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Abstract

We consider the problem of signal estimation in
generalized linear models defined via rotation-
ally invariant design matrices. Since these ma-
trices can have an arbitrary spectral distribution,
this model is well suited for capturing complex
correlation structures which often arise in appli-
cations. We propose a novel family of approxi-
mate message passing (AMP) algorithms for sig-
nal estimation, and rigorously characterize their
performance in the high-dimensional limit via a
state evolution recursion. Our rotationally invari-
ant AMP has complexity of the same order as
the existing AMP derived under the restrictive
assumption of a Gaussian design; our algorithm
also recovers this existing AMP as a special case.
Numerical results showcase a performance close
to Vector AMP (which is conjectured to be Bayes-
optimal in some settings), but obtained with a
much lower complexity, as the proposed algo-
rithm does not require a computationally expen-
sive singular value decomposition.

1. Introduction

We consider the problem of estimating a d—dimensional
signal * € R from an observation y € R™ obtained via
a generalized linear model (GLM) (McCullagh & Nedler,
1989). Specifically, given a design matrix A € R"*¢ with
TOWS @y, ...,a, € R, the observation y = (y1,...,%n)
is generated as

yi = q({a;,x*), €;), fori=1,...,n, ()
where (a;,z*) = a]z* denotes the Euclidean inner prod-
uct, € = (e1,...,&,) is a noise vector and ¢ : R> — R
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is a known function. The model (1) covers many widely
studied problems in statistical estimation and signal pro-
cessing: examples include linear regression (Donoho, 2006;
Eldar & Kutyniok, 2012) (y; = (a;,x*) + €;), phase re-
trieval (Shechtman et al., 2015; Fannjiang & Strohmer,
2020) (y; = |(a;, 2*)|* + ;). and 1-bit compressed sensing
(Boufounos & Baraniuk, 2008) (y; = sign({a;, x*) + &;)).

A range of estimators based on convex relaxations, spec-
tral methods, and non-convex methods have been proposed
for specific instances of GLMs, such as sparse linear re-
gression (Tibshirani, 1996; Candés & Tao, 2007; Hastie
et al., 2019), phase retrieval (Netrapalli et al., 2013; Candes
et al., 2013; 2015; Mondelli & Montanari, 2019; Luo et al.,
2019; Lu & Li, 2020) and one-bit compressed sensing (Plan
& Vershynin, 2012; 2013; Jacques et al., 2013). Most of
these techniques are generic and can incorporate certain
constraints like sparsity, but they are not well-equipped to
exploit specific information about *, e.g., a known signal
prior.

Approximate message passing (AMP) is a family of iter-
ative algorithms that can be tailored to take advantage of
structural information known about the signal. AMP al-
gorithms were first proposed for estimation in linear mod-
els (Kabashima, 2003; Bayati & Montanari, 2012; 2011;
Donoho et al., 2009; Krzakala et al., 2012; Maleki et al.,
2013), but have since been applied to a range of statistical es-
timation problems, including generalized linear models (Bar-
bier et al., 2019; Ma et al., 2019; Maillard et al., 2020; Mon-
delli & Venkataramanan, 2021a; Rangan, 2011; Schniter
& Rangan, 2014; Sur & Candes, 2019) and low-rank ma-
trix estimation (Deshpande & Montanari, 2014; Fletcher
& Rangan, 2018; Kabashima et al., 2016; Lesieur et al.,
2017; Montanari & Venkataramanan, 2021; Barbier et al.,
2020). An attractive feature of AMP is that under suitable
model assumptions, its performance in the high-dimensional
limit is precisely characterized by a succinct determinis-
tic recursion called state evolution (Bayati & Montanari,
2011; Bolthausen, 2014; Javanmard & Montanari, 2013).
Using the state evolution analysis, it has been proved that
AMP achieves Bayes-optimal performance for some mod-
els (Deshpande & Montanari, 2014; Donoho et al., 2013;
Montanari & Venkataramanan, 2021; Barbier et al., 2019),
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and a conjecture from statistical physics posits that AMP
is optimal among polynomial-time algorithms. The above
works, including the original GAMP algorithm (Rangan,
2011) for estimation in GLMs, all assume that the matrix A
defining the model is i.i.d. Gaussian. While some of these
results can be generalized to the broader class of i.i.d. sub-
Gaussian matrices via universality arguments (Bayati et al.,
2015; Chen & Lam, 2021), the i.i.d. assumption limits the
applicability of AMP in practice. In this paper, we present
an AMP algorithm for generalized linear models defined
via a rotationally invariant design matrix A. The class of
rotational invariant matrices includes Gaussian matrices, but
is much bigger. Rotational invariance only imposes that the
orthogonal matrices in the singular value decomposition of
A are uniformly random, and allows for arbitrary singular
values. Hence, A is able to capture a complex correlation
structure, which is typical in applications.

Main contributions. We propose an AMP algorithm for
GLMs with rotationally invariant design matrices. The algo-
rithm, which we call RI-GAMP, uses a pair of multivariate
‘denoising’ functions to produce an updated signal estimate
in each iteration. The iterates depend on the free cumulants
of the spectral distribution of the design matrix. Assuming
that these free cumulants are known (e.g., via the spectral
distribution), the complexity of RI-GAMP is of the same
order as that of the standard GAMP algorithm (Rangan,
2011). Moreover, when the design matrix is i.i.d. Gaussian,
RI-GAMP reduces to standard GAMP. Our main technical
contribution is a state evolution result for RI-GAMP (The-
orem 3.1), which gives a rigorous characterization of its
performance in the high-dimensional limit as n,d — oo
with a fixed ratio § = n/d, for a constant § > 0. We also
present numerical simulation results for linear regression
and 1-bit compressed sensing, showcasing the performance
of RI-GAMP on both synthetic data and images. The per-
formance of RI-GAMP closely matches that of Vector AMP
(Rangan et al., 2019; Pandit et al., 2020) (which is conjec-
tured to be Bayes-optimal in some settings), but obtained
with much lower complexity, as RI-GAMP does not require
computing the singular value decomposition of A.

