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Abstract
We consider the problem of signal estimation in
generalized linear models defined via rotation-
ally invariant design matrices. Since these ma-
trices can have an arbitrary spectral distribution,
this model is well suited for capturing complex
correlation structures which often arise in appli-
cations. We propose a novel family of approxi-
mate message passing (AMP) algorithms for sig-
nal estimation, and rigorously characterize their
performance in the high-dimensional limit via a
state evolution recursion. Our rotationally invari-
ant AMP has complexity of the same order as
the existing AMP derived under the restrictive
assumption of a Gaussian design; our algorithm
also recovers this existing AMP as a special case.
Numerical results showcase a performance close
to Vector AMP (which is conjectured to be Bayes-
optimal in some settings), but obtained with a
much lower complexity, as the proposed algo-
rithm does not require a computationally expen-
sive singular value decomposition.

1. Introduction
We consider the problem of estimating a d−dimensional
signal x∗ ∈ Rd from an observation y ∈ Rn obtained via
a generalized linear model (GLM) (McCullagh & Nedler,
1989). Specifically, given a design matrixA ∈ Rn×d with
rows a1, . . . ,an ∈ Rd, the observation y ≡ (y1, . . . , yn)
is generated as

yi = q(〈ai,x∗〉, εi), for i = 1, . . . , n, (1)

where 〈ai,x∗〉 = aT
i x
∗ denotes the Euclidean inner prod-

uct, ε ≡ (ε1, . . . , εn) is a noise vector and q : R2 → R
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is a known function. The model (1) covers many widely
studied problems in statistical estimation and signal pro-
cessing: examples include linear regression (Donoho, 2006;
Eldar & Kutyniok, 2012) (yi = 〈ai,x∗〉 + εi), phase re-
trieval (Shechtman et al., 2015; Fannjiang & Strohmer,
2020) (yi = |〈ai,x∗〉|2 + εi), and 1-bit compressed sensing
(Boufounos & Baraniuk, 2008) (yi = sign(〈ai,x∗〉+ εi)).

A range of estimators based on convex relaxations, spec-
tral methods, and non-convex methods have been proposed
for specific instances of GLMs, such as sparse linear re-
gression (Tibshirani, 1996; Candés & Tao, 2007; Hastie
et al., 2019), phase retrieval (Netrapalli et al., 2013; Candès
et al., 2013; 2015; Mondelli & Montanari, 2019; Luo et al.,
2019; Lu & Li, 2020) and one-bit compressed sensing (Plan
& Vershynin, 2012; 2013; Jacques et al., 2013). Most of
these techniques are generic and can incorporate certain
constraints like sparsity, but they are not well-equipped to
exploit specific information about x∗, e.g., a known signal
prior.

Approximate message passing (AMP) is a family of iter-
ative algorithms that can be tailored to take advantage of
structural information known about the signal. AMP al-
gorithms were first proposed for estimation in linear mod-
els (Kabashima, 2003; Bayati & Montanari, 2012; 2011;
Donoho et al., 2009; Krzakala et al., 2012; Maleki et al.,
2013), but have since been applied to a range of statistical es-
timation problems, including generalized linear models (Bar-
bier et al., 2019; Ma et al., 2019; Maillard et al., 2020; Mon-
delli & Venkataramanan, 2021a; Rangan, 2011; Schniter
& Rangan, 2014; Sur & Candès, 2019) and low-rank ma-
trix estimation (Deshpande & Montanari, 2014; Fletcher
& Rangan, 2018; Kabashima et al., 2016; Lesieur et al.,
2017; Montanari & Venkataramanan, 2021; Barbier et al.,
2020). An attractive feature of AMP is that under suitable
model assumptions, its performance in the high-dimensional
limit is precisely characterized by a succinct determinis-
tic recursion called state evolution (Bayati & Montanari,
2011; Bolthausen, 2014; Javanmard & Montanari, 2013).
Using the state evolution analysis, it has been proved that
AMP achieves Bayes-optimal performance for some mod-
els (Deshpande & Montanari, 2014; Donoho et al., 2013;
Montanari & Venkataramanan, 2021; Barbier et al., 2019),
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and a conjecture from statistical physics posits that AMP
is optimal among polynomial-time algorithms. The above
works, including the original GAMP algorithm (Rangan,
2011) for estimation in GLMs, all assume that the matrixA
defining the model is i.i.d. Gaussian. While some of these
results can be generalized to the broader class of i.i.d. sub-
Gaussian matrices via universality arguments (Bayati et al.,
2015; Chen & Lam, 2021), the i.i.d. assumption limits the
applicability of AMP in practice. In this paper, we present
an AMP algorithm for generalized linear models defined
via a rotationally invariant design matrix A. The class of
rotational invariant matrices includes Gaussian matrices, but
is much bigger. Rotational invariance only imposes that the
orthogonal matrices in the singular value decomposition of
A are uniformly random, and allows for arbitrary singular
values. Hence, A is able to capture a complex correlation
structure, which is typical in applications.

Main contributions. We propose an AMP algorithm for
GLMs with rotationally invariant design matrices. The algo-
rithm, which we call RI-GAMP, uses a pair of multivariate
‘denoising’ functions to produce an updated signal estimate
in each iteration. The iterates depend on the free cumulants
of the spectral distribution of the design matrix. Assuming
that these free cumulants are known (e.g., via the spectral
distribution), the complexity of RI-GAMP is of the same
order as that of the standard GAMP algorithm (Rangan,
2011). Moreover, when the design matrix is i.i.d. Gaussian,
RI-GAMP reduces to standard GAMP. Our main technical
contribution is a state evolution result for RI-GAMP (The-
orem 3.1), which gives a rigorous characterization of its
performance in the high-dimensional limit as n, d → ∞
with a fixed ratio δ = n/d, for a constant δ > 0. We also
present numerical simulation results for linear regression
and 1-bit compressed sensing, showcasing the performance
of RI-GAMP on both synthetic data and images. The per-
formance of RI-GAMP closely matches that of Vector AMP
(Rangan et al., 2019; Pandit et al., 2020) (which is conjec-
tured to be Bayes-optimal in some settings), but obtained
with much lower complexity, as RI-GAMP does not require
computing the singular value decomposition ofA.

RI-GAMP offers a flexible framework to analyze other esti-
mators for GLMs, e.g., spectral methods. Standard GAMP
has been used as a proof technique to study the distribu-
tional properties of linear and spectral estimators under
Gaussian model assumptions (Mondelli et al., 2021; Mon-
delli & Venkataramanan, 2021a). An exciting research di-
rection is to use RI-GAMP to analyze spectral estimators for
rotationally invariant GLMs in the high-dimensional limit.

Proof idea. The key idea in establishing the state evolu-
tion result is to design an auxiliary AMP algorithm whose
iterates are close to those of RI-GAMP. The auxiliary AMP

is an instance of the abstract AMP iteration for rotation-
ally invariant matrices analyzed in (Fan, 2021; Zhong et al.,
2021), hence a state evolution result can be obtained for
it. We then show that each iterate of RI-GAMP is close
to one of the auxiliary AMP, and use this fact to translate
the state evolution result for the latter to the RI-GAMP. We
emphasize that the auxiliary AMP only serves as a proof
technique. Indeed, it is initialized using the unknown signal
x∗, and therefore cannot be used for estimation.

RI-GAMP vs. Vector AMP. Vector AMP (VAMP) is
an iterative algorithm (based on Expectation Propagation)
for estimation in rotationally invariant linear (Rangan et al.,
2019; Takeuchi, 2020; 2021b) and generalized linear models
(Schniter et al., 2016; Pandit et al., 2020). Like RI-GAMP,
VAMP can be tailored to take advantage of prior information
about the signal and its performance can be characterized
by a state evolution recursion. It is also shown in Rangan
et al. (2019); Pandit et al. (2020) that the asymptotic esti-
mation error of VAMP (with optimal denoising functions)
coincides with the replica prediction for the Bayes-optimal
error whenever the state evolution recursion has a unique
fixed point.

The RI-GAMP algorithm proposed here is distinct from
VAMP, and the associated state evolution recursions are
also different. Let us highlight some attractive features of
RI-GAMP. First, RI-GAMP does not require the computa-
tionally expensive (O(d3)) singular value decomposition
used in VAMP. Instead, it uses the free cumulants of the
design matrix which can be estimated inO(d2) time (details
on p.4). We confirm via numerical simulations that the com-
plexity advantage of RI-GAMP over VAMP is significant
and increases with the problem dimension (see Figure 4).

The state evolution result (Theorem 3.1) for RI-GAMP holds
under mild assumptions on the denoising functions (see
(A1) on p.5), while the analysis for VAMP requires slightly
stronger conditions, e.g., the denoising functions and their
derivatives need to be uniformly Lipschitz continuous. The
numerical results in Section 4 show that the performance of
RI-GAMP matches that of VAMP, except near parameter
values corresponding to a phase transition in the estimation
error.

Other related work. Orthogonal AMP (Ma & Ping,
2017) is an algorithm equivalent to VAMP for estimation in
rotationally invariant linear models. Çakmak et al. (2016)
proposed a variant of Expectation Propagation (an algorithm
closely related to VAMP) for rotationally invariant GLMs.
Ma et al. (2021) recently studied the performance of Ex-
pectation Propagation for rotationally invariant GLMs, and
analyzed the impact of the spectrum on the estimation perfor-
mance. VAMP has also been used to obtain the asymptotic
risk of convex penalized estimators for rotationally invariant
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GLMs (Gerbelot et al., 2020a;b). A few lower complexity
alternatives to VAMP have been proposed recently, includ-
ing convolutional AMP (Takeuchi, 2021a), Memory AMP
for linear models (Liu et al., 2020), and Generalized Mem-
ory AMP for GLMs (Tian et al., 2021). The phase retrieval
problem (which is a special case of a GLM) has been stud-
ied for design matrices with orthogonal columns, a model
distinct from the rotationally invariant one considered here
(Dudeja et al., 2020a;b). Finally, we mention that AMP
has also been applied to low-rank matrix estimation with
rotationally invariant noise (Opper et al., 2016; Çakmak &
Opper, 2019; Fan, 2021; Zhong et al., 2021; Mondelli &
Venkataramanan, 2021b).

2. Preliminaries
Notation and definitions. For n ∈ N, we use the short-
hand [n] to denote the set {1, . . . , n}. Given a vector x,
we write ‖x‖ for its `2 norm. All vectors are treated as
column vectors. Given x = (x1, . . . , xd), we denote by
〈x〉 its empirical average 1

d

∑d
i=1 xi. The empirical distri-

bution of x is given by 1
d

∑d
i=1 δxi , where δxi denotes a

Dirac delta mass on xi. Similarly, the joint empirical distri-
bution of the rows of a matrix (x1,x2, . . . ,xt) ∈ Rd×t is
1
d

∑d
i=1 δ(x1

i ,...,x
t
i)

. Given a matrixA, we denote by (A)i,j
its (i, j)-th element. For a square matrixM , we follow the
convention thatM0 is the identity matrix.

W2 convergence. We write (x1, . . . ,xk)
W2−→

(X1, . . . , Xk) for the convergence in Wasserstein-2
distance of the joint empirical distribution of the rows of
(x1,x2, . . . ,xk) ∈ Rd×k to the law of the random vector
(X1, . . . , Xk). Equivalently (Feng et al., 2021)[Corollary
7.4], for any L > 0 and function ψ : Rk → R that satisfies

|ψ(u)− ψ(v)| ≤ L‖u− v‖ (1 + ‖u‖+ ‖v‖) (2)

for all u,v ∈ Rk, we have

lim
d→∞

1

d

d∑
i=1

ψ(x1
i , . . . , x

k
i ) = E{ψ(X1, . . . , Xk)}. (3)

A function satisfying (2) for some fixed L > 0 is called a
pseudo-Lipschitz function of order 2.

