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Abstract
Kernel mean embedding is a useful tool to repre-
sent and compare probability measures. Despite
its usefulness, kernel mean embedding consid-
ers infinite-dimensional features, which are chal-
lenging to handle in the context of differentially
private data generation. A recent work (Harder
et al., 2021) proposes to approximate the kernel
mean embedding of data distribution using finite-
dimensional random features, which yields analyt-
ically tractable sensitivity. However, the number
of required random features is excessively high,
often ten thousand to a hundred thousand, which
worsens the privacy-accuracy trade-off. To im-
prove the trade-off, we propose to replace random
features with Hermite polynomial features. Un-
like the random features, the Hermite polynomial
features are ordered, where the features at the
low orders contain more information on the dis-
tribution than those at the high orders. Hence, a
relatively low order of Hermite polynomial fea-
tures can more accurately approximate the mean
embedding of the data distribution compared to
a significantly higher number of random features.
As demonstrated on several tabular and image
datasets, Hermite polynomial features seem bet-
ter suited for private data generation than random
Fourier features.

1. Introduction
One of the popular distance metrics for generative modelling
is Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012). MMD computes the average distance between the
realizations of two distributions mapped to a reproducing
kernel Hilbert space (RKHS). Its popularity is due to several
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facts: (a) MMD can compare two probability measures in
terms of all possible moments (i.e., infinite-dimensional
features), resulting in no information loss due to a particular
selection of moments; and (b) estimating MMD does not
require the knowledge of the probability density functions.
Rather, MMD estimators are in closed form, which can
be computed by pair-wise evaluations of a kernel function
using the points drawn from two distributions.

However, using the MMD estimators for training a gener-
ator is not well suited when differential privacy (DP) of
the generated samples is taken into consideration. In fact,
the generated points are updated in every training step and
the pair-wise evaluations of the kernel function on gener-
ated and true data points require accessing data multiple
times. One of the key properties of DP is composability that
implies each access of data causes privacy loss. Hence, pri-
vatizing the MMD estimator in every training step – which
is necessary to ensure the resulting generated samples are
differentially private – incurs a large privacy loss.

A recent work (Harder et al., 2021), called DP-MERF, uses
a particular form of MMD via a random Fourier feature
representation (Rahimi & Recht, 2008) of kernel mean em-
beddings for DP data generation. Under this representa-
tion, one can approximate the MMD in terms of two finite-
dimensional mean embeddings (as in eq. 3), where the ap-
proximate mean embedding of the true data distribution
(data-dependent) is detached from that of the synthetic data
distribution (data-independent). Thus, the data-dependent
term needs privatization only once and can be re-used repeat-
edly during training of a generator. However, DP-MERF
requires an excessively high number of random features to
approximate the mean embedding of data distributions.

We propose to replace1 the random feature representation
of the kernel mean embedding with the Hermite polynomial
representation. We observe that Hermite polynomial fea-
tures are ordered where the features at the low orders contain
more information on the distribution than those at the high
orders. Hence, the required order of Hermite polynomial
features is significantly lower than the required number of

1There are efforts on improving the efficiency of randomized
Fourier feature maps, e.g., by using quasi-random points in (Avron
et al., 2016).
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random features, for the similar quality of the kernel approx-
imation (see Fig. 1). This is useful in reducing the effective
sensitivity of the data mean embedding. Although the sensi-
tivity is 1

m in both cases with the number of data samples m
(see Sec. 3), adding noise to a vector of longer length (when
using random features) has a worse signal-to-noise ratio, as
opposed to adding noise to a vector of shorter length (when
using Hermite polynomial features), if we require the norms
of these vectors to be the same (for a limited sensitivity).
Furthermore, the Hermite polynomial features maintain a
better signal-to-noise ratio as it contains more information
on the data distribution, even when Hermite polynomial
features are the same length as the random Fourier features

To this end, we develop a private data generation paradigm,
called differentially private Hermite polynomials (DP-HP),
which utilizes a novel kernel which we approximate with
Hermite polynomial features in the aim of effectively tack-
ling the privacy-accuracy trade-off. In terms of three dif-
ferent metrics we use to quantify the quality of generated
samples, our method outperforms the state-of-the-art private
data generation methods at the same privacy level. What
comes next describes relevant background information be-
fore we introduce our method.

