu, R.,
and Lakshminarayanan, B. Adapting auxiliary losses
using gradient similarity, 2018.

Dudzik, A. and Veličković, P. Graph neural networks are
dynamic programmers. arXiv preprint arXiv:2203.15544,
2022.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. arXiv
preprint arXiv:2003.00982, 2020.

Erdös, P. and Rényi, A. On the evolution of random graphs.
In The structure and dynamics of networks, pp. 38–82.
Princeton University Press, 2011.

Floyd, R. W. Algorithm 97: shortest path. Communications
of the ACM, 5(6):345, 1962.

Ford Jr, L. R. and Fulkerson, D. R. Flows in networks.
Princeton university press, 2015.

Freivalds, K., Ozoliņš, E., and Šostaks, A. Neural shuffle-
exchange networks-sequence processing in o (n log n)
time. In Advances in Neural Information Processing
Systems, pp. 6630–6641, 2019.

Gavril, F. Algorithms for minimum coloring, maximum
clique, minimum covering by cliques, and maximum
independent set of a chordal graph. SIAM Journal on
Computing, 1(2):180–187, 1972.

Georgiev, D. and Lió, P. Neural bipartite matching. arXiv
preprint arXiv:2005.11304, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. arXiv preprint arXiv:1704.01212, 2017.

https://openreview.net/forum?id=rJxlc0EtDr
https://openreview.net/forum?id=rJxlc0EtDr

The CLRS Algorithmic Reasoning Benchmark

Godwin, J., Schaarschmidt, M., Gaunt, A. L., Sanchez-
Gonzalez, A., Rubanova, Y., Veličković, P., Kirkpatrick,
J., and Battaglia, P. Simple gnn regularisation for 3d
molecular property prediction and beyond. In Interna-
tional Conference on Learning Representations, 2021.

Graham, R. L. An efficient algorithm for determining the
convex hull of a finite planar set. Info. Pro. Lett., 1:
132–133, 1972.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Griffiths, T., Callaway, F., Chang, M., Grant, E., Krueger, P.,
and Lieder, F. Doing more with less: meta-reasoning and
meta-learning in humans and machines. Current Opinion
in Behavioral Sciences, October 2019.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Hennigan, T., Cai, T., Norman, T., and Babuschkin, I. Haiku:
Sonnet for JAX, 2020. URL http://github.com/
deepmind/dm-haiku.

Hierholzer, C. and Wiener, C. Über die möglichkeit, einen
linienzug ohne wiederholung und ohne unterbrechung zu
umfahren. Mathematische Annalen, 6(1):30–32, 1873.

Hoare, C. A. Algorithm 65: find. Communications of the
ACM, 4(7):321–322, 1961.

Hoare, C. A. Quicksort. The Computer Journal, 5(1):10–16,
1962.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in Neural Information Processing Systems 31.
2018.

Jarvis, R. A. On the identification of the convex hull of a
finite set of points in the plane. Information processing
letters, 2(1):18–21, 1973.

Joshi, C. K., Cappart, Q., Rousseau, L.-M., Laurent, T., and
Bresson, X. Learning tsp requires rethinking generaliza-
tion. arXiv preprint arXiv:2006.07054, 2020.

Kaiser, Ł. and Sutskever, I. Neural gpus learn algorithms.
arXiv preprint arXiv:1511.08228, 2015.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing
Systems, pp. 6348–6358, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Knuth, D. E. Fundamental algorithms. 1973.

Knuth, D. E., Morris, Jr, J. H., and Pratt, V. R. Fast pattern
matching in strings. SIAM journal on computing, 6(2):
323–350, 1977.

Kool, W., van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Kruskal, J. B. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the
American Mathematical society, 7(1):48–50, 1956.

Lake, B. M. Compositional generalization through meta
sequence-to-sequence learning. In Advances in Neural In-
formation Processing Systems 32, pp. 9791–9801. 2019.

Lawler, E. L. The traveling salesman problem: a guided
tour of combinatorial optimization. Wiley-Interscience
Series in Discrete Mathematics, 1985.

Li, Y., Gimeno, F., Kohli, P., and Vinyals, O. Strong general-
ization and efficiency in neural programs. arXiv preprint
arXiv:2007.03629, 2020.

