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Abstract
We study the problem of online multi-task learn-
ing where the tasks are performed within simi-
lar but not necessarily identical multi-armed ban-
dit environments. In particular, we study how a
learner can improve its overall performance across
multiple related tasks through robust transfer of
knowledge. While an upper confidence bound
(UCB)-based algorithm has recently been shown
to achieve nearly-optimal performance guarantees
in a setting where all tasks are solved concurrently,
it remains unclear whether Thompson sampling
(TS) algorithms, which have superior empirical
performance in general, share similar theoretical
properties. In this work, we present a TS-type
algorithm for a more general online multi-task
learning protocol, which extends the concurrent
setting. We provide its frequentist analysis and
prove that it is also nearly-optimal using a novel
concentration inequality for multi-task data aggre-
gation at random stopping times. Finally, we eval-
uate the algorithm on synthetic data and show that
the TS-type algorithm enjoys superior empirical
performance in comparison with the UCB-based
algorithm and a baseline algorithm that performs
TS for each individual task without transfer.

1. Introduction
We study multi-task transfer learning in a multi-armed ban-
dit (MAB) setting. In practice, auxiliary data from different
but related sources are often available, although it is also
often less clear how they should be utilized. If properly
managed, such data can serve an important role in accel-
erating learning; in particular, in online learning, auxiliary
data may be used to avoid costs associated with unnecessary
exploration. In this work, we study how data collected from
similar sources can be robustly aggregated and utilized.
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We consider a generalization of the ε-multi-player multi-
armed bandit (ε-MPMAB) problem recently proposed by
Wang et al. (2021), which can be used to model multi-task
bandits. In the ε-MPMAB problem1, a set of players sequen-
tially and potentially concurrently interact with a common
set of arms that have player-dependent reward distributions.
Each player and its associated reward distributions (data
sources) are thereby regarded as a task. Furthermore, we
consider the reward distributions that the players face for
each arm to be similar but not necessarily identical, and the
level of (dis)similarity is specified by a parameter ε ∈ [0, 1].

The ε-MPMAB problem can be used to model important
real-world applications. For example, in healthcare robotics,
a set of robots, which correspond to players, can be paired
with people with dementia to provide personalized cogni-
tive training and wellness activities (Kubota et al., 2020).
Each training/wellness activity corresponds to an arm in the
ε-MPMAB problem, and people with similar preferences
or symptoms may exhibit similar interests or needs—this is
modeled via similarity in reward distributions of each arm
(Wang et al., 2021). Another example can be seen in rec-
ommendation systems where learning agents are assigned
to people within a social network, who may have similar
interests due to inter-network influence (Qian et al., 2013).

Despite the similarity in its reward distributions, the ε-
MPMAB problem is still challenging for two reasons: on
the one hand, misusing auxiliary data can lead to negative
transfer and substantially impair a player’s performance
(Rosenstein et al., 2005); on the other hand, while auxiliary
data are often immediately accessible in their entirety in
offline transfer learning settings, in the ε-MPMAB problem,
the available auxiliary data grow in time and depend on the
interactions between the players and the environments.

An upper confidence bound (UCB)-based algorithm,
ROBUSTAGG(ε), has been proposed for the ε-MPMAB
problem (Wang et al., 2021). It achieves strong, near-
optimal theoretical guarantees through robust data aggre-
gation. Nevertheless, ROBUSTAGG(ε)’s empirical perfor-
mance can, unfortunately, be underwhelming.

Meanwhile, Thompson sampling (TS) algorithms (Thomp-

1We shall still refer to the generalized problem as the ε-
MPMAB problem.
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son, 1933), another family of bandit algorithms, have been
shown superior empirically in comparison with UCB-based
algorithms in standard single-task settings (e.g., Chapelle
& Li, 2011). In fact, we show in Section 7 that, for the
ε-MPMAB problem, a baseline algorithm which employs
TS for each task individually without transfer learning can
outperform ROBUSTAGG(ε) in many cases.

In spite of the encouraging signs from the empirical evalu-
ations, the theoretical study of TS have lagged behind, es-
pecially in terms of frequentist analyses (Agrawal & Goyal,
2017; Kaufmann et al., 2012) for data aggregation and trans-
fer learning in the multi-task setting2. It is therefore im-
perative to design multi-task TS-type algorithms that have
superior empirical performance and strong theoretical guar-
antees. Our contributions in this work are:

1. Inspired by prior works (Cesa-Bianchi et al., 2013;
Gentile et al., 2014; Hong et al., 2021), we generalize
the ε-MPMAB problem (Wang et al., 2021) to model
a wider class of multi-task bandit learning scenarios
so that it covers sequential and concurrent multi-task
learning as special cases.

2. We design a TS-type algorithm, ROBUSTAGG-TS(ε),
for the ε-MPMAB problem and provide a frequentist
analysis with near-optimal performance guarantees.

3. We empirically evaluate ROBUSTAGG-TS(ε) on syn-
thetic data and show that it outperforms the UCB-based
ROBUSTAGG(ε) and a baseline algorithm that runs TS
for each individual task without data sharing.

4. Technical highlight: frequentist analyses of Thomp-
son sampling can be much harder to conduct than
those of UCB-based algorithms (see Remark 5.2);
a concentration inequality loose in logarithmic fac-
tors can result in a polynomial increase in regret
guarantee (see Remark 5.7). To cope with this chal-
lenge, we prove a novel concentration inequality for
multi-task data aggregation at random stopping times
(Lemma 5.6), which leads to tight performance guaran-
tees for ROBUSTAGG-TS(ε). Our technique may be
of independent interest for analyzing other multi-task
sequential learning problems.

2. Preliminaries
In this section, we first present the problem formulation and
some important known results. We then introduce a new
baseline algorithm based on TS.

Notations. Throughout, we use [n] to denote the set
{1, 2, . . . , n}. Let N (µ, σ2) denote the Gaussian distribu-
tion with mean µ and variance σ2. Let a ∨ b = max(a, b).

2See Section 6 for a discussion on related work.

For a setA ⊆ U , denote byAC = U \A the complement of
A in the universe U . We use Õ to hide logarithmic factors.

2.1. Problem Formulation

We consider and generalize the ε-MPMAB problem intro-
duced by Wang et al. (2021). An ε-MPMAB problem in-
stance comprises M players, K arms, and a dissimilarity
parameter ε ∈ [0, 1]. Let [M ] denote the set of players and
[K] the set of arms. For each player p ∈ [M ] and each arm
i ∈ [K], there is an initially-unknown reward distribution
Dpi , which has support [0, 1] and has mean µpi .

Reward dissimilarity. The reward distributions for each
arm are assumed to be similar but not necessarily identical
for different players; specifically,

∀i ∈ [K], p, q ∈ [M ],
∣∣µpi − µqi ∣∣ ≤ ε. (1)

Protocol. In the work of Wang et al. (2021), the players
interact with the arms in rounds, and within each round, all
players take an action concurrently. In this paper, inspired
by the problem setup of Hong et al. (2021), we general-
ize the interaction protocol such that it allows any subset
of the players to take an action. In each round t ∈ [T ],
where T > max(K,M) is the time horizon of learning,
a subset of players Pt ⊆ [M ] is chosen (called the ac-
tive player set at round t) by an oblivious adversary; each
active player p ∈ Pt then pulls an arm ipt ∈ [K] and ob-
serves an independently-drawn reward rpt ∼ D

p
ipt

. At the
end of round t, the active players communicate their de-
cisions,

{
ipt : p ∈ Pt

}
, as well as their observed rewards,{

rpt : p ∈ Pt
}

, to all players. Note that, when |Pt| = 1 for
all t, the problem setting resembles the one in (Cesa-Bianchi
et al., 2013) and captures a sequential transfer bandit learn-
ing setting (e.g., Azar et al., 2013); when Pt = [M ] for all
t, we recover the setting in the work of Wang et al. (2021).

Performance metric. The goal of the players is to min-
imize their expected collective regret, which we define
shortly. For each player p ∈ [M ], let µp∗ = maxj∈[K] µ

p
j

denote the mean reward of an optimal arm for p; then, for
each arm i ∈ [K], let ∆p

i = µp∗ − µpi ≥ 0 denote the
(suboptimality) gap of arm i for player p. In addition, let
npi (t) =

∑
s≤t 1 {p ∈ Ps, ips = i} denote the number of

pulls of arm i by player p after t rounds. Then, the individ-
ual expected regret of any player p is defined as

Regp(T ) = E

[ ∑
t∈[T ]:
p∈Pt

µp∗ − µ
p
ipt

]
=
∑
i∈[K]

E
[
npi (T )

]
∆p
i .
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Finally, the expected collective regret is defined as the sum
of individual expected regret over all the players, i.e.,

Reg(T ) =
∑
p∈[M ]

Regp(T ) =
∑
i∈[K]

∑
p∈[M ]

E
[
npi (T )

]
∆p
i .

(2)

Does one need to know ε? In this work, we focus on
the case where ε is known to the players in the ε-MPMAB
problem. This is because Wang et al. (2021) prove that, un-
fortunately, not much can be done when ε is unknown to the
players—a lower bound (Theorem 11 therein) shows that no
sublinear-regret algorithms can effectively take advantage
of inter-task data aggregation for every ε ∈ [0, 1] to achieve
improved regret upper bounds.

2.2. Existing Results

In the concurrent setting (Pt = [M ] for all t), Wang et al.
(2021) show that, whether data aggregation can be prov-
ably beneficial for an arm i depends on how its associated
suboptimality gaps, ∆p

i ’s, compare with the dissimilarity
parameter, ε.

Subpar arms. Specifically, the problem complexity is
captured by a notion called subpar arms. The set of α-
subpar arms is defined as:

Iα =
{
i ∈ [K] : ∃p, ∆p

i > α
}
. (3)

Regret guarantees. The upper and lower bounds pro-
vided in (Wang et al., 2021) characterize that, informally,
the collective performance of the players can be improved
by a factor of M (resp.

√
M ) for each O(ε)-subpar arm in

the (suboptimality) gap-dependent (resp. gap-independent)
bounds, where we recall that M is the number of players.