Rotationally invariant generalized linear models. The
n × d design matrix A is formed by stacking the sensing
vectors a1, . . . ,an, i.e., A = [a1, . . . ,an]T. We assume
thatA is bi-rotationally invariant in law, i.e.,A = OTΛQ,
where Λ = diag(λ) is an n× d diagonal matrix containing
the singular values of A, and O, Q are Haar orthogonal
matrices independent of one another and also of Λ. As
d→∞, we assume that n/d = δ, for some constant δ > 0.
The matrix A is independent of the signal x∗ ∈ Rd, and

the noise vector ε ∈ Rn. The observation y ∈ Rn is
generated according to (1). We assume that there exist
random variables X∗, ε with finite second moments such
that x∗ W2−→ X∗, and ε W2−→ ε as n→∞. Furthermore, we
assume that the empirical distribution ofλ converges weakly
almost surely to a compactly supported random variable
Λ. We denote by {κ2k}k≥1 the rectangular free cumulants
associated with the moments {m2k}k≥1, where m2k is the
k-th moment of the empirical eigenvalue distribution of
AAT (for details, see (34)-(35) in Appendix A). For δ > 1,
let Λ̃ be a mixture of Λ (w.p. 1/δ) and a point mass at
0 (w.p. 1 − 1/δ); for δ ≤ 1, we set Λ̃ = Λ. Then, the
assumptions above imply that as n, d→∞,m2k → m̄2k =
E{Λ̃2k} and κ2k → κ̄2k almost surely, where {m̄2k}k≥1

and {κ̄2k}k≥1 are the even moments and rectangular free
cumulants of Λ̃.

3. Rotationally Invariant Generalized AMP
Algorithm. We propose the following rotationally invari-
ant generalized AMP (RI-GAMP) to estimate x∗ ∈ Rd from
the observation y ∈ Rn and the design matrix A ∈ Rn×d.
For t ≥ 1, compute:

xt = ATst −
t−1∑
i=1

βti x̂
i, x̂t = ft(x

1, . . . ,xt), (4)

rt = Ax̂t −
t∑
i=1

αti s
i, st+1 = ht+1(r1, . . . , rt, y).

(5)

The iteration is initialized with s1 = h1(y) andx1 = ATs1.
For t ≥ 1, the functions ft : Rt → R and ht+1 : Rt+1 → R
are applied row-wise to vectors and matrices. The scalars
{αti}ti=1 and {βti}t−1

i=1 are obtained in terms of two lower-
triangular matrices Ψt+1,Φt+1 ∈ R(t+1)×(t+1). These
matrices are defined as

Ψt+1 =


0 0 . . . 0 0

0 〈∂1x̂
1〉 0 . . . 0

0 〈∂1x̂
2〉 〈∂2x̂

2〉 . . . 0
...

...
...

. . .
...

0 〈∂1x̂
t〉 〈∂2x̂

t〉 . . . 〈∂tx̂t〉

 ,

Φt+1 =


0 0 . . . 0 0

〈∂gs1〉 0 0 . . . 0
〈∂gs2〉 〈∂1s

2〉 0 . . . 0
...

...
. . .

...
...

〈∂gst〉 〈∂1s
t〉 . . . 〈∂t−1s

t〉 0

 , (6)

where for k ∈ [t], the vector ∂kx̂
t ∈ Rd denotes the

partial derivative ∂xk
ft(x1, . . . , xt) applied row-wise to

x̂t = ft(x
1, . . . ,xt). Similarly, the vector ∂kst ∈ Rn de-

notes the partial derivative ∂rkht(r1, . . . , rt−1, y) applied
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row-wise to st = ht(r
1, . . . , rt−1,y). Recalling that

y = q(g, ε), we can view ht(r1, . . . , rt−1, q(g, ε)) as a func-
tion of (t + 1) variables, with ∂ght(r1, . . . , rt−1, q(g, ε))
being the partial derivative with respect to g. For t > 1, the
vector ∂gst denotes this partial derivative applied row-wise
to st = ht(r

1, . . . , rt−1, q(g, ε)), and the vector ∂gs1 is
defined via the partial derivative ∂gh1(q(g, ε)). Next, recall-
ing that {κ2k}k≥1 denote the rectangular free cumulants,
define matricesMα

t+1,M
β
t+1 ∈ R(t+1)×(t+1) as:

Mα
t+1 =

t+1∑
j=0

κ2(j+1) Ψt+1

(
Φt+1Ψt+1

)j
, (7)

Mβ
t+1 = δ

t∑
j=0

κ2(j+1) Φt+1

(
Ψt+1Φt+1

)j
. (8)

Then, the coefficients {αti}ti=1 and {βti}t−1
i=1 in (4)-(5) are

obtained from the last row ofMα
t+1 andMβ

t+1 as:

(αt1, . . . , αtt) = ( (Mα
t+1)t+1,2 , . . . , (Mα

t+1)t+1,t+1 ),
(9)

(βt1, . . . , βt,t−1) = ( (Mβ
t+1)t+1,2, . . . , (Mβ

t+1)t+1,t ).
(10)

Estimating the free cumulants. From the definitions of
{αti}ti=1 and {βti}t−1

i=1 above, it follows that we need the
free cumulants {κ2(j+1)}t+1

j=0 to compute the first t iterates
of RI-GAMP in (5). These free cumulants can be recursively
computed from the moments {m2(j+1)}t+1

j=0 of the spectral
distribution ofAAT, using the formula (35) in Appendix A.
The moments {m2(j+1)}t+1

j=0 can be estimated inO(d2) time
via the following simple algorithm proposed by Liu et al.
(2020). Given A ∈ Rn×d, pick an independent standard
Gaussian vector s0 ∼ N (0, In), and for k ≥ 1, compute
sk = ATsk−1 for odd k and sk = Ask−1 for even k.
Then, ‖s

k‖2
d is a consistent estimate of the k-th moment of

the spectral distribution ofAAT. Thus, the complexity of
estimating the free cumulants is of the same order as one
iteration of RI-GAMP.

State evolution. The coefficients {αti}ti=1 and {βti}t−1
i=1

play a crucial role in debiasing the AMP iterates, ensur-
ing that their limiting empirical distributions are accu-
rately captured by state evolution. Indeed, Theorem 3.1
shows that the joint empirical distribution of (g, r1, . . . , rt)
converges to a (t + 1)-dimensional Gaussian distribution
N (0, Σ̄t+1). Similarly, the joint empirical distribution of
(x1 − µ̄1x, . . . ,x

t − µ̄tx) converges to a t-dimensional
Gaussian N (0, Ω̄t). We define the covariance matrices
Ω̄t, Σ̄t ∈ Rt×t and the vector µ̄t ≡ (µ̄1, . . . , µ̄t) recur-

sively for t ≥ 1, starting with

Σ̄1 = κ̄2E{X2
∗}, µ̄1 = δκ̄2 E{∂gh1(q(G, ε))},

Ω̄1 = δκ̄2E{h1(q(G, ε))2}
+ δκ̄4E{X2

∗}(E{∂gh1(q(G, ε))})2,

(11)

where G ∼ N (0, κ̄2E{X2
∗}) is independent of ε. Here, X∗

is the law of the limiting empirical distribution of the signal,
as defined in Section 2. For t ≥ 1, given µ̄t, Ω̄t, Σ̄t, let

(G,R1, . . . , Rt−1) ∼ N (0, Σ̄t),

St = ht(R1, . . . , Rt−1, Y ), where Y = q(G, ε), (12)
(X1, . . . Xt) = µ̄tX∗ + (W1, . . . ,Wt),

where (W1, . . . ,Wt) ∼ N (0, Ω̄t) is independent of X∗,

X̂t = ft(X1, . . . Xt). (13)

Let ∆̄t+1, Γ̄t+1 ∈ R(t+1)×(t+1) be symmetric matrices
with entries given by

(∆̄t+1)1,i = (∆̄t+1)i,1 = 0,

(∆̄t+1)i+1,j+1 = E{SiSj}, i, j ∈ [t], (14)

(Γ̄t+1)1,1 = E{X2
∗},

(Γ̄t+1)1,i+1 = (Γ̄t+1)i+1,1 = E{X∗X̂i},
(Γ̄t+1)i+1,j+1 = E{X̂iX̂j}, i, j ∈ [t]. (15)

Furthermore, let Ψ̄t+1, Φ̄t+1 denote the deterministic ver-
sions of the matrices Ψt+1,Φt+1 in (6), obtained by replac-
ing the empirical averages by expectations. Specifically, to
obtain Ψ̄t+1, Φ̄t+1 we replace the entries as follows:

〈∂kx̂t〉 → E{∂kX̂t} = E{∂Xk
ft(X1, . . . , Xt)},

〈∂kst〉 → E{∂kSt} = E{∂Rk
ht(R1, . . . , Rt−1, q(G, ε))},

〈∂gst〉→E{∂gSt}=E{∂ght(R1, . . . , Rt−1, q(g, ε))|g=G}.
(16)

We now describe how Σ̄t+1, Ω̄t+1, µ̄t+1 are computed from
Σ̄t, Ω̄t, µ̄t. Given Σ̄t, Ω̄t, µ̄t, we can evaluate the ma-
trices ∆̄t+1, Γ̄t+1, Ψ̄t+1, Φ̄t+1. From these, we compute
Σ̄t+1 ∈ R(t+1)×(t+1) as

Σ̄t+1 =

2t+1∑
j=0

κ̄2(j+1) Ξ
(j)
t+1, (17)

where Ξ
(0)
t+1 = Γ̄t+1, and for j ≥ 1:

Ξ
(j)
t+1 =

j∑
i=0

(Ψ̄t+1Φ̄t+1)i Γ̄t+1

(
(Ψ̄t+1Φ̄t+1)T

)j−i
+

j−1∑
i=0

(Ψ̄t+1Φ̄t+1)iΨ̄t+1∆̄t+1Ψ̄
T
t+1

(
(Ψ̄t+1Φ̄t+1)T

)j−i−1

.

(18)
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Recalling that Σ̄t+1 is the covariance of (G,R1, . . . , Rt),
we can now compute ∆̄t+2, Φ̄t+2 ∈ R(t+2)×(t+2). Using
these, we define a symmetric (t+ 2)× (t+ 2) matrix Ω′t+2,
whose first row and column equal zero and whose lower
right (t+ 1)× (t+ 1) submatrix equals Ω̄t+1. Specifically,

Ω′t+2 = δ

2(t+1)∑
j=0

κ̄2(j+1)Θ
(j)
t+2, (19)

where Θ
(0)
t+2 = ∆̄t+2, and for j ≥ 1:

Θ
(j)
t+2 =

j∑
i=0

(Φ̄t+2Ψ̄t+2)i ∆̄t+2

(
(Φ̄t+2Ψ̄t+2)T

)j−i
+

j−1∑
i=0

(Φ̄t+2Ψ̄t+2)i Φ̄t+2Γ̄t+2Φ̄
T
t+2

(
(Φ̄t+2Ψ̄t+2)T

)j−i−1

.

(20)

Then, the entries of the covariance matrix Ω̄t+1 ∈
R(t+1)×(t+1) are given by:

(Ω̄t+1)ij = (Ω′t+2)i+1,j+1, i, j ∈ [t+ 1]. (21)

Finally, we compute the mean parameter
µ̄t+1 =

(
M̄

β
t+2

)
t+2,1

, where

M̄
β
t+2 = δ

t+1∑
j=0

κ̄2(j+1) Φ̄t+2

(
Ψ̄t+2Φ̄t+2

)j
. (22)

Though the formulas for Θ
(j)
t+2 in (20) and M̄β

t+2 in (22)
contain Γ̄t+2 and Ψ̄t+2, the last rows and columns of these
matrices are zeroed out in the computation (due to the form
of ∆̄t+2 and Φ̄t+2). Therefore the formulas depend only
on the top left submatrices of Γ̄t+2 and Ψ̄t+2, namely, Γ̄t+1

and Ψ̄t+1. We also note that the matrices Ω̄t and Σ̄t are
the top left submatrices of Ω̄t+1 and Σ̄t+1, respectively.
Similarly, the mean vector µ̄t+1 is obtained by appending
µ̄t+1 to µ̄t.

Main result. Having defined the state evolution recursion
to compute µ̄t, Ω̄t, Σ̄t (which specify the joint distributions
in (12)-(13)), we are ready to state our main result. We
make the following assumption on the functions ft, ht used
in the AMP (4)-(5), for t ≥ 1:

(A1) The functions ft(X1, . . . , Xt) and
ht(R1, . . . , Rt−1, q(G, ε)) are Lipschitz in each
of their arguments. The partial derivatives
∂Xk

ft((X1, . . . , Xt)), ∂Ght(R1, . . . , Rt−1, q(G, ε)),
and ∂R`

ht(R1, . . . , Rt−1, q(G, ε)) are all continuous
on sets of probability 1, under the laws of (X1 . . . , Xt)
and (G,R1, . . . , Rt−1) given in (12)-(13).

