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Abstract

Studying neural network loss landscapes provides
insights into the nature of the underlying optimiza-
tion problems. Unfortunately, loss landscapes
are notoriously difficult to visualize in a human-
comprehensible fashion. One common way to
address this problem is to plot linear slices of the
landscape, for example from the initial state of the
network to the final state after optimization. On
the basis of this analysis, prior work has drawn
broader conclusions about the difficulty of the
optimization problem. In this paper, we put in-
ferences of this kind to the test, systematically
evaluating how linear interpolation and final per-
formance vary when altering the data, choice of
initialization, and other optimizer and architecture
design choices. Further, we use linear interpola-
tion to study the role played by individual layers
and substructures of the network. We find that
certain layers are more sensitive to the choice of
initialization, but that the shape of the linear path
is not indicative of the changes in test accuracy of
the model. Our results cast doubt on the broader
intuition that the presence or absence of barriers
when interpolating necessarily relates to the suc-
cess of optimization.

1. Introduction

Neural network loss landscapes are difficult to visualize
due to their high-dimensionality and the complicated nature
of the actual optimization path. This motivated the use
of the loss along the linear path between the initial and
final parameters of a neural network as a crude yet simple
measure of the loss landscape (Goodfellow et al., 2015). In
this work we revisit this 1D linear interpolation technique
and address whether the shape of the path reflects the test
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accuracy of the model and can inform training.

Linear interpolation from beginning to end. Goodfellow
et al. (2015) observed that for fully-connected and convo-
lutional networks with maxout (Goodfellow et al., 2013)
trained on MNIST data the loss decays monotonically along
the linear path between their initial and final state. The
absence of obstacles along the linear path led them to con-
clude that “these tasks are relatively easy to optimize.” This
result has been cited widely as an indication of the ease of
training (e.g., Li et al. (2018a); McCandlish et al. (2018);
Fort et al. (2019)) and the linear interpolation technique
itself was used in many papers (Huang et al., 2017; Keskar
et al., 2017; Izmailov et al., 2018; Jastrzgbski et al., 2018;
Hao et al., 2019). In this paper we address empirically how
meaningful the use of this linear path actually is. The exact
definition of training tasks being “easy to optimize” is an
open question and optimization choices directly influence
which linear path we observe. It is also arguable whether
we actually want tasks to be easier to optimize; lowering the
amount of training data or reducing regularization simplifies
training but lowers test accuracy.

The work by Goodfellow et al. (2015) was recently revisited
and extended by Frankle (2020) and Lucas et al. (2021) for
a range of modern neural network models, such as ResNet
and VGG architectures, on image data sets. Frankle (2020)
observed for default parameter settings that the loss often
remained at the level of random chance until close to the
optimum for these models, different than the behavior ob-
served by Goodfellow et al. (2015). In addition to concur-
rently confirming this result, Lucas et al. (2021) found that
the monotonic decay property observed by Goodfellow et al.
(2015) was often maintained when BatchNorm was removed
and non-adaptive optimizers were used. On this basis, they
hypothesized that “large distances moved in weight space
encourage non-monotonic interpolation.”

In our work, we interrogate conjectures stated in prior work
that the shape of loss along the linear path relates to the
“success” of optimization (which we measure in terms of
test accuracy) or other aspects of optimization (e.g., distance
travelled). We systematically study the influence of various
optimizer and architecture design choices on the shape of
the linear path and the test accuracy of the final model, and
examine interpolation for individual layers in addition to
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the entire network. An overview of our results is shownthe linear path between the nal states of two ResNet-50
in Table 1. Our main nding is that there are situations models both trained from pre-trained, while barriers did
that both support and violate the aforementioned intuition®ccur between two models trained from scratch (even when
on the shape of the linear path. As such, we recommenttained with the same random initialization). They inter-
caution when using this analysis to infer other informationpreted this as “pre-trained weights guide the optimization to
about the nature of the optimization problem. a at basin of the loss landscape.” We comment on the role

our ndings: of pre-training in Section 4.

Loss landscape visualizationTo improve upon linear in-

« Pre-training on ImageNet consistently removes thel€rpolation, 2D or 3D visualizations of the loss landscape
presence of barriers for ResNet architectures trainedere made by Goodfellow et al. (2015); Im et al. (2016); Li
on CIFAR-10 data, whereas adversarial initialization€t al. (2018b); Hao et al. (2019). The reduction of the high-
on random labels increases barriers. The former typidimensional loss landscape into 2D or 3D slices requires a
cally increases the nal test accuracy, whereas (in thechoice of directions. The chosen directions strongly affect

absence of weight decay) the adversarial initializationthe resulting observed behaviour. Although the linear inter-
lowers it. polation method also sacri ces information by taking a 1D

slice, it does so with perfect delity by considering the path
* Layers have different levels of sensitivity to the choice hetween initial and nal state. Linear interpolation is seen as
of initialization. We introduce the concept of partial «g simple and lightweight method to probe neural network
pre-training, where we set some layers to a trained (onoss landscapes” (Lucas et al., 2021) and therefore remains
CIFAR-10) or pre-trained (on ImageNet) state, while frequently used, e.g. by Keskar et al. (2017); Jgbski

using random initialization for others. We use this et al. (2018); Lucas et al. (2020); Neyshabur et al. (2020).
setting as initialization and train on CIFAR-10. We nd

that partial pre-training generally leads to worsened tesfR0l€ Of layers. Zhang et al. (2019) studied the role of

accuracy and (uncorrelated) affects the shape of thdifferent layers by training a neural network and then re-
linear path. setting speci ¢ layers to their initial value or a random

value, while keeping the other layers xed at their nal state.

