
Tractable Uncertainty for Structure Learning

Benjie Wang 1 Matthew Wicker 1 Marta Kwiatkowska 1

Abstract
Bayesian structure learning allows one to capture
uncertainty over the causal directed acyclic graph
(DAG) responsible for generating given data. In
this work, we present Tractable Uncertainty for
STructure learning (TRUST), a framework for ap-
proximate posterior inference that relies on proba-
bilistic circuits as the representation of our poste-
rior belief. In contrast to sample-based posterior
approximations, our representation can capture a
much richer space of DAGs, while also being able
to tractably reason about the uncertainty through a
range of useful inference queries. We empirically
show how probabilistic circuits can be used as an
augmented representation for structure learning
methods, leading to improvement in both the qual-
ity of inferred structures and posterior uncertainty.
Experimental results on conditional query answer-
ing further demonstrate the practical utility of the
representational capacity of TRUST.

1. Introduction
Understanding the causal and probabilistic relationship be-
tween variables of underlying data-generating processes can
be a vital step in many scientific inquiries. Such systems are
often represented by causal Bayesian networks (BNs), prob-
abilistic models with structure expressed using a directed
acyclic graph (DAG). The basic task of structure learning
is to identify the underlying BN from a set of observational
data, which, if successful, can provide useful insights about
the relationships between random variables and the effects
of potential interventions. However, even under strong as-
sumptions such as causal sufficiency and faithfulness, it is
typically impossible to identify a single causal DAG from
purely observational data. Further, while consistent meth-
ods exist for producing a point estimate DAG in the limit
of infinite data (Chickering, 2002), in practice, when data

1Department of Computer Science, University of Oxford, Ox-
ford, United Kingdom. Correspondence to: Benjie Wang <ben-
jie.wang@cs.ox.ac.uk>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

is scarce many BNs can fit the data well. It thus becomes
vitally important to quantify the uncertainty over causal
structures, particularly in safety-critical scenarios.

Bayesian methods for structure learning tackle this problem
by defining a prior and likelihood over DAGs, such that the
posterior distribution can be used to reason about the un-
certainty surrounding the learned causal edges, for instance
by performing Bayesian model averaging. Unfortunately,
the super-exponential space of DAGs makes both represent-
ing and learning such a posterior extremely challenging. A
major breakthrough was the introduction of order-based rep-
resentations (Friedman & Koller, 2003), in which the state
space is reduced to the space of topological orders.

Unfortunately, the number of possible orders is still facto-
rial in the dimension d, making it infeasible to represent
the posterior as a tabular distribution over orders. Approxi-
mate Bayesian structure learning methods have thus mostly
sought to approximate the distribution using samples of
DAGs or orders (Lorch et al., 2021; Agrawal et al., 2018).
However, such sample-based representations have very lim-
ited coverage of the posterior, restricting the information
they can provide. Consider, for instance, the problem of find-
ing the most probable graph extension, given an arbitrary
set of required edges. Given the super-exponential space,
even a large sample may not contain even a single order
consistent with the given set of edges, making answering
such a query impossible.

A natural question, therefore, is whether it is possible to
more compactly represent distributions over orders (and
thus DAGs) while retaining the ability to perform useful
inference queries tractably (in the size of the representation).
We answer in the affirmative, by proposing a novel represen-
tation, OrderSPNs, for distributions over orders and graphs.
Under the assumption of order-modularity, we show that
OrderSPNs form a natural and flexible approximation to the
target distribution. The key component is the encoding of
hierarchical conditional independencies into the form of a
sum-product network (SPN) (Poon & Domingos, 2011), a
well-known type of tractable probabilistic circuit. Based on
this, we develop an approximate Bayesian structure learn-
ing framework, TRUST, for efficiently querying OrderSPNs
and learning them from data. Empirical results corrobo-
rate the increased representational capacity and coverage

Tractable Uncertainty for Structure Learning

of TRUST, while also demonstrating improved performance
compared to competing methods on standard metrics. Our
contributions are as follows:

• We introduce a novel representation, OrderSPNs, for
Bayesian structure learning based on sum-product net-
works. In particular, we exploit exact hierarchical
conditional independencies present in order-modular
distributions. This allows OrderSPNs to express dis-
tributions over a potentially exponentially larger set of
orders relative to their size.

• We show that OrderSPNs satisfy desirable properties
that enable tractable and exact inference. In particu-
lar, we present methods for computation of a range
of useful inference queries in the context of structure
learning, including marginal and conditional edge prob-
abilities, graph sampling, maximal probability graph
completions, and pairwise causal effects. We further
provide complexity results for these queries; notably,
all take at most linear time in the size of the circuit.

• We demonstrate how our method, TRUST, can be used
to approximately learn a posterior over DAG structures
given observational data. In particular, we utilize a
two-step procedure, in which we (i) propose a structure
for the SPN using a seed sampler; and (ii) optimize
the parameters of the SPN in a variational inference
scheme. Crucially, the tractable properties of the circuit
enable the ELBO and its gradients to be computed
exactly without sampling.

2. Related Work
Bayesian approaches to structure learning infer a distribu-
tion over possible causal graphs. Such distributions can then
be queried to extract useful information, such as estimating
causal effects, which can aid investigators in understanding
the domain, or to plan interventions (Castelletti & Con-
sonni, 2021; Maathuis et al., 2010; Viinikka et al., 2020).
Unfortunately, due to the super-exponential space, exact
Bayesian inference methods for structure learning do not
scale beyond d = 20 (Koivisto & Sood, 2004; Koivisto,
2006). As a result, there has been much interest in approxi-
mate methods, most notably performing MCMC sampling
over the space of DAGs (Madigan et al., 1995; Giudici &
Castelo, 2003). Notable works in this direction include
those by Friedman & Koller (2003), who operate over the
much smaller space and smoother posterior landscape of
topological orders, Tsamardinos et al. (2006), who reduce
the state-space by considering conditional independence,
and Kuipers et al. (2018), who reduce the per-step computa-
tional cost associated with scoring.

Alternatively, some recent works have applied variational
inference to the Bayesian structure learning problem, where

an approximate distribution over graphs is obtained by op-
timizing over some variational family describing distribu-
tions over graphs. Unfortunately, existing representations
are typically not very tractable; Annadani et al. (2021);
Cundy et al. (2021) utilize neural autoregressive and energy-
based models respectively, while Lorch et al. (2021) em-
ploy sample-based approximations and particle variational
inference (Liu & Wang, 2016). This presents significant
challenges for gradient-based optimization, since the repa-
rameterization trick is not applicable for the discrete space
of graphs. Further, downstream inference queries can only
be estimated approximately through sampling. In contrast,
our proposed variational family based on tractable models
makes optimization and inference exact and efficient.

Probabilistic circuits (Choi et al., 2020) are a general class of
tractable probabilistic models which represent distributions
using computational graphs. The key advantage of circuits,
compared to other probabilistic models such as Bayesian net-
works, VAEs (Kingma & Welling, 2013), or GANs (Good-
fellow et al., 2014), is their ability to perform tractable and
exact inference, for instance, computing marginal probabili-
ties. While the typical use case is to learn a distribution over
a set of variables from data (Gens & Pedro, 2013; Rooshenas
& Lowd, 2014), in this work we consider learning a circuit
to approximate a given (intractable) posterior distribution
over the space of DAGs, thus requiring different structure
and parameter learning routines.

3. Background
3.1. Bayesian Structure Learning

Bayesian Networks A Bayesian network (BN) N =
(G,Θ) is a probabilistic model p(X) over d variables
X = {X1, ...Xd}, specified using the directed acyclic
graph (DAG) G, which encodes conditional independen-
cies in the distribution p, and Θ, which parameterizes the
mechanisms (conditional probability distributions) consti-
tuting the Bayesian network. The conditional probabilities
take the form p(Xi|paG(Xi),Θi), giving rise to the joint
data distribution:

p(X|G,Θ) =
∏
i

p(Xi|paG(Xi),Θi)

where paG(X) denotes the parents of X in G. One of
the most popular types of BN model is the linear Gaussian
model, under which the distribution is given by the structural
equationX = XB+ε, whereB ∈ Rd×d is a matrix of real
weights parameterizing the mechanisms, and ε ∼ N (b,Σ)
where b ∈ Rd and Σ ∈ Rd×d≥0 is a diagonal matrix of
noise variances. In particular, for a given DAG G, we have
Bij = 0 for all i, j such that i is not a parent of j in G.

Whereas Bayesian networks typically only express prob-
abilistic (conditional independence) information, causal

Tractable Uncertainty for Structure Learning

Bayesian networks (Spirtes et al., 2000; Pearl, 2009) are
additionally imbued with a causal interpretation, where, in-
tuitively, the directed edges in G represent direct causation.
More formally, causal BNs can predict the effect (change
in joint distribution) of interventions in the system, where
some mechanism is changed, for instance by setting a vari-
able X to some value x independent of its parents.

Bayesian Structure Learning Structure learning (Koller
& Friedman, 2009; Glymour et al., 2019) is the problem
of learning the DAG G of the (causal) Bayesian network
responsible for generating some given data D. Typically,
strong assumptions are required for structure learning; in
this work, we make the common assumption of causal suffi-
ciency, meaning that there are no latent (unobserved) con-
founders. Even given this assumption, it is often not possible
to reliably infer the causal DAG, whether due to limited data,
or non-identifiability within a Markov equivalence class.
Instead of learning a single DAG, Bayesian approaches
to structure learning express uncertainty over structures
in a unified fashion, through defining a prior ppr(G) and
(marginal) likelihood plh(D|G) over directed graphs G.

A common assumption is that the prior and likelihood scores
are modular, that is, they decompose into a product of terms
for each mechanism Gi of the graph, where Gi specifies the
set of parents of variable i in G. In such cases, the overall
posterior decomposes as:

pG(G|D) ∝ 1DAG(G)ppr(G)plh(D|G)

= 1DAG(G)

∏
i

ppr(Gi)plh(Di|Gi)

The acyclicity constraint 1DAG(G) induces correlations be-
tween different mechanisms and presents the key compu-
tational challenge for posterior inference. The prior and
likelihood can be chosen based on knowledge about the
domain; for example, for linear Gaussian models, we can
employ the BGe score (Kuipers et al., 2014), a closed form
expression for the marginal likelihood of a variable given its
parent set (marginalizing over weights of the linear model).
The prior is typically chosen to penalize larger parent sets.