Theorem 3.1. Consider a rotationally invariant generalized
linear model with the assumptions in Section 2 and the AMP
(4)-(5) with the assumption (A1) above. Let ψ : R2t+1 → R
and φ : R2t+2 → R be any pseudo-Lipschitz functions of
order 2. Then for each t ≥ 1, we almost surely have

lim
n→∞

1

d

d∑
i=1

ψ(x1
i , . . . , x

t
i, x̂

1
i , . . . , x̂

t
i, x
∗
i )

= E{ψ(X1, . . . , Xt, X̂1, . . . , X̂t, X∗)}, (23)

lim
n→∞

1

n

n∑
i=1

φ(r1
i , . . . , r

t
i , s

1
i , . . . , s

t+1
i , yi)

= E{φ(R1, . . . , Rt, S1, . . . , St+1, Y )}, (24)

where the random variables on the right are defined
in (12)-(13). Equivalently, as n → ∞, the joint em-
pirical distributions of (x1, . . . ,xt, x̂1, . . . , x̂t,x∗) and
(r1, . . . , rt, s1, . . . , st+1,y) converge almost surely in
Wasserstein-2 distance to (X1, . . . , Xt, X̂1, . . . , X̂t, X∗)
and (R1, . . . , Rt, S1, . . . , St+1, Y ), respectively.

The proof of the theorem is given in Appendix D, and we
provide a proof sketch in Section 5. When the design matrix
A has i.i.d. N (0, 1/n) entries, we have κ̄2 = δ and κ̄2k =
0 for k ≥ 2. In this case, the RI-GAMP (4)-(5), with
denoising functions of the form ft(x

t) and ht+1(rt,y),
reduces to the existing GAMP algorithm (Rangan, 2011).
The state evolution recursion also reduces to that of GAMP
(see, e.g., Section 4 of (Feng et al., 2021)). This opens up an
exciting research direction on using RI-GAMP to generalize
results where GAMP has been used as a proof technique
under Gaussian model assumptions. One example is to
determine the distributional properties of spectral estimators
for rotationally invariant GLMs.

MSE and correlation. The result (23) readily leads to
the evaluation of the usual quantities of interest, such as the
mean squared error (MSE) and the normalized squared cor-
relation. Indeed, by taking ψ(x̂ti, x

∗
i ) = (x̂ti−x∗i )2, we have

that 1
d‖x̂

t − x∗‖22 → E{(X̂t −X∗)2} for each t ≥ 1. Fur-
thermore, by taking ψ(x̂ti, x

∗
i ) = x̂ti ·x∗i , ψ(x̂ti) = (x̂ti)

2 and
ψ(x∗i ) = (x∗i )

2, we have that |〈x̂t,x∗〉|2/(‖x̂t‖2‖x∗‖2)
tends to (E{XtX∗})2/(E{X2

t }E{X2
∗}).

Empirical state evolution parameters. We can define
empirical versions of the state evolution parameters, de-
noted by Σt+1,Ωt+1,µt+1, by replacing Ψ̄k, Φ̄k, ∆̄k, Γ̄k
(k ∈ {t + 1, t + 2}) with Ψk,Φk,∆k,Γk in (18), (20),
and (22). The latter matrices are computed using empirical
averages instead of expectations: Φk,Ψk are defined in (6)
and for ∆k,Γk, we replace the expectations E{SiSj} and
E{X̂iX̂j} in (14)-(15) by 〈si, sj〉/n and 〈x̂i, x̂j〉/d. The
expectations E{X∗X̂i} in Γ̄k can be estimated for the case
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of posterior mean denoisers using the identity in (57). The-
orem 3.1 gives that the empirical versions of these matrices
converge to the deterministic ones almost surely, and there-
fore, Σt+1 → Σ̄t+1, Ωt+1 → Ω̄t+1, and µt+1 → µ̄t+1.
For the simulations in Section 4, RI-GAMP is implemented
with state evolution parameters empirically estimated, as
this choice leads to more stable numerical results.

Initialization. Note that the algorithm is initialized with
x1 = ATh1(y). If this initialization is not effective, in
the sense that 1

d 〈x
1,x∗〉 → 0, then state evolution remains

stuck at a trivial fixed point, i.e., µ̄t = 0 for all t, and
all the iterates produced by RI-GAMP are not correlated
with the signal.1 To address this issue, we can assume to
be given an initialization x1, which is correlated with x∗,
i.e., 1

d 〈x
1,x∗〉 → α > 0, and independent of A. Theo-

rem 3.1 still holds for such an initialization, with the only
change being in the initialization of the state evolution re-
cursion. Suppose that x1 W2−→ X1 for a random variable
X1 satisfying E{X1X∗} = α. Then, in the state evolu-
tion initialization (11), we set µ̄1 = E{X1X∗} = α and
Ω̄1 = E{(X1− µ̄1X∗)

2} (the parameter Σ̄1 is unchanged).
This ensures that state evolution is not stuck at a trivial fixed
point. A practical alternative to assuming an informative
initialization is to initialize AMP with a spectral estima-
tor. Analyzing RI-GAMP with spectral initialization is an
interesting direction for future research.

Choice of denoisers. The performance of RI-GAMP is
determined by the functions {ft, ht+1}t≥1. A key question
is how to choose these functions to optimize the estimation
performance. Given any choice of {ft, ht+1} satisfying
Assumption (A1), Theorem 3.1 implies

rt−1 W2−→ Rt−1 ≡
(Σ̄t)t,1
(Σ̄t)1,1

G + W ′t−1,

W ′t−1 ∼ N
(

0, (Σ̄t)t,t −
((Σ̄t)t,1)2

(Σ̄t)1,1

)
, t ≥ 2, (25)

xt
W2−→ Xt ≡ µ̄tX∗ + Wt,

Wt ∼ N (0, (Ω̄t)t,t) independent of X∗, t ≥ 1, (26)

where the RHS of (25) and (26) follow from the joint dis-
tributions specified in (12)-(13). From (26), we see that
the quality of the estimate in each iteration t is governed
by the ratio µ̄2

t/(Ω̄t)t,t. Thus, having fixed {fk, hk}k≤t−1,
the Bayes-optimal choice for ht(r1, . . . , rt−1, y) maximizes
µ̄2
t/(Ω̄t)t,t. Similarly, given {fk}k≤t−1 and {hk}k≤t, the

1For both linear regression and 1-bit compressed sensing, the
standard initialization x1 = ATh1(y) is effective. For a character-
ization of the GLMs for which this initialization is not effective for
a Gaussian design matrix A, see (3.13) in (Mondelli & Venkatara-
manan, 2021a) and the discussion therein. One important example
is phase retrieval (yi = |〈ai,x

∗〉|2 + εi).
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Figure 1: Normalized squared correlation between iterate
x̂t and signal x∗, as a function of the number of iterations
t. Solid lines represent state evolution predictions, and the
markers represent the empirical performance of RI-GAMP.

Bayes-optimal choice for ft(x1, . . . , xt) maximizes the nor-
malized squared correlation of Rt and G, which is pro-

portional to
(Σ̄t+1)2t+1,1

(Σ̄t+1)t+1,t+1
. We remark that, even when the

signal prior (i.e., the law of X∗) is known, finding these op-
timal denoisers is challenging due to the complicated nature
of the state evolution recursion (12)-(22). However, for the
special case of an i.i.d. Gaussian design, the state evolution
is considerably simpler and the Bayes-optimal choices are
(cf. Section 4.2 of (Feng et al., 2021)):

ft(xt) = c1E{X∗ | Xt = xt}, (27)
ht+1(rt, y) = c2(E{G|Rt = rt, Y = y}−E{G|Rt = rt}),

where c1, c2 are arbitrary non-zero constants. Here, for a
general rotationally invariantA, we propose the following
denoisers:

ft(x1, . . . , xt) = E{X∗ | X1 = x1, . . . , Xt = xt}, (28)
ht+1(r1, . . . , rt, y) =E{G|R1 = r1, . . . , Rt = rt, Y = y}

− E{G | R1 = r1, . . . , Rt = rt}. (29)

For an i.i.d. GaussianA, (28)-(29) reduce to (27), which is
provably Bayes-optimal. When A is not Gaussian, using
denoisers that depend on all the preceding iterates (instead
of only the most recent one) can have a remarkable impact
on the performance of RI-GAMP. In fact, in the setting
of Section 4 where the eigenvalues of A follow a Beta
distribution, taking (27) does not improve much over the
performance of the existing GAMP algorithm that assumes
A to be Gaussian (green curves in Figures 2-3). In contrast,
taking (28)-(29) leads to a performance close to VAMP (blue
curves). Though we do not expect the choices in (28)-(29)
to be optimal iteration-by-iteration, based on the simulation
results we conjecture that they achieve the same fixed point
as the Bayes-optimal denoisers.



Estimation in Rotationally Invariant Generalized Linear Models via AMP

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) δ = 1

0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) σ = 0.1

Figure 2: Linear regression with a Rademacher prior: nor-
malized squared correlation vs. noise level σ (on the left)
and vs. aspect ratio δ (on the right).

4. Numerical Simulations
For synthetic data, we consider two models: (i) linear regres-
sion, i.e., yi = 〈ai,x∗〉+εi, with εi ∼ N (0, σ2); (ii) noise-
less 1-bit compressed sensing, i.e., yi = sign(〈ai,x∗〉).
The design matrix A is rotationally invariant in law, i.e.,
A = OTΛQ, where O, Q are Haar orthogonal matrices,
and Λ has i.i.d.

√
6 · Beta(1, 2) diagonal entries. (The

normalization of the Beta(1, 2) distribution is chosen to
ensure a unit second moment.) In the simulations, the free
cumulants κ2k are replaced by their limits κ̄2k, which can be
obtained in closed-form (see Appendix A). We set d = 8000,
repeat each experiment for 10 independent runs, and report
the average and error bars at 1 standard deviation.

We implement the RI-GAMP given in (4)-(5), with initial-
ization s1 = y and x1 = ATs1. The denoisers ft and
ht+1, for t ≥ 1, are given by (28)-(29). The expressions for
these denoisers and the associated calculations are given in
Appendix B. The denoisers ft, ht+1 and their derivatives
depend on the state evolution parameters, which can be
estimated consistently from the data. The implementation
details are described at the end of Appendix B.

Figure 1 shows that the state evolution predictions closely
match the performance of RI-GAMP for practical values of
d and n, validating the result of Theorem 3.1. We plot the
normalized squared correlation 〈x̂t,x∗〉2/(‖x̂t‖2‖x∗‖2) as
a function of the iteration number. In (a), we consider
linear regression with a Rademacher prior, δ = 1 and
σ ∈ {0.1, 0.4, 0.7}; and in (b), noiseless 1-bit compressed
sensing with a Rademacher prior and δ ∈ {0.8, 1.6, 2.4}. In
all cases, the agreement between RI-GAMP and its SE is
excellent. The next two figures show that the performance
of RI-GAMP closely matches that of VAMP in a variety of
settings. The results for linear regression with a Rademacher
prior are shown in Figure 2: on the left, we plot the nor-
malized squared correlation as a function of σ, for δ = 1;
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Figure 3: Noiseless 1-bit compressed sensing: normalized
squared correlation vs. aspect ratio δ, for two priors.

on the right, we plot the same metric as a function of δ, for
σ = 0.1. Additional results for a different choice of δ and
σ are reported in Figure 6 in Appendix C. Figure 3 shows
the performance for noiseless 1-bit compressed sensing: we
plot the normalized squared correlation as a function of δ,
for two signal priors (Rademacher in (a), and Gaussian in
(b)). The red curve in each plot corresponds to RI-GAMP,
together with the related SE. The blue curve corresponds to
VAMP, together with the related SE. The implementation
details for VAMP are given at the end of Appendix B. The
green curve corresponds to the standard GAMP algorithm
which is derived based on the (incorrect) assumption that
A is i.i.d. Gaussian. The denoisers ft and ht+1 are given
by (27), which would be Bayes-optimal were the design
matrix A Gaussian. The implementation of GAMP is a
special case of our proposed RI-GAMP (obtained by set-
ting all the rectangular free cumulants except κ̄2 to 0). The
GAMP state evolution predictions (not shown in the plots)
do not match the performance of the algorithm, sinceA is
not Gaussian. Finally, the black curve corresponds to (i) the
linear minimum mean squared error (LMMSE) estimator
x̂ = AT(AAT + σI)−1y for linear regression, and (ii)
a subgradient method for 1-bit compressed sensing. This
last method minimizes ‖[y � sign(Ax)]−‖1 via subgradi-
ent descent (here, � denotes the Hadamard product and
[a]− = max{−a, 0} is applied component-wise). The algo-
rithm was proposed in (Jacques et al., 2013) for the recovery
of sparse signals, and the original version includes a sparsity
enforcing step. For our setup (with no sparsity), we run it
without the sparsity enforcing step, and the method reduces
to subgradient descent.