* The amount of weight decay used during training di-They observed that certain critical layers are much more

rectly in uences both the shape of the linear interpo-sensitive to this perturbation. Chatterji et al. (2020) extended
lation path and the nal test accuracy, but there is nothis analysis by studying linear interpolation for speci c
correlation between them. modules. They relate their concept of “module criticality”

] o with high robustness to noise and valley width. Neyshabur

* The distance between the initial and nal parameterg; 5 (2020) studied both the direct and optimization path
state is not a reliable indicator of non-monotonic be+,om injtial to nal state for modules of pre-trained models

haviour along the linear path. and found that later layers have tighter valleys.

* The shape of the linear path from initial to nal param- Qur novel contributions. Previous work studied the shape
eter state is not a reliable indicator of test accuracy. of the linear path (Frankle, 2020; Lucas et al., 2021), but did
not interrogate the connection with the success of optimiza-
2. Related Work tion. Dating back to Goodfellow et al. (2015) intimating
that an absence of barriers along the linear path means that
Interpolation on the loss landscape. Interpolation be- “tasks are relatively easy to optimize”, numerous works
tween networks in various forms has been a valuable todhave implicitly relied on the presence of such a connection
for gaining insight into the structure of the optimization to make other claims (McCandlish et al., 2018; Li et al.,
landscape. Frankle (2020) found that although the loss did018b; Fort et al., 2019; Hao et al., 2019; Lucas et al., 2020;
not increase from initial to nal state, barriers did appearNeyshabur et al., 2020). In our work, we study exhaustively
along the linear path from later iterations to the nal stateif such a connection exists by systematically altering initial-
Other work focused on interpolations between different opization, data, and other optimizer and architecture design
tima: Draxler et al. (2018) and Garipov et al. (2018) showedchoices. We also study the hypothesis by Lucas et al. (2021)
that there exist non-linear paths with (nearly) constant lowthat “large distances moved in weight space encourage non-
loss that connect a pair of minima trained from differentmonotonic interpolation”. Further, we introduce several
random initializations. Fort & Jastrzebski (2019) generalnovel modes of analysis, such as initializing from the height
ized this to show that there exist low-loss connectors  of the barrier and using linear interpolation to study the role
between(m + 1) -tuples of optima, again using non-linear played by individual layers and substructures of the net-

paths. Neyshabur et al. (2020) used linear interpolation tyork. In particular, we illustrate the sensitivity of different
study transfer learning. They did not observe barriers along
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Table 1.The effect of various interventions in training (compared to the baseline provided in Section 3) on (1) the shape of loss over the
linear path between the initial and nal state of the network and (2) the nal test accuracy of the network. Different shapes of loss over the
linear path are: no barrieN@), barrier @), and plateau (P). If the height of layer-wise barriers changes, we denote thisBghigher)

andL-LB (lower layer-wise barriers). The term “often worse/better” [test accuracy] is used for cases where nal accuracy depends on

which layers/convolutional blocks the intervention is performed.

Category Intervention Shape of the linear path Test accuracy
Pre-train full model (Fig. 2A) NB Better
Initialization | Pre-train on random labels (Fig. 2B, no weight decay) H-LB Worse
(Sec. 4) Height of the barrier initialization (Fig. 3) NB Better
Partial (pre-)training (Fig. 4) B/NB/P Often worse
Partial random label pre-training (Fig. 5) B/NB Often Worse
Data Less data (Fig. 6) NB/L-LB Worse
(Sec. 5) No data augmentation (Fig. 6) L-LB Worse
Less weight decay (Fig. 7) NB/B Worse
More weight decay (Fig. 7) P Worse
Optimizer Fixed learning raté = 0.01 (Fig. 8) P Better
(Sec. 6) Fixed learning raté 6 0.01 (Fig. 8) NB Worse
Smaller initialh for conv blocks with barriers (Fig. 9 NB Worse
Depth (Fig. 10) H-LB Better
Model No batch normalization (Appx. F) NB Worse
(Sec. 7) MLPs: overparameterize (Appx. F) NB Often better

layers to the choice of initialization and demonstrate theLinear interpolation measure for the full model. Con-
adversarial effect of partial pre-training (Section 4). sider alL-layer neural network with parameters =