3.2. Sum-Product Networks

Sum-product networks (SPN) are probabilistic circuits over
a set of variables V , represented using a rooted DAG con-
sisting of three types of nodes: leaf, sum and product nodes.
These nodes can each be viewed as representing a distribu-
tion over some subset of variablesW ⊆ V , where the root
node specifies an overall distribution qφ(V). Each leaf node
L specifies an input distribution over some subset of vari-
ablesW ⊆ V , which is assumed to be tractable. Each prod-
uct node P multiplies the distributions given by its children,
i.e., P =

∏
Ci∈ch(P) Ci, while each sum node is defined by

a weighted sum of its children, i.e., T =
∑
Ci∈ch(S) φiCi.

The weights φi for each sum node satisfy φi > 0,
∑
φi = 1,

and are referred to as the parameters of the SPN. The scope
of a node N denotes the set of variables N specifies a dis-
tribution over, and can be defined recursively as follows.
Each leaf node N has scope sc(N) = {V }, where V is the
variable it specifies its distribution over, and each product
or sum node N has scope sc(N) = ∪C∈ch(N)sc(C).

SPNs provide a computationally convenient representation
of probability distributions, enabling efficient and exact
inference for many types of queries, given certain structural
properties (Poon & Domingos, 2011; Peharz et al., 2014):

• A SPN is complete if, for every sum node T , and
any two children C1, C2 of T , it holds that sc(C1) =
sc(C2). In other words, all the children of T , and thus
T itself, have the same scope.

• A SPN is decomposable if, for each product node
P , and any two children C1, C2 of P , it holds that
sc(C1) ∩ sc(C2) = ∅. In other words, the scope of P
is partitioned by its children.

• A SPN is deterministic if, for each sum node T , and any
instantiationw of its scope sc(T) = W , at most one of
its children Ci(w) evaluates to a non-zero probability.

Given completeness and decomposability, marginal infer-
ence becomes tractable, that is, we can compute qφ(W) for
any W ⊆ V in linear time in the number of edges of the
SPN. Conditional probabilities can be computed as the ratio
of two marginal probabilities. If the SPN additionally sat-
isfies determinism, MPE inference, i.e., maxv:W=w qφ(v),
also becomes tractable (Peharz et al., 2017).

4. Tractable Representations for Bayesian
Structure Learning

In this work, we consider Bayesian structure learning over
the joint space of topological orders and DAGs, where each
order σ is a permutation of {1, ..., d}. Let σ<i be the set
of variables preceding variable i in σ. We say that a parent
set Gi is consistent with an order σ if Gi ⊆ σ<i, and that
graph G is consistent if all of its parent sets are consistent
(written G |= σ). It follows that any DAG is consistent with
at least one order, and further any directed graph consistent
with an order must be acyclic. Thus we can specify a joint
distribution over orders and DAGs as follows:

p(σ,G|D) ∝ pG(G|D)1G|=σ

= ppr(G)plh(D|G)
∏
i

1Gi⊆σ<i

Notice that the marginal p(G|D) is not the same as
pG(G|D), as p will favour graphs which are consistent with

Tractable Uncertainty for Structure Learning

more orders. This imparts a bias for learning with respect to
pG. On the other hand, the space of orders is much smaller
than the space of DAGs, enabling more efficient exploration
of the distribution (Friedman & Koller, 2003).

In the case where the prior and likelihood are modular, the
resulting distribution p is said to be order-modular. In this
case, pG(G) factorizes as pG(G) =

∏
i pGi(Gi), giving:

p(σ,G) ∝ pG(G)1G|=σ =
∏
i

pGi(Gi)1Gi⊆σ<i (1)

where we have omitted the dependence on the dataset and
write p(σ,G) for the Bayesian posterior.

4.1. Hierarchical CIs

Unfortunately, the representation of the order-modular dis-
tribution in Equation 1 is not tractable: we cannot easily
sample from it, nor can we efficiently deduce, for instance,
the marginal probability of a given edge. Our goal is thus
to obtain a representation approximating this distribution
which does possess tractable properties. The key idea is that
by exploiting exact conditional independences (CIs) in the
distribution, we can hierarchically break the approximation
of the original distribution into smaller subproblems.

To illustrate this, we first define some notation. Given any
variable subset S ⊆ {1, ..., d}, let σS denote an ordering
(permutation) over variables in S, and GS , {Gi : i ∈ S}
denote the set of parent sets for each variable i in S.

Now, suppose we partition the set of BN variables {1, ..., d}
into two subsets (S1, S2), and consider conditioning on the
event that all variables in S1 come before S2 in the ordering,
that is, the order partitions as σ = (σS1 , σS2). In this case,
the conditional distribution can be written as:

p(σ,G|σ = (σS1
, σS2

)) ∝
∏
i

pGi(Gi)1Gi⊆(σS1 ,σS2)<i

=
∏
i∈S1

pGi(Gi)1Gi⊆σ<iS1

∏
i∈S2

pGi(Gi)1Gi⊆S1∪σ<iS2

Notice that the distribution has factorized into two terms,
which respectively include only (σS1

, GS1
) and (σS2

, GS2
).

In fact, if we define the following (unnormalized) distribu-
tion over (σS2 , GS2):

p̃S1,S2(σS2 , GS2) ,
∏
i∈S2

pGi(Gi)1Gi⊆S1∪σ<iS2

the previous factorization can be written as:

p(σ,G|σ = (σS1
, σS2

))

∝ p̃∅,S1
(σS1

, GS1
)p̃S1,S2

(σS2
, GS2

)

Thus, conditional on σ = (σS1
, σS2

), we have split the dis-
tribution over (σ,G) into distributions over only (σS1 , GS1)
and (σS2 , GS2) respectively.

Now, let us consider arbitrary disjoint subsets S1, S2 ⊆
{1, ..., d}. Then p̃S1,S2 is a distribution over σS2 , GS2 . We
can apply a similar method to conditionally decompose
p̃S1,S2

(σS2
, GS2

) into distributions over S21, S22, where
S21, S22 partition S2, given by the following Proposition:

Proposition 1. Let p(σ,G) ∝ pG(G)1G|=σ be an order-
modular distribution. Suppose that S1, S2 are any disjoint
subsets of the variables {1, ..., d}, and let (S21, S22) be a
partition of S2. Then the following CI holds:

p̃S1,S2
(σS2

, GS2
|σS2

= (σS21
, σS22

))

∝ p̃S1,S21
(σS21

, GS21
)p̃S1∪S21,S22

(σS22
, GS22

)

These conditional independencies suggest an approxima-
tion strategy: select K partitions (S1, S2) of {1, ..., d} to
form the approximation and, conditional on a partition,
then independently approximate the resulting distributions
p̃∅,S1

(σS1
, GS1

), p̃S1,S2
(σS2

, GS2
), which are simpler prob-

lems of dimensions |S1|, |S2|, respectively. Using Proposi-
tion 1, this can be done recursively, until we obtain distribu-
tions where S2 is a singleton {i}, where:

p̃S1,{i}(σ{i}, Gi) = pGi(Gi)1Gi⊆S1∪σ<i{i}

= pGi(Gi)1Gi⊆S1

4.2. OrderSPNs

The decomposition process can be viewed as a rooted tree,
where we alternate between nodes that select partitions, and
those which decompose the conditional distribution. This
naturally induces a sum-product network structure, which
we formalize in the following definition:

Definition 1. An OrderSPN qφ is a sum-product network
over (σ,G) with the following structure:

• Each leaf node L is associated with (S1, {i}), for some
subset S1 of {1, ..., d} and i /∈ S1, and has scope
sc(L) = (σ{i}, Gi). In addition, the leaf node distri-
bution must have support only over graphs Gi ⊆ S1.

• Each sum node T is associated with two disjoint sub-
sets (S1, S2) of {1, ..., d}, where |S2|> 1, and has
scope sc(T) = (σS2

, GS2
). It has KT children and

weights φT,i for i = 1, ...,KT , where the ith child is a
product node P associated with (S1, S21,i, S22,i) for
some partition (S21,i, S22,i) of S2.

• Each product node P is associated with three dis-
joint subsets (S1, S21, S22) of {1, ...d}, and has scope
sc(P) = (σS21∪S22

, GS21∪S22
), where σS21∪S22

takes
the form (σS21

, σS22
). It has two children, where the

first child is associated with (S1, S21), and the sec-
ond with (S1 ∪ S21, S22). These children are either
sum-nodes or leaves.

Tractable Uncertainty for Structure Learning

+
∅

{1, 2, 3, 4}

× × ×

+ + + + + +
∅

{1, 2}
{1, 2}
{3, 4}

∅
{2, 3}

{2, 3}
{1, 4}

∅
{1, 4}

{1, 4}
{2, 3}

× × × ×

L L L L L L L L
∅

{1}
{1}
{2}

∅
{2}

{2}
{1}

{1, 2}
{3}

{1, 2, 3}
{4}

{1, 2}
{4}

{1, 2, 4}
{3}

0.4 0.15 0.45

0.7 0.3 0.5 0.5

(a) Regular OrderSPN, with expansion factors K = (3, 2). Each sum/leaf
node is labelled with its associated (S1, S2). Only one expansion beyond the
first level is shown for clarity.

(S1, S2)
Example
Orders

Example
Graph

(∅, {1, 2, 3, 4})
(1, 2, 4, 3)
(2, 3, 1, 4)
(4, 1, 3, 2)

1 2

3 4

({1, 2}, {3, 4}) (3, 4)
(4, 3)

1 2

3 4

({1, 2}, {4}) (4)

1 2

4

(b) Example orders and graphs for 3
sum/leaf nodes. Graphs only include par-
ent sets of S2 (filled) variables.

Figure 1. Example of regular OrderSPN for d = 4. Best viewed in color.

We can interpret each sum (or leaf) node T associated with
(S1, S2) as representing a distribution over DAGs over vari-
ables S2, where these variables can additionally have parents
from among S1. In other words, every sum node represents
a (smaller) Bayesian structure learning problem over a set
of variables S2 and a set of potential confounders S1.