2. Background
In the following, we describe the background on kernel
mean embeddings and differential privacy.

2.1. Maximum Mean Discrepancy

Given a positive definite kernel k : X � X , the MMD
between two distributions P;Q is defined as (Gret-
ton et al., 2012): MMD2(P;Q) = Ex;x0�P k(x; x0) +
Ey;y0�Qk(y; y0) � 2Ex�PEy�Qk(x; y): According to the
Moore–Aronszajn theorem (Aronszajn, 1950), there exists
a unique reproducing kernel Hilbert space of functions on
X for which k is a reproducing kernel, i.e., k(x; �) 2 H
and f(x) = hf; k(x; �)iH for all x 2 X and f 2 H,
where h�; �iH = h�; �i denotes the inner product on H.
Hence, we can find a feature map, � : X ! H such that
k(x; y) = h�(x); �(y)iH, which allows us to rewrite MMD
as (Gretton et al., 2012):

MMD2(P;Q) =
Ex�P [�(x)]� Ey�Q[�(y)]

2

H; (1)

where Ex�P [�(x)] 2 H is known as the (kernel) mean
embedding of P , and exists if Ex�P

p
k(x; x) < 1

(Smola et al., 2007). If k is characteristic (Sriperumbudur
et al., 2011), then P 7! Ex�P [�(x)] is injective, mean-
ing MMD(P;Q) = 0, if and only if P = Q. Hence, the
MMD associated with a characteristic kernel (e.g., Gaussian
kernel) can be interpreted as a distance between the mean
embeddings of two distributions.

Figure 1. HP VS. RF features. Dataset X contains N =
100 samples drawn from N (0, 1) and X 0 contains N =
100 samples drawn from N (1, 1). The error is defined by:

1
N2

∑N
i=1

∑N
j=1 jk(xi, x

0
j) � ϕ̂(xi)

>ϕ̂(x0j)j where ϕ̂ is either
RF or HP features. Top: The error decays fast when using HP
features (eq. 6). Bottom: The plot shows the average error over
100 independent draws of RF features (eq. 4). The error decays
slowly when using RF features. The best error (black dotted line)
using 500 RF features coincides with the error using HP features
with order 2 only.

Given the samples drawn from two distributions: Xm =
fxigmi=1 � P and X 0n = fx0igni=1 � Q, we can estimate2

the MMD by sample averages (Gretton et al., 2012):

\MMD
2
(Xm; X

0
n) = 1

m2

mX
i;j=1

k(xi; xj)

+ 1
n2

nX
i;j=1

k(x0i; x
0
j)� 2

mn

mX
i=1

nX
j=1

k(xi; x
0
j): (2)

However, at O(mn) the computational cost of
\MMD(Xm; X

0
n) is prohibitive for large-scale datasets.

2.2. Kernel approximation

By approximating the kernel function k(x; x0) with an inner
product of finite dimensional feature vectors, i.e., k(x; x0) �
�̂(x)>�̂(x0) where �̂(x) 2 RA and A is the number of
features, the MMD estimator given in eq. 2 can be computed
in O(m+ n), i.e., linear in the sample size:

\MMD
2
(P;Q) =

 1
m

mX
i=1

�̂(xi)� 1
n

nX
i=1

�̂(x0i)

2

2

: (3)

This approximation is also beneficial for private data gener-
ation: assuming P is a data distribution and Q is a synthetic
data distribution, we can summarize the data distribution in
terms of its kernel mean embedding (i.e., the first term on
the right-hand side of eq. 3), which can be privatized only

2This particular MMD estimator is biased.
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once and used repeatedly during training of the generator
which produces samples from Q.