This improvement is in comparison with baseline algorithms
in which each player runs their own instance of a bandit al-
gorithm individually. Let IND-UCB be a baseline in which
each player runs the UCB-1 algorithm (Auer et al., 2002). Its
collective regret guarantees are obtained by simply summing
over individual gap-dependent and gap-independent regret
bounds, respectively: O

(∑
p∈[M ]

∑
i∈[K]:∆p

i>0
lnT
∆p
i

)
and

Õ
(
M
√
KT

)
.

In contrast, through leveraging auxiliary data from
inter-player communication, the UCB-based algorithm,
ROBUSTAGG(ε), proposed by Wang et al. (2021) has gap-
dependent and gap-independent regret bounds of

O

 1

M

∑
i∈I5ε

∑
p∈[M ]
∆p
i>0

lnT

∆p
i︸ ︷︷ ︸

(∗)

+
∑
i∈IC5ε

∑
p∈[M ]
∆p
i>0

lnT

∆p
i

+MK

 and

Õ
(√

M |I5ε|T︸ ︷︷ ︸
(∗)

+M
√(
|IC5ε| − 1

)
T +MK

)
,

respectively3. These guarantees exhibit a factor of 1
M and

1√
M

improvement in the respective (∗) terms, for the set of
O(ε)-subpar arms, I5ε, and is nearly optimal.

In Appendix D, we give a brief recap of ROBUSTAGG(ε)—
we show that with a few small modifications, it can be
extended to work in the generalized ε-MPMAB setting, and
achieve generalized regret guarantees (see Theorem D.2).

Lower bounds. In the setting where the dissimilarity pa-
rameter ε is known, a lower bound in (Wang et al., 2021)
shows that, for any algorithm that has a sublinear-regret
guarantee, when facing a large class of ε-MPMAB problem
instances, it must have regret at least

Ω

 ∑
i∈Iε/4:∆min

i >0

lnT

∆min
i

+
∑
i∈IC

ε/4

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

 ,

where ∆min
i = minp∈[M ] ∆p

i . This lower bound shows
that, data aggregation cannot be effective for the arm set
ICε/4 ⊆ I

C
ε .

In addition, Wang et al. (2021) also show a gap-independent
lower bound: for any algorithm, there exists an ε-MPMAB
instance, in which the algorithm has regret at least

Ω

(√
M |I5ε|T +M

√(
|IC5ε| − 1

)
T

)
,

in the setting where Pt = [M ] for all t ∈ [T ].

2.3. Baseline: IND-TS

In this work, we consider another baseline algorithm,
IND-TS, in which each player runs the standard TS al-
gorithm with Gaussian priors. We now describe the TS
algorithm. At a high level, every learner (player) p begins
with some prior belief on the mean reward of each arm, and
through interactions with the environment, the learner up-
dates its posterior belief. Specifically, we consider TS with
Gaussian product priors—a learner maintains one Gaussian
posterior distribution for each arm, beginning with N (0, 1).
In each round t, the learner draws an independent sam-
ple θpi (t) for each arm i from its corresponding posterior

distribution, which is of form N
(
µ̄pi ,

1
npi (t−1)∨1

)
, where

µ̄pi = 1
npi (t−1)∨1

∑
s<t:p∈Ps,ips=i r

p
s is the empirical mean

reward of player p pulling arm i. The learner then pulls the
arm ipt = argmaxi θ

p
i (t), receives a reward rpt ∼ D

p
ipt

, and
updates the posterior distribution for arm i.

3The results may appear different from (Wang et al., 2021) at a
glance because we use a slightly notation for subpar arms.
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Based on the results of Agrawal & Goyal (2017), we ob-
tain the regret guarantees of IND-TS by summing over
individual bounds: O

(∑
p∈[M ]

∑
i∈[K]:∆p

i>0
lnT
∆p
i

)
and

Õ
(
M
√
KT

)
.

In Appendix D, we briefly recap the guarantees of
IND-UCB and IND-TS in the generalized ε-MPMAB set-
ting, where Pt’s are not necessarily [M ] in every round.

Algorithm 1 ROBUSTAGG-TS (ε)

1: Input: Dissimilarity parameter ε ∈ [0, 1], universal
constants c1, c2 > 0.

2: Initialization: For every i ∈ [K] and p ∈ [M ], set
npi = 0, ind-µ̂pi = 0, ind-varpi = c2, agg-µ̂pi = 0, and
agg-varpi = c2; for every i ∈ [K], set ni = 0.

3: for round t ∈ [T ] do
4: Receive active set of players Pt.
5: for active player p ∈ Pt do
6: for arm i ∈ [K] do
7: if npi ≥

c1 lnT
ε2 + 2M then

8: µ̂pi ← ind-µ̂pi , varpi ← ind-varpi ;
. Use the individual posterior

9: else
10: µ̂pi ← agg-µ̂pi , varpi ← agg-varpi ;

. Use the aggregate posterior
11: end if
12: θpi (t) ∼ N (µ̂pi , varpi )
13: end for
14: Player p pulls arm ipt = argmaxi∈[K] θ

p
i (t) and

observes reward rpt .
15: end for
16: for active player p ∈ Pt do
17: Let i = ipt . Update npi ← npi + 1 and ni ← ni+ 1.
18: end for
19: for active player p ∈ Pt do
20: Let i = ipt .

. Only update posteriors associated with p and ipt
21: Update

ind-µ̂pi ←
1

npi ∨ 1

∑
s≤t

1 {p ∈ Ps, ips = i} rps ,

ind-varpi ←
c2

npi ∨ 1
;

22:

agg-µ̂pi ←
1

ni ∨ 1

∑
s≤t

∑
q∈Ps

1 {iqs = i} rqs + ε,

agg-varpi ←
c2

(ni −M) ∨ 1
.

23: end for
24: end for

3. Algorithm
In this section, we present a TS-type randomized exploration
algorithm, ROBUSTAGG-TS(ε) (Algorithm 1), which can
robustly leverage data collected by all the players.

In each round t, for each active player p ∈ Pt and arm
i, ROBUSTAGG-TS(ε) maintains two Gaussian “posterior”
distributions. As a standard single-task TS algorithm with
Gaussian priors would normally maintain (e.g. Agrawal &
Goyal, 2017), N

(
ind-µ̂pi , ind-varpi

)
, the individual poste-

rior is solely based on player p’s own interactions with arm
i, with ind-µ̂pi and ind-varpi defined in line 21. In contrast,
the aggregate posterior, N

(
agg-µ̂pi , agg-varpi

)
, is unique

to the multi-task setting—its mean, agg-µ̂pi , is the sum of
the empirical mean of all players’ observed rewards for arm
i and a bonus term ε, and its variance, agg-varpi , is based on
the total number of pulls of arm i by all players (line 22).

The algorithm chooses one of the posterior distributions
(lines 7 to 11), i.e., decides whether to utilize data shared by
other players, by balancing a bias-variance trade-off (Ben-
David et al., 2010; Soare et al., 2014; Wang et al., 2021):
while an inclusion of ni reward samples collected by all
players leads to a variance, agg-varpi , which can be much
smaller than ind-varpi , it may also cause agg-µ̂pi to be biased
as the reward distributions for different players may be
different. The algorithm then independently draws a sample,
θpi (t), from the chosen posterior distribution (line 12) and
pulls the arm with the largest θpi (t) for player p (line 14).

Specifically, in round t, for player p ∈ Pt and arm i ∈ [K],
the algorithm chooses a posterior distribution by comparing
npi , the number of pulls of i by p at the beginning of round
t, to a threshold in terms of the dissimilarity parameter, i.e.,
c1 lnT
ε2 + 2M (line 7), where c1 > 0 is some numerical

constant. Intuitively, when ε is smaller, each player stays
longer on using the aggregate posterior to perform random-
ized exploration, which indicates a higher degree of trust on
data from other tasks.

After all players in Pt obtain rewards for their arm pulls,
they compute and update their posteriors with new data.
In principle, data from one player can affect the aggregate
posteriors of all players. We make the design choice that
this effect gets delayed: the algorithm only updates the
posteriors for player p and arm i in round t, if p ∈ Pt
and i = ipt (line 20). Although our current analysis (see
Sections 4 and 5 below) relies on this property to establish
sharp regret guarantees, we conjecture that similar regret
guarantees can be shown even if the algorithm updates the
posteriors of all players and all arms in every round4.

4In Section E.1 of the appendix, we show that this variation
induces little effect on the empirical performance of the algorithm.
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4. Main Results
We now present gap-dependent and gap-independent regret
upper bounds of ROBUSTAGG-TS(ε). Recall that Iα =
{i ∈ [K] : ∃p, ∆p

i > α} is the set of α-subpar arms.

Theorem 4.1 (Gap-dependent bound). There exists a set-
ting of c1, c2 > 0, such that, the expected collective regret
of ROBUSTAGG-TS(ε) after T > max(K,M) rounds sat-
isfies: Reg(T ) ≤

O

 1

M

∑
i∈I10ε

∑
p∈[M ]
∆p
i>0

lnT

∆p
i

+
∑
i∈IC10ε

∑
p∈[M ]
∆p
i>0

lnT

∆p
i

+M2K

.
Theorem 4.2 (Gap-independent bound). There exists a set-
ting of c1, c2 > 0, such that, the expected collective regret
of ROBUSTAGG-TS(ε) after T > max(K,M) rounds sat-
isfies:

Reg(T ) ≤Õ
(√
|I10ε|P +

√
M
(
|IC10ε| − 1

)
P +M2K

)
,

where P =
∑T
t=1 |Pt|.

The proofs of Theorems 4.1 and 4.2 can be found in Ap-
pendix C; in Section 5, we also highlight several technical
challenges and proof ingredients in our analysis.

Guarantees in the generalized ε-MPMAB setting. Our
guarantees for ROBUSTAGG-TS(ε) hold under the gener-
alized ε-MPMAB setting, in that Pt’s at each round can
change over time. Observe that the regret bound given
by Theorem 4.1 does not depend on Pt’s, and the regret
bound given by Theorem 4.2 has the highest value when
P = MT . In addition, recall that near-matching gap-
dependent and gap-independent lower bounds have been
shown by Wang et al. (2021) in the Pt ≡ [M ] setting (Sec-
tion 2.2). These lower bounds indicate the near-optimality
of ROBUSTAGG-TS(ε)’s guarantees, modulo an additive
lower-order term O(M2K) which does not depend on T .