Liu, C., Zhu, L., and Belkin, M. Toward a theory of
optimization for over-parameterized systems of non-
linear equations: the lessons of deep learning. CoRR,
abs/2003.00307, 2020.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Mikolov, T., Deoras, A., Kombrink, S., Burget, L., and
Cernocký, J. Empirical evaluation and combination of
advanced language modeling techniques. In INTER-
SPEECH, pp. 605–608, 2011.

Moore, E. F. The shortest path through a maze. In Proc. Int.
Symp. Switching Theory, 1959, pp. 285–292, 1959.

Prim, R. C. Shortest connection networks and some gen-
eralizations. The Bell System Technical Journal, 36(6):
1389–1401, 1957.

Richter, O. and Wattenhofer, R. Normalized attention with-
out probability cage. arXiv preprint arXiv:2005.09561,
2020.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

http://github.com/deepmind/dm-haiku
http://github.com/deepmind/dm-haiku

The CLRS Algorithmic Reasoning Benchmark

Strathmann, H., Barekatain, M., Blundell, C., and
Veličković, P. Persistent message passing. arXiv preprint
arXiv:2103.01043, 2021.

Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. End-to-
end memory networks. arXiv preprint arXiv:1503.08895,
2015.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Advances in
neural information processing systems, pp. 3104–3112,
2014.

Tang, H., Huang, Z., Gu, J., Lu, B., and Su, H. Towards
scale-invariant graph-related problem solving by itera-
tive homogeneous gnns. the 34th Annual Conference on
Neural Information Processing Systems (NeurIPS), 2020.

Trask, A., Hill, F., Reed, S. E., Rae, J., Dyer, C., and Blun-
som, P. Neural arithmetic logic units. In Advances in
Neural Information Processing Systems, pp. 8035–8044,
2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Veličković, P. and Blundell, C. Neural algorithmic reasoning.
arXiv preprint arXiv:2105.02761, 2021.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. arXiv
preprint arXiv:1910.10593, 2019.

Veličković, P., Buesing, L., Overlan, M. C., Pascanu, R.,
Vinyals, O., and Blundell, C. Pointer graph networks.
arXiv preprint arXiv:2006.06380, 2020.

Veličković, P., Bošnjak, M., Kipf, T., Lerchner, A., Hadsell,
R., Pascanu, R., and Blundell, C. Reasoning-modulated
representations. arXiv preprint arXiv:2107.08881, 2021.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Advances in Neural Information Processing Systems,
pp. 2692–2700, 2015.

Williams, J. W. J. Algorithm 232: heapsort. Commun. ACM,
7:347–348, 1964.

Xhonneux, L.-P., Deac, A.-I., Veličković, P., and Tang, J.
How to transfer algorithmic reasoning knowledge to learn
new algorithms? Advances in Neural Information Pro-
cessing Systems, 34, 2021.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. What can neural networks reason about?
arXiv preprint arXiv:1905.13211, 2019.

Xu, K., Li, J., Zhang, M., Du, S. S., ichi Kawarabayashi, K.,
and Jegelka, S. How neural networks extrapolate: From
feedforward to graph neural networks. arXiv preprint
arXiv:2009.11848, 2020.

Yan, Y., Swersky, K., Koutra, D., Ranganathan, P., and
Heshemi, M. Neural execution engines: Learning to
execute subroutines. arXiv preprint arXiv:2006.08084,
2020.

Yehuda, G., Gabel, M., and Schuster, A. It’s not what
machines can learn, it’s what we cannot teach. arXiv
preprint arXiv:2002.09398, 2020.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Advances in neural information processing systems, pp.
3391–3401, 2017.

Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J.,
and Savarese, S. Taskonomy: Disentangling task trans-
fer learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3712–3722,
2018.

Zaremba, W. and Sutskever, I. Learning to execute. arXiv
preprint arXiv:1410.4615, 2014.

The CLRS Algorithmic Reasoning Benchmark

A. Interfacing with the CLRS benchmark
The CLRS benchmark is publicly hosted on GitHub: https://github.com/deepmind/clrs. All code and artifacts
are released under an Apache 2.0 license, which is highly permissive.

Within clrs/examples/run.py, we demonstrate an extensively configurable example script that evaluates a specific
baseline on CLRS-30.

