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Figure 1. Examples of various tasks supported by OFA.

Abstract
In this work, we pursue a unified paradigm for
multimodal pretraining to break the shackles
of complex task/modality-specific customization.
We propose OFA, a Task-Agnostic and Modality-
Agnostic framework that supports Task Compre-
hensiveness. OFA unifies a diverse set of cross-
modal and unimodal tasks, including image gener-
ation, visual grounding, image captioning, image
classification, language modeling, etc., in a simple
sequence-to-sequence learning framework. OFA
follows the instruction-based learning in both pre-
training and finetuning stages, requiring no ex-
tra task-specific layers for downstream tasks. In
comparison with the recent state-of-the-art vision
& language models that rely on extremely large
cross-modal datasets, OFA is pretrained on only
20M publicly available image-text pairs. Despite
its simplicity and relatively small-scale training
data, OFA achieves new SOTAs in a series of
cross-modal tasks while attaining highly com-
petitive performances on uni-modal tasks. Our
further analysis indicates that OFA can also effec-
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tively transfer to unseen tasks and unseen domains.
Our code and models are publicly available at
https://github.com/OFA-Sys/OFA.

1. Introduction
Building an omnipotent model that handles many tasks and
modalities is an attractive goal in the AI community. The
possibilities of achieving this goal may largely depend on
whether massive varieties of modalities, tasks and training
regimes can be represented with only a few forms that can
be unified and managed by a single model or system.

Recent developments of the Transformer (Vaswani et al.,
2017) architecture have shown its potential for being a uni-
versal computation engine (Devlin et al., 2019; Brown et al.,
2020; Cobbe et al., 2021; Schneider et al., 2019; Dosovit-
skiy et al., 2020; Jaegle et al., 2021b; Su et al., 2019). In
the settings of supervised learning, the “pretrain-finetune”
paradigm achieves excellent success in many domains. In
the regimes of few-/zero-shot learning, language models
with prompt / instruction tuning prove powerful zero-/few-
shot learners (Brown et al., 2020; Wei et al., 2021; Sanh
et al., 2021). These advances have provided more significant
than ever opportunities for the emergence of an omni-model.

To support better generalization for open-ended problems
while maintaining high multitask performance and ease of
use, we advocate that an omnipotent model should have the

https://github.com/OFA-Sys/OFA
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following three properties: 1. Task-Agnostic (TA): unified
task representation to support different types of tasks, in-
cluding classification, generation, self-supervised pretext
tasks, etc., and to be agnostic to either pretraining or finetun-
ing. 2. Modality-Agnostic (MA): unified input and output
representation shared among all tasks to handle different
modalities. 3. Task Comprehensiveness (TC): enough task
variety to accumulate generalization ability robustly.

However, it is challenging to satisfy these properties while
maintaining superior performance in downstream tasks. Cur-
rent language and multimodal pretrained models readily fail
at parts of these properties, due to their following design
choices. 1. Extra learnable components for finetuning, e.g.,
task-specific heads (Devlin et al., 2019), adapters (Houlsby
et al., 2019), soft prompts (Lester et al., 2021). This makes
the model structure task-specific and poses discrepancy be-
tween pretraining and finetuning. Such designs are also not
friendly to supporting unseen tasks in a zero-shot manner.
2. Task-specific formulation. For most current methods,
pretraining, finetuning and zero-shot tasks usually differ
in task formulation and training objectives. This violates
TA and it is burdensome to scale up the task population
to achieve TC. 3. Entangling modality representation with
downstream tasks. It is a common practice for Vision &
Language models to take the detected objects as part of the
image input features (Su et al., 2019; Lu et al., 2019; Chen
et al., 2020c; Li et al., 2020; Gan et al., 2020; Zhang et al.,
2021a). Though it demonstrates better downstream task
performance on some closed-domain datasets, it depends on
an extra object detector which usually fails at open-domain
data.

Therefore, we explore an omni-model for multimodal pre-
training and propose OFA, hopefully “One For All”, which
achieves the objectives of unifying architectures, tasks, and
modalities, and supports the three properties above. We
formulate both pretraining and finetuning tasks in a uni-
fied sequence-to-sequence abstraction via handcrafted in-
structions (Wei et al., 2021; Sanh et al., 2021) to achieve
Task-Agnostic. A Transformer is adopted as the Modality-
Agnostic compute engine, with a constraint that no learn-
able task- or modality-specific components will be added to
downstream tasks. It is available to represent information
from different modalities within a globally shared multi-
modal vocabulary across all tasks. We then support Task
Comprehensiveness by pretraining on varieties of uni-modal
and cross-modal tasks.

To summarize:

• We propose OFA, a Task-Agnostic and Modality-
Agnostic framework that supports Task Comprehen-
siveness. OFA is the first attempt to unify the fol-
lowing vision & language, vision-only and language-
only tasks, including understanding and generation,

e.g., text-to-image generation, visual grounding, visual
question answering (VQA), image captioning, image
classification, language modeling, etc., via a simple
sequence-to-sequence learning framework with a uni-
fied instruction-based task representation.

• OFA is pretrained on the publicly available datasets of
20M image-text pairs, in comparison with recent mod-
els that rely on paired data of a much larger scale (Wang
et al., 2021b; Yuan et al., 2021). OFA achieves state-of-
the-art performances in a series of vision & language
downstream tasks, including image captioning, visual
question answering, visual entailment, referring expres-
sion comprehension, etc.

• OFA, as a multimodal pretrained model, achieves
comparable performances on unimodal tasks with
SOTA pretrained models in language or vision, e.g.,
RoBERTa, ELECTRA and DeBERTa for natural lan-
guage understanding, UniLM, Pegasus and ProphetNet
for natural language generation, and MoCo-v3, BEiT
and MAE for image classification.

• We verify that OFA achieves competitive performance
in zero-shot learning. Also, it can transfer to unseen
tasks with new task instructions and adapt to out-of-
domain information without finetuning.

2. Related Work
Language Pretraining & Vision Pretraining Natural
language pretraining has revolutionized the whole NLP re-
search community. A representation of this track is the
birth of BERT (Devlin et al., 2019) and GPT (Radford et al.,
2018). A number of studies have been progressively advanc-
ing pretraining by improving pretraining tasks and designing
more sophisticated model architectures (Yang et al., 2019;
Sun et al., 2019a;b; Liu et al., 2019; Dong et al., 2019; Raf-
fel et al., 2020; Lewis et al., 2020). Having witnessed the
success of natural language pretraining, researchers have
promoted self-supervised learning (SSL) in computer vi-
sion (Chen et al., 2020a;b; Grill et al., 2020). Recently,
mirroring masked language modeling (MLM) in language
pretraining, generative pretraining (Bao et al., 2021; He
et al., 2021a) with ViT architecture (Dosovitskiy et al., 2020)
boosts downstream performance.

