
Multirate Training of Neural Networks

Tiffany Vlaar 1 Benedict Leimkuhler 1

Abstract
We propose multirate training of neural networks:
partitioning neural network parameters into “fast”
and “slow” parts which are trained on different
time scales, where slow parts are updated less fre-
quently. By choosing appropriate partitionings
we can obtain substantial computational speed-up
for transfer learning tasks. We show for applica-
tions in vision and NLP that we can fine-tune deep
neural networks in almost half the time, without
reducing the generalization performance of the
resulting models. We analyze the convergence
properties of our multirate scheme and draw a
comparison with vanilla SGD. We also discuss
splitting choices for the neural network parame-
ters which could enhance generalization perfor-
mance when neural networks are trained from
scratch. A multirate approach can be used to learn
different features present in the data and as a form
of regularization. Our paper unlocks the potential
of using multirate techniques for neural network
training and provides several starting points for
future work in this area.

1. Introduction
Multirate techniques have been widely used for efficient sim-
ulation of multiscale ordinary differential equations (ODEs)
and partial differential equations (PDEs) (Rice, 1960; Gear,
1974; Gear & Wells, 1984; Günther & Rentrop, 1993; En-
gstler & Lubich, 1997; Constantinescu & Sandu, 2013).
Motivations for using multirate techniques are the presence
of fast and slow time scales in the system dynamics and to
simulate systems which are computationally infeasible to
evolve with a single stepsize.

In their most general formulation the multirate methods we
consider in this work involve separating the model parame-

1Department of Mathematics, University of Edinburgh, Ed-
inburgh, United Kingdom. Correspondence to: Tiffany Vlaar
<Tiffany.Vlaar@ed.ac.uk>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

ters Θ into multiple components Θ1, ...,ΘN corresponding
to different time scales. Slow parameters are updated less
frequently than their fast counterparts but with larger step-
sizes. Synchronization of the parts occurs every slow time
step. This is illustrated for two time scales (and accompany-
ing fast ΘF and slow ΘS parameters) in Figure 1.

hF hF

hS = khF

. . .ΘF Θ′ F

ΘS Θ′ S

 updatesk

Θ Split Join

ΘF,1 ΘF,k−1

Θ′

Figure 1. The basic principle of the multirate techniques consid-
ered in this paper is illustrated for two time scales in this figure. We
first split our model parameters Θ into fast and slow components,
ΘF and ΘS , respectively. The fast components are then updated
every step with stepsize hF , whereas the slow components are
updated every k steps with stepsize hS = k · hF .

The idea of using fast and slow weights in a machine learn-
ing context has been around for a long time (Feldman, 1982;
Hinton & Plaut, 1987; Ba et al., 2016), originally inspired
by neuroscience as synapses in the brain have dynamics at
different time scales. However, the use of multirate methods
has so far been largely overlooked for this area. In this
work we seek to change this. We propose a novel multirate
training scheme and show its use in various neural network
training settings. We describe connections with the current
machine learning literature in Section 6.

To demonstrate how multirate methods may be applicable in
deep learning applications, consider a WideResNet-16 archi-
tecture trained on the patch-augmented CIFAR-10 dataset
(Li et al., 2019) using SGD with momentum and weight
decay and different learning rates (Figure 2). In this dataset
a noisy patch of 7× 7 pixels is added to the center of some
CIFAR-10 images. Some images contain both the patch and
CIFAR-10 data, while other images only contain the patch
or are patch-free. When training using a large learning rate,
the network is unable to memorize the patch, but achieves
high accuracy on patch-free data. Meanwhile, when train-
ing using a small learning rate the network can memorize
the patch quickly, but the accuracy on clean data is lower.
We demonstrate that a multirate approach trained on two