Furthermore, the gap-independent guarantee in Theorem 4.2
adapts to the value of P . This shows the flexibility of
ROBUSTAGG-TS(ε). Specifically, if |Pt| = 1 (similar to
the settings of Cesa-Bianchi et al. 2013; Gentile et al. 2014),
we have P = T , and Reg(T ) ≤

Õ
(√
|I10ε|T +

√
M
(
|IC10ε| − 1

)
T +M2K

)
.

Similarly, if Pt = [M ] for all t (Wang et al., 2021), then
P = MT , and Reg(T ) ≤

Õ
(√

M |I10ε|T +M
√(
|IC10ε| − 1

)
T +M2K

)
.

Comparison with baselines. In comparison with the
guarantees of the UCB-based algorithm ROBUSTAGG(ε) in
Appendix D.2, we see that ROBUSTAGG-TS(ε) has compet-
itive guarantees, except that the set of arms which benefits
from data aggregation changes from I5ε to I10ε.

In comparison with the guarantees of IND-UCB and
IND-TS, the regret guarantees of ROBUSTAGG-TS(ε) are
never worse (modulo lower-order terms), and save factors
of 1

M and 1√
M

in I10ε’s contribution in the gap-dependent
and gap-independent regret guarantees, respectively.

5. Proof Ingredients
In this section, we highlight some of the novel proof ingredi-
ents used in our analysis of Algorithm 1, which are unique
to the multi-task setting5.

We begin by decomposing the regret in terms of subpar arms
and non-subpar arms. It follows from Eq. (2) that

Reg(T ) = O

 ∑
i∈I10ε

E
[
ni(T )

]
∆min
i +

∑
i∈IC10ε

∑
p∈[M ]

E
[
npi (T )

]
∆p
i

,
where we let ni(T ) =

∑M
p=1 n

p
i (T ) be the number of pulls

of arm i by all players after T rounds; we recall that ∆min
i =

minp∈[M ] ∆p
i ; and we use the fact that for any subpar arm

i ∈ I10ε and any player p ∈ [M ], ∆p
i ≤ 2∆min

i (Fact A.24).

In the interest of space, we focus on the analysis for subpar
arms and defer the discussion on non-subpar arms to the
appendix. The following lemma provides an upper bound
on E

[
ni(T )

]
for i ∈ I10ε, which can be subsequently used

to derive the upper bounds on the expected collective regret
incurred by the 10ε-subpar arms in Section 4.

Lemma 5.1. For any arm i ∈ I10ε,

E
[
ni(T )

]
≤ O

(
lnT

(∆min
i )2

+M

)
.

While a similar lemma can be found in (Wang et al., 2021,
Lemma 20) for the UCB-based algorithm, ROBUSTAGG(ε),
proving Lemma 5.1 requires new ingredients that we present
in the rest of this section.

Let us fix an arm i ∈ I10ε. To control E
[
ni(T )

]
=

E
[∑

t∈[T ]

∑
p∈Pt 1

{
ipt = i

}]
, we begin by generalizing a

5Our analysis involves various proofs by cases. Figure 2 in the
appendix provides an overview illustrating the case division rules
used in our proofs.
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technique introduced by Agrawal & Goyal (2017) for stan-
dard TS to the multi-task setting. In each round t and for
each active player p, we consider two cases: (1) player p
pulls arm i (namely, ipt = i), and θpi (t) (line 12 in Algo-
rithm 1) is greater than some threshold ypi ∈ (µpi , µ

p
∗) to be

defined shortly, and (2) ipt = i and θpi (t) ≤ ypi . We have

E
[
ni(T )

]
= E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, θpi (t) > ypi , Et

}
︸ ︷︷ ︸

(A)

+E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, θpi (t) ≤ ypi , Et

}
︸ ︷︷ ︸

(B)

+O (1) ,

where Et, informally, is a high-probability “clean” event in
which µ̂pi ’s maintained by Algorithm 1 in round t for each i
and p concentrate towards their respective expected values.

Term (A) can be controlled because, as more pulls of arm i
are made,

{
θpi (t) > ypi

}
is unlikely to happen, as µ̂pi concen-

trates towards a value smaller than ypi , and varpi decreases.
See Lemma C.6 in the appendix for a detailed proof.

In what follows, we focus on bounding term (B). Observe
that the event

{
ipt = i, θpi (t) ≤ ypi

}
in (B) happens only if

∀j ∈ [K], θpj (t) ≤ ypi , including the optimal arm(s) for
player p. Since in an ε-MPMAB problem instance, different
players may have different optimal arms, we consider a
common near-optimal arm † ∈ IC2ε—see Fact A.24 in the
appendix for the existence of such an arm. It can be easily
verified that, for any arm i ∈ I10ε and player p ∈ [M ],
δpi := µp† − µ

p
i > 0 (see Fact C.4). In other words, while †

may not necessarily be an optimal arm for every player, it
has a larger mean reward than any i ∈ I10ε. We can now
define ypi := µpi + 1

2δ
p
i ∈ (µpi , µ

p
†) ⊂ (µpi , µ

p
∗).

Using a technique first introduced in (Agrawal & Goyal,
2017), we will show that θp† (t) converges to a value greater

than ypi fast enough so that
{
∀j ∈ [K], θpj (t) ≤ ypi

}
will un-

likely happen soon enough and thus (B) can be controlled.
Remark 5.2 (Comparison with UCB-based analyses). We
note that controlling term (B) is often not required in the
analyses of UCB-based algorithms. Colloquially, this term
concerns the event in which arm i is pulled even when its
sample/index value is smaller than ypi ; such an event would
unlikely happen for UCB-based algorithms as the optimism
in the face of uncertainty principle ensures that, with high
probability, the UCB index of an optimal arm for player p
is greater than or equal to µp∗ ≥ µp† > ypi .

Before we formalize the above-mentioned intuition for
bounding term (B) in Lemma 5.3, we first lay out a few
helpful definitions. We define {Ft}Tt=0 to be a filtration such

that Ft = σ
(
{iqs, rqs : s ≤ t, q ∈ Ps}

)
is the σ-algebra gen-

erated by interactions of all players up until round t. Then,
let φpi,t = Pr

(
θp† (t) > ypi | Ft−1

)
. Observe that if φpi,t is

large, the event
{
ipt = i, θpi (t) ≤ ypi

}
will unlikely happen.

Lemma 5.3.

(B) ≤
∑
t∈[T ]

∑
p∈Pt

E

( 1

φpi,t
− 1

)
1
{
ipt = †, Et

}
︸ ︷︷ ︸

(B∗)

.

See Lemma C.11 and its proof in the appendix for details.
We now consider the following two cases: in any round t
and for any active player p that pulls arm †, i.e., ipt = †, p
uses either the individual or the aggregate posterior distri-
bution associated with arm † (lines 7 to 11 in Algorithm 1).
Let Hp

† (t) be the event that p uses the individual posterior

distribution andHp
† (t) be the event that p uses the aggregate

posterior (see Definition A.13 in the appendix for the formal
definitions). We can then decompose (B∗) as follows:

(B∗) =
∑
t∈[T ]

∑
p∈Pt

E

( 1

φpi,t
− 1

)
1
{
ipt = †, Et, Hp

† (t)
}

︸ ︷︷ ︸
(b1)

+
∑
t∈[T ]

∑
p∈Pt

E

( 1

φpi,t
− 1

)
1
{
ipt = †, Et, Hp

† (t)
}

︸ ︷︷ ︸
(b2)

.

Let mp
†(t) denote the aggregate number of pulls of arm †

maintained by player p after t rounds (see Definition A.9
in the appendix). Note that, by the design choice of Al-
gorithm 1 (line 20), mp

†(t) is not necessarily the same as

n†(t). With foresight, let L = Θ
(

lnT
(∆min

i )2
+M

)
, and let

Gpt =
{
ipt = †, Et, Hp

† (t)
}

. We have

(b2) =∑
t∈[T ]

∑
p∈Pt

E

( 1

φpi,t
− 1

)
1
{
Gpt ,m

p
†(t− 1) < L

}
︸ ︷︷ ︸

(b2.1)

+
∑
t∈[T ]

∑
p∈Pt

E

( 1

φpi,t
− 1

)
1
{
Gpt ,m

p
†(t− 1) ≥ L

}
︸ ︷︷ ︸

(b2.2)

.

Both (b1) and (b2.2) can be bounded by O (M), because,
informally speaking, either player p has pulled arm † many
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times when the individual posterior is used (term (b1)) or
the players collectively have pulled † many times when the
aggregate posterior is used (term (b2.2)), and 1

φpi,t
− 1 can

therefore be upper bounded by 1
T . See Lemma C.13 and

Lemma C.18 and their proofs for details.

The main challenge in bounding E
[
ni(T )

]
lies in term

(b2.1), for which we show the following lemma.

Lemma 5.4 (Bounding term (b2.1)).

(b2.1) ≤ O (L) ≤ O

(
lnT

(∆min
i )2

+M

)
.

Proving Lemma 5.4 is central to our analysis and as we
will see, requires special care. We begin by introducing the
following notion. For any arm j ∈ [K] and k ∈ [TM ], let

τk(j) = min
{
T + 1,min

{
t : nj(t) ≥ k

}}
be the round in which arm j is pulled the k-th time by any
player. Furthermore, let τ0(j) = 0 by convention. For
any j ∈ [K] and k ∈ [TM ], it is easy to verify that τk(j)

is a stopping time with respect to {Ft}Tt=0. In what fol-
lows, when circumstances permit, we abuse the notation
and denote τk(†) by τk.

Invariant property. By the construction of Algorithm 1,
in any round t, a player only updates the posteriors associ-
ated with an arm if the player pulls the arm in the round t
(line 20). This design choice induces an invariant property:
for any arm and player, certain random variables associated
with them stay invariant between consecutive pulls of the
arm by the player (see Definition A.20 and a few examples
in the appendix).

The invariant property allows us to bound (b2.1) as follows
in terms of the stopping times τk’s (See Lemma C.14 and
Lemma C.38 in the appendix):

(b2.1) ≤
M∑
p=1

E

( 1

φpi,1
− 1

)
1
{
Hp
† (1)

}+

L−1∑
k=1

E

( 1

φpki,τk+1

− 1

)
1
{
τk ≤ T,Hp

† (τk + 1)
} ,

where pk := pk(†) is the player that makes the k-th pull of
arm † (Definition A.17).