2.3. Random Fourier features.

As an example of �̂(�), the random Fourier features (Rahimi
& Recht, 2008) are derived from the following. Bochner’s
theorem (Rudin, 2013) states that for any translation in-
variant kernel, the kernel can be written as k(x; x0) =
~k(x� x0) = E!�� cos(!>(x� x0)): By drawing random
frequencies f!igAi=1 � �, where � depends on the kernel,
(e.g., a Gaussian kernel k corresponds to normal distribu-
tion �), ~k(x� x0) can be approximated with a Monte Carlo
average. The resulting vector of random Fourier features (of
length A) is given by

�̂RF;!(x) = (�̂1;!(x); : : : ; �̂A;!(x))> (4)

where �̂j;!(x) =
p

2=A cos(!j
>x); �̂j+A=2;!(x) =p

2=A sin(!>j x); for j = 1; � � � ; A=2.

DP-MERF (Harder et al., 2021) uses this very representation
of the feature map given in eq. 4, and minimizes eq. 3 with
a privatized data mean embedding to train a generator.

2.4. Hermite polynomial features.

For another example of �̂(�), one could also start with
the Mercer’s theorem (See Appendix Sec. C), which
allows us to express a positive definite kernel k in
terms of the eigen-values �i and eigen-functions fi:
k(x; x0) =

P1
i=1 �ifi(x)f�i (x0), where �i > 0 and

complex conjugate is denoted by �. The resulting finite-
dimensional feature vector is simply �̂(x) = �̂HP (x) =
[
p
�0f0(x);

p
�1f1(x); � � � ;

p
�CfC(x)], where the cut-off

is made at the C-th eigen-value and eigen-function. For the
commonly-used Gaussian kernel, k(x; x0) = exp(� 1

2l2 (x�
x0)2), where l is the length scale parameter, an analytic form
of eigen-values and eigen-functions are available, where the
eigen-functions are represented with Hermite polynomials
(See Sec. 3 for definition). This is the approximation we
will use in our method.

2.5. Differential privacy

Given privacy parameters � � 0 and � � 0, a mechanism
M is (�, �)-DP if the following equation holds: Pr[M(D) 2
S] � e� � Pr[M(D0) 2 S] + �; for all possible sets of the
mechanism’s outputs S and all neighbouring datasets D,
D0 differing by a single entry. In this paper, we use the
Gaussian mechanism to ensure the output of our algorithm
is DP. Consider a function h : D 7! Rp, where we add
noise for privacy and the level of noise is calibrated to the
global sensitivity (Dwork et al., 2006), �h, defined by the
maximum difference in terms ofL2-norm jjh(D)�h(D0)jj2,
for neighbouring D and D0 (i.e. D and D0 have one sample

difference by replacement). where the output is denoted
by eh(D) = h(D) + n, where n � N (0; �2�2

hIp). The
perturbed function eh(D) is (�; �)-DP, where � is a function
of � and � and can be numerically computed using, e.g., the
auto-dp package by (Wang et al., 2019).

3. Our method: DP-HP
3.1. Approximating the Gaussian kernel using Hermite

polynomials (HP)

Using the Mehler formula3 (Mehler, 1866), for j�j < 1, we
can write down the Gaussian kernel4 as a weighted sum of
Hermite polynomials

exp

�
� �

1� �2
(x� y)2

�
=

1X
c=0

�cfc(x)fc(y) (5)

where the c-th eigen-value is �c = (1 � �)�c and the
c-th eigen-function is defined by fc, where fc(x) =

1p
Nc
Hc(x) exp

�
� �

1+�x
2
�
; and Nc = 2cc!

q
1��
1+� . Here,

Hc(x) = (�1)c exp(x2) dc

dxc exp(�x2) is the c-th order
physicist’s Hermite polynomial.