Multirate Training of Neural Networks

0 10 20 30 40 50
Epoch

30

40

50

60

70

80

Cl
ea

n
Ac

cu
ra

cy
 (%

)

h = 0.004
h = 0.1
Multirate

0 10 20 30 40 50
Epoch

40

60

80

Au
gm

en
te

d
Ac

cu
ra

cy
 (%

)

h = 0.004
h = 0.1
Multirate

0 10 20 30 40 50
Epoch

0

20

40

60

80

100

Pa
tc

h
Ac

cu
ra

cy
 (%

)

h = 0.004
h = 0.1
Multirate

Figure 2. WideResNet-16 architecture trained on patch-augmented CIFAR-10 data (Li et al., 2019). An example of a CIFAR-10 image
with a patch is given on the right. Of the training data: 20% is patch-free, 16% has only the patch, and the rest has both data and patch.
More details are provided in Appendix C.1. Left: clean validation set. Middle: augmented data with patches. Right: patch-only data. A
network trained using a small learning rate (blue) learns the patch quickly, whereas a large learning rate (orange) gives higher accuracy on
clean data. A multirate scheme (green) trained on both time scales (hF = 0.004, hS = 0.1, see Section 3 and Appendix C.1) is able to
memorize the patches and to simultaneously obtain high accuracy on the clean data.

time scales can both memorize the patch and obtain a high
accuracy on the patch-free data. Multirate methods thus
show potential for simultaneously gathering information
on different features of the data, for settings where fixed
learning rate approaches fail.

In this work we illustrate the benefit of using multi-
rate techniques for a variety of neural network train-
ing applications. As main application we use a multi-
rate approach to obtain computational speed-up for trans-
fer learning tasks by evaluating the gradients associated
with the computationally expensive (slow) part of the sys-
tem less frequently (Section 4). PyTorch code support-
ing this work, including a ready-to-use torch.optimizer,
has been made available at https://github.com/
TiffanyVlaar/MultirateTrainingOfNNs.

The contributions of this paper are as follows:

• We propose multirate training of neural networks,
which requires partitioning neural network parameters
into fast and slow parts. We illustrate the versatility of
this approach by demonstrating the benefits of different
partitioning choices for different training applications.

• (Section 3) We describe a novel multirate scheme that
uses linear drift of the slow parameters during the fast
parameter update and show that the use of linear drift
enhances performance. We compare its convergence
properties to vanilla SGD.

• (Section 4) We use our multirate method to train deep
neural networks for transfer learning applications in vi-
sion and NLP in almost half the time, without reducing
the generalization performance of the resulting model.

• (Section 5) We show that a multirate approach can
be used to provide some regularization when training
neural networks from scratch. The technique randomly
selects new subsets of the neural network to form the
slow parameters using an iterative process.

We conclude that multirate methods can enhance neural net-
work training and provide a promising direction for future
theoretical and experimental work.

2. Background
Multirate methods use different stepsizes for different parts
of the system. Faster parts are integrated with smaller step-
sizes, while slow components are integrated using larger
stepsizes, which are integer multiples of the fast stepsize.
Multirate methods have been used for more than 60 years
(Rice, 1960) in a wide variety of areas (Engstler & Lubich,
1997; Günther & Rentrop, 1993). Gear (1974) analyzed
the accuracy and stability of Euler-based multirate methods
applied to a system of ODEs with slow and fast components.

The system of ODEs that forms the starting point for most
neural network training schemes is dθ = G(θ)dt, where
θ ∈ Rn are the neural network parameters and G represents
the negative gradient of the loss of the entire dataset. As
a starting point for our multirate approach we partition the
parameters as θ = (θF , θS), with θF ∈ RnF , θS ∈ RnS ,
n = nF + nS , and obtain system of ODEs:

dθF = GF (θ)dt, dθS = GS(θ)dt, (1)

where GF and GS are the gradients with respect to θF and
θS , respectively.

For neural network training the loss gradient is typically
evaluated on a randomly selected subset of the training data
and the pure gradient in Eq. (1) is subsequently replaced
by a noisy gradient which we denote G̃(θ). Further, most
training procedures incorporate momentum (Polyak, 1964;
Sutskever et al., 2013). In the stochastic gradient Langevin
dynamics method of Welling & Teh (2011), the system is
further driven by constant variance additive noise. As a
somewhat general model, one may consider a partitioned
underdamped Langevin dynamics system of stochastic dif-

https://github.com/TiffanyVlaar/MultirateTrainingOfNNs
https://github.com/TiffanyVlaar/MultirateTrainingOfNNs