Using basic Gaussian tail bounds, we can show that

E

[(
1
φpi,1
− 1

)
1
{
Hp
† (1)

}]
≤ O (1) for any player p.

Then, the following lemma suffices to prove Lemma 5.4.

Lemma 5.5. For any k ∈ [TM ],

E

( 1

φpki,τk+1

− 1

)
1
{
τk ≤ T,Hp

† (τk + 1)
} ≤ O (1) .

Technical highlight. Lemma 5.5 generalizes Agrawal &
Goyal (2017, Lemma 2.13) for standard TS to the multi-task
setting. A complete proof can be found in the appendix,
which uses anti-concentration bounds of Gaussian random
variables (Gordon, 1941) as well as a novel concentration
inequality for multi-task data aggregation at random stop-
ping times τk(†)’s, which we highlight here6. For any arm
j, let

agg-µ̂j(t) =
1

nj(t) ∨ 1

∑
s≤t

∑
q∈Ps

1 {iqs = j} rqs + ε

be the aggregate mean reward estimate of j constructed
using data by all players after t rounds, offset by ε.
Lemma 5.6. For any arm j ∈ [K] and k ∈ [TM ] ∪ {0},
denote by τk = τk(j). Then, for any δ ∈ (0, 1], with proba-
bility at least 1− δ, one of the following events happens:

1. τk = T + 1;

2. ∀p ∈ [M ], µpj − agg-µ̂j(τk) ≤
√

2 ln( 2
δ )

(nj(τk)−M)∨1
.

Remark 5.7. We note that Lemma 5.6 is critical to the tight
performance guarantee in Lemma 5.5 and subsequently the
near-optimal regret guarantees. This result is non-trivial,
as it is a concentration bound for a sequence of random
variables whose length, nj(τk(j)), is also a random variable.
Furthermore, since τk(j) is the round in which arm j is
pulled the k-th time by any player, nj(τk(j)) can potentially
take any integer value in [k, k + M − 1] because there
can be up to M pulls of arm j in round τk(j). We note
that using the Azuma-Hoeffding inequality together with
a union bound or Freedman’s inequality (similar to Wang
et al., 2021, Lemma 17) can lead to extraO (M) orO (lnT )
terms for Lemma 5.5, respectively (see Remark C.17 in the
appendix for details).

To our best knowledge, we are not aware of any similar tight
concentration bounds for data aggregation in multi-task
bandits, and our technique may be of independent interest
for analyzing other multi-task sequential learning problems.

6. Related Work
There exist many prior works that study multi-player or
multi-task bandits with heterogeneous reward distributions.

6In the single-task case (M = 1), our proof technique
(Lemma C.36) also simplifies the proof of the first case of Agrawal
& Goyal (2017, Lemma 2.13).
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(a) |I5ε| = 8

(b) |I5ε| = 5

Figure 1. Compares the average performance of the algorithms on 30 randomly generated problem instances with |I5ε| = 8 and |I5ε| = 5
in a horizon of T = 50000 rounds. Figures in the left column plot the cumulative collective regret over time; figures in the middle column
demonstrate the percentages of pulls of optimal arms, non-subpar yet non-optimal arms (referred to as near-optimal arms), and subpar
arms; figures in the right column then show the incurred cumulative regret by arm optimality.

For example, Cesa-Bianchi et al. (2013) use Laplacian-
based regularization to learn a network of bandit problem
instances such that connected problems have similar param-
eters; Gentile et al. (2014), among others, study clustering
of bandit problem instances. The ε-MPMAB problem stud-
ied in this paper is introduced by Wang et al. (2021); see
Appendix A thereof for a detailed comparison with related
work. More recently, Zhang & Wang (2021) generalize
the ε-MPMAB problem to episodic, tabular Markov de-
cision processes. We note that while the methods in the
above-mentioned works are UCB-based, we study TS-type
algorithms in this work.

TS is initially proposed by Thompson (1933) decades ago,
but its frequentist analysis has not emerged until recent
years (e.g., Agrawal & Goyal, 2012; Kaufmann et al., 2012).
Jin et al. (2021) present the first minimax optimal TS-type
algorithm. Our proof techniques in this paper are mostly
inspired by the work of Agrawal & Goyal (2017).

TS algorithms have been studied in multi-task Bayesian ban-
dits. For example, several recent works study the setting of
interacting with a sequence of M bandit problem instances
(tasks) sampled from a common, unknown prior distribution,
with a goal of minimizing the M -instance Bayesian regret
(Bastani et al., 2021; Kveton et al., 2021; Peleg et al., 2021;
Basu et al., 2021). The recent work of Hong et al. (2021)
proposes a hierarchical Bayesian bandit problem that gen-

eralizes many multi-task bandit settings, and analyzes the
Bayes regret. In contrast, we use frequentist regret as our
performance metric, and we do not assume a shared prior
distribution over the players’ problem instances/tasks. Wan
et al. (2021) study multi-task TS in a hierarchical Bayesian
model and assume knowledge of metadata of each task;
while they provide a frequentist regret bound, we study the
ε-MPMAB problem which models task relations differently.

Similar models on sequential transfer between problem in-
stances have also been studied by Azar et al. (2013) and
Soare et al. (2014). Zhang & Bareinboim (2017); Zhang
et al. (2019); Sharma et al. (2020) investigate warm-starting
bandits from misaligned data. In this work, we focus on a
more general interaction protocol, under which the players
may interact with the environment concurrently.

7. Empirical Evaluation
In this section, we present an empirical evaluation of
ROBUSTAGG-TS(ε) on synthetic data7. We focus on the
concurrent setting (Pt = [M ] for all t), which is the setting
studied in the experiments of (Wang et al., 2021). Our goal
is to address the following two questions:

7Our code is available at https://github.com/
zhiwang123/eps-MPMAB-TS.

https://github.com/zhiwang123/eps-MPMAB-TS
https://github.com/zhiwang123/eps-MPMAB-TS
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(1) How does ROBUSTAGG-TS(ε) perform in comparison
with the UCB-based algorithm, ROBUSTAGG(ε), and the
baseline algorithms without transfer learning?

(2) Does the notion of subpar arms characterize the perfor-
mance of the algorithms in practice?

Experimental Setup. We compared the performance of
4 algorithms: (1) ROBUSTAGG-TS(ε) with constants c1 =
1
2 and c2 = 1; (2) ROBUSTAGG(ε) (Wang et al., 2021,
Section 6.1); (3) IND-TS, the baseline algorithm that runs
TS with Gaussian priors for each player individually; and
(4) IND-UCB, the baseline algorithm that runs UCB-1 for
each player individually.

The algorithms were evaluated on randomly generated 0.15-
MPMAB problem instances with different numbers of sub-
par arms. To stay consistent with the work of Wang et al.
(2021), we followed the same instance generation procedure
and considered I5ε to be the set of subpar arms—we set
the number of players M = 20 and the number of arms
K = 10; then, for each integer value v ∈ [0, 9], we gen-
erated 30 0.15-MPMAB problem instances with Bernoulli
reward distributions and |I5ε| = v. We ran the algorithms
on each instance for a horizon of T = 50, 000 rounds.

Results and Discussion. Figure 1 compares the average
performance of the algorithms on instances with |I5ε| = 8
and 5. We defer the rest of the results to Appendix E.

From the left column, we first observe that, while the
UCB-based algorithm, ROBUSTAGG(ε), outperforms its
counterpart, IND-UCB, in the cumulative collective re-
gret (

∑
t∈[T ]

∑
p∈Pt µ

p
∗ − µpipt ), its empirical performance

is underwhelming in comparison with TS algorithms. In
particular, even on instances with half of the arms sub-
par (|I5ε| = 5), ROBUSTAGG(ε) is outperformed by the
IND-TS baseline without transfer learning. Importantly,
we note that ROBUSTAGG-TS(ε) shows a superior perfor-
mance than the other algorithms.

The figures in the middle and right columns illustrate the
arm selection of each algorithm. We categorize all arms into
three groups: optimal arms, subpar arms, and near-optimal
arms which are neither subpar nor optimal. Comparing the
TS-type algorithms with the UCB-based algorithms, we
observe that the former algorithms perform better mainly
because they pull near-optimal arms a smaller number of
times and incur less regret on these arms.

Furthermore, we observe that ROBUSTAGG(ε) and
ROBUSTAGG-TS(ε), when compared with their counter-
parts (IND-UCB and IND-TS, respectively), incur a similar
amount of regret from near-optimal arms. Meanwhile, they
make fewer pulls on subpar arms. This may be less obvious
from the plots on the percentage of total pulls because none

of the algorithms pull subpar arms extensively over the hori-
zon. However, since the suboptimality gaps of subpar arms
are large, we see from the figures in the right column that
ROBUSTAGG(ε) and ROBUSTAGG-TS(ε) incur far less re-
gret on subpar arms. These results thereby demonstrate that
the notion of subpar arms can capture the amenability of
transfer learning in subpar arms but not near-optimal arms.

In addition, the results show that, empirically, our proposed
algorithm ROBUSTAGG-TS(ε) can robustly leverage trans-
fer for arms in I5ε ⊇ I10ε—this suggests that our upper
bounds may be improved; we leave this as future work.

8. Conclusion
In this work, we studied transfer learning in multi-task ban-
dits under the framework of a generalized version of the
ε-MPMAB problem (Wang et al., 2021). We proposed
a TS-type algorithm, ROBUSTAGG-TS(ε), which can ro-
bustly leverage auxiliary data collected for other tasks. We
showed that ROBUSTAGG-TS(ε) is empirically superior
when evaluated on synthetic data, and also near-optimal in
gap-dependent and gap-independent frequentist guarantees.
In our analysis, we also proved a novel concentration in-
equality for multi-task data aggregation, which can be of
independent interest in the analysis of other multi-task on-
line learning problems. For future work, we are interested
in improving the lower-order terms in our regret bounds and
evaluating our algorithm in real-world applications.