In practice, we organize the SPN into alternating layers of
sum and product nodes, starting with the root sum node. In
the jth sum layer, we create a fixed number Kj of children
for each sum node T in the layer. Further, for each child
i of each sum node T , we choose (S21,i, S22,i) such that
|S21,i|= b |S2|

2 c, |S22,i|= d |S2|
2 e, and further require that the

partitions are distinct for different children i of T . Under
these conditions, the OrderSPN will have dlog2(d)e sum
(and product) layers. This ensures compactness of the repre-
sentation, and enables efficient tensorized computation over
layers. We call such OrderSPNs regular, and the associated
listK of numbers of children for each layer are called the
expansion factors. An example of a regular OrderSPN is
shown in Figure 1. At the top sum layer, we create a child
for K1 = 3 different partitions of {1, 2, 3, 4} into equally
sized subsets, each of which has an associated weight. Sum
and product layers alternate until we reach the leaf nodes.

The leaf nodes L represent distributions over some column
of the graph: if L is associated with (S1, i), then it expresses
a distribution over the parents Gi of variable i. The interpre-
tation of S1 is that this distribution should only have support
over sets Gi ⊆ S1. This restriction ensures that OrderSPNs
are consistent, in the sense that they represent distributions
over valid (σ,G) pairs (in particular, all graphs are acyclic):

Proposition 2. Let qφ be an OrderSPN. Then, for all pairs
(σ,G) in the support of an OrderSPN, it holds that G |= σ.

By design, (regular) OrderSPNs satisfy the standard SPN
properties that make then an efficient representation for
inference, which we show in the following Proposition. In
the following sections, we use these properties for query
computation, as well as for learning the SPN parameters.

Proposition 3. Any OrderSPN is complete and decompos-
able, and regular OrderSPNs are additionally deterministic.

4.3. Leaf Distributions

Given a leaf node associated with (S1, i), corresponding
to a distribution on Gi, the only restriction imposed by
the definition is that the distribution has support only on
graphs Gi ⊆ S1. Given that we are approximating an
order-modular distribution p(σ,G) ∝

∏
i pGi(Gi)1Gi⊆σ<i ,

the natural choice of (unnormalized) leaf distributions is
pS1,{i}(σ{i}, Gi) ∝ pGi(Gi)1Gi⊆S1

; we provide formal
justification for this choice in Proposition 7 in the Appendix.

For tractable inference on the overall distribution over
(σ,G), we require that the leaf distributions can be com-
puted tractably. In particular, we will be interested in three
types of tasks: marginal/conditional inference, MPE infer-
ence, and (conditional) sampling. To formalize this, let
ai,j be a Boolean variable indicating whether j ∈ Gi, i.e.,
j is a parent of i. Further, let ci be any logical conjunc-
tion of the corresponding positive or negative literals, i.e.
ai,j or ¬ai,j . For instance, ci = ai,0 ∧ ai,1 ∧ ¬ai,2 repre-
sents the event that 0, 1 are parents of i, but not 2. Then,
the task of marginal inference is to evaluate the probabil-
ity pS1,{i}(ci = 1). Conditional inference is the task of
pS1,{i}(ci = 1|c′i = 1) for two conjunctions ci, c′i. MPE
inference is maxGi pS1,{i}(Gi|ci = 1), while conditional
sampling is the task of sampling from pS1,{i}(Gi|ci = 1).

Tractable Uncertainty for Structure Learning

Unfortunately, these inference queries are intractable to com-
pute without further assumptions. Following previous work
(Kuipers et al., 2018; Viinikka et al., 2020), we limit the
parents of each variable i to a fixed set of candidates parents
Ci ⊂ {1, ..., d} \ {i}, where the size of |Ci| is chosen to be
manageable (around 16). These candidate sets are chosen
to maximize the coverage of the distribution mass. Given
this, we approximate p̃S1,{i}(Gi) ≈ pGi(Gi)1Gi⊆S1∩Ci .

Given this approximation, we can then perform a precom-
putation taking O(3|Ci|) time and space complexity, after
which all of these queries require just a O(1) lookup, ex-
cept conditional sampling, which takes time O(|Ci|). We
provide further details of the method in Appendix B.

4.4. Tractable Queries

In general, being able to compute inference queries tractably
individually for single-node distributions is not sufficient
to perform inference on the overall distribution over DAGs.
While previous works have tackled this problem by sam-
pling single DAGs or orders, our key insight is that we can
leverage the tractable properties of SPNs to hierarchically
aggregate over order components. We now characterize the
classes of queries that can be computed tractably for Or-
derSPNs, and their interpretation in the context of structure
learning. Below we will write qφ(G) to denote the marginal
of G in qφ(σ,G), and denote the size of the SPN by M .

Marginal and conditional inference Let ci, c′i be con-
junctions over the graph column Gi. Then the marginal
inference problem is to compute qφ(

∧d
i=1 ci). This can

be interpreted as the probability of any arbitrary combina-
tion of edges (direct causal relations) simultaneously being
present. It is well known that marginal/conditional infer-
ence queries can be computed exactly for a complete and
decomposable SPN in linear time in the size of the circuit
(Poon & Domingos, 2011). Since marginal inference for the
individual leaves requires just a constant-time lookup, the
overall complexity is O(M).

MPE inference MPE inference is the problem of find-
ing the most likely instantiation of the variables, given
some evidence. More precisely, we wish to compute
maxG qφ(G|

∧d
i=1 ci), which allows us to, for instance, find

the most likely extension of a partially specified DAG. This
is tractable (in linear-time) provided that the SPN is deter-
ministic (Choi & Darwiche, 2017). As MPE inference on
the individual leaves requires just a constant-time lookup,
the overall complexity is once again O(M).

Sampling Unconditional sampling from the OrderSPN is
straightforward and efficient; we traverse the SPN top-down,
choosing one child of each sum-node, and all children of
each product-node, until we reach the leaf nodes, taking

Query Time Space

Marginal/Conditional O(M) O(M)
MPE O(M) O(M)
Sampling O(d2) O(d2)
Conditional Sampling O(d2 +M) O(d2 +M)
Pairwise Causal Effects O(d3M) O(d2M)

Table 1. Per-query complexity for OrderSPNs, for d variables and
OrderSPN of size M

linear time in d. Coupled with the cost of sampling the leaf-
node distributions, the overall complexity is O(dmaxi|Ci|)
per sample. Conditional sampling is more involved, and re-
quires an O(M) bottom-up computation which updates the
SPN weights/probabilities according to the evidence, before
sampling via top-down traversal (Vergari et al., 2019).

Causal effects We now turn to the computation of other
types of queries specific to the Bayesian network setting. In
the well-studied case of linear Gaussian Bayesian networks,
one of the most important quantities for causal inference
is pairwise causal effects, first studied by Wright (1934)
as the ”method of path coefficients”. In particular, for a
given graph G and weights B, the causal effect of Xi on
Xj , written Eij(B), is given by summing the weight of all
directed paths from i to j, where the weight of a path is
given by the product of the weights of the edges along that
path. Notice that, in cases where i is not an ancestor of j,
Eij(B) = 0. Now, a priori, when we do not know the graph
or weights, the causal effect is a random variable given by:

Eij =
∑

π∈F ({1,...,d}\{i,j})

Bi,π1
Bπ|π|,j

|π|−1∏
i=1

Bπi,πi+1

where F (S) is the family of all ordered subsets of the vari-
ables S. From the Bayesian perspective, we would like to
employ Bayesian model averaging to estimate the causal
effect. This is given by:

BCE(i, j) , EG∼qφ(G)[EB∼q(B|G)[Eij(B)]]

While the other queries we have analyzed describe proper-
ties of the distribution qφ(G) over causal graphs, here we
are concerned with causal inference on the domain variables
X themselves (induced by qφ(G)). This is a significant dis-
tinction for two reasons. Firstly, it is often the case that such
quantities are of great practical interest, for instance, to esti-
mate the effect of various types of treatments/interventions
on patient outcomes. Secondly, even with full knowledge
of the causal graph, inference in Bayesian networks is NP-
hard in general, making it unclear how to efficiently transfer
knowledge about the distribution over causal graphs to dis-
tributions over the domain variables. Fortunately, we find

Tractable Uncertainty for Structure Learning

that in the case of linear Gaussian BNs, OrderSPNs pos-
sess the appropriate structure to compute Bayesian averaged
causal effects efficiently:

Proposition 4. Given an OrderSPN representation qφ of the
distribution over DAGs, the matrix of all pairwise Bayesian
averaged causal effects BCE(i, j) with respect to qφ can be
computed in O(d3M) time and O(d2M) space, where M
is the size of the SPN.

The factor of O(d3) is unsurprising and arises from the in-
ference cost of causal effects in linear Gaussian BNs (Koller
& Friedman, 2009); the significance is in the linear com-
plexity in the size of the OrderSPN, given that BCE(i, j)
averages over potentially exponentially more DAGs. Intu-
itively, this is achieved by “summing-out” over different
causal (directed) paths between variables i, j at each node.
We provide more details and a formal proof in Appendix C.

5. Structure Learning with OrderSPNs
In this section we propose a framework for learning Order-
SPNs from data. This consists of two components. Firstly,
we learn a structure for the OrderSPN, which character-
izes the support of the distribution. Then, we optimize the
parameters of the SPN using a variational inference scheme.

5.1. SPN structure learning

We focus on regular OrderSPNs, where the topology of the
SPN is fixed, but for each sum node T in layer j we must
choose the Kj partitions (S21,i, S22,i) of S2. We define the
problem as choosing an oracle O which takes as input some
data D, disjoint sets S1, S2, and a number of samples K,
and returnsK partitions (S21,i, S22,i) of S2. The goal of the
oracle is to maximize coverage of the posterior distribution,
i.e. the posterior mass of orders consistent with at least one
of the sampled partitions. In practice, we can instantiate
the oracle with any Bayesian structure learning method
that can be modified to produce a DAG over S2, which
can additionally have parents from S1. In particular, we
adapt two recent Bayesian structure learners, DIBS (Lorch
et al., 2021) and GADGET (Viinikka et al., 2020). Given
such a method, we can define the oracle by (i) taking K
samples of such DAGs; (ii) for each sample, choosing a
random ordering consistent with the DAG; and (iii) splitting
the ordering into a partition. Each partition (S21,i, S22,i)
influences the support of the corresponding child of T , by
restricting that S21 comes before S22 in the ordering.