( ©;:::: (L)), We use ; to refer to the initial state of
these parameters angd to refer to the parameters after
training using algorithnT;( ;; D) on dataseD for t steps.
We use the 1D linear interpolation technique (GoodfellowFollowing Goodfellow et al. (2015), a linear interpolation
et al., 2015) to study the linear path between the initial ancbath between; and ; is created as follows:
nal state of the model. We introduce this technique and -1 2 [0:1] (1)
how we study the linear path layer-wise in Section 3.1. In T

Section 3.2 we discuss which different shapes of this lineafo examine the loss landscape along this path, we plot the
path we observe and compare our results with the literaturtoss for a discrete set of values offrom O (initial state)
(Goodfellow et al., 2015; Frankle, 2020; Lucas et al., 2021)to 1 ( nal state). One can extend this technique to evaluate
the linear path between the state of the model at different
steps in training, wherg and ; are replaced by the model

n _states at the considered steps. One can also study the path
Training. We focus on a ResNet-18 (He et al., 2016) archipeqyeen ; and a different random initializatiorf, which

tecture with batch normalization trained for 100 epochs ong separately sampled from the initialization distribution.
CIFAR-10 data (Krizhevsky & Hinton, 2009) using SGD

with momentum @:9) and weight decay (5e-4) using Py- Layer-wise linear interpolation. We also study linear inter-
Torch (Paszke et al., 2017). We use initial learning ratg?olation in a layer-wise fashion: we vary a single layer (or
h = 0:1 that drops by 10x at epochs 33 and 66. For preconvolutional block) from initial to nal state while keeping
trained settings, we use initial learning rate: 0:001that  all other parameters xed at their nal state. Concretely, for
drops by 10x after 30 epochs. Results are averaged ov@hL -layer network where we vary layer

10 runs unles_s ind@cgted otherwise. By_modifying different () _ a ) 0L 0.
aspects of this training problem, we will study the role of 0 Fo

the initialization, datz_a, optimizer, an_d model Fhroughogt thISThis technique was rst proposed by Chatterji et al. (2020),
paper. We also consider other architectures in the main bod .
ho found that certain ResNet layers were more robust to

and supplement, including other ResNet architectures, VG parameter perturbations. In this work, we use the layer-wise

architectures, and multi-layer perceptrons (MLPs). linear path to study the role played by substructures of the
network. We will vary convolutional blocks as a whole.

3. Linear Interpolation from Start to Finish

)i+ ¢ for

3.1. Methodology

W= 0 ke (2
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Figure 1.(A) Left: MNIST data. Right: spiral data. Test loss over 10 runs for a two hidden layer multi-layer perceptron (MLP) along the
linear path between:; and ¢ (blue), s and ?(green), ; and ? (black).(B) Test loss (left) and test accuracy (right) when interpolating

for convolutional blocks (denoted as B), fully connected layer (fc), or the entire network (blue dashed line) for a ResNet-18 architecture
on CIFAR-10 data, averaged over 10 runs.

3.2. Appearance of Barriers in the Loss Landscape 4. The Role of Initialization

De ning barriers. We consider the linear path to contain a The choice of initialization affects the path that the model
barrier if it exhibits a monotonic increase in loss. Goodfel- follows and the optimum it nds. It is therefore natural to
low et al. (2015) observed that, for fully-connected networksbelieve that it also affects the nature of the loss when linearly
on MNIST data, loss decays monotonically along the lineaiinterpolating from start to nish, a relationship we study in
path between initial and trained model, i.e., there are no bathis section. We observe an intuitive relationship between
riers. Figure 1A (left) reproduces this behaviour for an MLP initialization and barriers: actions that make the task easier
with two hidden layers trained on MNIST (blue) (full details (e.g., pre-training the model or initializing at the barrier)
in Appendix A); moreover, the same monotonic decreaseemove barriers, while those that make the task harder (e.g.,
occurs when interpolating between these nal weights andnitializing adversarially) increase the size of barriers. Pre-
anyrandom initialization (green). However, this barrier-free training only certain layers can both create barriers and
linear interpolation is not a universal phenomenon. As avorsen test accuracy, although not in a correlated fashion.
counterexample, when using the exact same architecture a - - .
optimizer but a different dataset (the spiral dataset), barrier%dre'tra'mng' Training a model from a prg-tramed state (on
do appear along the linear path (Figure 1A, right), in fact ma}geNet) causes the loss along the linear path {0 mono-
rising above the level of loss at initialization; barriers risetomcf’ﬂ"y.decay and |mproves.test accuracy (F|g.ure 2A).
even higher when interpolating to other initializations. This is dlstmgt from th_e behaylor Wh.er.' interpolating to a
new random initialization, which exhibits a plateau. This
Barriers in modern neural network architectures. Fran-  result aligns with the intuition that pre-training simpli es
kle (2020) and Lucas et al. (2021) updated the results obptimization (Hao et al., 2019; Neyshabur et al., 2020).
Goodfellow et al. (2015) by studying linear interpolation

i iSi tti . Both that, i A - . .
in modern vision settings. Both observed that, in mamﬁatlon by training on 100% random labels until 100% train-

cases, “loss plateaus and error remains at the level of ralf? ) . o
ng accuracy is reached and use this state as initialization

dom chance...until near the optimum” (Frankle, 2020);thal.'r traini In the ab f weiaht d traini
is, loss remains at, neither monotonically decreasing or enio! tramning. inthe absence of weight decay, pre-training a

countering barriers. Our results for a ResNet-18 on cIFaRResNet-18 on random labels lowers the nal test accuracy