RI-GAMP offers a flexible framework to analyze other esti-
mators for GLMs, e.g., spectral methods. Standard GAMP
has been used as a proof technique to study the distribu-
tional properties of linear and spectral estimators under
Gaussian model assumptions (Mondelli et al., 2021; Mon-
delli & Venkataramanan, 2021a). An exciting research di-
rection is to use RI-GAMP to analyze spectral estimators for
rotationally invariant GLMs in the high-dimensional limit.

Proof idea. The key idea in establishing the state evolu-
tion result is to design an auxiliary AMP algorithm whose
iterates are close to those of RI-GAMP. The auxiliary AMP

is an instance of the abstract AMP iteration for rotation-
ally invariant matrices analyzed in (Fan, 2021; Zhong et al.,
2021), hence a state evolution result can be obtained for
it. We then show that each iterate of RI-GAMP is close
to one of the auxiliary AMP, and use this fact to translate
the state evolution result for the latter to the RI-GAMP. We
emphasize that the auxiliary AMP only serves as a proof
technique. Indeed, it is initialized using the unknown signal
x*, and therefore cannot be used for estimation.

RI-GAMP vs. Vector AMP. Vector AMP (VAMP) is
an iterative algorithm (based on Expectation Propagation)
for estimation in rotationally invariant linear (Rangan et al.,
2019; Takeuchi, 2020; 2021b) and generalized linear models
(Schniter et al., 2016; Pandit et al., 2020). Like RI-GAMP,
VAMP can be tailored to take advantage of prior information
about the signal and its performance can be characterized
by a state evolution recursion. It is also shown in Rangan
et al. (2019); Pandit et al. (2020) that the asymptotic esti-
mation error of VAMP (with optimal denoising functions)
coincides with the replica prediction for the Bayes-optimal
error whenever the state evolution recursion has a unique
fixed point.

The RI-GAMP algorithm proposed here is distinct from
VAMP, and the associated state evolution recursions are
also different. Let us highlight some attractive features of
RI-GAMP. First, RI-GAMP does not require the computa-
tionally expensive (O(d?)) singular value decomposition
used in VAMP. Instead, it uses the free cumulants of the
design matrix which can be estimated in O(d?) time (details
on p.4). We confirm via numerical simulations that the com-
plexity advantage of RI-GAMP over VAMP is significant
and increases with the problem dimension (see Figure 4).

The state evolution result (Theorem 3.1) for RI-GAMP holds
under mild assumptions on the denoising functions (see
(A1) on p.5), while the analysis for VAMP requires slightly
stronger conditions, e.g., the denoising functions and their
derivatives need to be uniformly Lipschitz continuous. The
numerical results in Section 4 show that the performance of
RI-GAMP matches that of VAMP, except near parameter
values corresponding to a phase transition in the estimation
error.

Other related work. Orthogonal AMP (Ma & Ping,
2017) is an algorithm equivalent to VAMP for estimation in
rotationally invariant linear models. Cakmak et al. (2016)
proposed a variant of Expectation Propagation (an algorithm
closely related to VAMP) for rotationally invariant GLMs.
Ma et al. (2021) recently studied the performance of Ex-
pectation Propagation for rotationally invariant GLMs, and
analyzed the impact of the spectrum on the estimation perfor-
mance. VAMP has also been used to obtain the asymptotic
risk of convex penalized estimators for rotationally invariant
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GLMs (Gerbelot et al., 2020a;b). A few lower complexity
alternatives to VAMP have been proposed recently, includ-
ing convolutional AMP (Takeuchi, 2021a), Memory AMP
for linear models (Liu et al., 2020), and Generalized Mem-
ory AMP for GLMs (Tian et al., 2021). The phase retrieval
problem (which is a special case of a GLM) has been stud-
ied for design matrices with orthogonal columns, a model
distinct from the rotationally invariant one considered here
(Dudeja et al., 2020a;b). Finally, we mention that AMP
has also been applied to low-rank matrix estimation with
rotationally invariant noise (Opper et al., 2016; Cakmak &
Opper, 2019; Fan, 2021; Zhong et al., 2021; Mondelli &
Venkataramanan, 2021b).

2. Preliminaries

Notation and definitions. For n € N, we use the short-
hand [n] to denote the set {1,...,n}. Given a vector x,
we write ||| for its £3 norm. All vectors are treated as
column vectors. Given & T:’(Il’ ...,24), we denote by
(x) its empirical average % ?:1 x;. The empirical distri-
bution of « is given by é le 0, Where J,, denotes a
Dirac delta mass on x;. Similarly, the joint empirical distri-
bu'gpn of the rows of a matrix (z!,z2,..., z?) € R is
i 16(at,....at)- Given a matrix A, we denote by (A); ;
its (z j) th element. For a square matrix M, we follow the
convention that M is the identity matrix.

W, convergence. We write (x!, ..., ") N
(X1,...,X)) for the convergence in Wasserstein-2
distance of the joint empirical distribution of the rows of
(xt,22,..., %) € R¥** 1o the law of the random vector
(X1,...,Xk). Equivalently (Feng et al., 2021)[Corollary
7.4], for any L > 0 and function ¢ : R¥ — R that satisfies

[(u) — ()] < Lllw—o| (1 + [Jul + [lv]) (2
for all u, v € R¥, we have
1 X
Jim o= (@2l = B(X, ., X)) B)

A function satisfying (2) for some fixed L > 0 is called a
pseudo-Lipschitz function of order 2.