9. Acknowledgements
We thank Geelon So for insightful discussions. ZW and KC
thank the National Science Foundation under IIS 1915734
and CCF 1719133 for research support. CZ acknowledges
startup funding support from the University of Arizona. We
also thank the anonymous reviewers for their constructive
feedback.

References
Agrawal, S. and Goyal, N. Analysis of thompson sampling

for the multi-armed bandit problem. In Conference on
learning theory, pp. 39–1. JMLR Workshop and Confer-
ence Proceedings, 2012.

Agrawal, S. and Goyal, N. Near-optimal regret bounds for
thompson sampling. J. ACM, 64(5), sep 2017. ISSN
0004-5411. doi: 10.1145/3088510. URL https://
doi.org/10.1145/3088510.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

Azar, M. G., Lazaric, A., and Brunskill, E. Sequential trans-

https://doi.org/10.1145/3088510
https://doi.org/10.1145/3088510


Thompson Sampling for Robust Transfer in Multi-Task Bandits

fer in multi-armed bandit with finite set of models. In
Burges, C. J. C., Bottou, L., Welling, M., Ghahramani,
Z., and Weinberger, K. Q. (eds.), Advances in Neural In-
formation Processing Systems 26, pp. 2220–2228. Curran
Associates, Inc., 2013.

Bastani, H., Simchi-Levi, D., and Zhu, R. Meta dynamic
pricing: Transfer learning across experiments. Manage-
ment Science, 2021.

Basu, S., Kveton, B., Zaheer, M., and Szepesvári, C. No
regrets for learning the prior in bandits. arXiv preprint
arXiv:2107.06196, 2021.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning from
different domains. Machine learning, 79(1-2):151–175,
2010.

Cesa-Bianchi, N., Gentile, C., and Zappella, G. A gang of
bandits. In Advances in Neural Information Processing
Systems, pp. 737–745, 2013.

Chapelle, O. and Li, L. An empirical evaluation of thompson
sampling. Advances in neural information processing
systems, 24:2249–2257, 2011.

Gentile, C., Li, S., and Zappella, G. Online clustering of ban-
dits. In International Conference on Machine Learning,
pp. 757–765, 2014.

Gordon, R. D. Values of mills’ ratio of area to bounding
ordinate and of the normal probability integral for large
values of the argument. The Annals of Mathematical
Statistics, 12(3):364–366, 1941.

Hong, J., Kveton, B., Zaheer, M., and Ghavamzadeh,
M. Hierarchical bayesian bandits. arXiv preprint
arXiv:2111.06929, 2021.

Jin, T., Xu, P., Shi, J., Xiao, X., and Gu, Q. Mots: Minimax
optimal thompson sampling. In International Conference
on Machine Learning, pp. 5074–5083. PMLR, 2021.

Kaufmann, E., Korda, N., and Munos, R. Thompson sam-
pling: An asymptotically optimal finite-time analysis. In
International conference on algorithmic learning theory,
pp. 199–213. Springer, 2012.

Kubota, A., Peterson, E. I., Rajendren, V., Kress-Gazit, H.,
and Riek, L. D. Jessie: Synthesizing social robot behav-
iors for personalized neurorehabilitation and beyond. In
Proceedings of the 2020 ACM/IEEE International Con-
ference on Human-Robot Interaction, pp. 121–130, 2020.

Kveton, B., Konobeev, M., Zaheer, M., Hsu, C.-W., Mlade-
nov, M., Boutilier, C., and Szepesvari, C. Meta-thompson
sampling. In Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings

of Machine Learning Research, pp. 5884–5893. PMLR,
18–24 Jul 2021.

Peleg, A., Pearl, N., and Meir, R. Metalearning linear
bandits by prior update. arXiv preprint arXiv:2107.05320,
2021.

Qian, X., Feng, H., Zhao, G., and Mei, T. Personalized
recommendation combining user interest and social circle.
IEEE transactions on knowledge and data engineering,
26(7):1763–1777, 2013.

Rosenstein, M. T., Marx, Z., Kaelbling, L. P., and Diet-
terich, T. G. To transfer or not to transfer. In NIPS 2005
workshop on transfer learning, 2005.

Sharma, N., Basu, S., Shanmugam, K., and Shakkottai,
S. Warm starting bandits with side information from
confounded data. arXiv preprint arXiv:2002.08405, 2020.

Soare, M., Alsharif, O., Lazaric, A., and Pineau, J. Multi-
task linear bandits. NIPS2014 Workshop on Transfer and
Multi-task Learning : Theory meets Practice, 2014.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3/4):285–294, 1933.

Wan, R., Ge, L., and Song, R. Metadata-based multi-task
bandits with bayesian hierarchical models. In Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Sys-
tems, 2021.

Wang, Z., Zhang, C., Singh, M. K., Riek, L., and Chaud-
huri, K. Multitask bandit learning through heterogeneous
feedback aggregation. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 1531–1539. PMLR,
2021.

Zhang, C. and Wang, Z. Provably efficient multi-task rein-
forcement learning with model transfer. arXiv preprint
arXiv:2107.08622, 2021.

Zhang, C., Agarwal, A., Iii, H. D., Langford, J., and Ne-
gahban, S. Warm-starting contextual bandits: Robustly
combining supervised and bandit feedback. In Interna-
tional Conference on Machine Learning, pp. 7335–7344,
2019.

Zhang, J. and Bareinboim, E. Transfer learning in multi-
armed bandit: a causal approach. In Proceedings of the
16th Conference on Autonomous Agents and MultiAgent
Systems, pp. 1778–1780, 2017.



Thompson Sampling for Robust Transfer in Multi-Task Bandits

Outline. The structure of this appendix is as follows.

• In Section A, we introduce some basic definitions, facts and additional notations that are used in our analysis.

• In Section B, we formally present and prove the concentration bounds used in our proofs, including our novel
concentration inequality for multi-task data aggregation at stopping times.

• In Section C, we prove Theorem 4.1 and Theorem 4.2.

• In Section D, we discuss the performance guarantees of the baseline algorithms in the ε-MPMAB problem, which
include IND-UCB, IND-TS, and ROBUSTAGG(ε).

• Finally, we provide additional experimental results in Section E.

A. Basic Definitions and Facts
In this section, we revisit and introduce a few basic definitions, facts and additional notations that are useful in our proofs.

Definition A.1 (Constants used in the analysis). In the analysis, we set

c1 = 40, c2 = 4

to be the constants used in Algorithm 1.8

Definition A.2 (Number of pulls). Recall that

npi (t) =
∑
s≤t

1 {p ∈ Ps, ips = i}

is the number of pulls of arm i by player p after t rounds. We define

ni(t) =
∑
p∈[M ]

npi (t)

to be the total of number of pulls of arm i by all the players after t rounds.

Definition A.3 (Individual mean estimate). For any i ∈ [K], p ∈ [M ], and t ∈ [T ] ∪ {0}, let

ind-µ̂pi (t) =
1

npi (t) ∨ 1

∑
s≤t

1 {p ∈ Ps, ips = i} rps

be the empirical mean computed for arm i using player p’s own data from the first t rounds.

Definition A.4. Define
ind-varpi (t) =

4

npi (t) ∨ 1
.

Remark A.5 (mean and variance of the individual posteriors). By the construction of Algorithm 1, we have that, in any
round t ∈ [T ], for any active player p ∈ Pt and arm i, ind-µ̂pi (t− 1) and ind-varpi (t− 1) are the mean and variance of the
individual posterior associated with arm i and player p in round t, respectively.

Definition A.6 (Aggregate mean estimate). For any i ∈ [K] and t ∈ [T ] ∪ {0}, let

agg-µ̂i(t) =
1

ni(t) ∨ 1

∑
s≤t

∑
q:q∈Ps

1 {iqs = i} rqs + ε

be the empirical mean computed for arm i using all players’ data from the first t rounds, offset by the dissimilarity parameter
ε. Note that the definition of agg-µ̂i(t) does not depend on the identity of a specific player p.

8If we choose c1 to some other positive number, we can still show guarantees similar to Theorems 4.1 and 4.2, except that I10ε

needs to be changed to I
O
(√

1
c1
ε

)—the analysis of case (A1) needs to be changed accordingly. On the other hand, it is also possible

to change c2 to any constant > 1 and establish similar regret guarantees, by tightening the exponents of the concentration inequalities
(Corollaries B.4 and B.6) and Lemma C.36. We leave the details to interested readers.



Thompson Sampling for Robust Transfer in Multi-Task Bandits

Definition A.7 (Most recent pull). In any round t ∈ [T ] ∪ {0}, for any player p ∈ [M ] and arm i ∈ [K], we define

upi (t) =

{
max {s ≤ t : p ∈ Ps, ips = i} , npi (t) > 0

0, npi (t) = 0

to be the round in which player p most recently pulled arm i (including round t); we let upi (t) = 0 by convention if player p
has not yet pulled arm i.

Definition A.8 (Aggregate mean estimate maintained by player p). For any t ∈ [T ] ∪ {0}, p ∈ [M ], and i ∈ [K], define

agg-µ̂pi (t) = agg-µ̂i(u
p
i (t)).

Note that the superscript p differentiates this player-dependent aggregate mean estimate from agg-µ̂i(t) in Definition A.6,
which does not depend on any individual player.

Definition A.9 (Aggregate number of pulls maintained by player p). For any t ∈ [T ] ∪ {0}, p ∈ [M ], and i ∈ [K], define

mp
i (t) = ni(u

p
i (t))

to be the total number of pulls of arm i by all the players until the round in which player p last pulled arm i.

Definition A.10. Define
agg-varpi (t) =

4

(mp
i (t)−M) ∨ 1

.

Remark A.11 (mean and variance of the aggregate posteriors). By the construction of Algorithm 1, in any round t ∈ [T ],
for any active player p ∈ Pt and arm i, we have that agg-µ̂pi (t− 1) and agg-varpi (t− 1) are the mean and variance of the
aggregate posterior associated with arm i and player p in round t, respectively.

Definition A.12 (Filtration). Let {Ft}Tt=0 be a filtration such that

Ft = σ
(
{iqs, rqs : s ≤ t, q ∈ Ps}

)
is the σ-algebra generated by interactions of all players up until and including round t.