Performance of RI-GAMP vs. VAMP. Taking the re-
sults of Figures 2-3 together, we highlight that RI-GAMP
exhibits a performance close to VAMP. Recall that the
fixed points of the VAMP state evolution satisfy the replica
equation, whose solution is conjectured to give the Bayes-
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Figure 4: Running time of RI-GAMP vs. VAMP. The green curve shows the time for computing the free cumulants in
RI-GAMP, and the blue curve the time for the SVD in the initial step of VAMP.

optimal mean squared error; see Theorem 3 of Rangan et al.
(2019) for linear regression, and Theorem 4 of Pandit et al.
(2020) for the general case. Thus, this conjecture implies
that VAMP is Bayes-optimal when its state evolution has a
unique fixed point, and our numerical simulations suggest
that RI-GAMP is also near-optimal. We remark that, close
to the phase transition for exact recovery (see δ ≈ 0.6 in
Figure 2b, and δ ≈ 1.8 in Figure 3a), there is a (small)
performance gap between RI-GAMP and VAMP. This is
due to the fact that, for both RI-GAMP and VAMP, the num-
ber of iterations needed for convergence grows when the
algorithm operates close to this phase transition. We note
that VAMP shows a larger error bar for δ ≈ 1.8 in Figure
3a. For RI-GAMP, the issue is that the expressions of ft
and ht+1 depend on covariance matrices whose dimension
grows with t. For large t, these covariance matrices become
ill-conditioned and RI-GAMP is unstable. However, the
stability displayed by VAMP comes at the cost of requir-
ing the computationally expensive SVD of A. As shown
next, RI-GAMP is significantly faster than VAMP, and is
therefore an appealing alternative in many practical settings.

Complexity of RI-GAMP vs. VAMP. The computa-
tional complexity of VAMP is dominated by the initial SVD
which has O(d3) running time. In contrast, the free cumu-
lants required for RI-GAMP can be estimated inO(d2) time,
as described on p.4. Each iteration of RI-GAMP also takes
O(d2) time, and the algorithm typically converges in a few
tens of iterations.

Figure 4 shows the running times for VAMP (including
the initial SVD) and RI-GAMP (including the estimation
of the free cumulants from the data), for noiseless 1-bit
compressed sensing. The running time of VAMP is dom-
inated by the SVD, and the computational advantage of
RI-GAMP increases quickly with the problem dimension.
For δ := n

d ∈ [0.5, 4], RI-GAMP is 20-60× faster than
VAMP at d = 2000, 40-120× faster at d = 4000, and
80-240× faster at d = 8000.

Impact of eigenvalue distribution and prior. RI-GAMP
exploits the spectral distribution ofA, which gives a large
performance improvement over the GAMP designed for a
GaussianA. Furthermore, RI-GAMP also takes advantage
of the signal prior, which cannot be exploited by either the
LMMSE estimator (for linear regression) or the subgradient
method (for 1-bit compressed sensing). In fact, the subgra-
dient method has roughly the same correlation for the two
choices of the prior (cf. the black curves in Figure 3a and
3b), and is outperformed by RI-GAMP in both settings.

1-bit compressed sensing on a sparse image. In Figure
5, we consider noiseless 1-bit compressed sensing with the
input x∗ being the sparse grayscale image considered in
(Schniter & Rangan, 2014), with d = 2252 = 50625 and a
sparsity (fraction of non-black pixels) of 8645/50625. The
design matrix A is A = QnΠnΛΠdQd, where Qn, Qd

are orthonormal Discrete Cosine Transform (DCT) matri-
ces in n, d dimensions, Πn,Πd are random permutation
matrices, and Λ has i.i.d.

√
6 · Beta(1, 2) diagonal entries.

This choice ofA significantly speeds up matrix multiplica-
tions, as in (Tian et al., 2021). We report the average and
error bars at 1 standard deviation for 100 independent trials.
For RI-GAMP, we use a non-negative Bernoulli-Gaussian
prior (cf. (Schniter & Rangan, 2014) and (Vila & Schniter,
2014)); the expression for the corresponding denoiser ft is
in Appendix B. As shown in Figure 5a, RI-GAMP improves
on the subgradient method in (Jacques et al., 2013) up until
δ = 1.5 (this improvement is clearly visibile in the recon-
structions for δ = 0.8, see Figures 5c and 5d). For larger δ,
the performance of RI-GAMP does not improve further, due
to the aforementioned numerical instabilities. Additional
experiments on RGB images when the input x∗ is obtained
via a wavelet transform are reported in Appendix C.

5. Proof Sketch of Theorem 3.1
The proof is based on an auxiliary AMP algorithm whose
iterates mimic the true AMP in (4)-(5). The iterates of the
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Figure 5: RI-GAMP versus subgradient method for the recovery of a sparse image from 1-bit measurements.

auxiliary AMP, denoted by zt,vt ∈ Rd and vt,ut+1 ∈ Rn,
are computed as follows, for t ≥ 1:

zt = ATut −
t−1∑
i=1

btiv
i, vt = f̃t(z

1, . . . ,zt, x∗), (30)

mt=Avt−
t∑
i=1

atiu
i, ut+1 =h̃t+1(m1, . . . ,mt, ε). (31)

The iteration is initialized with u1 = 0, z1 = 0. The
function f̃1 : R2 → R is defined as f̃1(z1, x) = x, which
yields v1 = x∗ and m1 = Ax∗ = g. For t ≥ 1, the
functions f̃t+1 : Rt+2 → R and h̃t+1 : Rt+1 → R, which
act row-wise on matrices, are defined as

f̃t+1(z1, . . . , zt+1, x)

= ft(z2 + µ̄1x, z3 + µ̄2x, . . . , zt+1 + µ̄tx), (32)

h̃t+1(m1, . . . ,mt, ε) = ht(m2, . . . ,mt, q(m1, ε)).

Here, ft, ht are the functions from the original AMP, and
(µ̄1, . . . , µ̄t) are the state evolution parameters computed
according to (22). The debiasing coefficients {ati}ti=1 and
{bti}t−1

i=1 for the auxiliary AMP are given in Appendix D.1.

Idea of the proof. The auxiliary AMP (30)-(31) is an in-
stance of the abstract AMP recursion for non-symmetric ro-
tationally invariant matrices, which was analyzed in (Zhong
et al., 2021). The state evolution result in Theorem 2.6 of
(Zhong et al., 2021) implies that the joint empirical dis-
tribution of (m1, . . . ,mt) converges to a t-dimensional
Gaussian N (0, Σ̃t). Similarly, the joint empirical distri-
bution of (z1, . . . ,zt) also converges to a a t-dimensional
Gaussian N (0, Ω̃t). The covariance matrices Σ̃t, Ω̃t are
recursively defined via the state evolution for the auxiliary
AMP (for details, see Section D.2).

The proof of Theorem 3.1 consists of two steps. First, we
show that the state evolution parameters of the auxiliary
AMP match those of the true AMP. In particular, Lemma
D.2 proves that Σ̃t = Σ̄t and Ω̃t+1 = Ω′t+1, where the
matrices on the right are defined in (17) and (19). Next,

we show in Lemma D.3 that the true AMP iterates (4)-
(5) are close to the auxiliary AMP iterates (30)-(31) in the
following sense. For t ≥ 1:

‖xt − (zt+1 + µ̄tx
∗)‖2

d
→ 0,

‖x̂t − vt+1‖2

d
→ 0,

‖rt −mt+1‖2

n
→ 0,

‖st − ut+1‖2

n
→ 0. (33)

Lemma D.3 actually proves a more general convergence
statement which implies (33). It shows that the empirical
joint distribution of the iterates of the true AMP converges
to that of the auxiliary AMP. The result of Theorem 3.1 then
follows from Lemmas D.2 and D.3.
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A. Background on Rectangular Free Cumulants
Let X be a random variable of finite moments of all orders, and denote its even moments by m2k = E{X2k}. In this
paper, X2 represents either the empirical eigenvalue distribution of AAT ∈ Rn×n, or its limit law Λ2 (in the latter case,
the moments and rectangular free cumulants are denoted by {m̄2k}k≥1 and {κ̄2k}k≥1, respectively). The rectangular free
cumulants {κ2k}k≥1 of X are defined recursively by the moment-cumulant relations (cf. Section 3 of (Benaych-Georges,
2009))

m2k = δ
∑

π∈NC′(2k)

∏
S∈π

minS is odd

κ|S|
∏
S∈π

minS is even

κ|S|, (34)

where NC′(2k) is the set of non-crossing partitions π of {1, . . . , 2k} such that each set S ∈ π has even cardinality.
Furthermore, by exploiting the connection between the formal power series with coefficients {m2k}k≥1 and {κ2k}k≥1,
each rectangular free cumulant κ2k can be computed from m2, . . . ,m2k and κ2, . . . , κ2(k−1) as (cf. Lemma 3.4 of
(Benaych-Georges, 2009))

κ2k = m2k − [zk]

k−1∑
j=1

κ2j (z(δM(z) + 1)(M(z) + 1))
j
, (35)

where M(z) =
∑∞
k=1m2kz

k and [zk](q(z)) denotes the coefficient of zk in the polynomial q(z).

In the numerical simulations of Section 4, the singular values of A are i.i.d.
√

6 · Beta(1, 2). Hence, for δ ∈ (0, 1), X
has distribution

√
6 · Beta(1, 2) and consequently m̄2k = 6k

(k+1)(2k+1) ; for δ ≥ 1, X has distribution
√

6 · Beta(1, 2) w.p.

1/δ and it is equal to 0 w.p. 1 − 1/δ, and consequently m̄2k = 1
δ

6k

(k+1)(2k+1) . Then, given the moments {m̄2k}k≥1, the
rectangular free cumulants {κ̄2k}k≥1 are computed recursively using (35).

B. Computation of Denoisers, and Implementation Details
Computation of ft for Rademacher prior. Here, P(X∗ = 1) = P(X∗ = −1) = 1/2. Hence, (28) can be specialized as:

ft(x1, . . . , xt) = E{X∗ | X1 = x1, . . . , Xt = xt} = 2 · P(X∗ = 1 | X1 = x1, . . . , Xt = xt)− 1. (36)

From (13), we have that (X1, . . . , Xt) = µ̄tX + (W1, . . . ,Wt), with (W1, . . . ,Wt) ∼ N (0, Ω̄t). Thus,

P (X∗ = 1 | X1 = x1, . . . , Xt = xt) =

exp

(
−(x− µ̄t)T(Ω̄t)

−1(x− µ̄t)
2

)
exp

(
−(x− µ̄t)T(Ω̄t)

−1(x− µ̄t)
2

)
+ exp

(
−(x+ µ̄t)

T(Ω̄t)
−1(x+ µ̄t)

2

) ,
(37)

where x = (x1, . . . , xt)
T. (All vectors in this section, including x and µ̄t, are treated as column vectors, unless otherwise

mentioned.) Combining (36) and (37), we obtain

ft(x1, . . . , xt) = tanh
(
µ̄T
t (Ω̄t)

−1x
)
. (38)

Furthermore, the partial derivatives of ft can be expressed in the following compact form:

∂xi
ft(x1, . . . , xt) =

(
1− tanh2

(
µ̄T
t (Ω̄t)

−1x
))
µ̄T
t (Ω̄t)

−1ei, for i ∈ [t], (39)

where ei is the vector corresponding to the i-th element of the canonical basis of Rt.