The proposed strategy involves calling the oracle O for
each sum-node in the OrderSPN. This improves exploration
of the space over the base structure learning method, by
recursively exploring subspaces of DAGs over smaller sub-
sets of variables S2 ⊆ {1, ..., d}. However, it also appears
to introduce a computational challenge since the number

of sum-nodes in the SPN could be very large. Thankfully,
though each successive sum-layer has 2Kj more sum-nodes,
the dimension of the DAG space is halved, meaning that the
oracle requires much less time. In practice, we ensure effi-
cient implementation by the following methods: (i) we set a
time budget appropriately for the oracle in each layer; (ii)
for small dimensions |S2|≤ d′ (chosen to be 4), we avoid
the constant-time overhead of each oracle run by instead
explicitly enumerating over all partitions.

5.2. Parameter Learning via Variational Inference

Given a SPN structure, we now consider the task of learning
the parameters of the SPN. We formulate this as a discrete
variational inference (VI) problem. Given an unnormalized
order-modular distribution p̃(σ,G) = pG(G)1G|=σ , the ev-
idence lower bound (ELBO) is given by:

Eqφ(σ,G)[log p̃(σ,G)] +H(qφ(σ,G))

where H(qφ(σ,G)) = −Eqφ(σ,G)[log qφ(σ,G)] is the en-
tropy of the OrderSPN q. The goal of VI is then to maximize
the ELBO with respect to φ. Typically, such discrete VI
problems are difficult, since the ELBO requires computing
(gradients of) the expectation using high-variance estima-
tors such as REINFORCE (due to the discrete space, the
reparameterization trick is not applicable). Fortunately, due
to the tractable properties of the SPN, this is not an issue:

Proposition 5. The ELBO and its gradients for any regu-
lar OrderSPN qφ and order-modular distribution p can be
computed in linear time in the size of the SPN.

We provide the proof in Appendix E, which is based on the
corresponding result (Thm 1) from Shih & Ermon (2020)
for deterministic SPNs. This allows us to learn the SPN pa-
rameters using gradient-based optimization. Further, due to
the layered structure of regular OrderSPNs, we can leverage
tensor learning frameworks and hardware acceleration.

6. Experiments
In this section, we perform an empirical validation of
the TRUST framework.1 We implement two state-of-the-
art Bayesian structure learning methods, (marginal) DIBS
(Lorch et al., 2021) and GADGET (Viinikka et al., 2020),
and compare them with their TRUST-enhanced counterparts,
TRUST-D and TRUST-G, which use the respective method as
the oracle for OrderSPN structure learning. Each inference
method is applied to synthetic structure learning problems,
where the ground truth causal structures are Erdős-Rényi
random graphs with dimension d ∈ {16, 32} and 2d ex-
pected edges, and the Bayesian network distribution is linear

1Our implementation is available at https://github.
com/wangben88/trust.

https://github.com/wangben88/trust
https://github.com/wangben88/trust

Tractable Uncertainty for Structure Learning

(a) (b) (c) (d)

Figure 2. Performance evaluation of the TRUST framework. We find that across all metrics and for both dimensionalities that the TRUST

framework outperforms the seed method, in some instances considerably. Top Row: Learning structures with d = 16. Bottom Row:
Learning structures with d = 32. (a) Expected Structural Hamming Distance, lower is better. (b) Marginal Log Likelihood (higher is
better). (c) Area Under the Receiver Operator Characteristic curve (higher is better). (d) MSE of Causal Effects (lower is better).

Gaussian. All methods tested employ the BGe marginal like-
lihood. For each experiment, a dataset Dtrain of N = 100
datapoints is generated for each graph for inference.

6.1. Learning Performance

We begin by evaluating the quality of the inferred posterior
q(G|D) for each inference method, over a variety of stan-
dard metrics. In what follows, we use G,B to denote the
true graph/edge weights respectively, and Dtest to denote a
held-out dataset of 1000 datapoints.

The expected structural Hamming distance E-SHD(q,G)
measures the expected number of edge changes (SHD) be-
tween the essential graphs ofG andG′, whereG′ is sampled
from the posterior q:

E-SHD(q,G) = EG′∼q[SHD(essential(G′), essential(G))]

The area under the receiver operating characteristic curve
AUROC(q,G) for Bayesian structure learning (Friedman &
Koller, 2003) is computed using marginal edge probabilities
q(G′ij = 1) for each potential edge G′ij , while varying the
confidence threshold to construct the ROC curve.

The marginal log-likelihood MLL(q,G,Dtest) measures
how well the posterior fits the held-out test data, using the
BGe marginal likelihood p:

MLL(q,G,Dtest) = EG′∼q[log p(Dtest|G′)]

Finally, the mean-squared error of causal effects
MSE-CE(q,B) measures the squared difference between
the expected posterior causal effect BCEq(i, j), and the
true causal effect Eij(B) (for variable pair i, j). This is
then averaged over all (distinct) pairs i, j:

MSE-CE(q,B) =
1

d(d− 1)

∑
i 6=j

|BCEq(i, j)− Eij(B)|2

We show the results in Figure 2 for all methods. TRUST-
D and TRUST-G match or outperform their counterparts
across all metrics, with especially strong performance on
E-SHD, where TRUST-G is best by a clear margin for both
d = 16, 32. Interestingly, we find that both the oracle
methods used for SPN structure learning and the subsequent
VI parameter learning are important for achieving the best
posterior approximation; see Appendix G for further details.

6.2. Coverage and Query Answering

We now compare the query answering capabilities of TRUST
to DIBS and GADGET, for d = 16 networks. We set up the
task by selecting n edges randomly from the true graph,
which we use to form the condition

∧d
i=1 c

′
i in Section 4.4

(requiring that all n edges are present). A good represen-
tation of the posterior should consistently have posterior
mass over this condition. For DIBS and GADGET, we obtain

Tractable Uncertainty for Structure Learning

Figure 3. As we specify more edges in our query, the probability
that sample-based posteriors (DIBS and GADGET) have support
over the queried edges drops. TRUST-D and TRUST-G, in contrast,
maintain much greater coverage.

sample-based approximations q of the posterior, for which
we take 30 and 10000 samples respectively, as indicated by
the respective papers and reference implementations. For
TRUST-D and TRUST-G we directly perform the inference
queries on the learned OrderSPN.

We begin by considering the marginal probability
q(
∧d
i=1 c

′
i). In Figure 3, we compute this over 30 differ-

ent runs and 50 random edge selections for each run, for
different values of n, and plot the proportion of times that
the probability is non-zero. We see that, as n increases,
both methods based on TRUST consistently outperform their
counterparts. This demonstrates how TRUST can be used
to augment an oracle method to significantly improve the
reliability of posterior coverage. This is particularly note-
worthy for DIBS, whose coverage is otherwise limited by
its quadratic time complexity in the number of samples.

From a practical perspective, this is especially important
for conditional inference. In Table 2, we simulate a sce-
nario where we obtain information on the true causal graph
after learning. In particular, given n = 4, 8, 16 randomly
specified edges from the true graph as a condition, we com-
pute conditional probabilities for all unspecified (potential)
edges. This can be viewed as ”injecting” causal information,
which, for instance, could permit distinguishing between
DAGs in the same Markov equivalence class where observa-
tional data would not suffice. To evaluate, we compute the
AUROC given the computed probabilities for each edge. In
the case where the representation q has no probability over
the condition, we simply take the overall AUROC for the
unconditional distribution. Table 2 shows mean and stan-
dard deviation for AUROC over 30 runs for each method.
As the number of specified edges increases, we see that
the performance of GADGET degrades despite the extra in-
formation, since the sample-based representation suffers
from prohibitively high variance when estimating condi-

No. Edges Method AUROC

4 GADGET 0.905± 0.073
TRUST-G 0.903± 0.057

8 GADGET 0.888± 0.089
TRUST-G 0.933± 0.048

16 GADGET 0.876± 0.081
TRUST-G 0.957± 0.077

Table 2. Quality of inference for conditional queries. Results show
TRUST-G is significantly better at inferring conditional distribu-
tions, especially as the condition becomes more restrictive.

tional probability. On the other hand, the greater coverage
of TRUST-G ensures that we can take advantage of the extra
information, improving the quality of inferences.

7. Conclusion
We study the problem of tractable representations in
Bayesian structure learning. Such representations are crucial
for being able to effectively learn and reason about causal
structures with uncertainty. In particular, we introduce Or-
derSPNs, a new approximate representation of distributions
over orders and structures. We show that OrderSPNs enable
tractable and exact inference over the representation for a va-
riety of important classes of queries, including, remarkably,
inference of causal effects for linear Gaussian networks.
Our experimental results demonstrate that OrderSPNs can
indeed improve upon the representations of state-of-the-art
Bayesian structure learning methods, with greater posterior
coverage and query answering capabilities.

Our findings illustrate the potential of using tractable proba-
bilistic representations to represent distributions over causal
hypotheses. We anticipate that such representations could
be applicable to a variety of tasks in causal inference, such
as designing optimal interventions (Agrawal et al., 2019),
though we leave the investigation of these to future work.
Also, while we have chosen to focus on order-modular distri-
butions and SPNs, it is an interesting question whether other
types of distributions and tractable representations could be
implemented. For instance, probabilistic sentential decision
diagrams (Kisa et al., 2014) are a type of probabilistic cir-
cuit that admit a wider range of queries than SPNs. Such
representations could offer alternative tractability properties
that make them suitable for differing applications.

Acknowledgements We thank the anonymous review-
ers for their valuable feedback and suggestions. This
project was funded by the ERC under the European
Union’s Horizon 2020 research and innovation programme
(FUN2MODEL, grant agreement No.834115).

Tractable Uncertainty for Structure Learning

References
Agrawal, R., Uhler, C., and Broderick, T. Minimal i-map

mcmc for scalable structure discovery in causal dag mod-
els. In International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
pp. 89–98, 2018.

Agrawal, R., Squires, C., Yang, K. D., Shanmugam, K., and
Uhler, C. Abcd-strategy: Budgeted experimental design
for targeted causal structure discovery. In International
Conference on Artificial Intelligence and Statistics, vol-
ume 89 of Proceedings of Machine Learning Research,
pp. 3400–3409, 2019.

Annadani, Y., Rothfuss, J., Lacoste, A., Scherrer, N., Goyal,
A., Bengio, Y., and Bauer, S. Variational causal networks:
Approximate bayesian inference over causal structures.
arXiv preprint arXiv:2106.07635, 2021.

Castelletti, F. and Consonni, G. Bayesian inference of causal
effects from observational data in gaussian graphical mod-
els. Biometrics, 77(1):136–149, 2021.