Definition A.13. Let

Hp
i (t) =

{
npi (t− 1) ≥ 40 lnT

ε2
+ 2M

}
be the event that in round t, for arm i, player p uses the individual posterior distribution; correspondingly, let

Hp
i (t) =

{
npi (t− 1) <

40 lnT

ε2
+ 2M

}
be the event that in round t, for arm i, player p uses the aggregate posterior distribution. See lines 7 to 11 in Algorithm 1.

Remark A.14. With the above notations,

µ̂pi (t− 1) = agg-µ̂pi (t− 1) · 1(Hp
i (t)) + ind-µ̂pi (t− 1) · 1(Hp

i (t)),

and
varpi (t− 1) = agg-varpi (t− 1) · 1(Hp

i (t)) + ind-varpi (t− 1) · 1(Hp
i (t)).

Stopping times. In our analysis, we will frequently use the following notions of stopping times:

Definition A.15. For any arm i ∈ [K] and k ∈ [TM ], let

τk(i) = min
{
T + 1,min

{
t : ni(t) ≥ k

}}
be the round in which arm i is pulled the k-th time by any player. Furthermore, as a convention, let τ0(i) = 0.

Remark A.16. For any i ∈ [K] and k ∈ [TM ], τk(i) is a stopping time with respect to {Ft}Tt=0. Indeed, for any t ≤ T ,

{
τk(i) ≤ t

}
=

∑
s∈[t]

∑
p:p∈Ps

1 {ips = i} ≥ k

 ∈ Ft.
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Definition A.17. For any arm i ∈ [K] and k ∈ [TM ], such that τk(i) ≤ T , let pk(i) be the unique p ∈ [M ] such that
ipτk(i) = i and

τk(i)−1∑
s=1

∑
q∈Ps

1 {iqs = i}+
∑

q∈Pτk(i):q≤p

1 {iqs = i} = k.

In words, pk(i) is the player that makes the k-th pull of arm i, where arm pulls within a round are ordered by the indices of
active players in that round.

Definition A.18. For any arm i ∈ [K], player p ∈ [M ], and k ∈ [T ], let

πk(i, p) = min
{
T + 1,min

{
t : npi (t) ≥ k

}}
be the round in which arm i is pulled the k-th time by player p. In addition, let π0(i, p) = 0 by convention.

Remark A.19. For any i ∈ [K] and k ∈ [T ], πk(i, p) is a stopping time with respect to {Ft}Tt=0. Indeed, for any t ≤ T ,

{
πk(i, p) ≤ t

}
=

 ∑
s∈[t]:p∈Ps

1 {ips = i} ≥ k

 ∈ Ft.
The following property, namely, the invariant property, will also be useful for our analysis.

Definition A.20 (Invariant property). We say that:

1. a set of random variables
{
gt : t ∈ [T ]

}
satisfies the invariant property with respect to arm i ∈ [K] and player

p ∈ [M ], if gt stays constant/invariant between two consecutive pulls of arm i by player p, i.e., for any s ∈ [T ] such that
πs(i, p) ≤ T , gt is constant for all t ∈ [πs−1(i, p) + 1, πs(i, p)]. In other words, for any s ∈ [T ] such that πs(i, p) ≤ T ,

gπs−1(i,p)+1 = gπs−1(i,p)+2 = . . . = gπs(i,p).

2. a set of random variables
{
fpt : t ∈ [T ], p ∈ [M ]

}
satisfies the invariant property with respect to arm i ∈ [K], if for

every player p ∈ [M ],
{
fpt : t ∈ [T ]

}
satisfy the invariant property with respect to (i, p).

Example A.21. By the construction of Algorithm 1, in any round t, a player only updates the posteriors associated
with an arm if the player pulls the arm in round t (line 20). It is easy to verify that for any arm i ∈ [K] and p ∈ [M ],{
Hp
i (t) : t ∈ [T ]

}
satisfies the invariant property with respect to (i, p). Specifically, for any s ∈ [T ] such that πs(i, p) ≤ T ,

Hp
i (πs−1(i, p) + 1) = Hp

i (πs−1(i, p) + 2) = . . . = Hp
i (πs(i, p)).

Consequently,
{
Hp
i (t) : t ∈ [T ], p ∈ [M ]

}
satisfies the invariant property with respect to i.

Example A.22. For any arm i ∈ [K] and any player p ∈ [M ],
{
npi (t− 1) : t ∈ [T ]

}
and

{
mp
i (t− 1) : t ∈ [T ]

}
both

satisfy the invariant property with respect to (i, p) (see Definition A.2 and Definition A.9, respectively). Specifically, for any
player p and any s ∈ [T ] such that πs(i, p) ≤ T ,

npi (πs−1(i, p)) = npi (πs−1(i, p) + 1) = . . . = npi (πs(i, p)− 1) = s− 1,

mp
i (πs−1(i, p)) = mp

i (πs−1(i, p) + 1) = . . . = mp
i (πs(i, p)− 1) = ni(πs−1(i, p))

However,
{
npi (t) : t ∈ [T ]

}
and

{
mp
i (t) : t ∈ [T ]

}
do not necessarily satisfy the invariant property with respect to i. Simi-

larly,
{

ind-µ̂pi (t− 1) : t ∈ [T ]
}

,
{

ind-varpi (t− 1) : t ∈ [T ]
}

,
{

agg-µ̂pi (t− 1) : t ∈ [T ]
}

,
{

agg-varpi (t− 1) : t ∈ [T ]
}

all
satisfy the invariant property with respect to (i, p).

Example A.23. For any arm i ∈ [K] and any player p ∈ [M ],
{
µ̂pi (t− 1) : t ∈ [T ]

}
satisfy the invariant prop-

erty with respect to (i, p). This follows from Eq. (A.14), and the above two examples that
{

ind-µ̂pi (t− 1) : t ∈ [T ]
}

,{
agg-µ̂pi (t− 1) : t ∈ [T ]

}
,
{
Hp
i (t) : t ∈ [T ]

}
all satisfy the invariant property with respect to (i, p).

Following a similar reasoning,
{

varpi (t− 1) : t ∈ [T ]
}

satisfy the invariant property with respect to (i, p).
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Facts about Subpar Arms. We now present some facts about subpar arms.

Fact A.24 (Properties of subpar arms, see also Wang et al. 2021, Fact 15). The following are true:

1. for any i ∈ [K] and p, q ∈ [M ],
∣∣∆p

i −∆q
i

∣∣ ≤ 2ε (Wang et al., 2021, Fact 14);

2. For any i ∈ I10ε and p ∈ [M ], ∆p
i > 8ε, which means that ∆min

i > 8ε.

3.
∣∣IC2ε∣∣ ≥ 1;

4. Let ∆max
i = maxp∈[M ] ∆p

i . For any i ∈ I10ε ⊆ I5ε, ∆max
i ≤ 2∆min

i ; furthermore, 1
∆min
i
≤ 2

M

∑
p∈[M ]

1
∆p
i

(Wang
et al., 2021, Fact 15).

Proof. For item 2, by the definition of I10ε, there exists p such that ∆p
i > 10ε. Then, for all q ∈ [M ], we have ∆q

i > 8ε by
item 1.

For item 3, using a similar argument, we have, for each i ∈ I2ε and p ∈ [M ], ∆p
i > 0. Let j be an optimal for player 1 such

that ∆p
j = 0. Then j /∈ I2ε.

Additional notations.

• Denote by Φ(x) =
∫ x
−∞

1√
2π
e−

z2

2 dz the cumulative distribution function (CDF) of the standard Gaussian distribution.

• Let Φ(x) = 1− Φ(x) =
∫∞
x

1√
2π
e−

z2

2 dz denote the complementary CDF of the standard Gaussian distribution.

• Denote by (z)+ = z ∨ 0.

• For any arm i ∈ [K], player p ∈ [M ] and t ∈ [T ] ∪ {0}, let

npi (t) := npi (t) ∨ 1,

and
mp
i (t) := (mp

i (t)−M) ∨ 1.

B. Concentration Bounds
B.1. Novel concentration inequality for multi-task data aggregation at random stopping time τk’s

We begin by introducing the following definition.

Definition B.1 (Mixture expected reward at t). For any arm i ∈ [K] and t ∈ [T ], define

µ̃i(t) =
1

ni(t) ∨ 1

∑
s≤t

∑
q∈Ps

1 {iqs = i}µqi + ε

to be the ε-offset mixture expected reward of arm i up to round t.

In what follows, we will consider µ̃i(τk(i)) for any i ∈ [K] and k ∈ [TM ], where the definition of τk(i) can be found in
Definition A.15.

Lemma B.2. For any arm i ∈ [K] and k ∈ [TM ], denote by τk = τk(i). If τk ≤ T , then for every player p ∈ [M ], we have

agg-µ̂i(τk)− µpi ≤ agg-µ̂i(τk)− µ̃i(τk) + 2ε; and

µpi − agg-µ̂i(τk) ≤ µ̃i(τk)− agg-µ̂i(τk).

Proof. For every t ∈ [T ], observe that

µ̃i(t) =
1

ni(t) ∨ 1

∑
s≤t

∑
q∈Ps:
iqs=i

µqi + ε =
∑
q∈[M ]

nqi (t) · µ
q
i

ni(t) ∨ 1
+ ε.



Thompson Sampling for Robust Transfer in Multi-Task Bandits

It can be easily verified that, if ni(t) > 0, for every player p ∈ [M ],

µ̃i(t)− µpi ≤ 2ε and µpi − µ̃i(t) ≤ 0,

where we note that the asymmetry comes from the additive term ε in µ̃i(t). Therefore, for k ∈ [TM ], if τk ≤ T , then
ni(τk) ≥ k > 0 and we have

µ̃i(τk)− µpi ≤ 2ε and µpi − µ̃i(τk) ≤ 0.

It then follows that, for every player p ∈ [M ],

agg-µ̂i(τk)− µpi ≤ agg-µ̂i(τk)− µ̃i(τk) + 2ε, and
µpi − agg-µ̂i(τk) ≤ µ̃i(τk)− agg-µ̂i(τk).

We are now ready to present Lemma B.3, our novel concentration bound (see also Lemma 5.6).