As a result of the Mehler formula, we can define aC-th order
Hermite polynomial features as a feature map (a vector of
length C + 1):

�̂
(C)
HP (x) =

hp
�0f0(x); � � � ;

p
�CfC(x)

i
; (6)

and approximate the Gaussian kernel via
exp

�
� �

1��2 (x� y)2
�
� �̂(C)

HP (x)>�̂
(C)
HP (y):

This feature map provides us with a uniform approximation
to the MMD in eq. 1, for every pair of distributions P and
Q (see Theorem C.1 and Lemma C.1 in Appendix Sec. C).

We compare the accuracy of this approximation with ran-
dom features in Fig. 1, where we fix the length scale to the
median heuristic value5 in both cases. Note that the bottom
plot shows the average error across 100 independent draws
of random Fourier features. We observe that the error decay
is significantly faster when using HPs than using RFs. For
completeness, we derive the kernel approximation error un-
der HP features and random features for 1-dimensional data
in Appendix Sec. B. Additionally, we visualize the effect of
length scale on the error further in Appendix Sec. A.

Computing the Hermite polynomial features. Hermite
polynomials follow the recursive definition: Hc+1(x) =

3This formula can be also derived from the Mercer’s theorem
as shown in (Zhu et al., 1997; Rasmussen & Williams, 2005).

4The length scale l in terms of ρ is 1
2l2

= ρ
1�ρ2 .

5Median heuristic is a commonly-used heuristic to choose a
length scale, which picks a value in the middle range (i.e., median)
of kxi � xjk for 1 � i, j � n for the dataset of n samples.
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2xH c(x) � 2cHc� 1(x). At high orders, the polynomials
take on large values, leading to numerical instability. So we
compute the re-scaled term� c =

p
� cf c iteratively using a

similar recursive expression given in Appendix Sec. E.

3.2. Handling multi-dimensional inputs

3.2.1. TENSOR(OR OUTER) PRODUCT KERNEL

The Mehler formula holds for 1-dimensional input space.
For D-dimensional inputsx; x0 2 RD , where x =
[x1; � � � ; xD ] andx0 = [ x0

1; � � � ; x0
D ], thegeneralized Her-

mite Polynomials(Proposition C.3 and Remark 1 in Ap-
pendix Sec. C) allows us to represent the multivariate Gaus-
sian kernelk(x; x0) by a tensor (or outer) products of the
Gaussian kernel de�ned on each input dimension, where
the coordinate-wise Gaussian kernel is approximated with
Hermite polynomials:

k(x; x0) = kX 1 
 kX 2 � � � 
 kX D =
DY

d=1

kX d (xd; x0
d);

�
DY

d=1

�̂ (C )
HP (xd)> �̂ (C )

HP (xd); (7)

where�̂ (C )
HP (:)6 is de�ned in eq. 6. The corresponding fea-

ture map, fromk(x; x0) � hp(x)> hp(x0), is written as

hp(x)

= vec
h
�̂ (C )

HP (x1) 
 �̂ (C )
HP (x2) 
 � � � �̂ (C )

HP (xD )
i

(8)

where
 denotes the tensor (outer) product andvec is an
operation that vectorizes a tensor. The size of the feature
map is(C + 1) D , whereD is the input dimension of the
data andC is the chosen order of the Hermite polynomials.
This is prohibitive for the datasets we often deal with, e.g.,
for MNIST (D = 784) with a relatively small order (say
C = 10), the size of feature map is11784, impossible to �t
in a typical size of memory.

In order to handle high-dimensional data in a computation-
ally feasible manner, we propose the following approxima-
tion. First we subsample input dimensions where the size of
the selected input dimensions is denoted byDprod . We then
compute the feature map only on those selected input dimen-
sions denoted byxD prod . We repeat these two steps during
training. The size of the feature map becomes(C +1) D prod ,
signi�cantly lower than(C + 1) D if Dprod � D . What
we lose in return is the injectivity of the Gaussian kernel on
the full input distribution, as we compare two distributions

6One can let each coordinate's Hermite Polynomials
� ( C )

HP;d (xd ) take different values of� , which determine a different
level of fall-offs of the eigen-values and a different range of values
of the eigen-functions. Imposing a different cut-offC for each
coordinate is also possible.

in terms of selected input dimensions. We need a quan-
tity that is more computationally tractable and also helps
distinguishing two distributions, which we describe next.