Multimodal Pretraining Multimodal pretraining has
been developing rapidly with the transfer of BERT to cross-
modal representation learning (Li et al., 2019b; Lu et al.,
2019; Zhou et al., 2020; Tan & Bansal, 2019; Chen et al.,
2020c; Li et al., 2019a; Lin et al., 2020; Lu et al., 2020;
Xu et al., 2021; Li et al., 2020; Gan et al., 2020; Zhang
et al., 2021a; Yu et al., 2021; Li et al., 2021; Huang et al.,
2020). To adapt models to generation tasks, researchers
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Figure 2. A demonstration of the pretraining tasks, including visual grounding, grounded captioning, image-text matching, image
captioning, VQA, object detection, image infilling as well as text infilling.

have applied specific masking strategies or the encoder-
decoder architecture (Li et al., 2020; Zhang et al., 2021a;
Lin et al., 2021; Wang et al., 2021b). Besides, to simplify
preprocessing, patch projection has received attention and
helped Transformer achieve SOTA performance in down-
stream tasks (Wang et al., 2021b;a). To make full use of
large-scale weakly supervised data, Radford et al. (2021)
train a bi-encoder on 400 million pairs and demonstrates
excellent performance in retrieval tasks. Another line of
work is text-to-image synthesis. A bunch of works (Ramesh
et al., 2021; Ding et al., 2021; Lin et al., 2021; Wu et al.,
2021) incorporate Transformer with VQVAE (van den Oord
et al., 2017) or VQGAN (Esser et al., 2021) to generate
high-quality images with high resolution. However, the
previously mentioned methods are limited in processing a
single type of data, such as cross-modal data only or limited
in their capabilities. Also, the discrepancy between pre-
training and finetuning behaviors limits the transferability
to open-ended data.

Unified Frameworks To pursue the unified models,
Kaiser et al. (2017) demonstrate a uniform format to rep-
resent tasks. In NLP, recent studies unify diverse tasks,
covering natural language understanding and generation, to
text-to-text transfer (Raffel et al., 2020) or language mod-
eling (Brown et al., 2020). Following this idea, Cho et al.
(2021) and Yang et al. (2021) demonstrate text-generation-
based multimodal pretrained models. Jaegle et al. (2021b)
and Jaegle et al. (2021a) propose a simple framework that
can process information from multiple modalities with a
uniform byte-sequence representation. Hu & Singh (2021)
and Singh et al. (2021) unify tasks of different modali-
ties by designing various task-specific layers. Zhu et al.
(2021) explore a retrieval-based unified paradigm. However,

the multimodal pretrained models suffer from performance
degradation in downstream tasks, and they have no image
generation capability.

3. OFA
In this work, we propose OFA, a unified Seq2Seq frame-
work for the unification of I/O & architectures, tasks, and
modalities. The overall framework is illustrated in Figure 2.

3.1. I/O & Architecture

I/O The most common practice of multimodal pretrain-
ing is the pretraining of Transformer models on image-
text pair corpus at scale. This requires data preprocess-
ing or modality-specific adaptors to enable the joint train-
ing of both visual and linguistic information with the
Transformer architecture. Compared with the complex,
resource&time-consuming object feature extraction, we aim
for simplicity and directly use ResNet modules to convolve
xv ∈ RH×W×C to P patch features of the hidden size, fol-
lowing Dai et al. (2021) and Wang et al. (2021b). As to
processing the linguistic information, we follow the practice
of GPT (Radford et al., 2018) and BART (Lewis et al., 2020)
that apply byte-pair encoding (BPE) (Sennrich et al., 2016)
to a given text sequence and then embed the subword tokens
to features.

To process different modalities without task-specific out-
put schema, it is essential to represent data of various
modalities in a unified space. A possible solution is to
discretize text, image, and object and represent them with
tokens in a unified vocabulary. Recent advances in image
quantization (van den Oord et al., 2017; Esser et al., 2021)
have demonstrated effectiveness in text-to-image synthe-
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sis (Ramesh et al., 2021; Lin et al., 2021; Ding et al., 2021;
Zhang et al., 2021b), and thus we utilize this strategy for the
target-side image representations. Sparse coding is effective
in reducing the sequence length of image representation.
For example, an image of the resolution of 256× 256 is rep-
resented as a code sequence of the length of 16× 16. Each
discrete code strongly correlates with the corresponding
patch (Bao et al., 2021).

Apart from representing images, it is also essential to rep-
resent objects within images as there are a series of region-
related tasks. Following Chen et al. (2021), we represent
objects as a sequence of discrete tokens. To be more spe-
cific, for each object, we extract its label and its bounding
box. The continuous corner coordinates (the top left and
the bottom right) of the bounding box are uniformly dis-
cretized to integers as location tokens ⟨x1, y1, x2, y2⟩. As to
the object labels, they are intrinsically words and thus can
be represented with BPE tokens.

Architecture Following the previous successful practices
in multimodal pretraining (Chen et al., 2020c; Zhang et al.,
2021a; Wang et al., 2021b), we choose Transformer as the
backbone architecture, and we adopt the encoder-decoder
framework as the unified architecture for all the pretrain-
ing, finetuning, and zero-shot tasks. Specifically, both the
encoder and the decoder consist of stacks of Transformer
layers. A Transformer encoder layer consists of a self atten-
tion and a feed-forward network (FFN), while a Transformer
decoder layer consists of a self attention, an FFN and a cross
attention for building the connection between the decoder
and the encoder output representations. To stabilize training
and accelerate convergence, we add head scaling to self at-
tention, a post-attention layer normalization (LN) (Ba et al.,
2016), and an LN following the first layer of FFN (Shleifer
et al., 2021). For the positional information, we use two ab-
solute position embeddings for text and images, respectively.
Instead of simply adding the position embeddings, we de-
couple the position correlation between token embeddings
and patch embeddings (Ke et al., 2020). In addition, we
also use the 1D relative position bias for text (Raffel et al.,
2020) and the 2D relative position bias for image (Wang
et al., 2021b; Dai et al., 2021).

3.2. Tasks & Modalities

A unified framework is designed to provide architecture
compatibility across different modalities and downstream
tasks, so that opportunities can arise to generalize to unseen
tasks within the same model. Then we have to represent the
possible downstream tasks concerning different modalities
in a unified paradigm. Therefore, an essential point for the
design of pretraining tasks is the consideration of multitask
and multimodality.

To unify tasks and modalities, we design a unified sequence-
to-sequence learning paradigm for pretraining, finetuning,
and inference on all tasks concerning different modalities.
Both pretraining and downstream tasks of cross-modal and
uni-modal understanding and generation are all formed as
Seq2Seq generation. It is available to perform multitask
pretraining on multimodal and uni-modal data, which can
endow the model with comprehensive capabilities. Specifi-
cally, we share the identical schema across all tasks, while
we specify handcrafted instructions for discrimination (Wei
et al., 2021).

For cross-modal representation learning, we design 5 tasks,
including visual grounding (VG), grounded captioning (GC),
image-text matching (ITM), image captioning (IC), and vi-
sual question answering (VQA). For VG, the model learns
to generate location tokens specifying the region position
⟨x1, y1, x2, y2⟩ based on the input of the image xi and the
instruction “Which region does the text xt describe?” where
xt refers to the region caption. GC is an inverse task of
VG. The model learns to generate a description based on the
input image xi and the instruction “What does the region
describe? region: ⟨x1, y1, x2, y2⟩”. For ITM, we use each
original image-text pair as the positive sample and construct
a negative sample by pairing the image with a randomly sub-
stituted caption. The model learns to discriminate whether
the given image and text are paired by learning to generate
“Yes” or “No” based on the input image xi and the instruc-
tion “Does the image describe xt?”. As to image captioning,
this task can naturally adapt to the sequence-to-sequence
format. The model learns to generate the caption based
on the given image and the instruction “What does the im-
age describe?”. For VQA, the model learns to generate the
correct answer given an image and a question.