Chan, H. and Darwiche, A. On the robustness of most
probable explanations. In Proceedings of the Twenty-
Second Conference on Uncertainty in Artificial Intelli-
gence, UAI’06, pp. 63–71, Arlington, Virginia, USA,
2006. AUAI Press. ISBN 0974903922.

Chickering, D. Optimal structure identification with greedy
search. Journal of Machine Learning Research, 3:507–
554, 01 2002. doi: 10.1162/153244303321897717.

Choi, A. and Darwiche, A. On relaxing determinism in
arithmetic circuits. In International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 825–833, 2017.

Choi, Y., Vergari, A., and Van den Broeck, G. Prob-
abilistic circuits: A unifying framework for tractable
probabilistic models. Technical report, oct 2020.
URL http://starai.cs.ucla.edu/papers/
ProbCirc20.pdf.

Cundy, C., Grover, A., and Ermon, S. Bcd nets: Scalable
variational approaches for bayesian causal discovery. In
Advances in Neural Information Processing Systems, vol-
ume 34, 2021.

Dennis, A. and Ventura, D. Greedy structure search for
sum-product networks. In International Joint Conference
on Artificial Intelligence, pp. 932–938, 2015.

Eggeling, R., Viinikka, J., Vuoksenmaa, A., and Koivisto,
M. On structure priors for learning bayesian networks.
In International Conference on Artificial Intelligence and
Statistics, volume 89 of Proceedings of Machine Learning
Research, pp. 1687–1695, 16–18 Apr 2019.

Friedman, N. and Koller, D. Being bayesian about network
structure. A bayesian approach to structure discovery in
bayesian networks. Machine Learning, 50(1-2):95–125,
2003. doi: 10.1023/A:1020249912095.

Gens, R. and Pedro, D. Learning the structure of sum-
product networks. In Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pp. 873–880,
17–19 Jun 2013.

Giudici, P. and Castelo, R. Improving markov chain monte
carlo model search for data mining. Machine Learning,
50(1):127–158, 2003.

Glymour, C., Zhang, K., and Spirtes, P. Review of causal
discovery methods based on graphical models. Frontiers
in Genetics, 10:524, 2019. ISSN 1664-8021. doi: 10.
3389/fgene.2019.00524.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems, volume 27, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kisa, D., Van den Broeck, G., Choi, A., and Darwiche, A.
Probabilistic sentential decision diagrams. In Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning, July 2014.

Koivisto, M. Advances in exact bayesian structure discovery
in bayesian networks. In Conference on Uncertainty in
Artificial Intelligence, 2006.

Koivisto, M. and Sood, K. Exact bayesian structure dis-
covery in bayesian networks. The Journal of Machine
Learning Research, 5:549–573, 2004.

Koller, D. and Friedman, N. Probabilistic Graphical Mod-
els: Principles and Techniques. The MIT Press, 2009.

Kuipers, J., Moffa, G., and Heckerman, D. Addendum on
the scoring of gaussian directed acyclic graphical models.
The Annals of Statistics, 42(4), Aug 2014. ISSN 0090-
5364. doi: 10.1214/14-aos1217.

Kuipers, J., Suter, P., and Moffa, G. Efficient sampling and
structure learning of bayesian networks. arXiv preprint
arXiv:1803.07859, 2018.

Liu, Q. and Wang, D. Stein variational gradient descent:
A general purpose bayesian inference algorithm. In Ad-
vances in Neural Information Processing Systems, vol-
ume 29, 2016.

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Tractable Uncertainty for Structure Learning

Lorch, L., Rothfuss, J., Schölkopf, B., and Krause, A. Dibs:
Differentiable bayesian structure learning. In Advances
in Neural Information Processing Systems, volume 34,
2021.

Maathuis, M. H., Colombo, D., Kalisch, M., and Bühlmann,
P. Predicting causal effects in large-scale systems from
observational data. Nature Methods, 7(4):247–248, 2010.

Madigan, D., York, J., and Allard, D. Bayesian graphical
models for discrete data. International Statistical Re-
view/Revue Internationale de Statistique, 63(2):215–232,
1995.

Pearl, J. Causality: Models, Reasoning and Inference. Cam-
bridge University Press, USA, 2nd edition, 2009. ISBN
052189560X.

Peharz, R., Gens, R., and Domingos, P. Learning selective
sum-product networks. In ICML Workshop on Learning
Tractable Probabilistic Models, 06 2014.

Peharz, R., Gens, R., Pernkopf, F., and Domingos, P. M. On
the latent variable interpretation in sum-product networks.
IEEE Trans. Pattern Anal. Mach. Intell., 39(10):2030–
2044, 2017.

Poon, H. and Domingos, P. Sum-product networks: A
new deep architecture. In Conference on Uncertainty in
Artificial Intelligence, 2011.

Rooshenas, A. and Lowd, D. Learning sum-product net-
works with direct and indirect variable interactions. In
International Conference on International Conference on
Machine Learning, volume 32 of Proceedings of Machine
Learning Research, 2014.

Shih, A. and Ermon, S. Probabilistic circuits for varia-
tional inference in discrete graphical models. In Advances
in Neural Information Processing Systems, volume 33,
2020.

Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman,
D. Causation, prediction, and search. MIT press, 2000.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. The max-
min hill-climbing bayesian network structure learning
algorithm. Machine Learning, 65(1):31–78, 2006.

Vergari, A., Di Mauro, N., and Esposito, F. Visualizing and
understanding sum-product networks. Machine Learning,
108(4):551–573, apr 2019. ISSN 0885-6125. doi: 10.
1007/s10994-018-5760-y.

Viinikka, J., Hyttinen, A., Pensar, J., and Koivisto, M. To-
wards scalable bayesian learning of causal dags. In Ad-
vances in Neural Information Processing Systems, vol-
ume 33, 2020.

Wright, S. The method of path coefficients. The Annals
of Mathematical Statistics, 5(3):161–215, 1934. ISSN
00034851.

Tractable Uncertainty for Structure Learning

Appendix

A. Proofs of OrderSPN results
In this section, we provide further details on the properties
of OrderSPNs. Firstly, we prove Proposition 1, regarding
decompositions for order-modular distributions. Then, we
provide proofs for Propositions 2 and 3 from the main paper,
which show that (regular) OrderSPNs are consistent over
orders and graphs, and satisfy the required properties for
efficient inference. Finally, we formally characterize the
compactness of the OrderSPN representation in a new result.

A.1. Hierarchical Decomposition

Recall that in Section 4, we showed that the distribution
on orders and graphs (σ,G) could be decomposed into a
product of two distributions on (σS1

, GS1
) and (σS2

, GS2
)

respectively, conditional on σ = (σS1
, σS2

), i.e. the event
that all variables in S1 come before S2 in the ordering. We
now prove the generalization of that result, which allows us
to hierarchically decompose the distribution, giving rise to
the proposed OrderSPN structure.

Proposition 1. Let p(σ,G) ∝ pG(G)1G|=σ be an order-
modular distribution. Suppose that S1, S2 are any disjoint
subsets of the variables {1, ..., d}, and let (S21, S22) be a
partition of S2. Then the following CI holds:

p̃S1,S2
(σS2

, GS2
|σS2

= (σS21
, σS22

))

∝ p̃S1,S21
(σS21

, GS21
)p̃S1∪S21,S22

(σS22
, GS22

)

Proof. By definition, we have that p̃S1,S2
(σS2

, GS2
) =∏

i∈S2
pGi(Gi)1Gi⊆S1∪σ<iS2

. Conditioning on the event

σS2 = (σS21 , σS22), we have that:

p̃S1,S2(σS2 , GS2 |σS2 = (σS21 , σS22))

∝
∏
i∈S2

pGi(Gi)1Gi⊆S1∪σ<i(S21,S22)

=
∏
i∈S21

pGi(Gi)1Gi⊆S1∪σ<iS21∏
i∈S22

pGi(Gi)1Gi⊆S1∪S21∪σ<iS22

= p̃S1,S21
(σS21

, GS21
)p̃S1∪S21,S22

(σS22
, GS22

)

as required.

A.2. OrderSPN properties

Proposition 2. Let qφ be an OrderSPN. Then, for all pairs
(σ,G) in the support of an OrderSPN, it holds that G |= σ.

Proof. A complete subcircuit C (Chan & Darwiche, 2006;
Dennis & Ventura, 2015) is obtained by traversing the cir-
cuit top-down and i) selecting one child of every sum-node;

ii) selecting all children of every product-node; iii) selecting
all leaf nodes reached. By removing (or equivalently, setting
to 1) all sum-node weights, C is itself an OrderSPN express-
ing a distribution over (σ,G). The key point is that the order
is determined in any complete subcircuit. At the leaf nodes,
the orders σ{i} over singletons are trivially deterministic.
At the product nodes in the subcircuit, the order is deter-
mined by the order specified by the first (left) and second
(right) child. That is, for a product node P in the subcircuit
associated with (S1, S21, S22), if the left child specifies an
order σS21

and the right child an order σS22
, then the order

for P is determined as (σS21
, σS22

). Finally, the sum nodes
in the subcircuit only have one child, so the order is deter-
mined from its child. Let the uniquely determined order for
subcircuit C be denoted σC .

Now, consider any path from the root node to a leaf node in
the subcircuit. Label the sum nodes (and leaf node) reached
Ti for i = 1, ...,m (for somem), associated with (S1,i, S2,i)
respectively. We will now show, by induction, that for each
sum node Ti, it is the case that all variables in S1,i come
before S2,i in the ordering σC .

• The root is associated with (S1,1, S2,1) =
(∅, {1, ...d}), so the condition is trivially satisfied.

• Now, given node Ti with i < m, by definition Ti has
a product node child Pi such that Ti+1 is either the
first or second child of Pi. Let Pi be associated with
(S1,i, S21,i, S22,i). Then, (i) if Ti+1 is the first child of
Pi, then (S1,i+1, S2,i+1) = (S1,i, S21,i), while (ii) if
Ti+1 is the second child of Pi, then (S1,i+1, S2,i+1) =
(S1,i ∪ S21,i, S22,i). Now, σC has the property that
all nodes in S21,i come before those in S22,i. Given
the inductive hypothesis that S1,i comes before S2,i

in the ordering, in both cases (i) and (ii) we have that
all nodes in S1,i+1 come before nodes in S2,i+1 in the
ordering.