Lemma B.3. For any arm i ∈ [K] and k ∈ [TM ] ∪ {0}, denote by τk = τk(i); for δ ∈ (0, 1], we have

Pr

{τk = T + 1} ∪

{τk ≤ T} ∩
∀p ∈ [M ], agg-µ̂i(τk)− µpi ≤

√
2 ln

(
2
δ

)(
ni(τk)−M

)
∨ 1

+ 2ε



 > 1− δ; (4)

Pr

{τk = T + 1} ∪

{τk ≤ T} ∩
∀p ∈ [M ], µpi − agg-µ̂i(τk) ≤

√
2 ln

(
2
δ

)(
ni(τk)−M

)
∨ 1



 > 1− δ. (5)

The following corollary is an equivalent form of Equation (5):

Corollary B.4. For any arm i ∈ [K] and k ∈ [TM ] ∪ {0}, denote by τk = τk(i). Equivalently, for any z ≥ 0, we have

Pr

(τk ≤ T ) ∧

∃p ∈ [M ], µpi − agg-µ̂i(τk) ≥ z

√
4

(ni(τk)−M) ∨ 1


 ≤ 2e−2z2 . (6)

Proof of Corollary B.4. If z ≤
√

1
2 ln 2, Equation (6) holds trivially as 2e−2z2 ≥ 1. Otherwise z >

√
1
2 ln 2. In this case,

let δ = 2e−2z2 ∈ (0, 1] in Equation (5), and using De Morgan’s law, we also obtain Equation (6).

Proof of Lemma B.3. Fix any arm i ∈ [K]. For k = 0, we have τ0 = 0; both Eq. (4) and Eq. (5) hold trivially because for

all p ∈ [M ] and δ ∈ (0, 1],
∣∣agg-µ̂i(τ0)− µpi

∣∣ ≤ 1 ≤
√

2 ln 2 ≤
√

2 ln( 2
δ ).

We now focus on k ∈ [TM ]. By Lemma B.2, it suffices to show that

Pr

{τk = T + 1} ∪

{τk ≤ T} ∩
agg-µ̂i(τk)− µ̃i(τk) ≤

√
2 ln

(
2
δ

)(
ni(τk)−M

)
∨ 1



 > 1− δ; and, (7)

Pr

{τk = T + 1} ∪

{τk ≤ T} ∩
µ̃i(τk)− agg-µ̂i(τk) ≤

√
2 ln

(
2
δ

)(
ni(τk)−M

)
∨ 1



 > 1− δ.

To avoid redundancy, we only prove Eq. (7); the other inequality follows by symmetry.
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Now, for t ∈ [T ] ∪ {0}, consider Zt =
∑t
s=1

∑
p∈Ps 1 {i

p
s = i} (rps − µ

p
i ). Furthermore, for t ∈ [T ] ∪ {0} and λ > 0, let

wt(λ) = exp

(
λZt − ni(t)

λ2

8

)
.

We now show that
{
wt(λ)

}T
t=0

is a nonnegative supermartingale with respect to {Ft}Tt=0 for all λ > 0. Since E
[∣∣wt(λ)

∣∣] <
∞ and wt(λ) ≥ 0 for all t ∈ [T ] ∪ {0}, it suffices to show that, for all t ∈ [T ],

E
[
wt(λ) | Ft−1

]
=E

exp

∑
s∈[t]

∑
p∈Ps

1 {ips = i}

(
λ(rps − µ

p
i )−

λ2

8

) | Ft−1


=E

exp

 ∑
s∈[t−1]

∑
p∈Ps

1 {ips = i}

(
λ(rps − µ

p
i )−

λ2

8

) exp

∑
p∈Pt

1
{
ipt = i

}(
λ(rpt − µ

p
i )−

λ2

8

) | Ft−1


= exp

 ∑
s∈[t−1]

∑
p∈Ps

1 {ips = i}

(
λ(rps − µ

p
i )−

λ2

8

)E

exp

∑
p∈Pt

1
{
ipt = i

}(
λ(rpt − µ

p
i )−

λ2

8

) | Ft−1


=wt−1(λ) · E

exp

λ ∑
p∈Pt

1
{
ipt = i

}
(rpt − µ

p
i )

 exp

−∑
p∈Pt

1
{
ipt = i

} λ2

8

 | Ft−1


≤wt−1(λ),

where the last inequality uses the law of iterated expectation along with Hoeffding’s lemma, i.e.,

E

exp

λ ∑
p∈Pt

1
{
ipt = i

}
(rpt − µ

p
i )

 · exp

−∑
p∈Pt

1
{
ipt = i

} λ2

8

 | Ft−1



≤E

E
exp

λ ∑
p∈Pt

1
{
ipt = i

}
(rpt − µ

p
i )

 | Ft−1, (i
p
t )p∈Pt

 · exp

−∑
p∈Pt

1
{
ipt = i

} λ2

8

 | Ft−1



≤E

∏
p∈Pt

exp

λ2 ·
(
1
{
ipt = i

})2

8

 · exp

−∑
p∈Pt

1
{
ipt = i

} λ2

8

 | Ft−1

 ≤ 1

Recall from Remark A.16 that τk is a stopping time with respect to {Ft}Tt=0 and τk ≤ T + 1 <∞ almost surely, it follows
that, by the optional sampling theorem, for all λ > 0,

E
[
1 {τk ≤ T} · wτk(λ)

]
≤ E

[
w0(λ)

]
= 1. (8)

Rewriting Eq. (8), we have

E

1 {τk ≤ T} · exp

(
λZτk − ni(τk)

λ2

8

) ≤ 1.
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It then follows that, by Markov’s inequality, for any δ > 0,

Pr

1 {τk ≤ T} · exp

(
λZτk − ni(τk)

λ2

8

)
≥ 1

δ

 ≤ E
[
1 {τk ≤ T} · exp

(
λZτk − ni(τk)λ

2

8

)]
1
δ

≤ δ;

therefore,

Pr

{τk ≤ T} ∩
exp

(
λZτk − ni(τk)

λ2

8

)
≥ 1

δ


 ≤ δ.

Rearranging the terms in the above inequality, we have, for any λ > 0,

Pr

{τk = T + 1} ∪

{τk ≤ T} ∩
{

1

ni(τk)
Zτk −

λ

8
<

ln
(

1
δ

)
ni(τk) · λ

}
 > 1− δ,

where we use the elementary fact that for sets A and B, ¬(A ∩B) = ¬A ∪ (A ∩ ¬B).

Choosing λ =

√
ln( 1

δ )

k and using the fact that ni(τk) ≥ k, we have

Pr

{τk = T + 1} ∪

{τk ≤ T} ∩
 1

ni(τk)
Zτk <

√
2 ln( 1

δ )

k



 > 1− δ;

it then follows that

Pr

{τk = T + 1} ∪

{τk ≤ T} ∩
 1

ni(τk)
Zτk <

√
2 ln( 2

δ )

k



 > 1− δ. (9)

We now consider two cases:

1. ni(τk) ≤M . We have 1
ni(τk)Zτk ≤ 1 <

√
2 ln( 2

δ )

(ni(τk)−M)∨1 =
√

2 ln(2
δ ) trivially for δ ∈ (0, 1].

2. ni(τk) ≥M + 1. Since k ≥ ni(τk)−M , we have
√

2 ln( 2
δ )

k ≤
√

2 ln( 2
δ )

ni(τk)−M =
√

2 ln( 2
δ )

(ni(τk)−M)∨1 .

Eq. (7) then follows from Eq. (9) and the elementary fact that A ⊆ B if (A ∩ C) ⊆ B and (A ∩ ¬C) ⊆ B. This completes
the proof.

B.2. Other concentration bounds

Recall the definition of stopping times πk(i, p) for any arm i and player p (see Definition A.18).

Lemma B.5. For any i ∈ [K], p ∈ [M ], k ∈ [T ] ∪ {0}, and δ ∈ (0, 1], we have

Pr

{πk(i, p) = T + 1
}
∪

{πk(i, p) ≤ T
}
∩


∣∣∣∣ind-µ̂pi (πk(i, p))− µpi

∣∣∣∣ ≤
√

2 ln
(

4
δ

)
npi (πk(i, p)) ∨ 1



 > 1− δ. (10)
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Corollary B.6. For any i ∈ [K], p ∈ [M ], k ∈ [T ] ∪ {0}, and z ≥ 0, we have

Pr

(πk(i, p) ≤ T
)
∧

∣∣∣∣µpi − ind-µ̂pi (πk(i, p))

∣∣∣∣ ≥ z
√

4

npi (πk(i, p)) ∨ 1


 ≤ 4e−2z2 . (11)

Proof of Corollary B.6. If z ≤
√

1
2 ln 4, Equation (11) holds trivially as 4e−2z2 ≥ 1. Otherwise z >

√
1
2 ln 4. In this case,

let δ = 4e−2z2 ∈ (0, 1] in Equation (10), and using De Morgan’s law, we also obtain Equation (11).

Proof of Lemma B.5. The proof of Lemma B.5 is largely similar to the one for Lemma B.3. Therefore, we omit some details
here to avoid redundancy. See the proof of Lemma B.3 for full details.

Let us fix any arm i ∈ [K] and player p ∈ [M ]. Throughout this proof, to ease the exposition, we use πk to denote πk(i, p).

We first observe that when k = 0, we have πk = 0, ind-µ̂pi (0) = 0, and npi (0) = 0. It follows that
∣∣∣∣ind-µ̂pi (πk)− µpi

∣∣∣∣ ≤
1 ≤

√
2 ln

(
4
δ

)
trivially.

It then suffices to only consider the case when k ∈ [T ]. Note that npi (πk) = k ≥ 1. We will show that

Pr

{πk = T + 1} ∪

{πk ≤ T} ∩
ind-µ̂pi (πk)− µpi ≤

√
2 ln

(
2
δ

)
npi (πk)



 > 1− δ. (12)

For t ∈ [T ] ∪ {0}, let Xt =
∑
s∈[t] 1 {p ∈ Ps, ips = i} (rps − µpi ); and for λ > 0, further define ξt(λ) =

exp
(
λXt − npi (t)λ

2

8

)
. It can be verified that

{
ξt(λ)

}T
t=0

is a nonnegative supermartingale with respect to {Ft}Tt=0

for all λ > 0:

1. E
[∣∣ξt(λ)

∣∣] <∞ for all t ∈ [T ] ∪ {0};

2. ξt(λ) ≥ 0 for all t ∈ [T ] ∪ {0};

3. E
[
ξt(λ) | Ft−1

]
≤ ξt−1(λ) for all t ∈ [T ].