Computation of ft for Gaussian prior. Here, X∗ ∼ N (0, 1). By evaluating explicitly the conditional expectation, one
readily obtains that

ft(x1, . . . , xt) = E{X∗ | X1 = x1, . . . , Xt = xt} =
µ̄T
t (Ω̄t)

−1x

1 + µ̄T
t (Ω̄t)−1µ̄t

, (40)

which leads to the following expressions for the partial derivatives:

∂xift(x1, . . . , xt) =
µ̄T
t (Ω̄t)

−1ei
1 + µ̄T

t (Ω̄t)−1µ̄t
, for i ∈ [t], (41)
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Computation of ft for non-negative Bernoulli-Gaussian prior. Here, X∗ is equal to 0 with probability 1 − λ and
it is distributed according to the modulus of a Gaussian with 0 mean and variance σ2 with probability λ, i.e., X∗ ∼
(1− λ)δ0 + λN+(0, σ2). The parameter λ is taken to be 1/6, which is close to the actual sparsity of the image given by
8645/50625; the parameter σ2 is taken to be 1/λ, which gives E{X2

∗} = 1, and the image is normalized to have unit second
moment. Now, we can write

ft(x1, . . . , xt) = E{X∗ | X1 = x1, . . . , Xt = xt} =
EX∗{X∗ P(X1 = x1, . . . , Xt = xt | X∗)}
EX∗ {P(X1 = x1, . . . , Xt = xt | X∗)}

, (42)

where EX∗ denotes the expected value with respect to X∗. Using that (X1, . . . , Xt) = µ̄tX∗ + (W1, . . . ,Wt) with
(W1, . . . ,Wt) ∼ N (0, Ω̄t), it is straightforward to compute the expectations on the RHS, which yields

ft(x1, . . . , xt) =

λ√
2πσ2

[ √
πb√
2a3

exp
(
b2

8a

)(
1 + Erf

(
b√
8a

))
+ 2

a

]
1− λ+ λ√

aσ2
exp

(
b2

8a

) (
1 + Erf

(
b√
8a

)) , (43)

where a = 1/σ2 + µ̄T
t (Ω̄t)

−1µ̄t, b = 2µ̄T
t (Ω̄t)

−1x, x = (x1, . . . , xt), and Erf is the error function.
To compute the derivative, we write ∂xi

ft(x1, . . . , xt) = ∂bft(x1, . . . , xt)∂xi
b. Since ∂xi

b = 2µ̄T
t (Ω̄t)

−1ei, after some
manipulations, one obtains

∂xi
ft(x1, . . . , xt) =

2 λ√
2πσ2

[
b

2a2 +
√
π√

2a3

(
1 + b2

4a

)
exp

(
b2

8a

)(
1 + Erf

(
b√
8a

))]
1− λ+ λ√

aσ2
exp

(
b2

8a

) (
1 + Erf

(
b√
8a

)) µ̄T
t (Ω̄t)

−1ei

−
λ√

2πσ2

( √
πb√
2a3

exp
(
b2

8a

)(
1 + Erf

(
b√
8a

))
+ 2

a

)
(

1− λ+ λ√
aσ2

exp
(
b2

8a

) (
1 + Erf

(
b√
8a

)))2

· 2
(

λ

a
√

2πσ2
+

λb

4
√
a3σ2

exp

(
b2

8a

)(
1 + Erf

(
b√
8a

)))
µ̄T
t (Ω̄t)

−1ei. (44)

Computation of ht+1 for linear regression. In this case, we have Y = G+W , where W ∼ N (0, σ2). For t = 0, we
set h1(y) = y and consequently

∂gh1(y) = 1. (45)

For t > 0, ht+1 is defined as in (29). From (12), we have that (G,R1, . . . , Rt) ∼ N (0, Σ̄t+1). Thus, the second conditional
expectation in (29) can be expressed as

E{G | R1 = r1, . . . , Rt = rt} = (Σ̄t+1)[1,2:t+1]

(
(Σ̄t+1)[2:t+1,2:t+1]

)−1
r, (46)

where r = (r1, . . . , rt)
T. Note that (G,R1, . . . , Rt, Y ) ∼ N (0, S̄t+2), where

S̄t+2 :=

[
Σ̄t+1 (Σ̄t+1)[1:t+1,1]

(Σ̄t+1)[1,1:t+1] E{Y 2}

]
.

Here, we denote by (A)[i1:i2,j1:j2] the submatrix obtained by taking the rows ofA from i1 to i2 and the columns ofA from
j1 to j2 (if i1 = i2 or j1 = j2, the second index is omitted). Thus, the first conditional expectation in (29) can be expressed
as

E{G | R1 = r1, . . . , Rt = rt, Y = y} = (S̄t+2)[1,2:t+2]

(
(S̄t+2)[2:t+2,2:t+2]

)−1
[
r
y

]
. (47)

By combining (46) and (47), we obtain

ht+1(r1, . . . , rt, y) = E{G | R1 = r1, . . . , Rt = rt, Y = y} − E{G | R1 = r1, . . . , Rt = rt}

= (S̄t+2)[1,2:t+2]

(
(S̄t+2)[2:t+2,2:t+2]

)−1
[
r
y

]
− (Σ̄t+1)[1,2:t+1]

(
(Σ̄t+1)[2:t+1, 2:t+1]

)−1
r.

(48)
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Furthermore, the partial derivatives of ht+1 can be expressed in the following compact form:

∂riht+1(r1, . . . , rt, y) = (S̄t+2)[1,2:t+2]

(
(S̄t+2)[2:t+2,2:t+2]

)−1
[
ei
0

]
− (Σ̄t+1)[1,2:t+1]

(
(Σ̄t+1)[2:t+1,2:t+1]

)−1
ei, for i ∈ [t],

∂ght+1(r1, . . . , rt, y) = (S̄t+2)[1,2:t+2]

(
(S̄t+2)[2:t+2,2:t+2]

)−1
et+1.

(49)

Computation of ht+1 for noiseless 1-bit compressed sensing. In this case, we have that Y = sign(G), which implies
that

P(Y = 1 | G = g) =
1 + sign(g)

2
, P(Y = −1 | G = g) =

1− sign(g)

2
. (50)

For t = 0, we set h1(y) = y and consequently

E{∂gh1(Y )} = E{∂gsign(G)} =
E{G sign(G)}

E{G2}
=

√
2

πE{G2}
, (51)

where the first equality follows from the definition of h1 and y, and the second equality is obtained by recalling that G is
Gaussian with zero mean and by applying Stein’s lemma. For t > 0, ht+1 is defined as in (29). Since (G,R1, . . . , Rt) ∼
N (0, Σ̄t+1), the conditional distribution of G given (R1 = r1, . . . , Rt = rt) is N (r̂t, σ̂

2
t ) where

r̂t = E{G | R1 = r1, . . . , Rt = rt} = (Σ̄t+1)[1,2:t+1]

(
(Σ̄t+1)[2:t+1,2:t+1]

)−1
r,

σ̂2
t = E{G2} − (Σ̄t+1)[1,2:t+1]

(
(Σ̄t+1)[2:t+1, 2:t+1]

)−1
(Σ̄t+1)[2:t+1,1].

(52)

We therefore have

E{G | R1 = r1, . . . , Rt = rt, Y = y} = E{G | R̂t = r̂t, Y = y} =

EZ
{

(r̂t + σ̂tZ)
1 + sign(y(r̂t + σ̂tZ))

2

}
EZ
{

1 + sign(y(r̂t + σ̂tZ))

2

} , (53)

where Z ∼ N (0, 1), EZ indicates that the expectation is taken over Z, and in the second line we use (50). As E{G | R1 =
r1, . . . , Rt = rt} = r̂t, (53) readily implies that

ht+1(r1, . . . , rt, y) =

σ̂tEZ
{
Z

1 + sign(y(r̂t + σ̂tZ))

2

}
EZ
{

1 + sign(y(r̂t + σ̂tZ))

2

} =

σ̂t φ

(
r̂t
σ̂t

)
y + 1

2
− Φ

(
− r̂t
σ̂t

) , (54)

where φ(x) = 1√
2π

exp(−x2/2), and Φ(x) =
∫ x
−∞ φ(t) dt. The second equality in (54) is obtained by computing the

expectations and using the fact that y ∈ {−1, 1}.

For the partial derivatives of ht+1, we note that ∂riht+1 = ∂ht+1

∂r̂t
∂r̂t
∂ri

, and

∂r̂t
∂ri

= (Σ̄t+1)[1,2:t+1]

(
(Σ̄t+1)[2:t+1,2:t+1]

)−1
ei, i ∈ [t].

Thus, by using (54) to compute ∂ht+1

∂r̂t
, after some manipulations, we have that

∂riht+1(r1, . . . , rt, y) =

−φ2

(
r̂t
σ̂t

)
− r̂t
σ̂t
φ

(
r̂t
σ̂t

)(
y + 1

2
− Φ

(
− r̂t
σ̂t

))
(
y + 1

2
− Φ

(
− r̂t
σ̂t

))2 · (Σ̄t+1)[1,2:t+1]

(
(Σ̄t+1)[2:t+1,2:t+1]

)−1
ei.

(55)
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Figure 6: Additional numerical results for linear regression with a
Rademacher prior: normalized squared correlation vs. noise level σ (on
the left) and vs. aspect ratio δ (on the right).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: Comparison between the
normalized squared correlation of RI-
GAMP and of a subgradient method
for the recovery of an image from 1-
bit measurements of its wavelet trans-
form.

Finally, for the partial derivative with respect to g, we have

E {∂ght+1(R1, . . . , Rt, Y )} = E
{
ht+1(R1, . . . , Rt, Y )

E {G | R1, . . . , Rt, Y } − E {G | R1, . . . , Rt}
Var(G | R1, . . . Rt)

}
=

1

σ̂2
t

E
{
ht+1(R1, . . . , Rt, Y )2

}
, (56)

where the first equality follows from Stein’s lemma (see e.g. (A.8) of (Mondelli & Venkataramanan, 2021a)), and in the
second equality we use the definition (29) of ht+1 and that Var(G | R1, . . . Rt) = σ̂2

t (see (52)).

Implementation details. RI-GAMP: We use consistent empirical estimates for the state evolution parameters required for
the posterior mean denoisers and their partial derivatives. These estimates are computed as described on p.6. To estimate the
first row and column of Γ̄t+1, we use the definition (28) and the tower property of conditional expectation:

(Γ̄t+1)1,i+1 = E {X∗fi(X1, . . . , Xi)} = E
{
fi(X1, . . . , Xi)

2
}
, i ∈ [t]. (57)

Therefore, one can consistently estimate (Γ̄t+1)1,i+1 via ‖fi(x1, . . . ,xi)‖2/d. The partial derivatives for the matrix Ψt+1

(defined in (6)) are computed using (39) (for Rademacher prior) and (41) (for Gaussian prior). The partial derivatives for
the matrix Φt+1 (again, defined in (6)) are computed using (49) (for linear regression) and (55)-(56) (for 1-bit compressed
sensing). For the quantity 〈∂gh1(y)〉, we use the deterministic limit E{∂gh1(Y )} which is given in the two settings by (45)
and (51), respectively.

VAMP: Our implementation of VAMP is based on Algorithm 2 in (Schniter et al., 2016) and the corresponding state evolution
is derived from (Pandit et al., 2020)2. To ensure numerical stability, we clipped the αi and βi in Algorithm 2 to lie in
[tol, 1− tol], where tol = 10−11.

C. Additional Numerical Results
In Figure 6, we provide additional numerical results for the model of linear regression with a Rademacher signal prior: on
the left, we plot the normalized squared correlation as a function of σ, for δ = 0.7; and on the right, we plot the same metric
as function of δ, for σ = 0.4. The results showcase a similar qualitative behavior as discussed in Section 4: the performance
of RI-GAMP is close to that of VAMP, except when approaching the phase transition for exact recovery (σ ≈ 0.2 in Figure
6a); and RI-GAMP significantly improves upon algorithms that do not take into account the signal prior (LMMSE) or the
spectrum of the noise (Gauss AMP).

2See also the code available at https://sourceforge.net/projects/gampmatlab/.
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(a) Original image (b) RI-GAMP, δ = 0.5 (c) Subgradient, δ = 0.5

Figure 8: Reconstruction provided by RI-GAMP and by a subgradient method from 1-bit measurements of the wavelet
transform of an RGB image.

In Figure 7, we consider noiseless 1-bit compressed sensing. The input x∗ is the Haar wavelet transform of the RGB image
in Figure 8a. We process the three channels (R, G, B) separately and the input dimension is d = 820× 1280 = 1049600.
The design matrixA is given byA = QnΠnΛΠdQd, whereQn,Qd are orthonormal Discrete Cosine Transform (DCT)
matrices in n, d dimensions, Πn,Πd are random permutation matrices, and Λ has i.i.d.