. . . . ._(Liu et al., 2020) and increases the barrier height between
10 agree with these ndings when interpolating for the en'ureinitial and nal state (Figure 2B). This directly opposes the

network as the dashed blue line in Figure 1B (left) illustrates. - . . .
effect of pre-training (Figure 2A), suggesting adversarial

Block-wise interpolation. Individual convolutional blocks initialization complicates optimization.

behave differently from the full network. As the solid lines

in Figure 1B (left) show, different blocks take on a vari- Height of the barrier initialization. The linear path of

ety of behaviors including barriers and monotonic décay. 2 ResNet-18 trained without weight decay on CIFAR-10
exhibits barriers for some random seeds. For the runs that

This suggests that it may be valuable to study the conne hibit bari h del state at the heiaht of th
tion between linear interpolation and other properties of thegX 'oit barners, we save the modef state at the height of the
arrier and use this as initialization for training to study if

network at the ner granularity of individual structural com- 'sts a barrier between this state and th i
ponents rather than at the coarse granularity of the entir ere exisis abarrier beween this state and the hew optimum.
Ithough it was initialized at a higher loss than occurs at

network. R . ) .

" random initialization, the resulting network obtains a higher
'As shown in Figure 1B trends in test accuracy (right) alongtest accuracy than the network trained from scratch and its

the linear path follow trends in test loss (left). We will focus on

test loss throughout this work.
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Figure 2.(A) Test loss between and ¢ of a ResNet-18 architecture for CIFAR-10 data (left) and a ResNet-50 architecture for CIFAR-100
data (middle), when trained from scratch (blue) or pre-trained on ImageNet (orange) over 10 runs. Orange-red lines represent the linear
path between; (trained from pre-trained) to’. (B) Test loss between and ; of a ResNet-18 architecture trained with SGD without

weight decay (WD) on CIFAR-10 data either from scratch (blue) or from a network pre-trained on 100% random labels (orange).

Figure 3.ResNet-18 on CIFAR-10 without weight decay. Results are presented over 5 runs. Left: test loss beameden, when trained
either from scratch (blue) or from a initialization corresponding to the height of the barrier along each blue line (orange). Initialization at
the height of the barrier removes the presence of a barrier (left), speeds up training (middle), and improves the test accuracy (right).

linear path is barrier free (Figure 3)This mirrors the pre- partial pre-training often generates barriers (Figure 4). The
training results (Figure 2A), suggesting initialization at the sensitivity of the network to partial pre-training varies per
height of the barrier aids optimization. convolutional block and also between the trained and pre-
trained setting (e.g., when re-setting convolutional block 4

: . : éRI-4), using a trained state for the rest of the net (T-All)
change in test accuracy when re-setting speci ¢ layers of strongly affects test accuracy, but using a pre-trained state
trained neural network to their initial state and found large gy Y. gap

. . P-All) does not). We conclude that the choice of initial-
differences across layers. To extend this work, one can _,. . X
e . .._lIzation for different convolutional blocks strongly affects
study the loss from the initial state of a speci c layer to its - .
: . ; test accuracy after training and changes the nature of opti-
nal state, while keeping all other layers xed at their nal

state (Chatterji et al., 2020). We found that the shape of thi mization. It is remarkable _that using a random initializgtion
path greatly varies per convolutional block of a ResNet-1 or t_he full net I_eads to h|gher tes_t accuracy _tha_m_u5|_ng a
(Figure 1B). But what these studies do not address is thgartlally pre-trained or partially trained net as initialization.
effect of different layer-wise (or block-wise) initialization Block-wise adversarial initialization. To further explore

on training itself. We thus introduce the conceptdirtial the effect of using different initializations for individual con-
(pre-)training”: we rst train on CIFAR-10 (or pre-train on volutional blocks on the linear path and test accuracy, we
ImageNet) and then re-set a speci ¢ convolutional block toset one convolutional block to a random label adversarial
its initial (random) state, while keeping the other parametersnitialization while using a standard random initialization
at their (pre-)trained state. We then use this state of théor the rest of the net. We then re-train using this initial-
model as initialization and train as usual on CIFAR-10 dataization. We nd that while adversarial initialization for the

We nd that while pre-training a ResNet-18 leads to higher rst convqlufuqr?al_ bqukS lowers the_test accuracy, using
adversarial initialization for convolutional block 4 slightly

test accuracy (Figure 2A), partial pre-training often leads ta L
. . Increases the nal test accuracy compared to training from
a lower accuracy of the nal trained network (Figure 4, left)

compared to training the net from scratch. Further, whiIeScratCh (Figure 5). This is also re ected by the shape of

. . the linear path: when using an adversarial initialization for
pre-training the full net leads to monotonic decay along . . L )
: o : convolutional block 4 the linear path exhibits monotonic
the linear path between initial and nal state (Figure 2A), : . " .
decay while others settings exhibit barriérs.