3.2.2. SUM KERNEL

Here, we de�ne another kernel on the joint distribution over
(x1; � � � ; xD ). The following kernel is formed by de�n-
ing a 1-dimensional Gaussian kernel on each of the input
dimensions:

~k(x; x0) = 1
D [kX 1 (x1; x0

1) + � � � + kX D (xD ; x0
D )] ;

= 1
D

DX

d=1

kX d (xd; x0
d);

� 1
D

DX

d=1

�̂ (C )
HP (xd)> �̂ (C )

HP (xd); (9)

where�̂ (C )
HP;d (:) is given in eq. 6. The corresponding feature

map, from~k(x; x0) � hs(x)> hs(x0), is represented by

hs(x) =

2

6
6
6
6
4

�̂ (C )
HP; 1(x1)=

p
D

�̂ (C )
HP; 2(x2)=

p
D

...
�̂ (C )

HP;D (xD )=
p

D

3

7
7
7
7
5

2 R(( C +1) �D ) � 1; (10)

where the features map is the size of(C + 1) D . For the
MNIST digit data (D = 784), with a relatively small order,
sayC = 10, the size of the feature map is11� 784 = 8624
dimensional, which is manageable compared to the size
(11784) of the feature map under the generalized Hermite
polynomials.

Note that the sum kernel does not approximate the Gaussian
kernel de�ned on the joint distribution over all the input
dimensions. Rather, the assigned Gaussian kernelon each
dimension is characteristic. The Lemma D.1 in Appendix
Sec. D shows that by minimizing the approximate MMD
between the real and synthetic data distributions based on
feature maps given in eq. 10, we assure that the marginal
probability distributions of the synthetic data converges to
those of the real data.

3.2.3. COMBINED KERNEL

Finally we arrive at a new kernel, which comes from a sum
of the two fore-mentioned kernels:

kc(x ; x0) = k(x; x0) + ~k(x; x0); (11)

where k(x; x0) � hp(xD prod )> hp(x0D prod ) and
~k(x; x0) � hs(x)> hs(x0), and consequently the cor-
responding feature map is given by

hc(x) =
�
hp(xD prod )

hs(x)

�
(12)
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where the size of the feature map is
R((C +1) D prod +( C +1) �D )) � 1.

Why this kernel? WhenDprod goes toD , the product
kernel itself in eq. 11 becomes characteristic, which al-
lows us to reliably compare two distributions. However,
for computational tractability, we are restricted to choose a
relatively smallDprod to subsample the input dimensions,
which forces us to lose information on the distribution over
the un-selected input dimensions. The use of sum kernel
is to provide extra information on the un-selected input di-
mensions at a particular training step. Under our kernel
in eq. 11, every input dimension's marginal distributions
are compared between two distributions in all the training
steps due to the sum kernel, while some of the input di-
mensions are chosen to be considered for more detailed
comparison (e.g., high-order correlations between selected
input dimensions) due to the outer product kernel.

3.3. Approximate MMD for classi�cation

For classi�cation tasks, we de�ne a mean embedding for
the joint distribution over the input and output pairs(x; y ),
with the particular feature map given byg

b� Px ; y (D) = 1
m

mX

i =1

g(x i ; y i ): (13)

Here, we de�ne the feature map as an outer product between
the input features represented by eq. 12 and the output labels
represented by one-hot-encodingf (y i ):

g(x i ; y i ) = hc(x i )f (y i )T : (14)

Given eq. 14, we further decompose eq. 13 into two, where
the �rst term corresponds to the outer product kernel denoted
by b� p

P and the second term corresponds to the sum kernel
denoted byb� s

P :

b� Px ; y =
�

b� p
P

b� s
P

�
=

�
1
m

P m
i =1 hp(xD prod

i )f (y i )T

1
m

P m
i =1 hs(x i )f (y i )T

�
: (15)