Rotationally invariant generalized linear models. The
n X d design matrix A is formed by stacking the sensing
vectors @y, ..., a,, i.e., A = [ai,...,a,]". We assume
that A is bi-rotationally invariant in law, i.e., A = o’ Q,
where = diag(\) is an n x d diagonal matrix containing
the singular values of A, and O, Q are Haar orthogonal
matrices independent of one another and also of . As
d — 0o, we assume that n/d = ¢, for some constant § > 0.
The matrix A is independent of the signal * € R<, and

the noise vector e € R™. The observation y € R" is
generated according to (1). We assume that there exist
random variables X, , e with finite second moments such

that * % X, and e % € as n — oo. Furthermore, we
assume that the empirical distribution of A converges weakly
almost surely to a compactly supported random variable
A. We denote by {2y }x>1 the rectangular free cumulants
associated with the moments {mgy, }x>1, where moy, is the
k-th moment of the empirical eigenvalue distribution of
AAT (for details, see (34)-(35) in Appendix A). For 6 > 1,
let A be a mixture of A (w.p. 1 /9) and a point mass at
0 (w.p. 1 —1/8); for 6 < 1, we set A = A. Then, the
assumptions above imply that as n, d — oo, mop — Mo =
IE{]\%} and Kkop — Rox almost surely, where {moy }r>1
and {Ra } r>1 are the even moments and rectangular free
cumulants of A.

3. Rotationally Invariant Generalized AMP

Algorithm. We propose the following rotationally invari-
ant generalized AMP (RI-GAMP) to estimate =* € R? from
the observation y € R™ and the design matrix A € R"*,
For ¢t > 1, compute:

>t )
'=A"s' - Bua', @' =flz',... 2", @
=1
X )
rt = Azt — ay; 8°, sttt = ht+1( 1, 77“t7 Y)
1=1
(5)

The iteration is initialized with s* = h(y) andz' = AT s!.
Fort > 1, the functions f; : R® — Rand ks, : R“TT — R
are applied row-wise to vectors and matrices. The scalars
{eau;}i_; and {B;; }iZ] are obtained in terms of two lower-
triangular matrices 441, (41 € RUFDXEHD) These
matrices are defined as

% o 1
0 (Bz') 0
= B0 (2187) (9287
0 (0ra)) <52ét> at f>1
0 0 0
@B,8 0 0 0
e <8982> <8152> 0 0 (6)
(0,5") (Bt at )

where for k € [t], the vector dp&" € R? denotes the
partial derivative 0y, fi(x1,...,2:) applied row-wise to
&' = f,(x',... xt). Similarly, the vector d;s' € R" de-
notes the partial derivative Oy, h¢(r1,...,7:—1,y) applied
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row-wise tos' = hy(rl;:::;rt 1y). Recalling that sively fort 1, starting with

y = q(g;"), wecanviewh(r1;:::;r¢ 1;0(g;") asafunc- B - _ i

tion of (t + 1) variables, with@hi(r1;:::;r¢ 1;9(g;") 1= 2EfX7g 1= 2Ef@hi(a(G;"))g;
being the partial derivative with respectdoFort > 1, the 1= 2Efhi(q(G;"))%g (11)
vector@s' denotes this partial derivative applied row-wise +  4EfX 2g(Ef @h1(q(G; "))g)2:

fje ned via the partial derivativgh; (q(g; ")) . Next, recall-  whereG N (0; ,EfX 2g) is independent df. Here X
ing thatf g« 1 denote the rectangular free cumulants,is the law of the limiting empirical distribution of the signal,

de ne matricesM (,; ;M ,; 2 R(*D (4D ag: as de ned in Section 2. Fdr 1, given ; ; ¢, let
el (GiR1;::5Re 1) N (07 o)
j — (R VY- — (G-
Mg = 2(j+1)  t+1 t+1 t+1 @) St = he(Re;iiRe 15Y); whereY = (G;"); (12)
j=0 (X3 Xe) = X+ Wy Wa);
Xt j g where(Wy;:::;W;) N (0; +)isindependentoX ;
M = - :
- i=0 A B ®) %t = (X, Xy): (13)

Let (+1; 41 2 R (D) phe symmetric matrices
Then, the coef cients 4 gf-; andf 4gi_in (4)-(5)are  with entries given by
obtained from the last row dfl ,; andM ., as:
( t+1)ui =( t+2)i;1=0;

;00 w)=((M t+1 Yisz 25 i (M t+1 Jt+1it+1 ); ( tn)in it = Efsisj g 120k (14)
9) ( t+1)11 = EfX?g;

11000 6t 1) = ((M g )eer2s 205 (Mg s ) ( er)risr =( w1)ienn = EfX Xig;
(10) (1)isnge = EEDRX G 0j 20 (15)

. _ N Furthermore, let {+1; t+1 denote the deterministic ver-
Estlmtatlng the fre(? clumulants'. From the de nitions of  gjons of the matrices (+1; t+1 in (6), obtained by replac-
f i g=, andf gy above, it follows that we need the jng the empirical averages by expectations. Speci cally, to

t+1 H . .
free cumulant$ ;.1 g; 5 to compute the rst terates  optain .1; (+1 We replace the entries as follows:
of RI-GAMP in (5). These free cumulants can be recursively

computed from the momentsny; 11 gjt;%) of the spectral h@r'i! Ef @)’(\tg = Ef@, fi(X1;:::5X4)g;
distribution ofAA T, using the formulg35)in Appendix A.  h@s'i! Ef @S.g= Ef @, he(Ry;::; Ry 1;9(G;"))g;
The moment§my(j 41y g1 can be estimated i@(d?) time t AR (R ol o
via the following simple algorithm proposed by Liu et al. h@sit Ef@Sig= Ef@he(RuiiiiRe 154(0; ))Jg:leeg-
(2020). GivenA 2 R" 9, pick an independent standard (16)
Gaussian vectas® N (0;1,), and fork 1, compute
sk = ATsKk 1 for oddk andsk = Ask ! for evenk. Wenowdescribehow+1; t+1; 41 @recomputedfrom