2Using other states along the linear path, which are far enoug
from the original initialization, as initialization often delivers simi-
lar improvements on the nal test accuracy (see Appendix C).

Partial pre-training. Zhang et al. (2019) measured the

3Similar results are obtained for different levels of weight decay
(see Appendix C).
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Method Test acc (%)
T-AllbutRI-1 | 91.79 0.23
T-AllbutRI-2 | 91.83 0.21
T-Allbut RI-3 | 92.35 0.20
T-Allbut RI-4 | 90.97 0.31
P-AllbutRI-1 | 89.97 0.13
P-AllbutRI-2 | 89.91 0.21
P-AllbutRI-3 | 91.78 0.22
P-Allbut RI-4 | 92.78 0.22

Figure 4.We set a ResNet-18 to a pre-train@) (middle) or trainedT) (right) state, but re-set a speci ¢ convolutional blg& to a
random initialization(RI). Then we train as usual on CIFAR-10. This often affects the test accuracy of the nal model (left). Sometimes
barriers appear along the linear path for the full net betweemd ; (middle/right), averaged over 10 runs.

a horizontal ip and random crop as data augmentation for
CIFAR-10. Removing data augmentation lowers the layer-
wise barriers along the linear path (Figure 6, center right).
In Appendix D, we show that increasing data augmentation
increases the height of layer-wise barriers, while removing
data augmentation when using only a subset of the training
data further reduces the presence of layer-wise barriers.

_ _ _ Summary. The shape of the layer-wise linear path is af-
Figure 5.ResNet-18 on CIFAR-10 without weight decay. Test loss fected by changes to the data, but the shape of the full model
between ; and ; when one conv block (B) was adversarially |inear path is less representative (blue dashed lines, Figure
initialized using random labels, averaged over 10 runs. 6). Reducing the complexity of the task (e.g., reducing

the amount of data or removing augmentation) lowers or

removes layer-wise barriers. The setting with the highest

Summary. Wher_eas the use of pre-training removes thela er-wise barriers reaches the highest test accuracy, and the
presence of barriers and increases test accuracy, the use

T ) setting without barriers reaches the lowest test accuracy.
adversarial initialization increases barriers and lowers test
accuracy. Initializing neural networks at the height of the

barrier along their initial to converged state leads to monoB- The Role of the Optimizer

tonic decay along the linear path, speeds up training, aantimizer hyperparameter settings, such as the learning rate

Improves test accuracy. Furt_h_er, we nd_ that certain convog weight decay values, strongly affect which optimum
lutional blocks are more sensitive to partial pre-training than.

. . . |s found and the test accuracy. Further, Lucas et al. (2021)
others, but the change in test accuracy is not correlated wntb

the sh fthe i th. Wh raini  the ful und that training modern vision networks with Adam (as

€ shape ot the linear path. ereas pre-training of the Tu pposed to the more typical SGD with momentum) more
net increases test accuracy and leads to monotonic dec%
partial pre-training typically worsens the test accuracy ofI

the resulting net and can generate barriers.

quently leads to non-monotonic decay of the loss when
inearly interpolating. Adam also increases the distance
that the network travels from initialization, leading Lucas
etal. (2021) to posit “large distances moved in weight space
5. The Role of the Dataset encourage non-monotonic interpolation”. Inspired by this,
As illustrated in Figure 1A, where we used the same archiawi?fesrt::ty ;eoc\j/v I ; ;2% ; If;;znli\/oi]s ;fv\c\;]eiéghh;ggg? ¥hgr

tecture, initialization, and optimizer to train on two different ;- o +-ovelied and nal accuracy— affect the shape of
datasgts, the Qata has a direct N uence on the beha\{m%SS when linearly interpolating. We nd that the hypothesis
Whe_n linearly interpolating. In_ this sect!on, we further in- of Lucas et al. (2021) does not hold in general and that the
vestigate the effect of data on interpolation. level of weight decay directly controls the behaviour along
Number of examples.When only a subset of the training the linear path.

data set is used throughout training, we expect optimizatio

to be easier and faster, yet the test accuracy of the nar:[

model is typically lowered. We nd that using a smaller is used to train ResNet-18 on CIFAR-10 data. When using

amour_n of CIFAR-lO fraining data induces mon(_)tomc deca31ittle or no weight decay, the behaviour of the loss varies
when interpolating and lowers test accuracy (Figure 6, Ieﬂ)0ver different runs; it sometimes exhibits barriers and some-

Role of data augmentation.Throughout this work we use times monotonic decay. When using more weight decay, the

he effect of weight decay on linear interpolation. In
igure 7, we vary the amount of weight decay (WD) that
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Figure 6.Test loss between and ¢ for ResNet-18 on CIFAR-10 when varying the amount of training data and whether data augmentation
(horizontal ips, random crops) is used. Averaged over 10 runs.