This means that, at any leaf node associated with some
(S1, {i}), it will be the case that S1 comes before i in σC .
Since the leaf distribution only has support over graphs with
Gi ⊆ S1, it follows that all graphs G in the support satisfy
G |= σC .

The overall distribution of the OrderSPN is given by a
(weighted) sum of all complete subcircuits, so the result
follows.

Proposition 3. Any OrderSPN is complete and decompos-
able, and regular OrderSPNs are additionally deterministic.

Proof. Given any sum node T in the OrderSPN, com-
pleteness follows since the ith product node has scope

Tractable Uncertainty for Structure Learning

(σS21,i∪S22,i
, GS21,i∪S22,i

) = (σS2
, GS2

), as S21,i, S22,i

partitions S2 by definition. Decomposability follows im-
mediately from the scopes of the product nodes P and
their children, where the variables (σS21∪S22

, GS21∪S22
are

split into sum (or leaf) nodes with scope (σS21
, GS21

) and
(σS22

, GS22
), where S21, S22 are disjoint. Determinism

holds for regular OrderSPNs since every sum node has chil-
dren which split the order into different partitions, so that the
children have distinct support over orders (in fact, the choice
of child at each sum node can be viewed as determining the
order).

A.3. Compactness of OrderSPNs

When organized as a regular OrderSPN, we can further
characterize the compactness of the representation. The
following result shows that OrderSPNs can be exponentially
more compact than sample representations of orders:

Proposition 6. Given a regular OrderSPN qφ over d = 2l

variables, with l sum (and product) layers and expansion
factors (K0, ...Kl−1) as above, then we have that:

• The size (number of edges) of qφ is given by:∑l
i=1(2i + 2i−1)

∏
j<iKj

• The size (number of orders) of the support of qφ is
given by:

∏l−1
i=0K

2i

i

Proof. Let Ti, Pi be the ith layer of the OrderSPN, with
|Ti|, |Pi| nodes respectively, for i = 0, ..., l − 1. We will
also write Tl to denote the leaf layer following all of the
other layers. Then, by definition, the nodes in the lth sum
layer each have Kj children. Thus, |Pi|= Ki|Ti|. Each
product node has two children, so we have the relation
|Tl+1|= 2|Pl|. Since the first sum layer P1 consists of just a
single root node, |P0|= 1, and it can be easily checked that
|Ti|= 2i

∏
j<iKj and |Pi|= 2i

∏
j<i+1Kj . Thus the total

number of nodes is given by:

l∑
i=0

|Ti|+
l−1∑
i=0

|Li| =
l∑
i=0

2i
∏
j<i

Kj +

l−1∑
i=0

2i
∏
j<i+1

Kj

= 1 +

l∑
i=1

(2i + 2i−1)
∏
j<i

Kj

Note that the structure of an OrderSPN takes the form of a
tree, i.e., each node has a unique parent (except the root).
Thus, the number of edges in the OrderSPN is equal to the
number of nodes, excluding the root. Now, each node repre-
sents a distribution over orders and graphs restricted to some
subset of variables. Let N(Ti) denote the number of dis-
tinct orders in the support of the first node in Ti (similar for
N(Pi)). Notice that, since d = 2l, all nodes in the layer Ti
have support over the same number of orders. Thus, we need

only consider how the number of orders covered changes as
we move through the layers. Firstly note that, for the leaf
layer Tl, all nodes express distributions over (σ{i}, Gi) for
some variable i. There is only one possible permutation over
a singleton set, soN(Tl) = σ{i}. Then, for any sum-node in
Ti, by determinism, each child of Ti has disjoint support, so
it follows that N(Ti) = Ki×N(Pi). For any product-node
in Pi, we have that the two children of Pi express distribu-
tions over orders/permutations σS21 , σS22 , where S21, S22

are disjoint sets. Since each of the children have support
over N(Ti+1) orders, the product node expressing a distri-
bution over σS21∪S22

has N(Pi) = N(Ti+1)2. It is worth
comparing this to the corresponding relation |Tl+1|= 2|Pl|
above; the conditional independence asserted by the Order-
SPN results in the compactness of the representation. We
can now see (by induction) that N(Pi) =

∏l−1
j=i+1K

2j−i+1

j

andN(Ti) =
∏l−1
j=iK

2j−i

j , and so the root node has support
size:

N(T0) =

l−1∏
j=0

K2j

j

B. Computation of leaf distributions
We now explain in detail how to perform marginal, condi-
tional, MPE and sampling inference for leaf distributions.

Recall that leaf distributions for variable i in an OrderSPN
are given by the following density:

pS1,{i}(Gi) =
pGi(Gi)1Gi⊆S1∑
Gi⊆S1

pGi(Gi)

where S1 ⊂ Ci is the set of potential parents of variable
i, and where we have explicitly included the normalizing
constant.

As the dimension d increases, this is challenging to compute
due to the (exponential) sum over subsets in the normalizing
constant. Further, different leaves of the OrderSPNs will
in general have different sets S1, due to the conditions on
variable ordering imposed by the SPN structure.

Thus, following previous work (Friedman & Koller, 2003;
Kuipers et al., 2018), we globally limit the parents of vari-
able i to a candidate set Ci. That is, for each leaf node
for variable i with distribution pS1,{i}(Gi), we replace S1

with S1 ∩ Ci. While this inevitably restricts the coverage
of the distribution over DAGs, we can choose the candidate
parents Ci in such a way as to preserve as much posterior
mass as possible2. As we will shortly see, this enables us

2(Viinikka et al., 2020) studied a number of different strategies
for selecting these candidate parents; we use the Greedy heuristic,
which was found empirically to be most effective.

Tractable Uncertainty for Structure Learning

to design precomputation schemes that then allow for infer-
ence queries on pS1,{i}(Gi) to be answered efficiently for
any S1 ⊆ Ci.

In contrast to previous work, we are interested not just in
the densities/normalizing constants, but also more complex
forms of inference. For this, we define ai,j to be the event
that j ∈ Gi, i.e. j is a parent of i. Then, the key compo-
nent is to precompute the following function, previously
proposed in the Appendix of Viinikka et al. (2020) (for a
different purpose):

fi(Ai, A
′
i) =

∑
Gi|=

(∧
j∈Ai

ai,j∧
∧
j∈A′

i
¬ai,j

) pGi(Gi)

where Ai, A′i are disjoint subsets of Ci. Intuitively, this is
the (unnormalized) probability that all variables in Ai are
parents of i, and all those in A′i are not parents of i.

This function can be precomputed in time and space
O(3|Ci|) as follows. In the base case where Ai, A′i partition
Ci, then we simply have:

fi(Ai, A
′
i) = pGi(Ai)

since Ai, A′i fully specify the parents of i.

In any other case, we have the recurrence:

fi(Ai, A
′
i) = fi(Ai ∪ {b}, A′i) + fi(Ai, A

′
i ∪ {b})

for any b ∈ Ci \ (Ai ∪ A′i). This can be seen from the
definition of fi; the RHS corresponds to conditioning on the
cases where b either is or is not a parent of i. Notice that,
for each Ai, A′i, we need just a constant-time addition; thus
the overall complexity is given by the number of partitions
of Ci into three subsets, i.e. O(3|Ci|).

Now, let ci be any conjunction of (positive or negative) liter-
als of the atoms {ai,j : j ∈ Ci}, i.e., a partial specification
of which edges can and can’t be transformed. We now pro-
pose methods for performing marginal, conditional, MPE
and sampling inferences:

• Marginal/Conditional: For distribution pS1,{i}, the
marginal for formula ci is given by:

pS1,{i}(ci = 1) =

∑
Gi|=ci pGi(Gi)1Gi⊆S1∑

Gi⊆S1
pGi(Gi)

=

∑
Gi|=

(
ci∧
∧
j∈Ci\S1

¬ai,j
) pGi(Gi)∑

Gi|=
∧
j∈Ci\S1

¬ai,j pGi(Gi)

where we have expressed the condition that Gi ⊆ S1

as the logical formula
∧
j∈Ci\S1

¬ai,j . Notice that
both the numerator and denominator are of the form of

the precomputed fi, so we can compute the marginal
probability simply by two lookups, i.e. O(1) per query.

Any conditional probability pS1,{i}(ci = 1|c′i = 1)
can be computed from marginals as pS1,{i}(ci =

1|c′i = 1) =
pS1,{i}(ci∧c

′
i=1)

pS1,{i}(c
′
i=1) .

• MPE: For distribution pS1,{i}, the MPE for formula ci
is given by:

pS1,{i}(ci = 1) = max
Gi

pS1,{i}(Gi|ci = 1)

= max
Gi|=ci

pS1,{i}(Gi|ci = 1)

=
maxGi|=ci∧

∧
j∈Ci\S1

¬ai,j pGi(Gi)∑
Gi|=ci∧

∧
j∈Ci\S1

¬ai,j pGi(Gi)

The maximum is over Gi satisfying a logical conjunc-
tion, similarly to how fi expresses sums over Gi sat-
isfying logical conjunctions. Thus, we propose to pre-
compute another function fmax

i , which is entirely simi-
lar to fi except that the recurrence is given by:

fmax
i (Ai, A

′
i)

= max(fmax
i (Ai ∪ {b}, A′i), fmax

i (Ai, A
′
i ∪ {b}))

Analogously to fi, fmax
i computes the maximal proba-

bility pGi(Gi) for all Gi satisfying the logical formula.
Thus, once this function is precomputed, we can com-
pute any MPE query through a lookup of fmax

i and a
lookup of fi, i.e. O(1) per query.

• Sampling: Given the condition ci, we would like to
sample Gi from pS1,{i}(Gi|ci = 1). Let B ⊆ Ci
contain the variables which ci does not specify (as
either definitely being a parent, or definitely not being
a parent).

Then, given any ordering b1, ...bK of the elements of
B, we can sample whether bk is present sequentially.
When sampling bk, let d(k)i be a conjunction formula
representing the sampling of b1, ...bk−1, e.g., di =
ai,b1 ∧ ¬ai,b2 ∧ ... ∧ ¬ai,bk−1

. Then we have:

pS1,{i}(abk = 1|d(k)i = 1, ci = 1)

= pS1,{i}(abk = 1|d(k)i ∧ ci = 1)

This takes the form of a conditional probability, which
we can compute in constant time. We must apply this
operation K = O(|Ci|) times, which leads to an over-
all complexity of O(|Ci|) per sampling query.