2 . . H . .
Then, X is a consistent estimate of tketh momentof ;. t; ¢~ Given ¢ ; , we can evaluate the ma-

d - . . .
the spectral distribution 0%A T. Thus, the complexity of trices 1] te1; t+17 t+1. Fromthese, we compute
(41 2 R(t+1) (t+1) as

estimating the free cumulants is of the same order as one

iteration of RI-GAMP. 1 '

t+1 = 2(j +1) EL)l ; (17)
i=0

State evolution. The coef cientsf 4 g'-; andf 4g'_}
play a cruciz_il r_ole_ _in debia_si_ng th_e AMP_ iterates, ensurypere 8)1 = 1,andforj 1
ing that their limiting empirical distributions are accu-
rately captured by state evolution. Indeed, Theorem 3.1 X _ i
shows that the joint empirical distribution ¢§;r2;::::rt) W= (e ow) o1 ()T
converges to at(+ 1)-dimensional Gaussian distribution i=0
N (0; ¢+1). Similarly, the joint empirical distribution of X1 _ T i1
(x!  x;iiuxt o x) converges to a-dimensional  * ( ts1 t41) 1 a1 e ( ter te1)! :
GaussiarN (0; ¢). We de ne the covariance matrices =0

t; t 2 R' ' and the vector , ( 1;::7; ) recur- (18)
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t+2 2 R(+2) (*2) Ysing

(t+2) matrix 9,,,

we can now compute 3 ;
these, we de ne a symmetr{t + 2)

whose rst row and column equal zero and whose lowerand

right(t+1) (t+21) submatrix equals t+1 . Speci cally,
26+ .
e = i+ n (19)
j=0
where @ = andforj 1:
t+2 — t+2 5 ] .
. ) j
EJ+)2 = (w2 w2) w2 (2 owe2)!
i=0
X1 i
i T
+ ( t+2 t+2)I 142 142 42 ( t42 t+2)T :
=0
(20)

Then, the entries of the covariance matrix+«; 2
R+ (t*1) gre given by:

()i =C fdisgans B 2041 (21)
Finally, we compute the mean parameter
t+1 = Mo , Where
t+2 ;1
X—l
M = 2j+1) 42 42 42 (22)

i=0

Though the formulas for §]+)2 in (20)andM ,,, in (22)
contain {+» and

of 4 and
on the top left submatrices ofi., and ¢+, hamely, 41
and 1. We also note that the matrices and
the top left submatrices of (+; and

t+2 , the last rows and columns of these
matrices are zeroed out in the computation (due to the fornfgj
t+2 ). Therefore the formulas depend only

¢t are
t+1 , respectively.

Theorem 3.1. Consider a rotationally invariant generalized
linear model with the assumptions in Section 2 and the AMP
(4)-(5) with the assumptiofA1) above. Let : R?*1 I R

: R?*2 1 R be any pseudo-Lipschitz functions of
order2. Then for eactt 1, we almost surely have

lim })@ (Xl ----- thl ..... kt X)
11 d Passsa Ry R s ANy A
i=
= Ef Xy Xo X5 X X ) (23)
lim })@ (ri:es phegleeee sy
ni1 n 1 Py P 19 v Yi

where the random variables on the right are de ned

in (12)(13). Equivalently, asn ! 1 , the joint em-
pirical distributions of(xl;:::;x‘;kl;:::;kt;x ) and
(rt;:ort st st*l;y) converge almost surely in

The proof of the theorem is given in Appendix D, and we
provide a proof sketch in Section 5. When the design matrix
A hasi.i.d.N (0; 1=n) entries, we have, = and z =

0 for k 2. In this case, the RI-GAMR4)-(5), with
denoising functions of the forrfi(x!) andhy.q (rt;y),
reduces to the existing GAMP algorithm (Rangan, 2011).
The state evolution recursion also reduces to that of GAMP
(see, e.g., Section 4 of (Feng et al., 2021)). This opens up an
exciting research direction on using RI-GAMP to generalize
results where GAMP has been used as a proof technique
under Gaussian model assumptions. One example is to
etermine the distributional properties of spectral estimators
or rotationally invariant GLMs.

MSE and correlation. The result(23) readily leads to
the evaluation of the usual quantities of interest, such as the

Similarly, the mean vector,.,, is obtained by appending Méan squared error (MSE) and the normalized squared cor-

t+1 tO t-

relation. Indeed, by taking(&!; x; ) = (*!

Lx, X; )2, we have
thatikg' x k3! Ef(X; X )?gforeacht 1.Fur-

Main result. Having de ned the state evolution recursion thermore, by taking (&f;x;) =% x;, (&) = (’x})? and

to compute ; +;

¢ (which specify the joint distributions

(x;) = (%)%, we have thafhr'; x ij2=(k®'k?kx k?)

in (12)-(13)), we are ready to state our main result. Wetends to(Ef X X g)*=(Ef X 2gEf X 2q).

make the following assumption on the functidnsh; used

in the AMP (4)-(5), fort  1:

and

@, Fi((X1;::5Xy)), @he(Ry; iRy 15 a(Gy ™)),

Empirical state evolution parameters. We can de ne
empirical versions of the state evolution parameters, de-
notedby (41 t+1; (41, Dyreplacing «; ki o« «
(k2ft+1;t+2g)with «; «; «; « in(18), (20),

The partial derivatives and(22). The latter matrices are computed using empirical

averages instead of expectations;;  are de ned in(6)

and@. hi(R1;:::; Ry 1; g(G;")) are all continuous andfor ; k,we replace the expectatioB$S; S g and

EfXiX;gin (14)(15)by hs';sii=n andm';#/i=d. The
expectation&f X X gin g can be estimated for the case
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of posterior mean denoisers using the identit{5n). The-
orem 3.1 gives that the empirical versions of these matrices
converge to the deterministic ones almost surely, and there-
fore, 41 ! t+1,  t+1 ! t+1, and ,q ! 141 -

For the simulations in Section 4, RI-GAMP is implemented
with state evolution parameters empirically estimated, as
this choice leads to more stable numerical results.