Our baselines are provided in JAX and Haiku (Hennigan et al., 2020), but the dataset is generated using NumPy, making it
possible to create learning pipelines in virtually any framework, including PyTorch and TensorFlow.

We will now highlight three key ways in which researchers can interface with the library.

A.1. Evaluating a new baseline on CLRS-30

To support a new baseline, the recommended path depends on how fundamentally different the baseline is to an encode-
process-decode GNN.

In most cases, we anticipate that only the processor network needs changing, and the remainder of the architec-
ture can match our baselines. In this case, it is only necessary to implement the new processor network within
clrs/ src/processors.py and appropriately set self.mpnn within the construct processor method in
clrs/ src/baselines.py.

For more fundamentally different baselines, it is necessary to create a new class that extends the Model API (as found within
clrs/ src/model.py). clrs/ src/baselines.py provides one example of how this can be done efficiently, for
the case of our baselines.

A.2. Modifying the data distribution of CLRS-30

If users want to train and/or evaluate the models on different versions of the tasks given in CLRS-30, the key routines to
modify are located in clrs/ src/samplers.py.

The easiest modification concerns the graph sizes and/or numbers of trajectories. They can be directly changed by modifying
the CLRS30 dictionary near the top of the file.

For more elaborate modifications, e.g. to the specific data sampling distributions, the users would need to modify and/or
extend the relevant sampler class. As a guiding example, we provide a SortingSampler class which is convenient for
generating inputs for sorting algorithms. The specific sampler used for each task is provided in the SAMPLERS dictionary
towards the end of the file.

A.3. Adding new algorithms to CLRS

As the most elaborate of the three workflows, adding a new algorithm to the task suite requires following several steps,
which are potentially comprehensive, depending on the complexity of the algorithm. However, the CLRS benchmark code
still provides may helper routines for probing and batching that facilitate inclusion of novel algorithms. The steps are as
follows:

1. First, determine the input/hint/output specification of your algorithm, and include it within the SPECS dictionary of
clrs/ src/specs.py.

2. Implement the desired algorithm in an abstractified form. Examples of this can be found throughout the
clrs/ src/algorithms/ folder.

3. Next, choose appropriate moments within the algorithm’s execution to create probes that capture the inputs, outputs
and all intermediate state (using the probing.push function).

4. Once generated, probes can be prepared using the probing.finalize method, and should be returned together
with the algorithm output.

5. Lastly, implement an appropriate input data sampler for your algorithm, and include it within the SAMPLERS dictionary
within clrs/ src/samplers.py.

https://github.com/deepmind/clrs

The CLRS Algorithmic Reasoning Benchmark

B. Additional worked examples of algorithm trajectories
Matrix Chain Order As a representative dynamic programming algorithm, we visualise the steps of the procedure for
optimising the order of multiplications in a chain of matrices, for multiplying matrices of size (10× 30)(30× 5)(5× 60),
assuming a O(n3)-time multiplication algorithm.

The algorithm proceeds by filling up an “upper-triangular” part of a dynamic programming matrix, where cell [i, j]
corresponds to the optimal number of operations when multiplying all the matrices between the ith and jth. Such an
algorithm may also be represented in a “pyramidal” form as below:

10 30 5 60

∞ ∞ ∞

∞ ∞

∞

10 30 5 60

300 150 300

∞ ∞

∞

10 30 5 60

300 150 300

1500 9000

∞

10 30 5 60

300 150 300

1500 9000

4500

Additionally, the algorithm maintains (and returns) the optimal way to recursively divide each subsequence into two (by
storing the optimal dividing point, in green). Here, it is optimal to first multiply (10 × 30)(30 × 5) (yielding 1, 500
operations), then multiply the remaning matrices as (10× 5)(5× 60) (yielding 3, 000 operations; 4, 500 in total).

Note that every pointer points into one of the original n input nodes (at the lowest level), and how each cell of the pyramid
corresponds to a pair of input nodes (specifying the corresponding range). Therefore, rather than creating O(n2) auxiliary
nodes, we instead record all relevant values above as edge scalars and edge pointers, and store nodes only for the lowest
level of the pyramid. Further, whether or not a particular edge has been populated yet (the “∞” indicator above) is stored as
an additional binary flag.

Bellman-Ford As a representative graph algorithm, we visualise the steps of the Bellman-Ford algorithm for finding
single-source shortest paths in a given graph.