C. Causal Effect Computation
In this section, we show how to tractably compute Bayesian
averaged causal effects with respect to OrderSPN represen-
tations. The computation of BCE differs from the other

Tractable Uncertainty for Structure Learning

queries, as Eij involves terms which are not localized to a
leaf-node distribution; thus standard SPN inference routines
are not applicable. Nonetheless, we find that it is possible
to compute BCE(i, j) for all i, j exactly with respect to the
probabilistic circuit representation over orders and graphs.

Proposition 4. Given an OrderSPN representation qφ of the
distribution over DAGs, the matrix of all pairwise Bayesian
averaged causal effects BCE(i, j) with respect to qφ can be
computed in O(d3M) time and O(d2M) space, where M
is the size of the SPN.

Proof. Recall that all nodes t in the SPN can be associated
with the variable subsets (S1, S2), and represent a distri-
bution over the set of edges GS2

(in the case of product
nodes, we define S2 = S21 ∪ S22). Thus, they also define a
distribution over causal effects, given by:

E
(t)
ij =

∑
π∈F (S2\{j})

Bi,π1
Bπ|π|,j

|π|−1∏
i=1

Bπi,πi+1

which is defined for any distinct i ∈ S1∪S2, j ∈ S2. Notice
that this only counts paths which immediately enter (and
stay in) S2; thus all edges are in GS2 .

By taking the expectation, we can similarly define Bayesian
averaged causal effects for node t:

BCE(i, j)(t) , E
GS2∼q

(t)
φ (GS2)

[EB∼q(BS2 |GS2)[E
(t)
ij (BS2

)]]

Given this, we now show how it is possible to decompose
the computation of BCE(i, j) according to the structure of
the SPN.

If t is a sum node, with children nodes t1, .., tk and corre-
sponding weights φ(t)1 , ...φ

(t)
C we simply have that:

BCE(i, j)(t) , E
GS2∼q

(t)
φ (GS2)

[EB∼q(BS2 |GS2)[Eij(BS2)]]

=
∑

c=1,...,C

φ(t)c E
GS2∼q

(tc)
φ (GS2)

[EB∼q(BS2 |GS2)[Eij(BS2
)]]

=
∑

c=1,...,C

φ(t)c BCE(i, j)(tc)

where we have used linearity of expectations to bring the
sum outside.

If t is instead a product node, then it has two children t1, t2,
which are associated with variable subsets (S1, S21), (S1 ∪
S21, S22), respectively. We now consider three separate
cases, depending on where i ∈ S1 ∪ S2, j ∈ S2 are located
within the subsets.

• If i ∈ S22, j ∈ S21, then BCE(i, j)(t) = 0 since by
construction edges (and by extension paths) from S22

to S21 are disallowed.

• If i ∈ S1 ∪ S21 and j ∈ S21, or alternatively i ∈ S22

and j ∈ S22, then notice that all paths between i, j
must stay within S21 or S22 respectively, since there
are no edges from S22 to S21. Thus, we have that
E

(t)
ij = E

(t1)
ij or E(t2)

ij (respectively) and

BCE(i, j)(t) = BCE(i, j)(t1) or BCE(i, j)(t2)

• In the final case, i ∈ S1 ∪ S21 while j ∈ S22. Here we
must consider all possible paths between i and j. To
do so, we will condition on the last variable in S1∪S21

(“exit-point”) k along a path. Then we have:

E
(t)
ij =

∑
π∈F (S2\{j})

Bi,π1
Bπ|π|,j

|π|−1∏
i=1

Bπi,πi+1

=
∑

k∈F (S21) ∑
π∈F (S21\{k})

Bi,π1Bπ|π|,k

|π|−1∏
i=1

Bπi,πi+1

 ∑
π∈F (S22\{j})

Bk,π1Bπ|π|,j

|π|−1∏
i=1

Bπi,πi+1

=

∑
k∈F (S21)

E
(t1)
ik E

(t2)
kj

The last equality follows as the two summations are
precisely the causal effects i → k and k → j for
t1, t2, respectively, which correspond to variable sub-
sets (S1, S21) and (S1 ∪ S21, S22). Now, by linearity
of expectations, and the independence of E(t1)

ik , E
(t2)
kj ,

this gives the matrix multiplication:

BCE(i, j)(t) =
∑

k∈F (S21\{i})

BCE(i, k)(t1)BCE(k, j)(t2)

Finally, we consider the leaf nodes t of the SPN, where
|S2|= 1 (say, S2 = {j}). In such cases, the causal effect
reduces to a(t)ij = Bi,j , and the expectation is given by:

BCE(i, j)(t) = E
Gj∼q(t)φ (Gj)

[EBj∼q(Bj |Gj)[Bj]]

Given the graph column Gj , the distribution of Bj is given
by a multivariate t-distribution (Viinikka et al., 2020), and
so the inner expectation can be computed exactly for a
given Gj . The outer expectation can be approximated using
sampling from the leaf distribution. Though this involves
sampling, the crucial aspect of our method is that the ex-
pectation through the OrderSPN (and thus through different
orders) is exact, unlike Beeps (Viinikka et al., 2020), which
computes causal effects using sampled DAGs.

Tractable Uncertainty for Structure Learning

At each node t corresponding to variable subsets (S1, S2),
we must maintain an arrayBCE(i, j)(t) for i ∈ S1∪S2, j ∈
S2, i.e., of size (|S1|+|S2|) × |S2|< d2. Computations at
any node t take linear time in the number of children (outgo-
ing edges) of the node, except for the matrix multiplication
at product nodes, which takes (|S1|+|S21|)×|S21|×|S22|<
d3 time. Thus, the overall space and time complexity is
O(d2M) and O(d3M) respectively.

D. OrderSPN Structure Learning Oracles
In this section we elaborate further the oracles O used for
generating the structure of the OrderSPN in Section 5.1.
As previously defined, the O takes as input some data D,
disjoint sets S1, S2, and a number of samplesK, and returns
K partitions (S21,i, S22,i) of S2. The goal of the oracle is
to maximize coverage of the posterior distribution, i.e. the
posterior mass of orders consistent with at least one of the
sampled partitions. Solving such a problem exactly is clearly
intractable; thus we would like heuristic methods which can
obtain good coverage.

A possible oracle would simply be to take K random parti-
tions of S2. However, this does not make efficient usage of
the capacity of the OrderSPN. Thus, we consider adapting
other Bayesian structure learning methods to take the role
of the oracle. This can be done by sampling DAGs from
the method; each such DAG naturally induces an order over
the variables S2, and thus a partition. Intuitively, we utilize
their ability to find promising areas of the space of orders
and DAGs to choose a better structure for our SPN.

The key practical challenge is that, is in contrast to the
typical use case, we are not just interested in learning a
DAG over a set S2, but also want to allow the variables
in S2 to have parents from some disjoint set S1. This will
require adaptations specific to the particular method chosen.
In the rest of this section, we provide brief descriptions of
how this can be done for DIBS and GADGET.

DIBS is a Bayesian structure learning approach based on
particle variational inference (Liu & Wang, 2016). In partic-
ular, in the marginal form, it assumes the following latent-
variable generative model:

p(Z,G,D) = p(Z)p(G|Z)p(D|G)

where Z = [U, V] with U, V ∈ Rk×d (for some k < d) is
a latent variable, generating the graph G ∈ {0, 1}d×d and
D is the dataset. In particular, the distribution for the graph
takes the form:

p(G|Z) =
∏
i,j

p(Gij |Z) =
∏
i,j

σ(uTi vj)

Now suppose that we want to learn a DAG over S2, where

variables can additionally have parents in S1. In this case,
the natural generative model is to simply restrict to the
components of the graph which are being modelled:

pS1,S2(G|Z) =
∏

i∈S1∪S2

∏
j∈S2

σ(uTi vj)

The marginal likelihood p(D|G) is modular, so we can addi-
tionally restrict the likelihood to only concern the likelihood
of S2:

pS2
(D|G) =

∏
j∈S2

p(Dj |Gj)

With these modifications, we have a valid generative model
for any (S1, S2), to which the DIBS particle variational
inference scheme can be applied with no further changes,
giving us an oracle.

GADGET is a MCMC method which samples over the space
of ordered partitions of the set of variables (note this is dis-
tinct from the 2-partitions we use in OrderSPNs). Informally
speaking, the ordered partition represents a partial ordering
of the variables, where a variable must have a parent from
the partition directly preceding its partition. For example,
for d = 6, a partition might be 3, 4, 5, 1, 2, 6, where variable
1 must have one of 3, 4, 5 as parent (but not any of 2, 6). A
k−partition R is scored using a modular score:

π(R) =

k∏
t=1

∏
j∈Rt

τj(∪t−1i=1Ri, Rt−1)

where τj(U, T) is the summed score (posterior probability)
that variable j has all parents contained in the set U , and at
least one parent in the set T .

As mentioned in Appendix B, GADGET (Viinikka et al.,
2020) uses a similar type of precomputation to that used
in TRUST to precompute the functions τj(U, T), where
a candidate parent set Cj of each variable is chosen in
advance (using a heuristic) so that we actually compute
τj(U ∩ Cj , T ∩ Cj).

Now, suppose we are given sets (S1, S2), and as usual seek
to learn DAGs over S2 which additionally have parents from
S1. This can be achieved by simply restricting the MCMC
to only learn ordered partitions over S2, while also allowing
the parent sets of variables S2 to be contained in S1∪S2. In
particular, if we have precomputed τj(U ∩ Cj , T ∩ Cj) for
all j and U, T ⊆ {1, ..., d}, this includes all of the necessary
scores τj(U∩Cj , T∩Cj) for all j ∈ S2 andU, T ⊆ S1∪S2,
for any restriction (S1, S2).

The MCMC proceeds as if it were over a |S2| dimensional
problem, over the set of variables S2, but with modified
scores involving S1 as above, thus providing an oracle for
TRUST.

Tractable Uncertainty for Structure Learning

E. Parameter Learning and Tractable ELBO
Computation

In this section, we provide further details on the variational
inference scheme used to learn parameters of the OrderSPN.
First, we provide a proof of Proposition 5, which is based
on Theorem 1 from (Shih & Ermon, 2020).

Proposition 5. The ELBO and its gradients for any regu-
lar OrderSPN qφ and order-modular distribution p can be
computed in linear time in the size of the SPN.