Initialization.  Note that the algorithm is initialized with
xt = AThy(y). If this initialization is not effective, in
the sense th%hx L.x i1 0, then state evolution remains
stuck at a trivial xed point, i.e.,, ; = 0 for all t, and
all the iterates produced by RI-GAMP are not correlatedrigure 1: Normalized squared correlation between iterate
with the signaf: To address this issue, we can assume t®' and signak , as a function of the number of iterations
be given an initializationx*, which is correlated wittx ,  t. Solid lines represent state evolution predictions, and the

ie, fhx';x i! > 0, andindependent k. Theo- markers represent the empirical performance of RI-GAMP.
rem 3.1 still holds for such an initialization, with the only

change being in the initialization of the state evolution re-

(a) Linear regression (b) 1-bit compressed sensing

cursion. Suppose thatt "2 X, for a random variable Bayes-optimal choice fdf (x3;:::; x;) maximizes the nor-
X1 satisfyingEf X1X g = . Then, in the state evolu- Malized squared g:orrelann & and G, which is pro-
tion initialization (11), we set ; = EfX;X g= and portional to%. We remark that, even when the

1= Ef(X1 ;X )?g(the parameter 1 is unchanged). - signal prior (i.e., the law oK ) is known, nding these op-
This ensures that state evolution is not stuck at a trivial xedtimal denoisers is challenging due to the complicated nature
point. A practical alternative to assuming an informative of the state evolution recursidfi2)-(22). However, for the
initialization is to initialize AMP with a spectral estima- special case of an i.i.d. Gaussian design, the state evolution
tor. Analyzing RI-GAMP with spectral initialization is an s considerably simpler and the Bayes-optimal choices are
interesting direction for future research. (cf. Section 4.2 of (Feng et al., 2021)):

Choice of denoisers. The performance of RI-GAMP is fe(Xt) = qEfX jXi = x0; 27)

determined by the functiorfd ¢; hi+1 g; 1. A key question hest (re:y) = G(EfGjR = ;Y = yg EfGjR; = r(Q);

is how to choose these functions to optimize the estimation

performance. Given any choice bf;h.; g satisfying  wherec;; ¢, are arbitrary non-zero constants. Here, for a

Assumption(Al), Theorem 3.1 implies general rotationally invariam , we propose the following
denoisers:

rt 1 !WZ Rt 1 ( t)t;lG+ Wto 1;
( I)l;l

.1)2 hesr (rsiisrgy)= EfGJRy = rys it Re = ry Y =
WO, N 0 ( Ou (C ga) Lt 2 (25) t+1 (M1 ;) IR1=1T1 t =Tt y9

( )11 EfGjRy=ry;::;Re =g (29)
X 2 Xy X+ Wy
W; N (0;( {)u)independentok ; t 1, (26) For an i.i.d. GaussiaA , (28)-(29) reduce tq27), which is
' provably Bayes-optimal. Whef is not Gaussian, using
where the RHS 0f25) and(26) follow from the joint dis- ~ denoisers that depend on all the preceding iterates (instead
tributions speci ed in(12)-(13). From (26), we see that Of only the most recent one) can have a remarkable impact
the quality of the estimate in each iteratibis governed ©On the performance of RI-GAMP. In fact, in the setting
by the ratio ?=( )¢t . Thus, having xedffy;hegk + 1, of Section 4 where the eigenvalues Affollow a Beta
the Bayes-optima| choice fdm(rll S PR y) maximizes distribution, taklng(27) does not improve much over the
25 ()t . Similarly, givenff,gc « 1 andfh,ge ¢, the performance of the existing GAMP algorithm that assumes
- A to be Gaussian (green curves in Figures 2-3). In contrast,
'For both linear regression and 1-bit compressed sensing, thgaking (28)-(29) leads to a performance close to VAMP (blue
standard initializatiox * = A "hy(y) is effective. For a character- curves). Though we do not expect the choiceB)-(29)

ization of the GLMs for which this initialization is not effective for tob timal iteration-bv-iterati b d the simulati
a Gaussian design matrix, see (3.13) in (Mondelli & Venkatara- 'O D€ optimal iteration-by-iteération, based on the simulation

manan, 2021a) and the discussion therein. One important exampl@Sults we conjecture that they achieve the same xed point
is phase retrieval{ = jha;;x ij2+ "). as the Bayes-optimal denoisers.

'[IW
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@ =1 (b)y =0:1
(a) Rademacher prior (b) Gaussian prior

Figure 2: Linear regression with a Rademacher prior: nor- ) ] ] ]
malized squared correlation vs. noise levebn the left) Figure 3: Noiseless 1-bit compressed sensing: normalized
and vs. aspect ratio(on the right). squared correlation vs. aspect ratjdor two priors.

) . ] on the right, we plot the same metric as a function,dbr
4. Numerical Simulations = 0:1. Additional results for a different choice ofand
are reported in Figure 6 in Appendix C. Figure 3 shows
the performance for noiseless 1-bit compressed sensing: we
plot the normalized squared correlation as a function, of
for two signal priors (Rademacher in (a), and Gaussian in
(b)). Thered curvein each plot corresponds RI-GAMP,

For synthetic data, we consider two mod€isiinear regres-
sion, i.e.y; = haj;x i+"j,with"; N (0; ?); (i) noise-
less 1-bit compressed sensing, iy.,= sign(ha;;x i).

The design matripA is rotationally invariant in law, i.e.,

— T :
:n(; OhasQi} :;V %eoéga?{_eg%?; ogah;gé)nrlﬁler;at(r_:%ees, together with the related SE. Théue curvecorresponds to
T i g ' VAMP, together with the related SE. The implementation

normallzathn of theBeta(1; 2) d|str|but|9n 1S c_hosen to details for VAMP are given at the end of Appendix B. The
ensure a unit second moment.) In the simulations, the free

cumulants o are replaced by their limits,y , which can be green F:urve;orresponds to the s_tanda(EAMPalgonthm
obtained in closed-form (see Appendix A). We det 8000, which is derived based on the (incorrect) assumption that