For uni-modal representation learning, we design 2 tasks
for vision and 1 task for language, respectively. The model
is pretrained with image infilling and object detection for
visual representation learning. Recent advances in genera-
tive self-supervised learning for computer vision show that
masked image modeling is an effective pretraining task (Bao
et al., 2021; He et al., 2021a). In practice, we mask the mid-
dle part of the images as the input. The model learns to
generate the sparse codes for the central part of the image
based on the corrupted input and the specified instruction
“What is the image in the middle part?”. We additionally add
object detection to pretraining following Xu et al. (2021).
The model learns to generate human-annotated object rep-
resentations, i.e., the sequence of object position and label,
based on the input image and the text “What are the objects
in the image?” as the instruction. Both tasks strengthen the
representation learning on both pixel and object levels. For
language representation learning, following the practice of
Lewis et al. (2020), we pretrain the unified model on plain
text data with text infilling.
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Table 1. Experimental results on cross-modal understanding tasks
including VQA and visual entailment. Note that we report the
best results from the previous SOTAs, and specifically SimVLM
is a huge-size model comparable to ViT-Huge pretrained on
1.8B image-text pairs, and Florence is built with CoSwin-H and
RoBERTa and it is pretrained on 900M image-text pairs.

Model VQA SNLI-VE
test-dev test-std dev test

UNITER 73.8 74.0 79.4 79.4
OSCAR 73.6 73.8 - -
VILLA 74.7 74.9 80.2 80.0
VL-T5 - 70.3 - -
VinVL 76.5 76.6 - -
UNIMO 75.0 75.3 81.1 80.6
ALBEF 75.8 76.0 80.8 80.9
METER 77.7 77.6 80.9 81.2
VLMo 79.9 80.0 - -
SimVLM 80.0 80.3 86.2 86.3
Florence 80.2 80.4 - -

OFATiny 70.3 70.4 85.3 85.2
OFAMedium 75.4 75.5 86.6 87.0
OFABase 78.0 78.1 89.3 89.2
OFALarge 80.3 80.5 90.3 90.2
OFA 82.0 82.0 91.0 91.2

In this way, we unify multiple modalities and multiple tasks
to a single model and a pretraining paradigm. OFA is pre-
trained jointly with those tasks and data. Thus, it can per-
form different tasks concerning natural language, vision,
and cross-modality.

3.3. Pretraining Datasets

We construct pretraining datasets by incorporating vision &
language data (i.e., image-text pairs), vision data (i.e., raw
image data, object-labeled data), and language data (i.e.,
plain texts). For replication, we only use datasets that are
publicly available. We carefully filter our pretraining data
and exclude images that appear in the validation and test
sets of downstream tasks to avoid data leakage. We provide
more details about pretraining datasets in Appendix A.1.

3.4. Training & Inference

We optimize the model with the cross-entropy loss. Given
an input x, an instruction s and an output y, we train OFA by
minimizing L = −

∑|y|
i=1 logPθ(yi|y<i, x, s), where θ

refers to the model parameters. For inference, we apply
the decoding strategies, e.g., beam search, to enhance the
quality of generation. However, this paradigm has several
problems in classification tasks: 1. optimizing on the entire
vocabulary is unnecessary and inefficient; 2. the model may
generate invalid labels out of the closed label set during
inference. To overcome these issues, we introduce a search
strategy based on prefix tree (Trie (Cormen et al., 2009)).
Experimental results show that the Trie-based search can
enhance the performance of OFA on classification tasks.

Table 2. Experimental results on MSCOCO Image Captioning. We
report the results on the Karpathy test split. Note that SimVLM
and LEMON are huge-size models.

Model Cross-Entropy Optimization CIDEr Optimization
B M C S B M C S

VL-T5 34.5 28.7 116.5 21.9 - - - -
OSCAR 37.4 30.7 127.8 23.5 41.7 30.6 140.0 24.5
UNICORN 35.8 28.4 119.1 21.5 - - - -
VinVL 38.5 30.4 130.8 23.4 41.0 31.1 140.9 25.2
UNIMO 39.6 - 127.7 - - - - -
LEMON 41.5 30.8 139.1 24.1 42.6 31.4 145.5 25.5
SimVLM 40.6 33.7 143.3 25.4 - - - -

OFATiny 35.9 28.1 119.0 21.6 38.1 29.2 128.7 23.1
OFAMedium 39.1 30.0 130.4 23.2 41.4 30.8 140.7 24.8
OFABase 41.0 30.9 138.2 24.2 42.8 31.7 146.7 25.8
OFALarge 42.4 31.5 142.2 24.5 43.6 32.2 150.7 26.2
OFA 43.9 31.8 145.3 24.8 44.9 32.5 154.9 26.6

Table 3. Experimental results on the 3 datasets of referring ex-
pression comprehension, namely RefCOCO, RefCOCO+, and
RefCOCOg. We report the Acc@0.5 on different test splits of the
datasets.

Model RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-u test-u

VL-T5 - - - - - - - 71.3
UNITER 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77
VILLA 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71
MDETR 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89
UNICORN 88.29 90.42 83.06 80.30 85.05 71.88 83.44 83.93

OFATiny 80.20 84.07 75.00 68.22 75.13 57.66 72.02 69.74
OFAMedium 85.34 87.68 77.92 76.09 83.04 66.25 78.76 78.58
OFABase 88.48 90.67 83.30 81.39 87.15 74.29 82.29 82.31
OFALarge 90.05 92.93 85.26 85.80 89.87 79.22 85.89 86.55
OFA 92.04 94.03 88.44 87.86 91.70 80.71 88.07 88.78

See Appendix B for more details.

3.5. Scaling Models

In order to investigate how OFA of different model sizes
perform in downstream tasks, we have developed 5 versions
of OFA models, scaling from 33M to 940M parameters,
and we list their detailed hyperparameters in Table 11 in
Appendix A.2.

To be more specific, we have built basic models of Base
and Large sizes, OFABase and OFALarge. As our network
configuration is similar to BART (Lewis et al., 2020), their
sizes are similar to those of BARTBase and BARTLarge. Ad-
ditionally, we have developed OFA of a larger size, which
we name it OFAHuge, or OFA without specific mentioning
in the tables. Its size is comparable to that of SimVLMHuge

and ViTHuge. To investigate whether smaller OFA can
still reach satisfactory performance, we have developed
OFAMedium and OFATiny, which are solely around half and
less than 20% as large as OFABase.
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4. Experiments
This section provides experimental details and analyses to
demonstrate the effectiveness of OFA. See Appendix A for
implementation details.