√
6 ·Beta(1, 2) diagonal entries. We

compare the performance of RI-GAMP against the subgradient method from (Jacques et al., 2013). For the wavelet transform
we use the implementation given in (Lee et al., 2019). For RI-GAMP we use the same non-negative Bernoulli-Gaussian
prior employed for the satellite image (cf. Figure 5 in Section 4). Since there is no clear way to define the true sparsity of the
signal in this setting, we fix δ = 0.5 and optimize over the sparsity rate for both algorithms, which yields a sparsity of 1/10
(i.e., assuming that 1/10 entries are non-zero) for RI-GAMP and of 1/20 for the subgradient method. We also note that
the performance of the algorithms around these values is quite stable, so we don’t expect the precise choice of the sparsity
rate to matter much for the chosen range of δ. In Figure 7, we report the normalized squared correlation averaged over
the 3 channels and error bars at 1 standard deviation for 100 random trials. We remark that RI-GAMP improves upon the
subgradient method for δ up to 1 and, for larger δ, its performance does not increase noticeably due to the already discussed
numerical instabilities. The reconstructions provided by RI-GAMP and by the subgradient method for δ = 0.5 are also
compared in Figure 8.

D. Proof of Theorem 3.1
D.1. Debiasing Coefficients for the Auxiliary AMP

The debiasing coefficients {ati}ti=1 and {bti}t−1
i=1 for the auxiliary AMP in (30)-(31) are defined in terms of two t× t lower

triangular matrices, Ψ̂t and Φ̂t, given by

Ψ̂t =


0 0 . . . . . . 0
0 〈∂2v

2〉 0 . . . 0
0 〈∂2v

3〉 〈∂3v
3〉 . . . 0

...
...

...
. . .

...
0 〈∂2v

t〉 〈∂3v
t〉 . . . 〈∂tvt〉

 , Φ̂t =


0 0 . . . 0 0

〈∂1u
2〉 0 . . . 0 0

〈∂1u
3〉 〈∂2u

3〉 . . . 0 0
...

...
. . .

...
...

〈∂1u
t〉 〈∂2u

t〉 . . . 〈∂t−1u
t〉 0

 , (58)

where

∂kv
t = ∂zk f̃t(z

1, . . . ,zt,x∗) = ∂k−1ft−1(z2 + µ̄1x, . . . , z
t + µ̄t−1x

∗), k ≥ 2,

∂1u
t = ∂ght−1(m2, . . . ,mt−1, q(g, ε))

∣∣∣
g=m1

,

∂ku
t = ∂mk

h̃t(m
1, . . . ,mt−1, ε) = ∂k−1ht−1(m2, . . . ,mt−1, q(m1, ε)), k ≥ 2. (59)
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Here, ∂k−1ft−1 and ∂k−1ht−1 denote the partial derivatives with respect to the (k − 1)-th input variable. Next, define
matricesM a

t ,M
b
t ∈ Rt×t as:

M a
t =

t∑
j=0

κ2(j+1)Ψ̂t(Φ̂tΨ̂t)
j ,

Mb
t = δ

t−1∑
j=0

κ2(j+1)Φ̂t(Ψ̂tΦ̂t)
j . (60)

Then, the coefficients {ati}ti=1 and {bti}t−1
i=1 are obtained from the last row ofM a

t andMb
t as:

(at1, . . . , att) = ( (M a
t)t,1, . . . , (M

a
t)t,t ),

(bt1, . . . , bt,t−1) = ( (Mb
t )t,1, . . . , (M

b
t )t,t−1 ).

(61)

D.2. State Evolution for Auxiliary AMP

Using Theorem 2.6 of (Zhong et al., 2021), we first establish a state evolution result for the auxiliary AMP (30)-(31). We
will show in Proposition D.1 that the joint empirical distribution of (m1, . . . ,mt) converges to a t-dimensional Gaussian
N (0, Σ̃t), and the joint empirical distribution of (z1, . . . ,zt) converges to a a t-dimensional Gaussian N (0, Ω̃t).

The covariance matrices are defined recursively for t ≥ 1, starting with Ω̃1 = 0 and Σ̃1 = κ̄2E{X2
∗}. Given (Ω̃t, Σ̃t), let

(Z1 = 0, Z2, . . . , Zt) ∼ N (0, Ω̃t), Vt = ft−1(Z2 + µ̄1X∗, Z3 + µ̄2X∗, . . . , Zt + µ̄t−1, X∗), (62)

(M1, . . . ,Mt) ∼ N (0, Σ̃t), Ut+1 = ht(M2, . . . ,Mt, q(M1, ε)). (63)

In (62), (Z2, . . . , Zt) and X∗ are independent, and we define V1 = X∗ and U1 = 0.

Let ∆̃t+1, Γ̃t+1 ∈ R(t+1)×(t+1) be symmetric matrices with entries given by

(∆̃t+1)ij = E{UiUj}, (Γ̃t+1)ij = E{ViVj}, 1 ≤ i, j ≤ (t+ 1). (64)

Furthermore, we define Ψ̃t+1, Φ̃t+1 ∈ R(t+1)×(t+1) as the deterministic versions of the matrices Ψ̂t+1, Φ̂t+1. Specifically,

Ψ̃t+1 =


0 0 0 . . . 0
0 E{∂1f1} 0 . . . 0
0 E{∂1f2} E{∂2f2} . . . 0
...

...
...

. . .
...

0 E{∂1ft} E{∂2ft} . . . E{∂tft}

 , Φ̃t+1 =


0 0 . . . 0 0

E{∂gh1} 0 . . . 0 0
E{∂gh2} E{∂1h2} . . . 0 0

...
...

. . .
...

...
E{∂ght} E{∂1ht} . . . E{∂t−1ht} 0

 ,

(65)

where we have used the shorthand
E{∂kf`} ≡ E{∂kf`(Z2 + µ̄1X∗, Z3 + µ̄2X∗, . . . , Z`+1 + µ̄`X∗)},
E{∂gh`} ≡ E{∂gh`(M2, . . . ,M`, q(g, ε))|g=M1

},
E{∂kh`} ≡ E{∂kh`(M2, . . . ,M`, q(M1, ε))}.

(66)

From these matrices, we compute the covariances Σ̃t+1, Ω̃t+1 ∈ R(t+1)×(t+1) as:

Σ̃t+1 =

2t+1∑
j=0

κ̄2(j+1) Ξ̃
(j)

t+1, Ω̃t+1 = δ

2t∑
j=0

κ̄2(j+1) Θ̃
(j)

t+1, (67)

where Ξ̃
(0)

t+1 = Γ̃t+1, Θ̃
0

t+1 = ∆̃t+1, and for j ≥ 1:

Ξ̃
(j)

t+1 =

j∑
i=0

(Ψ̃t+1Φ̃t+1)i Γ̃t+1

(
(Ψ̃t+1Φ̃t+1)T

)j−i
+

j−1∑
i=0

(Ψ̃t+1Φ̃t+1)i Ψ̃t+1∆̃t+1Ψ̃
T

t+1

(
(Ψ̃t+1Φ̃t+1)T

)j−i−1

,

Θ̃
(j)

t+1 =

j∑
i=0

(Φ̃t+1Ψ̃t+1)i ∆̃t+1

(
(Φ̃t+1Ψ̃t+1)T

)j−i
+

j−1∑
i=0

(Φ̃t+1Ψ̃t+1)i Φ̃t+1Γ̃t+1Φ̃
T

t+1

(
(Φ̃t+1Ψ̃t+1)T

)j−i−1

.

(68)
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We note that computing the last column and row of Γ̃t+1, Ψ̃t+1 requires knowledge of Ω̃t+1. However, these entries are

zeroed out in the computation of Ξ̃
(j)

t+1, Θ̃
(j)

t+1 in (68), and hence only Γ̃t, Ψ̃t are required to compute Σ̃t+1, Ω̃t+1 via (67).

Proposition D.1 (State evolution for auxiliary AMP). Consider the auxiliary AMP in (30)-(31) and the state evolution
random variables defined in (62)-(63). Let ψ̃ : R2t+1 → R and φ̃ : R2t+2 → R be any pseudo-Lipschitz functions of order
2. Then for each t ≥ 1, we almost surely have

lim
n→∞

1

d

d∑
i=1

ψ̃(z2
i , . . . , z

t+1
i , v2

i , . . . , v
t+1
i , x∗i ) = E{ψ̃(Z2, . . . Zt+1, V2, . . . , Vt+1, X∗)}, (69)

lim
n→∞

1

n

n∑
i=1

φ̃(m1
i , . . . ,m

t
i, u

1
i , . . . , u

t+1
i , εi) = E{φ̃(M1, . . . ,Mt, U1, . . . , Ut+1, ε)}. (70)

Equivalently, as n→∞, almost surely:

(z2, . . . ,zt+1, v2, . . . ,vt+1, x∗)
W2−→ (Z2, . . . , Zt, V2, . . . , Vt+1, X∗),

(m1, . . . ,mt, u1, . . . ,ut+1, ε)
W2−→ (M1, . . . ,Mt, U1, . . . , Ut+1, ε).

The proposition follows directly from Theorem 2.6 in (Zhong et al., 2021) as the auxiliary AMP in (30)-(31) is of the
standard form for which that state evolution result applies. That result is proved for δ = n

d ≤ 1 under two sets of assumptions
(cf. Assumptions 2.4 and 2.5 in (Zhong et al., 2021)). The first set of assumptions concerns the design matrix, and these
coincide with the ones we describe in Section 2. The second set concerns the empirical distribution of the signal and noise
vectors, and the functions f̃t, h̃t used in the auxiliary AMP. This set of assumptions is also satisfied since x∗ ∈ Rd and
ε ∈ Rn are both independent of the design matrixA and satisfy x∗ W2→ X∗ and ε W2→ ε. Furthermore, our assumption (A1)
(see p.5) ensures that the required Lipschitz and continuity conditions on f̃t, h̃t and their partial derivatives are satisfied.
Therefore, for δ ≤ 1, the iteration in (30)-(31) satisfies all the assumptions under which Theorem 2.6 in (Zhong et al., 2021)
holds. Finally, for the case δ > 1, we can rewrite the auxiliary AMP in terms ofA′ ≡ AT and then apply Theorem 2.6 in
(Zhong et al., 2021).

We conclude this section by showing that the state evolution of the auxiliary AMP described above is equivalent to the state
evolution of the proposed AMP algorithm described in Section 3.

Lemma D.2 (Equivalence of state evolution between true and auxiliary AMP). For t ≥ 1, we have that

(M1, . . . ,Mt)
d
= (G,R1, . . . , Rt−1) ∼ N (0, Σ̄t),

(Z2, . . . , Zt+1)
d
= (X1 − µ̄1X∗, . . . , Xt − µ̄tX∗) ∼ N (0, Ω̄t),

(71)

where the random variables on the left are defined in (62)-(63), and the random variables on the right are defined in
(12)-(13).

Proof. We will prove by induction that Σ̃t = Σ̄t and Ω̃t+1 = Ω′t+1, where the matrices on the left are defined via (67)
and the matrices on the right are defined via (17) and (19). The result of the lemma then follows since (M1, . . . ,Mt) ∼
N (0, Σ̃t), (Z1 = 0, Z2, . . . , Zt+1) ∼ N (0, Ω̃t+1) and Ω̄t is the lower right t× t submatrix of Ω′t+1 ∈ R(t+1)×(t+1).

For t = 1, by the initialization in (63), M1 ∼ N (0, Σ̃1) where Σ̃1 = κ2E{X2
∗} = Σ̄1, where the last equality is from (11).

From (67), the matrix Ω̃2 can be computed as

Ω̃2 =

(
0 0
0 δκ̄2E{h1(q(M1, ε))

2} + δκ̄4E{V 2
1 }(E{∂gh1(q(M1, ε))})2

)
. (72)

Since V1
d
= X∗ and M1

d
= G, the matrix above equals Ω′2 (defined via (19)).

Assume towards induction that Σ̃k = Σ̄k and Ω̃k+1 = Ω′k+1 for some k ≥ 1. Recalling that (M1, . . . ,Mk) ∼ N (0, Σ̃k)

and (Z1 = 0, . . . , Zk+1) ∼ Ω̃k+1, using the induction hypothesis in the definitions of ∆̃k+1, Γ̃k+1, Φ̃k+1, Ψ̃k+1 in
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(64)-(66), we obtain that

∆̃k+1 = ∆̄k+1, Γ̃k+1 = Γ̄k+1, Φ̃k+1 = Φ̄k+1, Ψ̃k+1 = Ψ̄k+1, (73)

where ∆̄k+1, Γ̄k+1, Φ̄k+1, Ψ̄k+1 are defined via Σ̄k and Ω̄k in (14)-(16). It follows from the definitions in (17) and (67)
that Σ̃k+1 = Σ̄k+1. This then implies that Φ̃k+2 = Φ̄k+2 and ∆̃k+2 = ∆̄k+2. Using these in the definitions in (68) and

(20), we obtain that Θ̃
(j)

k+2 = Θ
(j)
k+2, and consequently, Ω̃k+2 = Ω′k+2. This completes the proof of the induction step, and

gives the desired result.