. . A isi.i.d. Gaussian. The denoisdrsandh;.; are given
repeat each experiment f® independent runs, and report by (27), which would be Bayes-optimal were the design
the average and error barslastandard deviation. y ’ Y P 9

matrix A Gaussian. The implementation of GAMP is a
We implement the RI-GAMP given i()-(5), with initial-  special case of our proposed RI-GAMP (obtained by set-
izations® = y andx® = ATsl. The denoiser§; and ting all the rectangular free cumulants excepto 0). The
hi+1, fort 1, are given by(28)(29). The expressions for GAMP state evolution predictions (not shown in the plots)
these denoisers and the associated calculations are givendo not match the performance of the algorithm, siAces
Appendix B. The denoiseffs; h;+; and their derivatives not Gaussian. Finally, thelack curvecorresponds t@) the
depend on the state evolution parameters, which can Hiear minimum mean squared errdtMMSE) estimator
estimated consistently from the data. The implementatiot = AT(AA T + 1) ly for linear regression, angii)
details are described at the end of Appendix B. a subgradientmethod for 1-bit compressed sensing. This
last method minimizekly  sign(Ax )] k; via subgradi-
)ént descent (here, denotes the Hadamard product and
[a] =maxf a;0qgis applied component-wise). The algo-
rithm was proposed in (Jacques et al., 2013) for the recovery
of sparse signals, and the original version includes a sparsity
enforcing step. For our setup (with no sparsity), we run it
without the sparsity enforcing step, and the method reduces
to subgradient descent.

match the performance of RI-GAMP for practical values of

d andn, validating the result of Theorem 3.1. We plot the

normalized squared correlatit®'; x i2=(k®'k%kx k2) as

a function of the iteration number. In (a), we consider

linear regression with a Rademacher prior= 1 and
21 0:1;0:4;0:7g; and in (b), noiseless 1-bit compressed

sensing with a Rademacher prior and f 0:8; 1.6; 2:4g. In

all cases, the agreement between RI-GAMP and its SE is

excellent. The next two gures show that the performancePerformance of RI-GAMP vs. VAMP. Taking the re-

of RI-GAMP closely matches that of VAMP in a variety of sults of Figures 2-3 together, we highlight that RI-GAMP

settings. The results for linear regression with a Rademacheaxxhibits a performance close to VAMP. Recall that the

prior are shown in Figure 2: on the left, we plot the nor- xed points of the VAMP state evolution satisfy the replica

malized squared correlation as a function ofor =1;  equation, whose solution is conjectured to give the Bayes-
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(a)d = 2000 (b) d = 4000 (c)d = 8000

Figure 4: Running time of RI-GAMP vs. VAMP. The green curve shows the time for computing the free cumulants in
RI-GAMP, and the blue curve the time for the SVD in the initial step of VAMP.

optimal mean squared error; see Theorem 3 of Rangan et &inpact of eigenvalue distribution and prior. RI-GAMP
(2019) for linear regression, and Theorem 4 of Pandit et abxploits the spectral distribution &f, which gives a large
(2020) for the general case. Thus, this conjecture implieperformance improvement over the GAMP designed for a
that VAMP is Bayes-optimal when its state evolution has aGaussiarA . Furthermore, RI-GAMP also takes advantage
unique xed point, and our numerical simulations suggestof the signal prior, which cannot be exploited by either the
that RI-GAMP is also near-optimal. We remark that, closeLMMSE estimator (for linear regression) or the subgradient
to the phase transition for exact recovery (see 0:6 in method (for 1-bit compressed sensing). In fact, the subgra-
Figure 2b, and 1:8 in Figure 3a), there is a (small) dient method has roughly the same correlation for the two
performance gap between RI-GAMP and VAMP. This ischoices of the prior (cf. the black curves in Figure 3a and
due to the fact that, for both RI-GAMP and VAMP, the num- 3b), and is outperformed by RI-GAMP in both settings.

ber of iterations needed for convergence grows when the

algorithm operates close to this phase transition. We note

that VAMP shows a larger error bar for 1:8in Figure  1-bit compressed sensing on a sparse imageln Figure

3a. For RI-GAMP, the issue is that the expressions,of 5, we consider noiseless 1-bit compressed sensing with the
andh;.; depend on covariance matrices whose dimensiomput X being the sparse grayscale image considered in
grows witht. For larget, these covariance matrices become(Schniter & Rangan, 2014), witth= 2252 = 50625 and a
ill-conditioned and RI-GAMP is unstable. However, the sparsity (fraction of non-black pixels) 864550625 The
stability displayed by VAMP comes at the cost of requir-design matrixA isA = Q, dQq, WhereQ,,, Qq

ing the computationally expensive SVD Af. As shown are orthonormal Discrete Cosine Transform (DCT) matri-
next, RI-GAMP is signi cantly faster than VAMP, and is ces inn, d dimensions, ,; ¢ are random permutation
therefore an appealing alternative in many practical settingsnatrices, and hasi.i.d. 6 Beta(1;2) diagonal entries.
This choice ofA signi cantly speeds up matrix multiplica-
tions, as in (Tian et al., 2021). We report the average and
error bars at 1 standard deviation for 100 independent trials.
For RI-GAMP, we use a non-negative Bernoulli-Gaussian
prior (cf. (Schniter & Rangan, 2014) and (Vila & Schniter,

Complexity of RI-GAMP vs. VAMP. The computa-
tional complexity of VAMP is dominated by the initial SVD

which hasO(d®) running time. In contrast, the free cumu- . . -
: L : 2014)); the expression for the corresponding dendisesr
- 2
lants required for RI-GAMP can be estimateddd-) time, in Appendix B. As shown in Figure 5a, RI-GAMP improves

as dzesgrlbed on p.4. Eac_h |terat|qn of RI-GAMP a!so takeson the subgradient method in (Jacques et al., 2013) up until
O(d?) time, and the algorithm typically converges inafew =~ _", o . NV

. : = 1:5 (this improvement is clearly visibile in the recon-
tens of iterations.

structions for = 0:8, see Figures 5c and 5d). For larger
Figure 4 shows the running times for VAMP (including the performance of RI-GAMP does not improve further, due
the initial SVD) and RI-GAMP (including the estimation to the aforementioned numerical instabilities. Additional
of the free cumulants from the data), for noiseless 1-biexperiments on RGB images when the inputis obtained
compressed sensing. The running time of VAMP is domvia a wavelet transform are reported in Appendix C.
inated by the SVD, and the computational advantage of
RI-GAMP increases quickly with _the problem dimension.5_ Proof Sketch of Theorem 3.1
For := 5§ 2 [0:5;4] RI-GAMP is20-60 faster than
VAMP at d = 2000, 40-120 faster atd = 4000, and The proof is based on an auxiliary AMP algorithm whose
80-240 faster ad = 8000. iterates mimic the true AMP i(4)-(5). The iterates of the
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(a) Correlation vs. (b) Original image