4.1. Results on Cross-modal Tasks

We evaluate our models on different cross-modal down-
stream tasks, covering cross-modal understanding and gen-
eration. Specifically, we implement experiments on mul-
timodal understanding datasets including VQAv2 for vi-
sual question answering and SNLI-VE (Xie et al., 2019)
for visual entailment, and multimodal generation including
MSCOCO Image Caption (Chen et al., 2015) for image
captioning, RefCOCO / RefCOCO+ / RefCOCOg (Yu et al.,
2016; Mao et al., 2016) for referring expression comprehen-
sion as this task can be viewed as bounding box generation,
and MSCOCO Image Caption for text-to-image generation.
More details are provided in Appendix A.4.

Table 1 presents the performance of OFA and baseline mod-
els on VQA and SNLI-VE. In general, OFA achieves the
best performance in both tasks with 82.0 on the VQA test-
std set and 91.2 on the SNLI-VE test set. For smaller-size
models, OFALarge can outperform the recent SOTAs, e.g.,
VLMo and SimVLM, and OFABase can beat the SOTAs
before the aforementioned two models in both tasks. This
demonstrates that OFA can achieve superior performance
on cross-modal understanding tasks and scaling up OFA
can bring significant improvements, reflecting the strong
potential of large-scale pretrained models.

Table 2 presents the performance of OFA and baseline mod-
els on the MSCOCO image captioning dataset. We report
the results on the Karpathy test split, and we demonstrate
the performance of models trained with Cross-Entropy opti-
mization and additionally with CIDEr optimization based
on reinforcement learning. In comparison with the previous
SOTA SimVLMHuge for Cross-Entropy optimization, OFA
outperforms it by around 2 points in CIDEr evaluation. For
CIDEr optimization, OFA of the 3 sizes all outperform the
huge-size LEMON, and OFA demonstrates a new SOTA of
154.9 CIDEr score.

To evaluate the capability of visual grounding, we conduct
experiments on RefCOCO, RefCOCO+, and RefCOCOg.
While we unify locations to the vocabulary, visual ground-
ing can be viewed as a sequence generation task. As there
is only one target for each query, we limit the genera-
tion length to 4 in order to generate a bounding box by
< x1, y1, x2, y2 >. Experimental results in Table 3 show
that OFA reaches the SOTA performance on the 3 datasets.
Compared with the previous SOTA UNICORN (Yang et al.,
2021), OFA achieves significant improvement with a gain
of 3.61, 6.65 and 4.85 points on the testA sets of RefCOCO

Table 4. Experimental results on text-to-image generation. Models
are evaluated on FID, CLIPSIM, and IS scores. OFA outperforms
the baselines, including the concurrent SOTA NÜWA. We report
the results of OFALarge. Note that GLIDE additionally has 1.5B
parameters for upsampling except for the 3.5B parameters.

Model FID↓ CLIPSIM↑ IS↑
DALLE 27.5 - 17.9
CogView 27.1 33.3 18.2
GLIDE 12.2 - -
Unifying 29.9 30.9 -
NÜWA 12.9 34.3 27.2

OFA 10.5 34.4 31.1

and RefCOCO+ as well as the test-u set of RefCOCOg.

Text-to-image generation is a challenging task even for pre-
trained models. As we pretrain OFA with the task “image-
infilling”, i.e., recovering masked patches by generating the
corresponding codes (Bao et al., 2021), and thus OFA is
able to generate code. We thus directly finetune OFA on the
MSCOCO Image Caption dataset for text-to-code genera-
tion. At the inference stage, we additionally transform the
generated codes to an image with the code decoder. Specifi-
cally, we use the codes from VQGAN (Esser et al., 2021)
following (Wu et al., 2021). Experimental results show that
OFA outperforms the baselines in all the metrics. Note that
increasing the sampling size during inference is expected to
bring clear improvements on FID and IS. Compared with
DALLE (Ramesh et al., 2021), CogView (Ding et al., 2021)
and NÜWA (Wu et al., 2021), whose sampling sizes are 512,
60 and 60, respectively, OFA outperforms these SOTA meth-
ods on FID and IS with a much smaller sampling size 24.
This illustrates that OFA has learned better correspondence
among the query text, the image and the image codes.

We compare OFA with CogView and GLIDE on generation
quality with normal and counterfactual queries.1 Normal
queries describe existing things in the real world, while
counterfactual queries refer to those describing things that
could only exist in our imagination. For normal queries,
both CogView and OFA generate images semantically con-
sistent with the given texts, in comparison with GLIDE.
The generated examples from our model can provide more
sophisticated details of objects, say the horse and the double-
decker bus. For counterfactual queries, we find that OFA is
the only one that can generate the three imaginary scenes,
which indicates its imaginative power based on its strong
capability to align text to the image. See Appendix C for
more qualitative examples.

1For more implementation details, please refer to Appendix A.4
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A brown horse in the 
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near a lake surrounded 
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A street scene with a 
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A white computer in the 
sky.

Figure 3. Qualitative comparison with state-of-the-art models for text-to-image generation. We present more qualitative examples of
text-to-image generation for better demonstration in Appendix C.

4.2. Results on Uni-modal Tasks

As the design of OFA unifies different modalities, we eval-
uate its performance on unimodal tasks, namely tasks of
natural language and computer vision. For natural language
tasks, we evaluate OFA on 6 tasks of the GLUE bench-
mark (Wang et al., 2018) for natural language understand-
ing and Gigaword abstractive summarization (Rush et al.,
2015) for natural language generation. For computer vi-
sion, we evaluate OFA on the classic ImageNet-1K (Deng
et al., 2009) dataset for image classification. More details
are provided in Appendix A.4.

As OFA has been pretrained on the plain text data, it can
be transferred to natural language downstream tasks. For
natural language generation, it is essentially a sequence-to-
sequence generation task, and for natural language under-
standing, typically text classification, we regard them as gen-
eration tasks where labels are essentially word sequences.
Additionally, for each task, we design a manual instruc-
tion to indicate the model what types of questions it should
answer. We list our instruction design in Appendix A.4.

We demonstrate that even a unified multimodal pretrained
model can achieve highly competitive performance in natu-
ral language tasks. Specifically, in the evaluation of natural
language understanding, OFA surpasses multimodal pre-
trained models by large margins in all tasks. In comparison
with the state-of-the-art natural language pretrained models,
including RoBERTa (Liu et al., 2019), XLNET (Yang et al.,

2019), ELECTRA (Clark et al., 2020), and DeBERTa (He
et al., 2021b), OFA reaches a comparable performance. In
the evaluation of natural language generation, OFA reaches
a new state-of-the-art performance on the Gigaword dataset.

Also, OFA can reach a competitive performance in image
classification. Table 7 shows the performance of OFA on
image classification. OFA achieves higher accuracy than
previous backbone models such as EfficientNet-B7 (Tan
& Le, 2019) and ViT-L (Dosovitskiy et al., 2020). We
also compare OFA with self-supervised pretraining models
based on contrastive learning and masked image modeling.
OFA outperforms contrastive-based models such as Sim-
CLR (Chen et al., 2020a) and MoCo-v3 (Chen et al., 2020b;
Chen & He, 2021) with similar parameters. Compared with
pretrained models based on masked image modeling, e.g.,
BEiT-L (Bao et al., 2021) and MAE-L (He et al., 2021a),
OFA can achieve similar performance.