Initially, the source node is labelled with distance zero, and all other nodes with distance “∞” (which, once again, is
represented as a binary node hint). The algorithm then iteratively relaxes all edges as follows, until convergence is achieved:

0

∞ ∞

∞ ∞

1

2

2

2

3

8 0

1 ∞

2 ∞

1

2

2

2

3

8 0

1 3

2 5

1

2

2

2

3

8

Besides updating the distance values, the algorithm also maintains, and returns, the predicted shortest path tree – for each
node, a pointer to its predecessor along the optimal path from the source. By convention, the source node points to itself.
These pointers are visualised in green.

Naı̈ve String Matcher As a representative string algorithm, we visualise the steps of the naı̈ve string matcher, for detecting
string "ab" inside the string "aab".

The CLRS Algorithmic Reasoning Benchmark

In this case, each character of the two strings is given a separate node, and three sets of indices are maintained: indicating
the start of the current candidate match (in blue); and the current position being checked in both the haystack (red) and the
needle (purple). The algorithm scans candidate positions left-to-right until a full match is detected for the first time.

a a b a b a a b a b a a b a b a a b a b

Additionally, each character is tagged with its predecessor in the string (in green), and a binary flag indicating which of the
two strings it belongs to (not shown here).

C. Test results for all algorithms
Test performance for all 30 algorithms in CLRS-30 may be found in Table 2. In addition, we provide a “win-tie-loss” metric
as another way of differentiating model performance, which is less sensitive to outliers. The resulting counts are provided in
Table 3, and are computed as follows:

• Let µA(M) and σA(M) be the mean and standard deviation of modelM’s test performance on algorithm A (as in
Table 2).

• We say that model A outperforms model B on algorithm A—denoted by A �A B—if µA(A)− σA(A) > µA(B).

• If ∀X 6= A. A �A X , then model A wins on algorithm A.

• Otherwise, if ∃X . X �A A, then model A loses on algorithm A.

• Otherwise, model A is tied on algorithm A.

The win/tie/loss counts are then aggregated across all algorithms A to obtain a metric for each model. As already mentioned,
the details of this on a per-algorithm level are given in Table 3.

D. Validation results individual plots
Validation performance for all 30 algorithms in CLRS-30 may be found in Figure 4. For convenience, we also report the
early-stopped validation performance in Table 4.

The CLRS Algorithmic Reasoning Benchmark

Table 2. Test performance of all models on all algorithms.