(c) RI-GAMP, =0:8 (d) Subgradient, = 0:8

Figure 5: RI-GAMP versus subgradient method for the recovery of a sparse image from 1-bit measurements.

auxiliary AMP, denoted by!; vt 2 RY andvt;ut*? 2 R",
are computed as follows, for 1:
X1
z'=ATU

X

i=1

The iteration is initialized wittu! = 0; z! = 0. The
functionfy : R? ! Ris de ned asfi(z:;x) = x, which
yieldsv! = x andm?! = Ax = g. Fort 1, the
functionsfi,; : R™2 | Randhis; : R™ I R, which
act row-wise on matrices, are de ned as

=fi(zo+ 1% 23+ 2% iz +1X); (32)

Aeen (Me; 2iiime; ") = he(mg;ioimg; g(mg;™)):

we show in Lemma D.3 that the true AMP iterat@y-
(5) are close to the auxiliary AMP iterat€30)-(31) in the
following sense. For 1.

t t+1 2 t t+1 1,2
kx*  (z""* + x )k o kg™ vtk o
d d
t t+1 1,2 t t+1 1,2
krm mTk rr? Ky g kL uTK r‘: o (33)

Lemma D.3 actually proves a more general convergence
statement which implie€33). It shows that the empirical
joint distribution of the iterates of the true AMP converges
to that of the auxiliary AMP. The result of Theorem 3.1 then
follows from Lemmas D.2 and D.3.
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A. Background on Rectangular Free Cumulants

Let X be a random variable of nite moments of all orders, and denote its even momenigby Ef X 2g. In this
paperX 2 represents either the empirical eigenvalue distributioAfdf’ 2 R™ ", orits limit law 2 (in the latter case,

the moments and rectangular free cumulants are denoteohpygx 1 andf ,x0k 1, respectively). The rectangular free
cumulantd gk 1 of X are de ned recursively by the moment-cumulant relations (cf. Section 3 of (Benaych-Georges,

2009)) X v v
Mok = isi isis (34)

2NCO2k) . S2. . S2.
min S is odd min S is even

(Benaych-Georges, 2009))

1

2= Mu [ 5 @M @+D(M@)+1); (35)
j=1
P
whereM (z) = =+, mz¥ and[z*](q(z)) denotes the coef cient ak in the polynomialg(z).

In the numerical simulations of Section 4, the singular values aire i.i.d. P 6 Beta(l;2). Hence, for 2 (0;1), X
has distribution 6 Beta(1;2) and consequently,, = W;for 1, X has distribution 6 Beta(1;2) w.p.

1= anditisequalt®w.p.1 1=, and consequentiymy, = 1%. Then, given the momenftsny gk 1, the
rectangular free cumulants o gk 1 are computed recursively using (35).

B. Computation of Denoisers, and Implementation Details

Computation of f; for Rademacher prior. Here,P(X =1)= P(X = 1)=1=2. Hence,(28)can be specialized as:

fe(Xe;iinxe) = Ef X jXy=Xg;0i X =x¢g=2 PX =1jXy=Xg;::0Xe=%) L (36)

(x  OTC) 'x Y

exp 5
P(X =1jX1=X5;:5Xe = X) = ;
exp (x DTC 1) Hx t) + exp (x+ )T ) x+ )
2 2
(37)
wherex = (x1;:::;%¢)". (All vectors in this section, including and ,, are treated as column vectors, unless otherwise
mentioned.) Combining (36) and (37), we obtain
fo(xe;:ixe)=tanh  [( ) x (38)
Furthermore, the partial derivativesfqofcan be expressed in the following compact form:
@ fi(xy;:x)= 1 tanh? T( ) x  [( o) le; fori2[t]; (39)

whereeg; is the vector corresponding to theh element of the canonical basisRf.

Computation of f for Gaussian prior. Here,X N (0;1). By evaluating explicitly the conditional expectation, one
readily obtains that

..... - ; e - f( 1) X
fe(xgrnxe) = Ef X JXp= X300 X = xig = W, (40)
which leads to the following expressions for the partial derivatives:
T la,
@fi(xuix) = — ) 8 ooy (41)

1+ ()
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Computation of f; for non-negative Bernoulli-Gaussian prior. Here,X is equal to0 with probability 1 and

it is distributed according to the modulus of a Gaussian Withean and variance? with probability , i.e., X

(L ) o+ N:(0; 2. The parameter is taken to bel=6, which is close to the actual sparsity of the image given by
8645-50625 the parameter? is taken to bel= , which givesEf X ?g = 1, and the image is normalized to have unit second
moment. Now, we can write

hp [
fo(Xe;iio:%) = 2 . - : (43)
1 +p—=expg 1+EF px
wherea=1= 2+ [( ) ! ,b=2 [( 1) x,x =(xg;:::;%¢), and Erf is the error function.
To compute the derivative, we writ®, f1(x1;:::; %) = @f¢(X1;:::;%1)@, b. Since@ b=2 [( ) le, after some
manipulations, one obtains
2 " IR b21Efb|
P ﬁ"’ = + a exp 8a + Er FT
@ felxiiiix)= —2 = " . . (1) te
1 +p—=expg 1+Ef pF&
p
B b? b
Pre P ®P g L+Ef e 3
2
1 +p—exp & 1+Erf o
b B b
2 -p + p——exp -~ 1+Erf p— N e 44
alu2 > 4Ha32 p 8a pg ¢ (1) i (44)

Computation of h,; for linear regression. In this case, we havé = G + W, whereW N (0; 2). Fort =0, we
seth;(y) = y and consequently
@hy(y) = 1: (45)