These aforementioned results in both natural language and
vision tasks indicate that a unified multimodal pretrained
model is not only effective in multimodal tasks but also
capable of tackling unimodal tasks, and in the future, it
might be sufficient for such a model to solve complex tasks
concerning different modality combinations.

4.3. Zero-shot Learning & Task Transfer

The instruction-guided pretraining enables OFA to perform
zero-shot inference. Following Uni-Perceiver (Zhu et al.,
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Table 5. Experimental results on the GLUE benchmark
datasets (Wang et al., 2018). For comparison, we list the
performance of multimodal pretrained models as well the recent
SOTA models that were pretrained on natural language data only.
Following (Liu et al., 2019), we finetune RTE and MRPC starting
from the checkpoint finetuned on MNLI.

Model SST-2 RTE MRPC QQP MNLI QNLI

Multimodal Pretrained Baseline Models
VisualBERT 89.4 56.6 71.9 89.4 81.6 87.0
UNITER 89.7 55.6 69.3 89.2 80.9 86.0
VL-BERT 89.8 55.7 70.6 89.0 81.2 86.3
VilBERT 90.4 53.7 69.0 88.6 79.9 83.8
LXMERT 90.2 57.2 69.8 75.3 80.4 84.2
Uni-Perceiver 90.2 64.3 86.6 87.1 81.7 89.9
SimVLM 90.9 63.9 75.2 90.4 83.4 88.6
FLAVA 90.9 57.8 81.4 90.4 80.3 87.3
UNIMO 96.8 - - - 89.8 -

Natural-Language-Pretrained SOTA Models
BERT 93.2 70.4 88.0 91.3 86.6 92.3
RoBERTa 96.4 86.6 90.9 92.2 90.2 93.9
XLNet 97.0 85.9 90.8 92.3 90.8 94.9
ELECTRA 96.9 88.0 90.8 92.4 90.9 95.0
DeBERTa 96.8 88.3 91.9 92.3 91.1 95.3

Ours
OFA 96.6 91.0 91.7 92.5 90.2 94.8

Table 6. Experimental results on Gigaword abstractive summariza-
tion. We report performance on the ROUGE evaluation (Lin, 2004)
.

Model Gigaword
ROUGE-1 ROUGE-2 ROUGE-L

BERTSHARE 38.13 19.81 35.62
MASS 38.73 19.71 35.96
UniLM 38.45 19.45 35.75
PEGASUS 39.12 19.86 36.24
ProphetNet 39.55 20.27 36.57
UNIMO 39.71 20.37 36.88

OFA 39.81 20.66 37.11

2021), we evaluate our model on the 6 tasks of the GLUE
benchmark, including single-sentence classification and sen-
tence pair classification. Table 8 demonstrates that OFA gen-
erally outperforms Uni-Perceiver. However, both models
do not achieve satisfactory performance in sentence-pair
classification (with Acc. < 60%). We hypothesize that
the missing sentence-pair data in the pretraining dataset
attributes to the performance.

Also, we find that the model performance is highly sensitive
to the design of instructions. To obtain the best result, one
should search a proper instruction template possibly from a
large pool of candidates. A slight change to manual prompts
or model parameters may drastically influence the model
performance, which is not robust. We leave this issue to the
future work.

We observe that the model can transfer to unseen tasks well
with new task instructions. We design a new task called
grounded question answering and present examples in Fig-

Table 7. ImageNet-1K finetuning results. All the listed models do
not use extra labeled image classification samples during training
for fair comparison.

Model Top-1 Acc.

EfficientNet-B7 84.3
ViT-L/16 82.5
DINO 82.8
SimCLR v2 82.9
MoCo v3 84.1
BEiT384-L/16 86.3
MAE-L/16 85.9

OFA 85.6

Table 8. Zero-shot performance on 6 GLUE subtasks and SNLI-
VE.

Model SST-2 RTE MRPC QQP QNLI MNLI SNLI-VE
Acc. Acc. F1 F1 Acc. Acc. Acc. (dev/test)

Uni-Perceiver 70.6 55.6 76.1 53.6 51.0 49.6 -

OFABase 71.6 56.7 79.5 54.0 51.4 37.3 49.71 / 49.18

ure 4. In this scenario, given a question about a certain
region on the image, the model should provide a correct
answer. We find that the model can achieve a satisfactory
performance in this new task, which reflects its strong trans-
ferability. Besides, OFA can solve tasks with the out-of-
domain input data. For example, OFA without finetuning
achieves satisfactory performance in VQA for the out-of-
domain images. Examples are demonstrated in Figure 5.
OFA can also perform accurate visual grounding on the out-
of-domain images, e.g., anime pictures, synthetic images,
etc., and we demonstrate more examples on Figure 11 in
Appendix C.

4.4. Ablation on Multitask Pretraining

Thanks to the unified framework, OFA has been pretrained
on multiple tasks and thus endowed with comprehensive
capabilities. However, the effects of each task are still undis-
covered. We verify their effects on multiple downstream
tasks, including image captioning, VQA, image classifica-
tion, and text-to-image generation.

We first evaluate how uni-modal pretraining tasks influ-
ence the performance in both cross-modal and uni-modal
tasks. Table 9 demonstrates our experimental results. We
observe some interesting phenomena about the effects of
uni-modal pretraining tasks. Text infilling brings improve-
ment on image caption (+0.8 CIDEr) and VQA (+0.4 Acc.).
Natural language pretraining betters the contextualized rep-
resentation of language and thus enhances performance in
cross-modal tasks. However, it is noticed that the language
pretraining task may degrade the performance in image clas-
sification, leading to the decrease in ImageNet-1K (−1.0
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what color is the car in the region? region: 
<loc301> <loc495> <loc501> <loc596>

what color is the car in the region? region: 
<loc512> <loc483> <loc675> <loc576>

tan gray

Q:

A: A:

Q:

Figure 4. Qualitative results on an unseen task called grounded QA.
In this task, the model should answer a question about a certain
region in the image. More samples are provided in Figure 10 in
Appendix C.

what is grown on the plant?

money

Q:

A:

what does the red-roofed building right to 
the big airship look like?

D�PXVKURRPA:

Q:

Figure 5. Qualitative results on the unseen-domain VQA. During
pretraining, only real-world photographs are used for VQA. We
present cases of VQA on out-of-domain images, i.e., the iconic
and sci-fi images, and demonstrate their capability of transferring
to unseen domains. More samples are provided in Figure 9 in
Appendix C.

Acc.). Also, it is interesting to find that it does not encourage
improvement in text-to-image generation (−0.1 CLIPSIM).
It may attribute to the simplicity of text in this task, which
indicates that improved representation of language does
not affect the performance. As to image infilling, it signif-
icantly improves the performance in image classification
(+1.0 Acc.) and text-to-image generation (+0.6 CLIPSIM).
Learning to recover images is an effective self-supervised
task for image representation, and it also encourages the
decoder’s ability to generate image codes. However, it hurts
the performance in image captioning and VQA. Both tasks
require a strong capability in generating texts, and the de-
coder’s learning of image generation naturally brings perfor-
mance degradation in captioning (−0.7 CIDEr) and VQA
(−0.3 Acc.).