Similarly, we de�ne an approximate mean embedding
of the synthetic data distribution byb� Q x 0; y 0(D0

� ) =
1
n

P n
i =1 g(x0

i (� ); y 0
i (� )) , where� denotes the parameters

of a synthetic data generator. Then, the approximate

MMD is given by: \MMD
2

HP (P; Q) = jj b� Px ; y (D) �
b� Q x 0; y 0(D0

� )jj2
2 = jj b� p

P � b� p
Q �

jj2
2 + jj b� s

P � b� s
Q �

jj2
2: In prac-

tice, we minimize the augmented approximate MMD:

min
�

 jj b� p
P � b� p

Q �
jj2

2 + jj b� s
P � b� s

Q �
jj2

2: (16)

where is a positive constant (a hyperparameter) that helps
us to deal with the scale difference in the two terms (de-
pending on the selected HP orders and subsampled input

dimensions) and also allows us to give a different impor-
tance on one of the two terms. We provide the details on
how  plays a role and whether the algorithm is sensitive
to  in Sec. 5. Minimizing eq. 16 yields a synthetic data
distribution over the input and output, which minimizes the
discrepancy in terms of the particular feature map eq. 15
between synthetic and real data distributions.

3.4. Differentially private data samples

For obtaining privacy-preserving synthetic data, all we need
to do is privatizingb� p

P andb� s
P given in eq. 15, then training

a generator. We use the Gaussian mechanism to privatize
both terms. See Appendix Sec. F for sensitivity analysis.
Unlike b� s

P that can be privatized only and for all, we need
to privatizeb� p

P every time we redraw the subsampled input
dimensions. We split a target� into two such that� = � 1 + � 2

(also the same for� ), where� 1 is used for privatizingb� s
P

and� 2 is used for privatizingb� p
P . We further compose the

privacy loss incurred in privatizingb� p
P during training by

the analytic moments accountant (Wang et al., 2019), which
returns the privacy parameter� as a function of(� 2; � 2). In
the experiments, we subsample the input dimensions for the
outer product kernel in every epoch as opposed to in every
training step for an economical use of� 2.

4. Related Work

Approaches to differentially private data release can be
broadly sorted into three categories. One line of prior work
with background in learning theory aims to provide theo-
retical guarantees on the utility of released data (Snoke &
Slavkovíc, 2018; Mohammed et al., 2011; Xiao et al., 2010;
Hardt et al., 2012; Zhu et al., 2017). This usually requires
strong constraints on the type of data and the intended use
of the released data.

A second line of work focuses on the sub-problem of dis-
crete data with limited domain size, which is relevant to
tabular datasets (Zhang et al., 2017; Qardaji et al., 2014;
Chen et al., 2015; Zhang et al., 2021). Such approaches typ-
ically approximate the structure in the data by identifying
small sub-sets of features with high correlation and releasing
these lower order marginals in a private way. Some of these
methods have also been successful in the recent NIST 2018
Differential Privacy Synthetic Data Challenge (nis), while
these methods often require discretization of the data and
do not scale to higher dimensionality in arbitrary domains.

The third line of work aims for broad applicability without
constraints on the type of data or the kind of downstream
tasks to be used. Recent approaches attempt to leverage the
modeling power of deep generative models in the private set-
ting. While work on VAEs exists (Acs et al., 2018), GANs
are the most popular model (Xie et al., 2018; Torkzadehma-
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Figure 2.Simulated example from a Gaussian mixture.Left : Data samples drawn from a Gaussian Mixture distribution with 5 classes
(each color represents a class). NLL denotes the negative log likelihood of the samples given the true data distribution.Middle-Left :
Synthetic data generated by DP-CGANs at� = 1 , where some modes are dropped, which is re�ected in poor NLL.Middle-Right :
Synthetic data samples generated by DP-MERF at� = 1 . Right: Synthetic data samples generated by DP-HP at� = 1 . Our method
captures all modes accurately at� = 1 , and achieves better NLL thanks to a smaller size of feature map than that of DP-MERF (see text).

hani et al., 2019; Frigerio et al., 2019; Yoon et al., 2019;
Chen et al., 2020), where most of these utilize a version of
DP-SGD (Abadi et al., 2016) to accomplish this training,
while PATE-GAN is based on the private aggregation of
teacher ensembles (PATE) (Papernot et al., 2017).