Proof. We assume an order-modular distribution over
the form p̃(σ,G) =

∏
i pGi(Gi)1G|=σ. Define

p̃S2
(σS2

, GS2
) ,

∏
i∈S2

pGi(Gi)1GS2 |=σS2 for any S2 ⊆
{1, ..., d}. For any node N in the OrderSPN with scope
(σS2

, GS2
), we will define the following quantity, which

is the evidence lower-bound when using the distribution
N(σS2 , GS2) to approximate p̃S2(σS2 , GS2):

ELBO(N) = EN [p̃S2
(σS2

, GS2
)] +H(N(σS2

, GS2
))

We now show that the ELBO for qφ can be computed ef-
ficiently (i.e. in linear time in the size of the SPN) as a
function of the ELBO of the leaf node distributions.

Let T be a sum node associated with (S1, S2), with chil-
dren C1, ..., CK and corresponding weights φ1, ..., φK . We
can write the expectation of p̃S2

and entropy in terms of
corresponding quantities of the child distributions:

ET [log p̃S2
(σS2

, GS2
)] =

K∑
i=1

φiECi [log p̃S2
(σS2

, GS2
)]

H(T (σS2
, GS2

)) = −ET [log T (σS2
, GS2

)]

= −
K∑
i=1

φiECi [
K∑
j=1

log φjCj(σS2 , GS2)]

= −
K∑
i=1

φiECi [log φiCi(σS2 , GS2)]

= −
K∑
i=1

φi log φi +

K∑
i=1

φiECi [−Ci(σS2 , GS2)]

= −
K∑
i=1

φi log φi +

K∑
i=1

φiH(Ci(σS2 , GS2))

ELBO(T) = ET [log p̃S2
(σS2

, GS2
)] +H(T (σS2

, GS2
))

= −
K∑
i=1

φi log φi

+

K∑
i=1

φi [ECi [log p̃S2
(σS2

, GS2
)] +H(Ci(σS2

, GS2
))]

= −
K∑
i=1

φi log φi +

K∑
i=1

φiELBO(Ci)

In other words, the expectation decomposes as a weighted
sum over expectations with respect to the child distributions,
and the entropy decomposes as a sum of the entropy of
the sum-node weights, and a weighted sum over entropies
with respect to the child distributions. Note that the third
equality in the derivation of the entropy decomposition holds
only due to the fact that OrderSPNs are deterministic; this
means that the children Ci have disjoint supports, and thus
ECi [Cj(σ,G)] = 0 for all i 6= j. Together, we have that
the ELBO of a sum-node can be expressed in terms of the
ELBO of its children.

Let P be a product node, associated with
((S1, S21), (S21, S22)), with children C1, C2. P expresses
a distribution over (σS2

, GS2
), where S2 = S21 ∪ S22.

Then we have that:

EP [log p̃S2
(σS2

, GS2
)] = EP [log

∏
i∈S2

pGi(Gi)1GS2 |=σS2]

= EP [log
∏
i∈S21

pGi(Gi)1GS21 |=σS21

log
∏
i∈S22

pGi(Gi)1GS22 |=σS22]

= EP [log p̃S21(σS21 , GS21)] + EP [log p̃S22(σS22 , GS22)]

H(P (σS2
, GS2

)) = −EP [logP (σS2
, GS2

)]

= −EP [logC1(σS21
, GS21

) + logC2(σS22
, GS22

)]

= −EC1
[logC1(σS21

, GS21
)]− EC2

[logC2(σS22
, GS22

)]

= H(C1(σS21
, GS21

)) +H(C2(σS22
, GS22

))

ELBO(P) = EP [log p̃S2
(σS2

, GS2
)] +H(P (σS2

, GS2
))

= EP [log p̃S21
(σS21

, GS21
)] +H(C1(σS21

, GS21
))

+ EP [log p̃S22
(σS22

, GS22
)] +H(C2(σS22

, GS22
))

= ELBO(C1) + ELBO(C2)

This follows from decomposability, which ensures that the
child distributions are over disjoint sets of variables (and are
thus independent).

By recursively applying the above equalities, we can express
the ELBO for the overall OrderSPN qφ in terms of the SPN

Tractable Uncertainty for Structure Learning

weights φ and ELBO for the leaf node distributions. Since
each equality involves a sum/product over the children of
the node (i.e., the outgoing edges), the overall computation
takes linear time in the size (number of edges) of the SPN.

E.1. ELBO for Leaf Node Distributions

In the above Proposition, we have not mentioned how to
compute the ELBO for the leaf node distributions. For a
leaf node L associated with (S1, i), which is a distribution
L(Gi) over the parents of variable i, we have that:

ELBO(L) = EL[log p̃(σ{i}, Gi)] +H(L(σ{i}, Gi))

= EL[log pGi(Gi)] +H(L(Gi)) (2)

Recall that, for OrderSPNs, it is required that L(Gi) has
support only over Gi ⊆ S1. In the main paper, we chose to
set L(Gi) ∝ pGi(Gi)1Gi⊆S1

. We now provide justification
for this choice:
Proposition 7. L(Gi) ∝ pGi(Gi)1Gi⊆S1 maximizes (2)
subject to the support condition.

Proof. The ELBO for a leaf distribution (2) can be written
as:

ELBO(L) = EL[log pGi(Gi)] +H(L(Gi)))

= EL[log pGi(Gi)]− EL[logL(Gi)]

= −KL(L||pGi)

where KL is the KL-divergence. Thus, to maximize the
ELBO, we need to minimize this KL-divergence. Let
C =

∑
Gi⊆S1

pGi(Gi). Assuming L satisfies the support
condition, this can be written as:

KL(L||pGi) = EL
[
log

L(Gi)

pGi(Gi)

]
= EL

[
log

L(Gi)

pGi(Gi)

]
= EL

[
log

L(Gi)

pGi(Gi)/C

]
− logC

This KL-divergence is minimized by L(Gi) ∝
pGi(Gi)1Gi⊆S1 , as required. In this case, the ELBO is
given by:

ELBO(L) = logC −KL(L||pGi1Gi⊆S1

C
)

= logC

We see that, with this choice of L, the ELBO is a constant
logC that we can precompute using the methods for com-
putation of leaf distribution described in Appendix B. Thus,

the computation of ELBO for leaf distributions can be done
in anO(1) lookup, and the overall ELBO computation is lin-
ear in the size of the OrderSPN (in particular, independent
of the dimension).

F. Experimental Details
Bayesian network hyperparameters In our experi-
ments, we consider linear Gaussian Bayesian networks,
and generate Erdos-Renyi random structures, with expected
numbers of edges given by 2d. We generate data using
fixed observation noise σ2 = 0.1, and edge weights drawn
independently from N (0, 1).

Posterior setup We use the fair prior over graph struc-
tures (Eggeling et al., 2019), where the prior probability of
a mechanism having k edges is proportional to the inverse
of the number of different parents sets of size k. In addition,
we use the BGe marginal likelihood (Kuipers et al., 2014)
with hyperparameters αµ = 1, αw = d + 2, and T = 1

2I
where I is the d× d identity matrix.

Implementation details Our implementations of DIBS
and GADGET are based on the reference implementations
with the default settings of hyperparameters. In particular,
we ran DIBS with N = 30 particles and 3000 epochs using
the marginal inference method, while GADGET was run
using 16 coupled chains and for 320000 MCMC iterations,
extracting N = 10000 samples.

Our implementation of TRUST uses the PyTorch frame-
work to tensorize passes through the SPN, following the
regular OrderSPN structure described in the main paper.
In the d = 16, 32 cases, we used expansion factors of
K = [64, 16, 6, 2], [32, 8, 2, 6, 2] respectively; these were
chosen empirically to approximately match oracle compu-
tation across layers. Parameter learning in the SPN was
performed by optimizing the ELBO objective using the
Adam optimizer with learning rate 0.1 and for 700 itera-
tions. Operations in the circuit are performed in log-space
for numerical stability.

Inference Queries We perform inference for DiBS and
Gadget by applying the appropriate calculation over the
sample (for instance, the marginal probability of an edge
Gij is simply the proportion of sampled DAGs in which it
appears), while for TRUST, we perform inference directly on
the OrderSPN using the queries described in the paper when
this is possible, and by sampling otherwise (e.g. E-SHD).

G. Ablation Study on OrderSPN Learning
In Section 5, we proposed to use a two-step procedure for
learning OrderSPNs, in which we (i) propose a structure for

Tractable Uncertainty for Structure Learning

the OrderSPN using an oracle method; and (ii) further learn
the parameters of the OrderSPN via variational inference.
We now perform an ablation study to examine the each of
these steps and their impact on performance.

We evaluate five different methods:

• Random In this case, instead of using an oracle
method O to split S2 into a partition (S21,i, S22,i, we
instead perform this split randomly throughout the Or-
derSPN. We also do not perform any parameter learn-
ing, instead setting the parameters at each sum-node
in the OrderSPN to be equal (e.g. if a sum-node has 4
children, we set each parameter to 0.25).

• Parameter Only We randomly propose the structure
as above, but do perform parameter learning using VI.

• Structure Only We do perform structure learning us-
ing GADGET as an oracle, but do not learn parameters.

• Gadget As in the main paper.

• TRUST-G As in the main paper.

The first step of structure learning determines the support
of the OrderSPN, i.e. the orders and DAGs to which it
assigns positive probability, while the second step of pa-
rameter learning aims to optimize the fit to the posterior
given the support constraints imposed by the first step. By
randomizing one (or both) of these steps, we can see how
this affects the approximation.

The results are shown in Figure 4. As expected, the fully ran-
dom method performs by far the worst, on all metrics. Both
performing parameter learning only and structure learning
only provide significant improvements, but interestingly on
different metrics. Structure learning only performs quite
well on AUROC, while parameter learning only performs
comparatively better on E-SHD and MLL (even outper-
forming GADGET on E-SHD). The performance of using
parameter learning only is quite remarkable, given that the
graphs covered by the OrderSPN were chosen at random.
We hypothesize that this can be attributed to the compact-
ness and capacity of OrderSPNs as a representation; as
a result, even the randomly chosen structure will contain
some orders/DAGs which are close to the ground truth DAG.
Nonetheless, adding structure learning as well, as in TRUST-
G, does provide the best overall performance, and shows
that both steps are important to obtain the best possible
representation.

Tractable Uncertainty for Structure Learning

Figure 4. Ablation study evaluating performance of different variants of TRUST-G (and GADGET), for d = 16.