Furthermore, we evaluate how multimodal tasks impact
the performance. Previous studies have provided evidence
of the contribution of conventional pretraining tasks, e.g.,
MLM, MOC, ITM, VQA, image captioning, etc. (Chen
et al., 2020c; Zhang et al., 2021a). However, they miss other
tasks, e.g., detection and visual grounding & grounded cap-
tioning. We conduct experiments on these tasks and find that
tasks predicting regions are crucial to multimodal tasks, with
a performance increase in image captioning (+2.3 CIDEr &

Table 9. Ablation results of OFA. All models are pretrained for
250k step. w/o ground. represents the removal of both visual
grounding and grounded captioning tasks. Note that all models are
only finetuned with the cross-entropy loss in image captioning.

Model Caption VQA ImageNet Image Generation
CIDEr Test-dev Top-1 Acc. FID / CLIPSIM / IS

OFABase 135.6 76.0 82.2 20.8 / 31.6 / 21.5

w/o text infill. 134.8 75.6 83.2 20.3 / 31.7 / 21.8
w/o image infill. 136.3 76.3 81.8 23.2 / 31.0 / 20.0
w/o det. 133.3 75.4 81.4 20.9 / 31.5 / 21.6
w/o ground. 134.2 75.5 82.0 21.2 / 31.5 / 21.5

+1.4 CIDEr) and VQA (+0.6 Acc. & +0.5 Acc.). It sug-
gests that detection and visual grounding & grounded cap-
tioning help the model grasp fined-grained alignments be-
tween vision and language. Region information contributes
little to text-to-image generation (+0.1 CLIPSIM & +0.1
CLIPSIM), as this task requires far less text-region align-
ment information. We surprisingly find that detection can
encourage the performance in visual understanding (+0.8
Acc.). It indicates that incorporating region information
might be essential to visual understanding, especially on
images with complex objects.

5. Conclusion
In this work, we propose OFA, a Task-Agnostic and
Modality-Agnostic framework supporting Task Compre-
hensiveness. OFA achieves the unification in architecture,
tasks and modalities, and thus is capable of multimodal &
uni-modal understanding and generation, without specifi-
cation in additional layers or tasks. Our experiments show
that OFA creates new SOTAs in a series of tasks, including
image captioning, VQA, visual entailment, and referring
expression comprehension. OFA also demonstrates a com-
parable performance with language / vision pretrained SOTA
models in uni-modal understanding and generation tasks,
e.g., GLUE, abstractive summarization, and image classi-
fication. We provide a further analysis to demonstrate its
capability in zero-shot learning and domain & task transfer,
and we also verify the effectiveness of pretraining tasks.

In the future, we will continue exploring the issues dis-
covered in this work. Also, we endeavor to figure out a
reasonable solution to building an omni-model essentially
generalizable to the complex real world.
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A. Implementation Details
A.1. Pretraining Datasets

We construct pretraining datasets by incorporating vision & language data (i.e., image-text pairs), vision data (i.e., raw image
data, object-labeled data), and language data (i.e., plain texts). For replication, the pretraining datasets are publicly available.
We carefully filter our pretraining data and exclude images that appear in the validation and test sets of downstream tasks to
avoid data leakage. The statistics on the pretraining datasets are listed in Table 10.

Cross-modal Data For vision & language pretraining, we mainly apply image-text pairs, including image-caption pairs,
image-QA pairs, and image-region pairs, as the pretraining data. For the pretraining tasks of image captioning and image-text
matching, we collect Conceptual Caption 12M (CC12M) (Changpinyo et al., 2021), Conceptual Captions (CC3M) (Sharma
et al., 2018), SBU (Ordonez et al., 2011), MSCOCO image captions (COCO) (Chen et al., 2015), and Visual Genome
Captions (VG Captions) (Krishna et al., 2017). Specifically, the part of data from VG requires some additional processing.
As texts in VG captions describe local regions on the images, we retrieve regions with area larger than 16, 384 pixels and
construct region-caption pairs. For visual question answering, we collect VQAv2 (Goyal et al., 2017), VG-QA (Krishna
et al., 2017), as well as GQA (Hudson & Manning, 2019). VQAv2 is a visual question answering dataset with real-world
photographs from COCO. VG-QA is also a visual question answering dataset with real-world photographs from VG. The
questions of VG-QA are related to specific regions on the images. GQA is a large VQA dataset featuring compositional
questions. The images of GQA are also collected from VG. For visual grounding and grounded captioning, we collect data
from RefCOCO (Yu et al., 2016), RefCOCO+ (Yu et al., 2016), RefCOCOg (Mao et al., 2016) and VG captions. Additional
processing is applied to VG Captions for this task. Specifically, we use the images of VG that contain regions with area
smaller than 16, 384 pixels for Visual Grounding, in order to encourage model to grasp fine-grained alignments between
vision and language.

Uni-modal Data Uni-modal data include vision and language data. Vision data consists of raw images for image
infilling and object-labeled images for object detection. For image infilling, we collect raw images from OpenImages,
YFCC100M (Thomee et al., 2016) and ImageNet-21K (Deng et al., 2009), and exclude annotations. Thus the model is
unable to access labels in the pretraining stage. For object detection, we collect OpenImages (Kuznetsova et al., 2020),
Object365 (Shao et al., 2019), VG and COCO for object detection. Language data consist of plain texts, i.e., passages
consisting of sentences. We use around 140GB of data from Pile (Gao et al., 2020) to leverage its diversity.

Table 10. Statistics on the datasets of pretraining tasks. For language data, 140G* represents the storage space of the plain texts.

Type Pretraining Task Source #Image #Label

Vision&Language

Image Captioning CC12M, CC3M, SBU, COCO, VG-Cap 14.78M 15.25MImage-Text Matching

Visual Question Answering VQAv2, VG-QA, GQA 178K 2.92M

Visual Grounding RefCOCO, RefCOCO+, RefCOCOg, VG-Cap 131K 3.20MGrounded Captioning

Vision Detection OpenImages, Object365, VG, COCO 2.98M 3.00M

Image Infilling OpenImages, YFCC100M, ImageNet-21K 36.27M -

Language Masked Language Modeling Pile (Filter) - 140G*

A.2. Model Configuration

We provide the details of our proposed OFA of 5 different sizes, ranging from 33M to 930M parameters in Table 11. The
details include the number of total parameters, the choice of visual backbone, the hidden size, the number of layers in the
encoder and decoder, the number of attention heads, etc.
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Table 11. Detailed hyperparameters of OFA model configuration. We list the configuration for OFA of 5 different sizes.