The closest prior work to the proposed method is DP-MERF
(Harder et al., 2021), where kernel mean embeddings are ap-
proximated with random Fourier features (Rahimi & Recht,
2008) instead of Hermite polynomials. Random feature ap-
proximations of MMD have also been used with DP (Balog
et al., 2018; Sarpatwar et al., 2019). A recent work utilizes
the Sinkhorn divergence for private data generation (Cao
et al., 2021), which more or less matches the results of DP-
MERF when the regularizer is large and the cost function
is the L2 distance. To our knowledge, ours is the �rst work
using Hermite polynomials to approximate MMD in the
context of differentially private data generation.

5. Experiments

Here, we show the performance of our method tested on sev-
eral real world datasets. Evaluating the quality of generated
data itself is challenging. Popular metrics such as inception
score and Fŕechet inception distance are appropriate to use
for evaluating color images. For the generated samples for
tabular data and black and white images, we use the follow-
ing three metrics: (a) Negative log-likelihood of generated
samples given a ground truth model in Sec. 5.1; (b)� -way
marginals of generated samples in Sec. 5.2 to judge whether
the generated samples contain a similar correlation structure
to the real data; (c) Test accuracy on the real data given clas-
si�ers trained with generated samples in Sec. 5.3 to judge
the generalization performance from synthetic to real data.

As comparison methods, we tested PrivBayes (Zhang et al.,
2017), DP-CGAN (Torkzadehmahani et al., 2019), DP-
GAN (Xie et al., 2018) and DP-MERF (Harder et al.,
2021). For image datasets we also trained GS-WGAN
(Chen et al., 2020). Our experiments were implemented

in PyTorch (Paszke et al., 2019) and run using Nvidia
Kepler20 and Kepler80 GPUs. Our code is available at
https://github.com/ParkLabML/DP-HP .

5.1. 2D Gaussian mixtures

We begin our experiments on Gaussian mixtures, as shown
in Fig. 2 (left). We generate 4000 samples from each Gaus-
sian, reserving 10% for the test set, which yields 90000
training samples from the following distribution:p(x; y ) =
Q N

i

P
j 2 Cy i

1
C N (x i j� j ; � I 2) where N = 90000, and

� = 0 :2. C = 25 is the number of clusters andCy de-
notes the set of indices for means� assigned to classy.
Five Gaussians are assigned to each class, which leads to
a uniform distribution overy and18000samples per class.
We use the negative log likelihood (NLL) of the samples
under the true distribution as a score7 to measure the quality
of the generated samples:NLL(x; y ) = � logp(x; y ). The
lower NLL the better.

We compare our method to DP-CGAN and DP-MERF at
(�; � ) = (1 ; 10� 5) in Fig. 2. Many of the generated samples
by DP-CGAN fall out of the distribution and some modes
are dropped (like the green one in the top right corner). DP-
MERF preserves all modes. DP-HP performs better than
DP-MERF by placing fewer samples in low density regions
as indicated by the low NLL. This is due to the drastic
difference in the size of the feature map. DP-MERF used
30; 000random features (i.e.,30; 000-dimensional feature
map). DP-HP used the25-th order Hermite polynomials on
both sum and product kernel approximation (i.e.,252+25 =
650-dimensional feature map). in this example, as the input
is 2-dimensional, it was not necessary to subsample the
input dimensions to approximate the outer product kernel.

7Note that this is different from the other common measure of
computing the negative log-likelihood of the true data given the
learned model parameters.