D.3. Proof of Theorem 3.1

At this point, Theorem 3.1 follows from the following intermediate result, whose proof is deferred to Section D.4.

Lemma D.3. For any order 2 pseudo-Lipschitz functions ψ : R2t+1 → R and φ : R2t+2 → R, the following limits hold
almost surely for t ≥ 1:

lim
n→∞

∣∣∣∣∣1d
d∑
i=1

ψ(x1
i , . . . , x

t
i, x̂

1
i , . . . , x̂

t
i, x
∗
i ) −

1

d

d∑
i=1

ψ(z2
i + µ̄1x

∗
i , . . . , z

t+1
i + µ̄tx

∗
i , v

2
i , . . . , v

t+1
i , x∗i )

∣∣∣∣∣ = 0, (74)

lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

φ(r1
i , . . . , r

t
i , s

1
i , . . . , s

t+1
i , yi) −

1

n

n∑
i=1

φ(m2
i , . . . ,m

t+1
i , u2

i , . . . , u
t+2
i , q(m1

i , εi))

∣∣∣∣∣ = 0. (75)

Proof of Theorem 3.1. Applying (69) to the pseudo-Lipschitz function

ψ̃(z2, . . . , zt+1, v2, . . . , vt+1, x∗) = ψ(z2 + µ̄1x∗, . . . , zt+1 + µ̄tx∗, v2, . . . , vt+1, x∗),

we obtain that almost surely

lim
n→∞

1

d

d∑
i=1

ψ(z2
i + µ̄1x

∗
i , . . . , z

t+1
i + µ̄tx

∗
i , v

1
i , . . . , v

t
i , x
∗) = E{ψ(Z2 + µ̄1X∗ , . . . , Zt+1 + µ̄tX∗, V2, . . . , Vt+1, X∗)}

= E{ψ(X1, . . . , Xt, X̂1, . . . , X̂t, X∗)},
(76)

where the last equality follows from Lemma D.2, by recalling that V`+1 = f`(Z2 + µ̄1X∗ , . . . , Z`+1 + µ̄`X∗) and
X̂` = f`(X1, . . . , X`), for ` ≥ 1. Combining (76) with (74) yields (23) of Theorem 3.1. The result (24) is obtained
similarly, using (70), Lemma D.2, and (75).

D.4. Proof of Lemma D.3

Throughout, we use C to denote a generic positive constant. All the limits in the proof hold almost surely, so we don’t
explicitly state this each time.

Since ψ is pseudo-Lipschitz, we have∣∣∣∣∣1d
d∑
i=1

ψ(x1
i , . . . , x

t
i, x̂

1
i , . . . , x̂

t
i, x
∗
i ) −

1

d

d∑
i=1

ψ(z2
i + µ̄1x

∗
i , . . . , z

t+1
i + µ̄tx

∗
i , v

2
i , . . . , v

t+1
i , x∗i )

∣∣∣∣∣
≤ C

d

d∑
i=1

(
1 + |x∗i |+

t∑
`=1

(
|x`i |+ |x̂`i |+ |z`+1

i + µ̄`x
∗
i |+ |v`+1

i |
))
·

(
t∑
`=1

(
|x`i − z`+1

i − µ̄`x∗i |2 + |x̂`i − v`+1
i |2

)) 1
2

≤ C(4t+ 2)

[
1 +
‖x∗‖2

d
+

t∑
`=1

(‖x`‖2
d

+
‖x̂`‖2

d
+
‖z`+1 + µ̄` x

∗‖2

d
+
‖v`+1‖2

d

)] 1
2

·

(
t∑
`=1

(
‖x` − z`+1 − µ̄`x∗‖2

d
+
‖x̂` − v`+1‖2

d

)) 1
2

, (77)
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where the last step uses Cauchy-Schwarz inequality (twice). Similarly, we obtain∣∣∣∣∣ 1n
n∑
i=1

φ(r1
i , . . . , r

t
i , s

1
i , . . . , s

t+1
i , yi) −

1

n

n∑
i=1

φ(m2
i , . . . ,m

t+1
i , u2

i , . . . , u
t+2
i , q(m1

i , εi))

∣∣∣∣∣
≤ C(4t+ 5)

[
1 +
‖y‖2

n
+
‖q(m1, ε)‖2

n
+

t∑
`=1

(
‖r`‖2

n
+
‖m`+1‖2

n

)
+

t+1∑
`=1

(
‖s`‖2

n
+
‖u`+1‖2

n

)] 1
2

·

(
t∑
`=1

(‖r` −m`+1‖2

n
+
‖s` − u`+1‖2

n

)
+
‖st+1 − ut+2‖2

n
+
‖y − q(m1, ε)‖2

n

) 1
2

. (78)

We will inductively show that as n→∞: (i) each of the terms in the last line of (77) and (78) converges to zero, and (ii) the
terms within the square brackets in (77) and (78) all converge to finite, deterministic limits.

Base case t = 1: Consider (77) for t = 1. From the AMP initialization, we have x1 = ATh1(y), and from (30), we have

z2 = ATh1(q(m1, ε)) − b21v
1 = ATh1(y) − δκ2〈∂gh1(q(g, ε))〉x∗, (79)

where the last equality is obtained by recalling thatm1 = g, v1 = x∗, and computing the matrixMb
2 in (60) to verify that

b21 = δκ2〈∂gh1(q(g, ε))〉. We therefore have

‖x1 − z2 − µ̄1x
∗‖2

d
=
‖x∗‖2

d
(δκ2〈∂gh1(q(g, ε))〉 − µ̄1)

2

=
‖x∗‖2

d
δ2 [κ2(〈∂gh1(q(g, ε))〉 − E{∂gh1(q(G, ε))}) + E{∂gh1(q(G, ε)}(κ2 − κ̄2)]

2
,

(80)

where for the last equality, we use the definition of µ̄1 in (11). By the assumptions of the theorem, ‖x∗‖2/d → E{X2
∗}.

Sincem1 = g, applying Proposition D.1 for t = 1 gives

(g, ε)
W2−→ (G, ε). (81)

Since h1(q(g, ε)) is Lipschitz in each argument, (81) together with Lemma E.1 implies that 〈∂gh1(q(g, ε))〉 →
E{∂gh1(q(G, ε))}. Furthermore, by the model assumptions κ2 → κ̄2. Therefore,

lim
n→∞

1

d
‖x1 − z2 − µ̄1x

∗‖2 = 0. (82)

Since x̂1 = f1(x1) and v2 = f1(z2 + µ̄1x
∗) with f1 being Lipschitz, we have

‖x̂1 − v2‖
d

≤ C 1

d
‖x1 − z2 − µ̄1x

∗‖2 → 0, as n→∞. (83)

Now consider the terms inside the square brackets in (77). Using Proposition D.1 and Lemma D.2, we have the following
limits for t ≥ 1:

lim
n→∞

‖zt+1 + µ̄tx
∗‖2

d
= E{(Zt+1 + µ̄tX∗)

2} = E{X2
t }, lim

n→∞

‖vt+1‖2

d
= E{V 2

t+1} = E{X̂2
t }. (84)

Using the triangle inequality, we have the following lower and upper bounds, for t ≥ 1:

‖zt+1 + µ̄tx
∗‖ − ‖xt − zt+1 − µ̄tx∗‖ ≤ ‖xt‖ ≤ ‖zt+1 + µ̄tx

∗‖ + ‖xt − zt+1 − µ̄tx∗‖,
‖vt+1‖ − ‖x̂t − vt+1‖ ≤ ‖x̂t‖ ≤ ‖vt+1‖ + ‖x̂t − vt+1‖.

(85)

Using (82)-(85), we obtain

lim
n→∞

‖x1‖2

d
= E{X2

1}, lim
n→∞

‖x̂1‖2

d
= E{X̂2

1}. (86)

Using (82)-(86) in (77), we obtain (74) for t = 1.
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Next consider (78) for t = 1. From the definition of auxiliary AMP in (30)-(32), we havem1 = g and

u2 = h1(q(m1, ε)) = h1(q(g, ε)) = h1(y) = s1,

where the last equality holds due to the initialization of the true AMP (below (5)). We therefore have

‖y − q(m1, ε)‖2

n
= 0,

‖s1 − u2‖2

n
= 0. (87)

Next, from (31) we have

m2 = Av2 − a22 u
2 = Av2 − κ2〈∂1f1(z2 + µ̄1x

∗)〉h1(y), (88)

where we have used u1 = 0 and the value of a22 obtained viaM a
2 in (60). For the true AMP, from (5) we have

r1 = Ax̂1 − α11s
1 = Ax̂1 − κ2〈∂1f1(x1)〉h1(y). (89)

Combining (88) and (89), we obtain

‖r1 −m2‖2

n
≤ 2
‖A(x̂1 − v2)‖2

n
+ 2κ2

2

‖h1(y)‖2

n

(
〈∂1f1(x1)〉 − 〈∂1f1(z2 + µ̄1x

∗)〉
)2

≤ 2‖A‖2op
‖x̂1 − v2‖2

n
+ 2κ2

2

‖h1(y)‖2

n

(
〈∂1f1(x1)〉 − 〈∂1f1(z2 + µ̄1x

∗)〉
)2
.

(90)

By assumption, the empirical distribution of λ, the vector of singular values, converges to Λ which has compact support.
Therefore, ‖A‖op ≤ C, and by (83), the first term above tends to zero. We also have κ2 → κ̄2 and ‖h1(y)‖2/n →
E{h1(Y )2}. Since f1 is Lipschitz and we have shown above that x1 W2−→ X1, Lemma E.1 implies that

lim
n→∞

〈∂1f1(x1)〉 = E{∂1f1(X1)}. (91)

Similarly, since by Proposition D.1 we have z2 + µ̄1x
∗ W2−→ (Z2 + µ̄1X∗), Lemma E.1 implies

lim
n→∞

〈∂1f1(z2 + µ̄1x
∗)〉 = E{∂1f1(Z2 + µ̄1x

∗) = E{∂1f1(X1)}, (92)

where the last equality follows from Lemma D.2. Using (91) and (92) in (90), we have

lim
n→∞

‖r1 −m2‖2

n
= 0. (93)

Since h2 is Lipschitz in each argument, (93) also implies that

lim
n→∞

‖s2 − u3‖2

n
= lim
n→∞

‖h2(r1, q(g, ε))− h2(m2, q(m1, ε))‖2

n
= 0, (94)

where we have usedm1 = g. Eqs. (87), (93) and (94) show that for t = 1, each term on the last line of (78) tends to zero.
Using Proposition D.1 and Lemma D.2, we have for t ≥ 1:

lim
n→∞

‖mt+1‖2

n
= E{M2

t+1} = E{R2
t }, lim

n→∞

‖ut+1‖2

n
= E{U2

t+1} = E{S2
t },

lim
n→∞

‖q(m1, ε)‖2

n
= lim
n→∞

‖y‖2

n
= E{q(M1, ε)

2} = E{Y 2}.
(95)

Using the triangle inequality, we have the following lower and upper bounds:

‖mt+1‖ − ‖rt −mt+1‖ ≤ ‖rt‖ ≤ ‖mt+1‖ + ‖rt −mt+1‖,
‖ut+2‖ − ‖st+1 − ut+2‖ ≤ ‖st+1‖ ≤ ‖ut+2‖ + ‖st+1 − ut+2‖.

(96)

Combining (96) with (93)-(95), we obtain the following limits:

lim
n→∞

‖r1‖2

n
= E{R2

1}, lim
n→∞

‖s2‖2

n
= E{S2

2}. (97)
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Using the limits in (95) and (97) in (78) yields the result (75) for t = 1.

Induction step: Assume towards induction that the results (74)-(75) hold with t replaced by (t− 1) for some (t− 1) ≥ 1,
and that

lim
n→∞

‖x` − z`+1 − µ̄`x∗‖2

d
= 0, lim

n→∞

‖x̂` − v`+1‖2

d
= 0,

lim
n→∞

‖r` −m`+1‖2

n
= 0, lim

n→∞

‖s`+1 − u`+2‖2

n
= 0,

lim
n→∞

‖x`‖2

d
= E{X2

` }, lim
n→∞

‖x̂`‖2

d
= E{X̂2

` }, lim
n→∞

‖r`‖2

n
= E{R2

`}, lim
n→∞

‖s`+1‖2

n
= E{S2

`+1}, for ` ∈ [t− 1].