Model #Param. Backbone Hidden size Intermediate Size #Head #Enc. Layers #Dec. Layers

OFATiny 33M ResNet50 256 1024 4 4 4
OFAMedium 93M ResNet101 512 2048 8 4 4
OFABase 182M ResNet101 768 3072 12 6 6
OFALarge 472M ResNet152 1024 4096 16 12 12
OFAHuge 930M ResNet152 1280 5120 16 24 12

A.3. Pretraining Details

For the image processing, we first resize and crop the images into different resolutions, 256 × 256 for OFATiny and
OFAMedium, 384× 384 for OFABase, 480× 480 for OFALarge and OFAHuge, with a fixed patch size of 16× 16. Note that
training OFALarge and OFAHuge are time and computation consuming, we first train them with images of the resolution of
384× 384 and 256× 256, and continue pretraining with images of the resolution of 480× 480.

For each patch, we obtain its feature vector with the first three blocks of ResNet (He et al., 2016). The ResNet module is
jointly trained along with the transformer module. Note that through extensive experiments we find that random sampling
patches (Huang et al., 2020) does not bring additional benefits in our scenario. For the text processing, we tokenize the texts
with the same BPE Tokenizer (Sennrich et al., 2016) as BART (Lewis et al., 2020). The maximum text sequence length of
both encoder and decoder is set to 256. We share parameters between the embedding and the decoder softmax output layer.

From our preliminary experiments, we find that the initialization for Transformer plays an important role. For OFABase

and OFALarge, we initialize the transformer with most of the weights of BARTBase and BARTLarge considering the slight
difference between OFA Transformer and BART as described in Sec 3.1. For OFA of the other sizes, we pretrain language
models with the same pretraining strategy with BART and use the pretrained weights to initialize the Transformer in OFA.

We use the AdamW (Loshchilov & Hutter, 2019) optimizer with (β1, β2) = (0.9, 0.999) and ϵ = 1e-8 to pretrain our
models. We set the peak learning rate to 2e-4, and apply a scheduler with linear decay with a warmup ratio of 0.01 to control
the learning rate. For regulation, we set dropout to 0.1 and use weight decay with 0.01. We employ stochastic depth (Huang
et al., 2016) with a 0.1 rate (applied to encoder and decoder except for convolution blocks). We mix all the pretraining data
within each batch, which contains 2, 048 vision&language samples, 256 object detection samples, 256 image-only samples
and 512 text-only samples. All models are pretrained for at least 300K steps except the models used for ablation study.

A.4. Details of Downstream Tasks

We verify the capability of OFA on various downstream tasks in both finetuning and zero-shot settings. We design various
task-specific instructions to transfer the knowledge learned from pretraining to downstream tasks effectively. The instructions
of different tasks are listed in Table 12. For finetuning, if not specified, the input image resolution is set to 480× 480. The
experimental details of different downstream tasks, including both multimodal and uni-modal tasks, are listed below:

Image Captioning Image captioning is a standard vision & language task that requires models to generate an appropriate
and fluent caption for an image. We adopt the most widely used MSCOCO Image Caption dataset (Chen et al., 2015) to
evaluate the multi-modal generation capability of OFA. We report BLEU-4 (Papineni et al., 2002), METEOR (Banerjee &
Lavie, 2005), CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al., 2016) scores on the Karpathy test split (Karpathy
& Fei-Fei, 2015). Following the previous standard practice, we first finetune OFA with the cross-entropy loss for 2 epochs
with a batch size of 128 and a learning rate of 1e− 5, and label smoothing is set to 0.1. We then finetune the model with
CIDEr optimization for 3 epochs with a batch size of 64, and disable dropout and stochastic depth. We report scores at the
two stages.

Visual Question Answering Visual question answering (VQA) is a cross-modal task that requires the models to answer
the question given an image. Previous works such as VLMo (Wang et al., 2021a) or SimVLM (Wang et al., 2021b) define
VQA as a classification task. They use a linear output layer to predict the probability of each candidate answer on a given set.
In contrast with these studies, to adapt the generative OFA model to VQA benchmark, we use the Trie-based search strategy
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Table 12. Instructions for downstream tasks.

Task Dataset Instruction Target

Image Captioning COCO [Image] What does the image describe? {Caption}
Visual Question

Answering VQA [Image] {Question} {Answer}

Visual Entailment SNLI-VE [Image] Can image and text1 “{Text1}” imply text2 “{Text2}”? Yes/No/Maybe

Referring Expression
Comprehension

RefCOCO,
RefCOCO+,
RefCOCOg

[Image] Which region does the text “{Text}” describe? {Location}

Image Generation COCO What is the complete image? caption: {Caption} {Image}
Image Classification ImageNet-1K [Image] What does the image describe? {Label}

Single-Sentence
Classification SST-2 Is the sentiment of text “{Text}” positive or negative? Positive/Negative

Sentence-Pair
Classification

RTE Can text1 “{Text1}” imply text2 “{Text2}”? Yes/No
MRPC Does text1 “{Text1}” and text2 “{Text2}” have the same semantics? Yes/No
QQP Is question “{Question1}” and question “{Question2}” equivalent? Yes/No

MNLI Can text1 “{Text1}” imply text2 “{Text2}”? Yes/No/Maybe
QNLI Does “{Text}” contain the answer to question “{Question}”? Yes/No

Text Summarization Gigaword What is the summary of article “{Article}”? {Summary}

mentioned in Sec. 3.4 to ensure that the answer generated by OFA is constrained in the candidate set. We evaluate our model
with other baselines on the commonly used VQAv2 dataset (Goyal et al., 2017). Accuracy scores on both test-dev and
test-std sets are reported. The OFA models of all the reported sizes are finetuned for 40, 000 steps with a batch size of 512.
The learning rate is 5e− 5 with the label smoothing of 0.1. When finetuning OFALarge and OFAHuge, we increase the image
resolution from 480 to 640. We employ linear interpolation for the absolute positional embedding following Dosovitskiy
et al. (2020) when transferring the pretrained OFA to VQA finetuning. During Trie-based searching, we constrain the
generated answers over the most frequent 3, 129 answer candidates. Exponential moving average (EMA) with decay rate
0.9999 is employed in finetuning.

Visual Entailment Visual entailment requires the model to evaluate how the given image and text are semantically
correlated, i.e., entailment, neutral, or contradiction. We perform experiments on the SNLI-VE dataset (Xie et al., 2019).
The image premise, text premise and text hypothesis are fed to the encoder, and the decoder generates appropriate labels. To
transfer the knowledge learned by pretraining to this task, we convert the labels “entailment / neutral / contradiction” to “yes
/ maybe / no”. We also use the Trie-based search strategy to constrain the generated labels over the candidate set. We report
accuracy on both dev and test sets. The OFA model is finetuned for 6 epochs with a learning rate of 2e− 5 and a batch size
of 256.

Referring Expression Comprehension Referring expression comprehension requires models to locate an image region
described by a language query. Different from the approach taken by most previous methods (Lu et al., 2019; Chen
et al., 2020c) which ranks a set of candidate bounding boxes detected by a pretrained object detector, our method directly
predicts the best matching bounding box without any proposals. We perform experiments on RefCOCO (Yu et al., 2016),
RefCOCO+ (Yu et al., 2016), and RefCOCOg (Mao et al., 2016). Consistent with other downstream tasks, we formulate
referring expression comprehension as a conditional sequence generation task. In detail, given an image and a language
query, OFA generates the box sequence (e.g., ⟨x1, y1, x2, y2⟩) in an autoregressive manner. We report the standard metric
Acc@0.5 on the validation and test sets. For finetuning, the input image resolution is set to 512 × 512. We finetune the
OFA model on each dataset for about 10 epochs with a batch size of 128. The learning rate is 3e−5 with the label smoothing
of 0.1. Each query only corresponds to an image region, so we limit the maximum generated length to 4 during inference.