Figure 7.Effect of the amount of weight decay (WD) used for training a ResNet-18 architecture on CIFAR-10 on the linear path and test
accuracy. The highest test accuracy is reached using WD = 5e-4 (blue).

behaviour changes. At 1e-4 (purple), the loss consistentlynodel with a lower learning rateln addition, these results
monotonically decays. The highest test accuracy is reachealso cast doubt on a connection between monotonically
when training with 5e-4 (blue), for which loss consists of decreasing loss and better accuracy; the middle learning rate
a plateau with a sudden drop close to the nal state. Whetfthe one that induces a barrier) reaches higher test accuracy
increasing beyond that, test accuracy decreases, but the loggn either of the other learning rates (which do not).

still exhibits a plateau. The shape of the linear path is thu

not a reliable indicator of test accuracy of the nal model. iayer-wse sensitivity to learning rate. We have observed

that linear interpolation behaviour varies by layer (Figure
How do barriers connect to the distance travelled™on-  1B) and that layers/individual conv blocks have different
monotonic behaviour occurs when training a model botHevels of sensitivity to the choice of initialization (Figure
with zero and large weight decay values (Figure 7), while we4 and Figure 5). This raises the question of how the use
would expect models without weight decay to travel fartherof different optimizer hyperparameter choices for different
To further study this relationship, we trained a ResNet-18 atayers affects the shape of the linear path and the nal test
different xed learning rateé (Figure 8). The linear paths accuracy of the model. Figure 9 shows the effect of training
for models trained using higher and lower learning ratedayers that exhibit barriers with a different learning rate than
(h = 0:1and0:001) exhibit monotonic decay, while training those that do not. Lowering the initial learning rate used for
with an intermediate learning ratk € 0:01) does not. This  layers that exhibit barriers removes those barriers, but also
contradicts the hypothesis of Lucas et al. (2021), undesubstantially lowers the test accuracy of the nal motlel.
which we would expect the model with the highest_ Iearningmure of distance is detailed in Appendix £

rate (which travels the furthest) to have a barrier, not a 5The same holds for a VGG-11 model (Figure AL6, Appx. E).
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. .  Figure 9.Block-wise linear interpolation for ResNet-18 trained on CIFAR-10 using
Figure 8 ResNet-18 trained on CIFAR-10 with different initial learning rate$. Left: ho = 0:1 for all, right: he = 0.01 for
xed learning rateh. Averaged over 10 runs.  |ayers/conv. blocks that exhibit barriers amg= 0.1 for the rest.

This raises the question whether we can optimize differenRole of batch normalization. Similar to Lucas et al. (2021),
layers differently depending on the absence or presence @fe nd that the use of batch normalization (BN) leads to
barriers. Concretely, Table 2 shows the result of training laynon-monotonic behaviour along the linear path for ResNet
ers/conv blocks that exhibit barriers with a different learningand VGG architectures (see Appendix F). However, we nd
rate or amount of weight decay than those that do not. Lowthat for various datasets, MLPs do exhibit barriers in the
ering the initial learning rate used for layers without barriersabsence of BN (see e.g., Figure 1A). We also study the
or eliminating weight decay has a smaller (ResNet-18) or ndinear interpolation parameter group-wise and show that the
(VGG-11) effect on the test accuracy of the trained modelrunning mean and variance BN parameters play an important
whereas doing so for layers with barriers or for all layersrole in the shape of the linear interpolation path observed
lowers accuracy substantially. for the full convolutional block (see Appendix F).

Summary of other architectures. In Appendix F, we show
a different learning rate or amount of weight decay (WD) thanthat the behaviour for VP?G.'ll IS Sl,mllaLto that of a TeSNet'
those that do not\B). Test accuracy on CIFAR-10 over 10 runs is 18. For MLPs, we nd that increasing the number of nodes

maintained much better when training only the layers with barriersn 12yers with barriers removes the overall presence of bar-

Table 2.We train layers/conv blocks that exhibit barrieB) ith

at the higher learning rate or with weight decay. riers. This effect does not transfer to ResNet architectures.
Test accuracy For MLPs, early layers contain barriers, whereas later layers

Initial learning ratehg | ResNet-18 | VGG-11 do not exhibit barriers. Similarly, Zhang et al. (2019) found
0:1 (all) 922 02%]| 91.9 0.2% that the rst layer is most sensitive to re-initialization.
0:1(B), 0:01(NB) 91.8 0.2% ] 92.0 0.1% Summary. Batch normalization encourages non-monotonic
0:01(8B), 0:1(NB) 90.1 0.2% 90.4 0.1% behaviour. Meanwhile, in Table 2 we showed that using a
0:01 (all) 90.3 0.3% | 90.9 0.1% large initial learning rate for layers/conv blocks that contain
Weight decay (all) 922 0.2%| 91.9 0.2% barriers is necessary to achieve good test accuracy. These
WD (B), NoWD (NB) | 91.5 0.2% | 91.8 0.1% effects together corroborate the observation by Jetsski
No WD (B), WD (NB) | 90.1 0.3% | 90.2 0.1% et al. (2020) that using a large learning rate in the initial
No WD (all) 90.1 0.4%| 90.4 0.3% phase of training is necessary for networks with batch nor-