Algorithm Deep Sets GAT Memnet MPNN PGN

Activity Selector 66.09%± 1.67 73.23%± 1.37 24.10%± 2.22 80.66%± 3.16 66.80%± 1.62
Articulation Points 39.06%± 4.04 37.76%± 1.62 1.50%± 0.61 50.91%± 2.18 49.53%± 2.09
Bellman-Ford 51.33%± 0.85 87.91%± 1.19 40.04%± 1.46 92.01%± 0.28 92.99%± 0.34
BFS 98.63%± 0.38 99.04%± 0.21 43.34%± 0.04 99.89%± 0.05 99.63%± 0.29
Binary Search 47.97%± 0.88 23.50%± 3.12 14.37%± 0.46 36.83%± 0.26 76.95%± 0.13
Bridges 32.43%± 2.65 25.64%± 6.60 30.26%± 0.05 72.69%± 4.78 51.42%± 7.82
Bubble Sort 50.73%± 3.24 9.91%± 1.77 73.58%± 0.78 5.27%± 0.60 6.01%± 1.95
DAG Shortest Paths 73.21%± 2.42 81.14%± 1.37 66.15%± 1.92 96.24%± 0.56 96.94%± 0.16
DFS 7.44%± 0.73 11.78%± 2.04 13.36%± 1.61 6.54%± 0.51 8.71%± 0.24
Dijkstra 36.12%± 3.10 58.01%± 0.79 22.48%± 2.39 91.50%± 0.50 83.45%± 1.75
Find Max. Subarray 12.48%± 0.39 24.43%± 0.43 13.05%± 0.08 20.30%± 0.49 65.23%± 2.56
Floyd-Warshall 7.22%± 0.90 16.66%± 3.14 14.17%± 0.13 26.74%± 1.77 28.76%± 0.51
Graham Scan 64.71%± 2.75 77.89%± 2.70 40.62%± 2.31 91.04%± 0.31 56.87%± 1.61
Heapsort 28.94%± 12.57 10.35%± 1.83 68.00%± 1.57 10.94%± 0.84 5.27%± 0.18
Insertion Sort 40.98%± 4.65 29.52%± 1.87 71.42%± 0.86 19.81%± 2.08 44.37%± 2.43
Jarvis’ March 50.25%± 0.81 51.51%± 10.25 22.99%± 3.87 34.86%± 12.39 49.19%± 1.07
KMP Matcher 3.22%± 0.54 3.03%± 0.36 1.81%± 0.00 2.49%± 0.86 2.00%± 0.12
LCS Length 50.10%± 5.25 57.88%± 1.02 49.84%± 4.34 53.23%± 0.36 56.82%± 0.21
Matrix Chain Order 78.36%± 3.58 78.19%± 3.31 81.96%± 1.03 79.84%± 1.40 83.91%± 0.49
Minimum 80.19%± 2.08 84.20%± 2.95 86.93%± 0.11 85.34%± 0.88 87.71%± 0.52
MST-Kruskal 60.58%± 4.71 65.72%± 0.99 28.84%± 0.61 70.97%± 1.50 66.96%± 1.36
MST-Prim 12.17%± 5.47 38.20%± 4.34 10.29%± 3.77 69.08%± 7.56 63.33%± 0.98
Naı̈ve String Match 2.05%± 0.29 3.01%± 1.20 1.22%± 0.48 3.92%± 0.30 2.08%± 0.20
Optimal BST 69.71%± 1.36 65.49%± 1.75 72.03%± 1.21 62.23%± 0.44 71.01%± 1.82
Quickselect 3.21%± 1.33 4.36%± 0.95 1.74%± 0.03 1.43%± 0.69 3.66%± 0.42
Quicksort 37.74%± 2.16 7.60%± 0.98 73.10%± 0.67 11.30%± 0.10 6.17%± 0.15
Segments Intersect 77.29%± 0.60 90.41%± 0.04 71.81%± 0.90 93.44%± 0.10 77.51%± 0.75
SCC 17.81%± 2.61 12.70%± 3.12 16.32%± 4.78 24.37%± 4.88 20.80%± 0.64
Task Scheduling 84.84%± 0.70 84.69%± 2.09 82.74%± 0.04 84.11%± 0.32 84.89%± 0.91
Topological Sort 15.84%± 3.57 27.03%± 6.92 2.73%± 0.11 52.60%± 6.24 60.45%± 2.69

Overall average 43.36% 44.69% 38.03% 51.02% 52.31%

The CLRS Algorithmic Reasoning Benchmark

Figure 4. Validation results on all 30 algorithms in CLRS-30, averaged over three seeds.

The CLRS Algorithmic Reasoning Benchmark

Table 3. Win/Tie/Loss counts of all models on all algorithms. Legend: W: win, T: tie, L: loss.

Algorithm Deep Sets GAT Memnet MPNN PGN

Activity Selector L L L W L
Articulation Points L L L T T
Bellman-Ford L L L L W
BFS L L L W L
Binary Search L L L L W
Bridges L L L W L
Bubble Sort L L W L L
DAG Shortest Paths L L L L W
DFS L T T L L
Dijkstra L L L W L
Find Max. Subarray L L L L W
Floyd-Warshall L L L L W
Graham Scan L L L W L
Heapsort L L W L L
Insertion Sort L L W L L
Jarvis’ March T T L L L
KMP Matcher T T L L L
LCS Length L W L L L
Matrix Chain Order L L L L W
Minimum L L L L W
MST-Kruskal L L L W L
MST-Prim L L L T T
Naı̈ve String Match L L L W L
Optimal BST L L T L T
Quickselect L T L L T
Quicksort L L W L L
Segments Intersect L L L W L
SCC L L L T T
Task Scheduling T T L L T
Topological Sort L L L L W

Overall counts 0/3/27 1/5/24 4/2/24 8/3/19 8/6/16

The CLRS Algorithmic Reasoning Benchmark

Table 4. Early-stopped validation results of all models on all algorithms.