Multirate Training of Neural Networks

ferential equations of the form:

d� � = p� dt; where� = F; S

dp� = ~G� (�)dt �
 � p� dt +
p

2
 � � � dW� ; (2)

with momentump = (pF ; pS) 2 Rn and hyperparame-
ters
 � ; � � > 0. When evaluating the gradient on the full
dataset, Langevin dynamics is provably ergodic (Mattingly
et al., 2002), under mild assumptions, and samples from
a known distribution. In this paper we will focus on the
case� � = 0 , which corresponds to standard stochastic gra-
dient descent (SGD) with momentum under re-scaling of
the hyperparameters, however, our multirate approach can
easily be extended to the more general case. We have also
opted to use the same momentum hyperparameter (
 � in Eq.
(2)) for both subsystems to provide a fair comparison with
standard SGD with momentum. Using different optimizer
hyperparameters, as well as exploration of methods which
combine different optimizers for different components, is
left for future study (see Section 7 and Appendix A). Al-
gorithms can easily be designed based on partitioning into
multiple independent components (not just two) evolving at
different rates, as we illustrate in Section 3.1.

3. Multirate Training of Neural Networks

In Section 3.1 we propose a novel multirate technique that
can be directly applied to the training of neural networks
and discuss application-speci�c appropriate choices for the
fast and slow parameters. In Section 3.2 we study the con-
vergence properties of the scheme.

3.1. A Partition-based Multirate Approach

The type of multirate algorithms we consider in this work
take the following approach for two time scales:

1. Separate model parameters into a fast and slow part.

2. At every step, compute the gradients with respect to
the fast variables. Update the fast variables using the
optimizer of your choice with fast stepsizehF .

3. Everyk 2 Z+ steps: Compute gradients with respect
to the slow variables. Update slow variables using the
optimizer of your choice with slow stepsizehS = khF .

This multirate approach can be combined with different
optimization schemes, such as of the form in Eq.(2). In
this work, for our analysis and numerical experiments we
shall focus on using as base algorithm stochastic gradient
descent (SGD), where the gradients are computed for ev-
ery mini-batch ofm training examples. We will compare
our multirate approach with PyTorch's standard SGD with
momentum implementation (Paszke et al., 2017) and hence

for consistency we present our method in the same notation
and manner as used in the PyTorch code. Our multirate
scheme is described by Algorithm 1. We refer to the model
parameters and momenta associated with the slow system
as� S andpS , respectively, and for the fast system as� F

andpF . We denote byL (� S ; � F) the neural network loss
as evaluated on a minibatch of training examples. We use
the cross-entropy loss for classi�cation tasks. We use� to
denote the momentum hyperparameter, which we typically
set to� = 0 :9.

We discuss variations of Algorithm 1 such as combining this
multirate approach with other optimizers, the use of weight
decay, or using different initializations for the fast and slow
systems in Appendix A.

Linear drift. In Algorithm 1 we continuously push the slow
parameters along a linear path de�ned by their correspond-
ing momenta. This means that although the gradients for
the slow parameters are only computed everyk steps, the
slow neural network parameters do get updated every step
in the direction of the previous gradient. This is a novel
technique for multirate training, where approaches similar
to that in Algorithm 2 are more prevalent. We compare these
approaches in ablation studies in Section 4.3 and show that
the use of linear drift enhances performance.

Algorithm 1 Multirate SGD with linear drift
pS := �p S + r � S L (� S ; � F)
for i = 1 ; 2; :::; k do

pF := �p F + r � F L (� S ; � F)
� F := � F � h

k pF

� S := � S � h
k pS

end for

Algorithm 2 Multirate SGD no linear drift
pS := �p S + r � S L (� S ; � F)
� S := � S � hpS

for i = 1 ; 2; :::; k do
pF := �p F + r � F L (� S ; � F)
� F := � F � h

k pF

end for

Choice of Partitioning. Examples of possible separations
of the model parameters into fast and slow components are
layer-wise, weights vs. biases, or by selecting (random) sub-
groups. The appropriate separation is application-speci�c
and will be discussed in more detail in upcoming sections.
In Section 4 we explore obtaining computational speed-up
using Algorithm 1 through layer-wise partitioning, where
our fast parameters are chosen such that the gradients cor-
responding to the fast system are quick to compute, while
gradients of the full net are only computed everyk steps. In