malization. We also nd that the behaviour for MLPs is
Summary. The distance between initial and nal state is not distinct from ResNet or VGG architectures.
a reliable indicator of non-monotonic behaviour. The shape
of Fhe linear path.is dirgct[y ir! uenced by the amoun.t pf 8. Discussion and Future Work
weight decay and is not indicative of test accuracy. Training
layers that exhibit barriers with a smaller initial learning Throughout this work, we explored the relationship between
rate removes the barriers, but also lowers test accuracy. the shape of the linear path between the initial and nal
model states and the outcome of optimization. We also stud-
7 The Role of the Model ied the linear path in a layer-wise fashion to illustrate that
individual convolutional blocks have different sensitivities
Throughout this work we focused on a ResNet-18 architedo initialization and optimizer hyperparameter settings.
ture with batch normalization. We now discuss the role o

. . f\Nhat in uences the shape of loss when linearly inter-
the model architecture on the shape of the linear path. b y

polating? This one-dimensional slice of the landscape is
Architecture depth. Generally, the use of deeper ResNetheavily in uenced by both initialization and optimization

architectures on CIFAR-10 data generates or increases tlidoices. We found that the data also directly in uences the
height of convolutional block-wise barriers (Figure 10).  linear path (Figure 1A and Section 5). In addition, the nat-
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Figure 10.Test loss when interpolating for convolutional blocks (denoted as B) and the entire network (blue dashed line) for different
ResNet architectures trained from scratch on CIFAR-10 data. Results are averaged over 10 runs.

ural language processing literature suggests that attentioimpossible to discern when interpolating using the full net-
based models need adaptive optimizers (e.g. Adam) to traiwork, for example changes in the data (Figure 6) or model
properly (Devlin et al., 2018; Liu et al., 2019; Zhang et al.,(Figure 10). Further, independent of the shape of the linear
2020), unlike convolutional models for vision data, which path, we found that partial pre-training of convolutional
can be trained well with SGD with momentum (Szegedyblocks can counterintuitively lower test accuracy of the -
etal., 2014; He et al., 2016; Zagoruyko & Komodakis, 2016)nal model. Although neural networks learn hierarchichally
While we focused on the latter, we think that revisiting this (Yosinski et al., 2014; Hao et al., 2019; Neyshabur et al.,
study for attention-based models is an interesting directior2020), the sensitivity to partial pre-training varies per con-
for future work. volutional block and does not follow an obvious pattern.
. . S This result implicates the increasingly popular direction
Does the shape ofloss when interpolating provide insight of training individual layers in different ways (You et al.,

Into Oth‘?r aspgcts of pptlmlzatloq ' ngar mtgrpolaﬂor) IS 2017; Leimkuhler et al., 2019; You et al., 2020; Murfet et al.,
a one-dimensional view of the high-dimensional optimiza- ! ; . :
i : . 2020; Vlaar, 2022) and raises questions about the basis upon
tion landscape. The network follows a different, nonlinear” . e

AR : . .~ which we should make such decisions.
path from initialization to its nal weights. As such, lin-
ear interpolation inherently sacri ces information about the ]
optimization problem; prior work and this paper consider9. Conclusion
whether the information it gleans still provides useful in-

. . P We conclude that the shape of the linear path from initial
sights into optimization.

to nal state isnot a reliable indicator of test accuracy.
Despite the intuition provided by Goodfellow et al. (2015) Although focusing on one line of analysis, e.g. on the role
that the absence or presence of obstacles re ects dif culty ofof initialization, seems to suggest that there does exist a
optimization, we found many cases where higher layer-wiseonnection, the full picture (Table 1, Figure A11l) illustrates
barriers or the creation of barriers along the linear path of thehat this is misleading. We believe publishing this negative
full model appear alongside increased test accuracy. Thigesult is important due to the widespread use of the linear
evidence implies that either a more dif cult optimization tra- interpolation method. Further, we introduce a new line of
jectory can lead to improved generalization, or Goodfellowinquiry by studying the role played by individual layers and
et al's intuition about the relationship between interpolationsubstructures of the network. We nd that certain layers
and optimization dif culty does not apply to the networks require larger initial learning rates to maintain the same test
we studied. Moreover, we found cases where monotonicalljaccuracy. We also show the surprising adversarial effect
decreasing loss was accompanied by higher test accuracy partial pre-training. Further exploration of the layer-
(e.g., pre-training). We also found others where the linwise sensitivity to choice of initialization offers an exciting
ear path exhibited both barriers and monotonic decay ovedirection for future work.

different runs (e.g., weight decay) and where the presence

or absence of barriers was not correlated with in(_:reaseg\cknowbdgements
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A. Implementation Details