Algorithm Deep Sets GAT Memnet MPNN PGN

Activity Selector 83.50%± 0.17 92.40%± 0.50 34.59%± 2.15 93.89%± 0.39 82.26%± 0.19
Articulation Points 99.63%± 0.31 100.00%± 0.00 16.84%± 1.03 100.00%± 0.00 100.00%± 0.00
Bellman-Ford 81.12%± 0.14 99.28%± 0.14 68.75%± 0.42 99.48%± 0.05 99.35%± 0.05
BFS 100.00%± 0.00 100.00%± 0.00 70.70%± 0.09 100.00%± 0.00 100.00%± 0.00
Binary Search 93.34%± 0.41 95.72%± 0.17 20.33%± 0.28 94.19%± 0.12 94.17%± 0.08
Bridges 99.36%± 0.05 100.00%± 0.00 96.46%± 1.13 100.00%± 0.00 100.00%± 0.00
Bubble Sort 81.51%± 1.02 95.44%± 1.01 92.64%± 0.14 94.53%± 1.84 87.17%± 5.46
DAG Shortest Paths 92.25%± 0.28 96.81%± 0.05 81.90%± 0.05 99.93%± 0.05 99.80%± 0.00
DFS 62.76%± 1.26 99.22%± 0.64 47.72%± 0.45 100.00%± 0.00 100.00%± 0.00
Dijkstra 80.34%± 0.42 99.22%± 0.40 67.38%± 0.70 99.67%± 0.14 99.28%± 0.05
Find Max. Subarray 91.41%± 0.22 95.00%± 0.32 27.91%± 0.08 95.13%± 0.37 95.30%± 0.16
Floyd-Warshall 35.79%± 0.04 87.28%± 0.09 31.29%± 0.04 89.14%± 0.03 88.70%± 0.15
Graham Scan 87.66%± 0.24 97.85%± 0.11 53.53%± 1.58 98.45%± 0.15 89.06%± 0.27
Heapsort 81.84%± 0.33 87.24%± 2.23 54.04%± 0.28 94.27%± 0.11 90.36%± 0.67
Insertion Sort 89.58%± 0.28 95.18%± 0.58 94.40%± 0.14 96.74%± 0.19 84.57%± 0.82
Jarvis’ March 72.82%± 0.42 98.38%± 0.16 37.92%± 6.61 97.94%± 0.25 88.34%± 0.36
KMP Matcher 98.03%± 0.21 99.76%± 0.08 9.67%± 0.00 99.87%± 0.05 94.14%± 0.99
LCS Length 69.24%± 0.36 77.00%± 0.19 67.69%± 0.24 77.88%± 0.42 69.19%± 0.04
Matrix Chain Order 94.46%± 0.02 99.37%± 0.03 93.91%± 0.10 99.12%± 0.04 99.21%± 0.03
Minimum 97.59%± 0.11 97.74%± 0.21 95.56%± 0.10 97.64%± 0.05 97.07%± 0.14
MST-Kruskal 83.79%± 2.01 97.93%± 0.25 64.65%± 0.95 99.71%± 0.17 99.12%± 0.08
MST-Prim 74.61%± 0.32 98.37%± 0.14 74.09%± 0.28 99.02%± 0.09 97.79%± 0.14
Naı̈ve String Match 49.80%± 0.15 100.00%± 0.00 9.91%± 0.20 100.00%± 0.00 50.33%± 0.08
Optimal BST 92.02%± 0.14 93.30%± 0.49 90.86%± 0.40 93.88%± 0.11 93.20%± 0.27
Quickselect 42.30%± 0.92 83.82%± 1.86 6.56%± 0.25 88.74%± 0.78 54.02%± 0.17
Quicksort 79.69%± 1.12 92.97%± 0.40 93.16%± 0.24 95.70%± 0.40 54.30%± 1.42
Segments Intersect 77.49%± 0.12 90.82%± 0.16 71.57%± 1.08 93.84%± 0.20 78.32%± 0.18
SCC 89.52%± 1.23 100.00%± 0.00 70.57%± 1.43 100.00%± 0.00 99.93%± 0.05
Task Scheduling 99.16%± 0.04 99.80%± 0.04 84.80%± 0.09 100.00%± 0.00 99.06%± 0.08
Topological Sort 47.23%± 0.81 100.00%± 0.00 8.30%± 0.50 100.00%± 0.00 100.00%± 0.00

Overall average 80.93% 95.66% 57.92% 96.63% 89.47%