Image Generation Following the same setting with Wu et al. (2021), we train our model on the MS COCO train split and
evaluate our model on the validation split by randomly sampling 30, 000 images. We use Fréchet Inception Distance (FID)
(Heusel et al., 2017) and Inception Score (IS) (Salimans et al., 2016) to evaluate the quality of the images. Following the
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previous studies (Huang et al., 2021; Wu et al., 2021), we also compute CLIP Similarity Score (CLIPSIM) to evaluate the
semantic similarity between the query text and the generated images. During finetuning, OFA learns to generate the image
code sequence according to the given text query only. The model is first finetuned with the cross-entropy loss and then with
CLIPSIM optimization following Rennie et al. (2017) and Huang et al. (2021). In the first stage, we finetune the OFA model
for about 50 epochs with a batch size of 512 and a learning rate of 1e− 3. In the second stage, the model is finetuned for
extra 5000 steps with a batch size of 32 and a learning rate of 1e− 6. During the evaluation, we sample 24 images with the
resolution of 256× 256 for each query and choose the best one using the pretrained CLIP model (Radford et al., 2021).

For the case study, we compare OFA with CogView and GLIDE. CogView provides an API website 2. Note that this API
samples 8 images of resolution of 512× 512 for each query. We select the first one of generated images and resize it to the
resolution of 256× 256. GLIDE provides a Colab notebook.3. Note that the only publicly available GLIDE model is of
base size (∼385M).

Image Classification We provide finetuning results on ImageNet-1K (Deng et al., 2009) following recent studies in
self-supervised learning for computer vision. During finetuning and inference, a Trie-based search strategy is employed
to constrain the generated text into the set of 1, 000 candidate labels. We finetune OFA for 32 epochs and a batch size
of 256. The learning rate is 5e − 5. The ratio for label smoothing is 0.1. The encouraging loss proposed in (Zhao et al.,
2021) is employed with the hyperparameter LE set to 0.75. Following Bao et al. (2021), we use the same random resize
cropping, random flipping, RandAug (Cubuk et al., 2020) and random erasing (Zhong et al., 2020) transformations as data
augmentation strategies. Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019) are used with overall 0.5 probability to
be performed on each batch and alpha is 0.8 and 1.0, respectively. To adapt the mixed soft target of Mixup and CutMix into
generation paradigm during finetuning, we run the decoder twice each with one of the target sequences to be mixed and sum
the loss weighted by the mixing ratio.

Natural Language Understanding To verify the natural language understanding ability of OFA, we select 6 language
understanding tasks from the GLUE benchmark (Wang et al., 2018), including single-sentence classification tasks and
sentence-pair classification tasks. To adapt to sentence-pair classification, previous models (Devlin et al., 2019; Liu
et al., 2019) usually use segment embeddings to distinguish different sentences. Unlike those models, OFA can apply the
model to sentence-pair classification tasks by constructing appropriate instructions without introducing additional segment
embeddings. For the hyper-parameters of finetuning, we tune the training epochs among {5, 7, 10}, learning rate among
{3e− 5, 5e− 5, 6e− 5, 7e− 5, 1e− 4}, batch size among {32, 64, 128}, weight decay among {0.01, 0.05}, and dropout
rate among {0.0, 0.1}. We report the best performance on the development set for each task.

Natural Language Generation We verify the natural language generation ability of OFA on the Gigaword dataset (Rush
et al., 2015). We report ROUGE-1 / ROUGE-2 / ROUGE-L to evaluate the generation results following Rush et al. (2015).
We finetune the OFA models for around 6 epochs with a batch size of 512. The learning rate is 1e − 4 with the label
smoothing of 0.1, and the maximum input text sequence length is set to 512. R-drop (Liang et al., 2021) is applied for
finetuning. In the stage of inference, we set the length penalty to 0.7 and beam size to 6, and limit the maximum generated
length to 32.

B. Trie-based Search
This section describes how to use Trie-based search to improve model performance on downstream classification tasks.
When dealing with classification tasks, we first construct a Trie where nodes are annotated with tokens from the candidate
label-set. During finetuning, the model computes the log-probabilities of the target tokens based on their positions on the
Trie. As shown in Figure 6, when computing the log-probabilities of the target token “sky”, we only consider tokens in
{“sky”, “ocean”} and forcefully set the logits for all invalid tokens to −∞. During inference, we constrain the generated
labels over the candidate set. As shown in Table 13, Trie-based search strategy can boost the performance of OFA in various
downstream classification tasks.

2https://wudao.aminer.cn/CogView/index.html
3https://colab.research.google.com/drive/1q6tJ58UKod1eCOkbaUNGzF3K5BbXlB5m

https://wudao.aminer.cn/CogView/index.html
https://colab.research.google.com/drive/1q6tJ58UKod1eCOkbaUNGzF3K5BbXlB5m
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Figure 6. Example of the Trie-based search where the constraint labels are “blue sky”, “blue ocean” and “green”. When computing the
log-prob of token “sky”, we only consider tokens in {“sky”, “ocean”} and forcefully set the logits for all invalid tokens to −∞.

Table 13. Ablation results of Trie. The removal of Trie-based search degenerates the performance on downstream tasks. Note that the
baseline OFABase is only pre-trained for 250k steps, which is also used in Table 9.

Model VQA SNLI-VE ImageNet MRPC QQP
Test-dev Acc. Dev Acc. Top-1 Acc. F1 F1

OFABase 76.03 89.2 82.2 90.6 88.4
w/o Trie 75.86(-0.17) 89.0(-0.2) 81.9(-0.3) 90.1(-0.5) 88.2(-0.2)

C. Qualitative Examples
This section provides more qualitative examples of multiple tasks, including text-to-image generation, open-domain VQA,
grounded question answering, and open-domain visual grounding, from the generation of OFA. By reading this section, we
hope that readers can better perceive OFA.
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Figure 7. Examples of text-to-image generation. For better demonstration, we continue finetuning OFA on a subset of LAION-
400M (Schuhmann et al., 2021).
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Figure 8. Examples of text-to-image generation.
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Figure 9. More samples of VQA task on unseen domains. The answers are generated by pretrained OFA without finetuning. The
datasets used in VQA pretraining task only contain real-world photographs. We present more cases of VQA task on out-of-domain (non-
photographic) images and demonstrate the capability of transferring OFA to these unseen domains.

Figure 10. Samples of the unseen grounded question answering task. In this task, the model should answer a question about a particular
region in the image. This task is unseen in pretraining. We demonstrate that directly transferring pretrained OFA to this new task without
finetuning works well.
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Figure 11. Samples of visual grounding task generated by OFA for various unseen domains: (a) anime (the corresponding animations are
Pokemon and One Piece); (b) synthetic images with attribute combinations.