(98)

From the definitions of xt and zt+1 (see (4) and (30)), we have

xt − zt+1 − µ̄tx∗ = AT(st − ut+1) +

t−1∑
i=1

(bt+1,i+1v
i+1 − βtix̂i) + bt+1,1v

1 − µ̄tx∗

= AT(st − ut+1) +

t−1∑
i=1

bt+1,i+1(vi+1 − x̂i) +

t−1∑
i=1

(bt+1,i+1 − βti)x̂i + (bt+1,1 − µ̄t)x∗,

(99)

where we have used the fact that v1 = x∗. Using Cauchy-Schwarz inequality, we then have

‖xt − zt+1 − µ̄tx∗‖2

n
≤ 2t

[
‖A‖2op

‖st − ut+1‖2

n
+

t−1∑
i=1

b2
t+1,i+1

‖vi+1 − x̂i‖2

n

+

t−1∑
i=1

(bt+1,i+1 − βti)2 ‖x̂
i‖2

n
+ (bt+1,1 − µ̄t)2 ‖x∗‖2

n

]
:= 2t(T1 + T2 + T3 + T4).

(100)

Since ‖A‖op ≤ C, the induction hypothesis (98) implies that T1 → 0. By the induction hypothesis, we also have
‖vi+1 − x̂i‖2/d → 0 and ‖x̂i‖2/d → E{X̂2} for i ≤ (t− 1). Furthermore, ‖x∗‖2/d → E{X2

∗}. Hence, we can prove
that T2, T3, T4 each tend to zero by showing that:

lim
n→∞

bt+1,1 = µ̄t, (101)

lim
n→∞

bt+1,i+1 = lim
n→∞

βt,i = β̄t,i, i ∈ [t− 1], (102)

where the limiting values (β̄t,i) in (102) will be defined below (see (108)).

Recall from (60)-(61) that the coefficients (bt+1,j)j≤t are determined by the entries of the matrices Ψ̂t and Φ̂t+1, defined
in (58). (Though the definition of Mb

t+1 in (60) involves Ψ̂t+1, it can be verified that its last row does not affect the
computation, so the formula depends only on Ψ̂t, Φ̂t+1.) From (59), the non-zero entries of these matrices are of the form

〈∂kf`(z2 + µ̄1x
∗, . . . , z`+1 + µ̄`x

∗)〉, 1 ≤ k ≤ ` ≤ (t− 1),

〈∂gh`(m2, . . . , m`, q(m1, ε))〉, 〈∂kh`(m2, . . . , m`, q(m1, ε))〉, 1 ≤ k < ` ≤ t,
where we recall that ∂k denotes the partial derivative with respect to the k-th argument. By Proposition D.1 and Lemma D.2,
we have that for ` ≥ 1:

(z2 + µ̄1x
∗, . . . , z`+1 + µ̄`x

∗)
W2−→ (Z2 + µ̄1X∗, . . . , Z`+1 + µ̄`X∗)

d
= (X1, . . . , X`),

(m1, . . . ,m`, ε)
W2−→ (M1, . . . ,M`, ε)

d
= (G,R1, . . . , R`−1, ε).

(103)

Since the functions f` and h` are Lipschitz in each argument, (103) together with Lemma E.1 implies that

lim
n→∞

〈∂kf`(z2 + µ̄1x
∗, . . . , z`+1 + µ̄`x

∗)〉 = E{∂kf`(X1, . . . , X`)}, 1 ≤ k ≤ ` ≤ (t− 1),

lim
n→∞

〈∂gh`(m2, . . . , m`, q(m1, ε))〉 = E{∂gh`(R1, . . . , R`−1), q(G, ε)},

lim
n→∞

〈∂kh`(m2, . . . , m`, q(m1, ε))〉 = E{∂kh`(R1, . . . , R`−1, q(G, ε))}, 1 ≤ k < ` ≤ t.

(104)
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Therefore, Ψ̂t → Ψ̃t and Φ̂t+1 → Φ̃t+1, where Ψ̃t, Φ̃t+1 are defined in (65). Consequently, the matrix Mb
t+1 and the

coefficients (bt+1,j), defined via (60)-(61), converge to the following limits:

lim
n→∞

Mb
t+1 = M̃

b

t+1 ≡ δ
t∑

j=0

κ̄2(j+1)Φ̃t+1(Ψ̃t+1Φ̃t+1)j , lim
n→∞

bt+1,j = b̄t+1,j , j ∈ [t], (105)

where (b̄t+1,j) are computed according to (61) from the last row of M̃
b

t+1. By the induction hypothesis (98), we have
‖x̂i − vi+1‖2/d→ 0 for i ≤ (t− 1). Therefore the term T2 in (100) tends to 0 as n→∞.

Using (10), the coefficients (βti) are determined by the entries of the matrices Ψt+1 and Φt+1, defined in (6). The non-zero
entries of these matrices are of the form

〈∂kf`(x1, . . . , x`)〉, 1 ≤ k ≤ ` ≤ t,
〈∂gh`(r1, . . . , r`−1, q(g, ε))〉, 〈∂kh`(r1, . . . , r`−1, q(g, ε))〉, 1 ≤ k < ` ≤ t.

By the induction hypothesis (74)-(75) for (t− 1) and (103), we have

(x1, . . . ,xt−1)
W2−→ (Z2 + µ̄1X∗, . . . , Zt + µ̄t−1X∗)

d
= (X1, . . . , Xt−1)

(r1, . . . , rt−1, q(g, ε))
W2−→ (M2, . . . ,Mt, q(M1, ε))

d
= (R1, . . . , Rt−1, q(G, ε)).

(106)

Since f` and h` are Lipschitz in each argument, (106) together with Lemma E.1 implies

lim
n→∞

〈∂kf`(x1, . . . ,x`)〉 = E{∂kf`(X1, . . . , X`)}, 1 ≤ k ≤ ` ≤ (t− 1),

lim
n→∞

〈∂gh`(r1, . . . , r`−1, q(g, ε))〉 = E{∂gh`(R1, . . . , R`−1), q(G, ε))},

lim
n→∞

〈∂kh`(r1, . . . , r`−1, q(g, ε))〉 = E{∂kh`(R1, . . . , R`−1, q(G, ε))}, 1 ≤ k < ` ≤ t.

(107)

Therefore, Ψt → Ψ̄t and Φt+1 → Φ̄t+1, where the entries of Ψ̄t, Φ̄t+1 are defined as in (16). We note that computing
Mβ

t+1 defined in (8) requires knowledge of only Ψt and Φt+1 since the last row of Ψt+1 is zeroed out in the multiplication
with Φt+1. Therefore,

lim
n→∞

Mβ
t+1 = M̄

β
t+1 ≡ δ

t∑
j=0

κ̄2(j+1)Φ̄t+1(Ψ̄t+1Φ̄t+1)j , lim
n→∞

βt,i = β̄t,i, i ∈ [t− 1]. (108)

where (β̄t,i) are computed according to (10) from the last row of M̄β
t+1. Since the limits in (104) and (107) are the same,

using the formulas for Ψ̄t, Φ̄t+1 (from (16)) and for Ψ̃t, Φ̃t+1 (from (65)), we have

Ψ̄t = Ψ̃t, Φ̄t+1 = Φ̃t+1, M̄
β
t+1 = M̃

b

t+1. (109)

Combining (105), (108), (109) and recalling that µ̄t = (Mβ
t+1)t+1,1, we obtain the claims in (101)-(102). We have therefore

shown that each of the four terms in (100) tends to zero, and hence

lim
n→∞

‖xt − zt+1 − µ̄tx∗‖2

d
= 0. (110)

Moreover, since x̂t = ft(x
1, . . . ,xt) and vt+1 = ft(z

2 + µ̄1x
∗, . . . ,zt+1 + µ̄tx

∗) with ft Lipschitz, we also have

lim
n→∞

‖x̂t − vt+1‖2

d
= 0. (111)

Using (110)-(111) together with the bounds in (85) then yields

lim
n→∞

‖xt‖2

d
= lim
n→∞

‖zt+1 + µ̄tx
∗‖2

d
= E{(Zt+1 + µ̄tX)2} = E{X2

t },

lim
n→∞

‖x̂t‖2

d
= lim
n→∞

‖vt+1‖2

d
= E{V 2

t+1} = E{X̂2
t },

(112)
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where the last equality in each line above is due to Lemma D.2. Using (110)-(112) and the induction hypothesis (98) in (77)
yields the result (74).

The proof of (75) is along similar lines. From the definitions of rt andmt+1 (see (5) and (31)), we have

rt −mt+1 = A(x̂t − vt+1) +

t∑
i=1

(at+1,i+1u
i+1 − αt,isi)

= A(x̂t − vt+1) +

t∑
i=1

at+1,i+1(ui+1 − si) +

t∑
i=1

(at+1,i+1 − αt,i)si.

(113)

Using the Cauchy-Schwarz inequality, we obtain

‖rt −mt+1‖2

n
≤ 2(t+ 2)

[
‖A‖2op

‖x̂t − vt+1‖2

n
+

t∑
i=1

a2
t+1,i+1

‖ui+1 − si‖2

n
+

t∑
i=1

(at+1,i+1 − αt,i)2 ‖si‖2

n

]
.

(114)

By assumption, ‖A‖2op ≤ C; therefore, by (111) the first term in the brackets tends to zero. By the induction hypothesis
(98), we have

lim
n→∞

‖ui+1 − si‖2

n
= 0, lim

n→∞

‖si‖2

n
= E{S2

i }, 1 ≤ i ≤ t. (115)

We can also show that
lim
n→∞

at+1,i+1 = lim
n→∞

αt,i = ᾱt,i, 1 ≤ i ≤ t, (116)

where (ᾱt,1, . . . , ᾱt,t) is defined as in (9) using the matrix M̄α
t+1 ≡

∑t+1
j=0 κ̄2(j+1)Ψ̄t+1(Φ̄t+1Ψ̄t+1)j . The proof

of (116) is omitted as it is similar to that of (102): we show that Mα
t+1 → M̄

α
t+1 and M a

t+1 → M̃
a

t+1 ≡∑t+1
j=0 κ̄2(j+1)Ψ̃t+1(Φ̃t+1Ψ̃t+1)j , and then that M̃

a

t+1 = M̄
α
t+1. Using (115) and (116) in (114), we obtain

lim
n→∞

‖rt −mt+1‖2

n
= 0, lim

n→∞

‖st+1 − ut+2‖
n

= 0, (117)

where the second limit holds because

st+1 = ht+1(r1, . . . , rt, q(g, ε)), ut+2 = ht+1(m2, . . . ,mt+1, q(m1, ε)),

with ht+1 Lipschitz in each argument. Using (117) together with the bounds in (96) then yields

lim
n→∞

‖rt‖2

n
= lim
n→∞

‖mt+1‖2

n
= E{M2

t+1} = E{R2
t },

lim
n→∞

‖st+1‖2

n
= lim
n→∞

‖ut+2‖2

n
= E{U2

t+2} = E{S2
t+1},

(118)

where the last equality in each line above is due to Lemma D.2.

Using (117), (118), and the induction hypothesis (98) in (78) yields the result (75), completing the proof.

E. An Auxiliary Lemma
Lemma E.1. Let F : Rt → R be a Lipschitz function, and let ∂kF denote its derivative with respect to the k-th argument,
for 1 ≤ k ≤ t. Assume that ∂kF is continuous almost everywhere in the k-th argument, for each k. Let (V

(m)
1 , . . . , V

(m)
t ) be

a sequence of random vectors in Rt converging in distribution to the random vector (V1, . . . , Vt) as m→∞. Furthermore,
assume that the distribution of (V1, . . . , Vt) is absolutely continuous with respect to the Lebesgue measure. Then,

lim
m→∞

E{∂kF (V
(m)
1 , . . . , V

(m)
t )} = E{∂kF (V1, . . . , Vt)}, k ∈ [t].

The result was proved for t = 2 in Lemma 6 of (Bayati & Montanari, 2011). The proof for t > 2 is essentially the same; see
also Lemma 7.14 in (Feng et al., 2021).