Fort > 0, hi+; is de ned asin(29). From(12), we have thafG; Ry;:::;R;) N (0; +1). Thus, the second conditional

. 1
EfGjRi=r1;i i Re = 10 =( ter)ms2een) (o1 )[2ieet j2i40) r; (46)

St+2 — t+1 ( t+1)[1:t+l;l]
( t+1)[ne+1) EfYZ2g

Here, we denote bfA )i, :i,;,:j,] the submatrix obtained by taking the rowsfffromi; toi, and the columns oA from
jitoja (ifiy =iz orj1 = jo, the second index is omitted). Thus, the rst conditional expectatid@® can be expressed
as

EfGjRi=r1;iiRe = 1Y = ¥yO=(Ste2)m2tez) (Ste2)2it+2 ;2:t42) y 47)
By combining (46) and (47), we obtain
heer (resiisry) = EfGjRi=riiiiRe=r;Y =yg EfGjRy =110 Ry =19
1T 1 (48)

= (Ste2);2t+2]  (Ste2)2it+2 ;2:142] ( t+)mzery O t+1)@ete1; 2it41) r:
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Furthermore, the partial derivativestof,; can be expressed in the following compact form:

e.

@ hpsa (res 1Y) = (St )jztez) (Ste2 ) 2et42 :2:42) ! 0I
1 . 49
( tv)p2eey O t+1)pesr2eey € fori 2 [t]; (49)

1
@hesa (r i yY) = (Ste2 )izez) (Ste2))ite2 ;2:042] €te1 s

Computation of hy+; for noiseless 1-bit compressed sensingln this case, we have that = sign(G), which implies
that

: 1+si . 1 si
P(Y=1]G=g)= 75'2%(9); P(Y= 1jG=g)= 75';’”(9): (50)
Fort = 0, we seth;(y) = y and consequently
s
. Ef G sign(G 2
B @hi(Y)g= Ef@SONG)I= — 1o 0= gy (52)

where the rst equality follows from the de nition dfi; andy, and the second equality is obtained by recalling G &

. 1
f=EfGjR1=r1; R = 1ig=( t+1)izten) ( t+1)2itsn ;200 T

1 (52)
A2 — 2 .
t = EfG°g  ( t+1)mzeern) ( t+1)2ite1; 2:t41) ( t+1)et+1 1)
We therefore have
1+sign(y(fy + 2 +Z
E, (R +7.2) g (Y(zt tZ))
EfGjRi=ry; R =r;Y =yg= EfGjR = 4;Y = yg= T+ sign(y(f + M.2)) ; (53)

Ez 5

whereZz N (0;1), Ez indicates that the expectation is taken o¥eland in the second line we ugg0). AsSEfG j Ry =

1+sign(y(fy + " Z &
NEy Z g (Y(Zt tZ)) A, /Ttt
Mo (a5 y) = Lesign(y(f +~2))  y+1 n >4)
Ez 2 2 A

R
where (x) = 912: exp( x2=2), and ( x) = I (t)dt. The second equality i(b4) is obtained by computing the

expectations and using the fact tya2 f  1; 1g.

For the partial derivatives df;+1 , we note that@ hi+1 = @g\f %, and

@\ 1 :
@t:( tr1)i2it+1) ( te1 )it 2een) €0 02 [t]:

Thus, by using (54) to compu%, after some manipulations, we have that

N T
@ h (r ..... r y) — M N M 2 M ( ) ( ) 1e_.
i Ht+1 1 s lty y+1 r\l 2 t+1 )[1;2:t+1] t+1 )[2:t+1 ;2:t+1] 1=
2 N

(59)
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Figure 7: Comparison between the
@ =07 (b) =0:4 normalized squared correlation of RI-
GAMP and of a subgradient method
for the recovery of an image from 1-
bit measurements of its wavelet trans-
form.

Figure 6: Additional numerical results for linear regression with a
Rademacher prior: normalized squared correlation vs. noise lefeed
the left) and vs. aspect ratio(on the right).

Finally, for the partial derivative with respect¢gpwe have

1
= SE hui(RyinRpY)? (56)
t

where the rst equality follows from Stein's lemma (see e.g. (A.8) of (Mondelli & Venkataramanan, 2021a)), and in the
second equality we use the de nition (29)faf,; and thatvar(G j Ry;:::Ry) =~ 2 (see (52)).

Implementation details. RI-GAMP. We use consistent empirical estimates for the state evolution parameters required for
the posterior mean denoisers and their partial derivatives. These estimates are computed as described on p.6. To estimate the
rst row and column of 1, we use the de nition (28) and the tower property of conditional expectation:

( t+1)nier = EfX fi(Xq;::0:Xi)g= E fi(Xl;:::;Xi)2 ;2] (57)

(de ned in (6)) are computed using9) (for Rademacher prior) an@d1) (for Gaussian prior). The partial derivatives for
the matrix (+1 (again, de ned in(6)) are computed usin@l9) (for linear regression) an@5)-(56) (for 1-bit compressed
sensing). For the quantity@h (y)i, we use the deterministic limEf @h. (Y )g which is given in the two settings t5)
and (51), respectively.

VAMP: Our implementation of VAMP is based on Algorithm 2 in (Schniter et al., 2016) and the corresponding state evolution
is derived from (Pandit et al., 2020)To ensure numerical stability, we clipped theand ; in Algorithm 2 to lie in
[tol ;1 tol ], wheretol =10 '

C. Additional Numerical Results

In Figure 6, we provide additional numerical results for the model of linear regression with a Rademacher signal prior: on
the left, we plot the normalized squared correlation as a function ffr = 0:7; and on the right, we plot the same metric

as function of , for = 0:4. The results showcase a similar qualitative behavior as discussed in Section 4: the performance
of RI-GAMP is close to that of VAMP, except when approaching the phase transition for exact recove®.2 in Figure

6a); and RI-GAMP signi cantly improves upon algorithms that do not take into account the signal prior (LMMSE) or the
spectrum of the noise (Gauss AMP).

2See also the code availablehatps://sourceforge.net/projects/gampmatlab/