Throughout the paper we focus on a ResNet-18 architecture with batch normalization trained on CIFAR-10 data. We set
batchsize to 128, use cross entropy loss, and use as data augmentation: horizontal ip, random crop, and normalization.
We train the network for 100 epochs using SGD with momentum with weight decay set to 5e-4 and the momentum
hyperparameter set to 0.9. We use an initial learning rate=00:1 that is dropped by a factor of 10 every 33 epochs. For
pre-trained models we use initial learning rate 0:001that is dropped by a factor of 10 after 30 epochs. We obtain our
pre-trained models from the PyTorch library, which have been trained on ImageNet. We replace the nal fully connected
layer to match the number of classes and (when training on CIFAR-10 data) set the rst convolutional layer to have 3 input
channels, 64 output channels, and a kernel siz2 of3. We perform all our experiments in PyTorch using NVIDIA DGX-1

GPUs and use standard random PyTorch initialization. Our results are all averaged across multiple runs with different
random seeds on initialization and data order.

In this work we vary speci ¢ aspects of the training problem, such as the optimizer hyperparameters, data, initialization,
and model, while keeping all other aspects xed. For example, we consider deeper ResNet architectures (Figure 10), but
use the same optimizer, data, and initialization settings as for our base model. But, as described in the paper, there are a
few experiments where we change multiple aspects of the training problem: we turn off weight decay for both our random
label initialization experiment (FigureB? and our height of barrier initialization experiment (Figure 3). For the former, we
wanted to study the effect of adversarial initialization that lowered the test accuracy of the nal trained network. A network
trained on 100% random labels as initialization typically does not affect the test accuracy of the nal model, when using
SGD with momentum, learning rate decay and weight decay (Liu et al., 2020). But turning off weight decay during training

in combination with pre-training on random labels does lower the test accuracy. For our height of barrier initialization
experiment (Figure 3) we needed a setting for which the linear path exhibited clear barriers. For a ResNet-18 this is found
for some seeds when weight decay is turned off (Figure 7). For the runs that exhibited barriers we saved the state of the
model at the height of this barrier and used this as initialization for our model to produce Figure 3.

Further, to obtain FigureAwe used a two hidden layer perceptron with 50 nodes in each hidden layer and ReLU activations.
We used Adam witth = 5e-4, without weight decay or any learning rate scheduling. We use batch size 128 for MNIST data
and cross entropy loss. We use binary cross entropy loss for the binary classi cation spiral data set. The rst class of the
spiral data set is generated using
p-_ _

X=2 tcos(é)t )+ 0:02N (0;1);

y= 2pfsin(8pf ) +0:02N (0; 1); ®3)
wheret is drawn repeatedly from the uniform distributiti{O; 1) to generate data points. The other class of this dataset is

obtained by shifting the argument of the trigonometric functions blfor our experiments on the spiral data set we used
10000 training data, 5000 test data points and a batch size of 500.

B. Overview of Results

A summary of all our ndings can be found in Figure A11.
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Figure A11.The linear path between and ; of our base ResNet-18 architecture exhibits a plateau at the level of random chance until
close to the optimum (plateau + drop); it exhibits barriers when evaluating the linear path layer-wise (seeBjigtine base model
obtains 92.2% accuracy on CIFAR-10 test data. In this gure we present the change in test accuracy and shape of the linear path between

i and ; compared to this base model along four axes: the optimizer, the data, the initialization, and the model.There are several cases
where the presence of barriers coincides with increased test accuracy. But there are also cases where no barriers do. We conclude that the
shape of the linear path is not a reliable indicator of accuracy.

C. Further Studies on the Role of Initialization

Left/right of barrier initialization. In Section 4 we showed the effect of initializing neural networks at the parameter

con guration which corresponds to the height of the barrier along their initial to converged state. We considered a ResNet-18
architecture which was trained without weight decay on CIFAR-10 data. The linear interpolation path in this setting clearly
exhibits barriers for some seeds (Section 6, Figure 7). For the runs that exhibited barriers, we saved the model state at the
the height of the barrier and used this as initialization for our model. Although it was initialized at a higher loss than occurs

at random initialization, the resulting network obtained a higher test accuracy than the network trained from scratch and its
linear path exhibited monotonic decay (Figure 3). In Table A3 and Figure A12 we show that these effects are not restricted
to initialization at the barrier: choosing an initialization along the linear path to the left or the right of the barrier leads to
similar performance improvement (Table A3) and typically monotonic decay along the linear path (Figure A12).

Table A3. ResNet-18 on CIFAR-10 without weight decay. Test loss betweamd ¢ for discrete set of 2 [0; 1] in 50 equally spaced
subintervals, when trained either from scratch (blue) or from an initialization correspondingfdhe blue line at: the height of the

barrier parier, before the barrier at =  parier 5, after the barrier at =  pamier+ 5 (red).
Initialization | Training accuracy (%) Test accuracy (%)
Random initialization 99.44 0.12 90.01 0.39
Before barrier 99.80 0.04 91.05 0.21
Height of barrier 99.86 0.02 91.12 0.18
After barrier 99.88 0.02 90.85 0.17