Item 3 is true because

E
[
ξt(λ) | Ft−1

]
= exp

t−1∑
s=1

1 {p ∈ Ps, ips = i}

(
λ(rps − µ

p
i )−

λ2

8

)E

exp

1{p ∈ Pt, ipt = i
}(

λ(rpt − µ
p
i )−

λ2

8

) | Ft−1


= ξt−1(λ) · E

exp
(
λ · 1

{
p ∈ Pt, ipt = i

}
(rpt − µ

p
i )
)

exp

(
−1
{
p ∈ Pt, ipt = i

} λ2

8

)
| Ft−1


=ξt−1(λ) · E

E [exp
(
λ · 1

{
p ∈ Pt, ipt = i

}
(rpt − µ

p
i )
)
| Ft−1, i

p
t

]
· exp

(
−1
{
p ∈ Pt, ipt = i

} λ2

8

)
| Ft−1


≤ ξt−1(λ),

where we use the law of total expectation, the observation that ξt−1(λ) is Ft−1-measurable, and Hoeffding’s Lemma.
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Recall from Remark A.19 that πk is a stopping time with respect to {Ft}Tt=0 and πk ≤ T + 1 <∞ almost surely. Then, by
the optional sampling theorem, for all λ > 0,

E
[
1 {πk ≤ T} · ξπk(λ)

]
≤ E

[
ξ0(λ)

]
= 1. (13)

In other words,

E

1 {πk ≤ T} · exp

(
λXπk − n

p
i (πk)

λ2

8

) ≤ 1.

By Markov’s inequality, we have

Pr

1 {πk ≤ T} · exp

(
λXπk − n

p
i (πk)

λ2

8

)
≥ 1

δ

 ≤ δ;
and thus,

Pr

{πk ≤ T} ∩
exp

(
λXπk − n

p
i (πk)

λ2

8

)
≥ 1

δ


 ≤ δ.

Using the elementary fact that for sets A and B, ¬(A ∩B) = ¬A ∪ (A ∩ ¬B), we have, for any λ > 0,

Pr

{πk = T + 1} ∪

{πk ≤ T} ∩
{

1

npi (πk)
Xπk −

λ

8
<

ln
(

1
δ

)
npi (πk) · λ

}
 > 1− δ,

where we slightly rearrange the terms.

Choose λ =

√
ln( 1

δ )

k and observe that npi (πk) = k. It follows that

Pr

{πk = T + 1} ∪

{πk ≤ T} ∩
 1

npi (πk)
Xπk <

√
2 ln( 1

δ )

npi (πk)



 > 1− δ.

Eq. (12) follows trivially by the observation that ln( 2
δ ) > ln( 1

δ ). By symmetry, it can also be shown that the following
inequality is true:

Pr

{πk = T + 1} ∪

{πk ≤ T} ∩
µpi − ind-µ̂pi (πk) ≤

√
2 ln

(
2
δ

)
npi (πk)



 > 1− δ.

The proof is then completed by applying the union bound.

Definition B.7. For any δ ∈ (0, 1], let

Eagg(δ) =

∀i ∈ [K],∀k ∈ [TM ] ∪ {0} ,
(
τk(i) = T + 1

)
∨

(τk(i) ≤ T
)
∧

∀p ∈ [M ], agg-µ̂i(τk(i))− µpi ≤

√
2 ln

(
2
δ

)(
ni(τk(i))−M

)
∨ 1

+ 2ε, µpi − agg-µ̂i(τk(i)) ≤

√
2 ln

(
2
δ

)(
ni(τk(i))−M

)
∨ 1



,
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and

Eind(δ) =

∀i ∈ [K],∀p ∈ [M ],∀k ∈ [T ] ∪ {0} ,
(
πk(i, p) = T + 1

)
∨

(πk(i, p) ≤ T
)
∧

∣∣∣∣ind-µ̂pi (πk(i, p))− µpi

∣∣∣∣ ≤
√

2 ln( 4
δ )

npi (πk(i, p)) ∨ 1



.

Furthermore, let
E(δ) = Eagg(δ) ∩ Eind(δ).

Corollary B.8. For δ ∈ (0, 1],
Pr(E(δ)) ≥ 1− 6T 3δ.

Proof. By the union bound, Lemma B.3, Lemma B.5, and the assumption that T ≥ max(K,M), we have

Pr(Eagg(δ)) ≥ 1−K(TM + 1)(2δ) ≥ 1− 4T 3δ.

Pr(Eind(δ)) ≥ 1−KM(T + 1)δ ≥ 1− 2T 3δ.

The corollary then follows by the union bound.

B.3. Clean Event

We now define our notion of “clean” event for each t.

Definition B.9. For any t ∈ [T + 1], let

Et =

∀p ∈ [M ],∀i ∈ [K],
∣∣∣ind-µ̂pi (t− 1)− µpi

∣∣∣ ≤√ 10 lnT

npi (t− 1)
,

agg-µ̂pi (t− 1)− µpi ≤
√

10 lnT

mp
i (t− 1)

+ 2ε,

µpi − agg-µ̂pi (t− 1) ≤
√

10 lnT

mp
i (t− 1)

,
where we recall that npi (t − 1) = npi (t − 1) ∨ 1, mp

i (t − 1) = (mp
i (t − 1) −M) ∨ 1. Furthermore, let Et denote the

complement of Et.

The following lemma shows that the clean event happens with high probability.

Lemma B.10.
Pr(Et) > 1− 24

T 2
.

Proof. The proof of Lemma B.10 follows from Corollary B.8. It suffices to show that, for any t, E( 4
T 5 ) ⊆ Et. To this end,

we will show that if E( 4
T 5 ) happens, then Et must happen.

For any t ∈ [T + 1], i ∈ [K], p ∈ [M ], let u = upi (t− 1) be the round in which player p last pulls arm i (see Definition A.7).
In addition, let s = npi (u) ∈ ([T ] ∪ {0}) and k = ni(u) ∈ ([TM ] ∪ {0}). Note that πs(i, p) = u ≤ T and τk(i) = u ≤ T .
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It then follows by definition that,

ind-µ̂pi (t− 1) = ind-µ̂pi (πs(i, p)), npi (t− 1) = npi (πs(i, p));

agg-µ̂pi (t− 1) = agg-µ̂i(τk(i)), mp
i (t− 1) = ni(τk(p)).

The proof is then completed straightforwardly by the definition of E( 4
T 5 ), which indicates that for all s ∈ [T ] ∪ {0} and

k ∈ [TM ] ∪ {0},

∣∣∣ind-µ̂pi (πs(i, p))− µ
p
i

∣∣∣ ≤√ 10 lnT

npi (πs(i, p)) ∨ 1
,

agg-µ̂i(τk(i))− µpi ≤
√

10 lnT(
ni(τk(p))−M

)
∨ 1

+ 2ε, and

µpi − agg-µ̂i(τk(i)) ≤
√

10 lnT(
ni(τk(p))−M

)
∨ 1

.



Thompson Sampling for Robust Transfer in Multi-Task Bandits

(a) Subpar arms (Section C.1) (b) Non-subpar arms (Section C.2)

Figure 2. Illustrations of the case division rules used in the proofs of Theorem 4.1 and Theorem 4.2, respectively. Formal definitions of the
notions used in the figure can be found in Section A, Section C.1 and Section C.2.

C. Proofs of Theorem 4.1 and Theorem 4.2
The following lemmas are central to our proofs of Theorem 4.1 and Theorem 4.2. In Section C.1, we prove Lemma C.1. In
Section C.2, we prove Lemma C.2. We then conclude our proofs in Section C.3.

Lemma C.1 (Subpar arms). For any arm i ∈ I10ε,

E
[
ni(T )

]
≤ O

(
lnT

(∆min
i )2

+M

)
,

where we recall that ∆min
i = minp∈[M ] ∆p

i .

Lemma C.2 (Non-subpar arms). For any arm i ∈ IC10ε and player p ∈ [M ],

E
[
npi (T )

]
≤ O

(
lnT

(∆p
i )

2
+M

)
.

Our analysis in the following Section C.1 and Section C.2 involve various proofs by cases. Figure 2 provides an overview of
the case division rules used in our analysis.

C.1. Subpar Arms

In this section, we prove Lemma C.1.

Fix any subpar arm i ∈ I10ε and an arm † ∈ IC2ε. See Fact A.24 for the existence of such an arm. We first consider the
following definitions.

Definition C.3. For any arm i ∈ I10ε and any player p, let

δpi = µp† − µ
p
i > 0.

Fact C.4. For any i ∈ I10ε and player p ∈ [M ],

3

4
∆p
i < δpi ≤ ∆p

i .

Proof. For any player p ∈ [M ], since † ∈ IC2ε, we have ∆p
† = µp∗ − µp† ≤ 2ε by the definition of IC2ε. Furthermore, for any

i ∈ I10ε, ∆p
i = µp∗ − µpi > 8ε. Therefore, we have
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1. δpi = µp† − µ
p
i ≤ µ

p
∗ − µpi = ∆p

i ;

2. Note that
µp∗−µ

p
†

µp∗−µpi
≤ 2ε

8ε ≤
1
4 . This implies that δpi

∆p
i

= 1− µp∗−µ
p
†

µp∗−µpi
≥ 3

4 .

Definition C.5. For any player p, let ypi = µpi + 1
2δ
p
i be a threshold; in any round t, further define

Qpi (t) =
{
θpi (t) > ypi

}
to be the event that the sample θpi (t) from the posterior distribution associated with arm i and player p in round t is greater
than the threshold ypi . In addition, let Qpi (t) =

{
θpi (t) ≤ ypi

}
.

C.1.1. SUBPAR ARMS—DECOMPOSITION

We can then decompose E
[
ni(T )

]
as follows.

E
[
ni(T )

]
=E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i

}
≤E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, Qpi (t), Et

}+ E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, Qpi (t), Et

}+ E

∑
t∈[T ]

∑
p∈Pt

1
{
Et
}

≤E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, Qpi (t), Et

}
︸ ︷︷ ︸

(A)

+E

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i, Qpi (t), Et

}
︸ ︷︷ ︸

(B)

+O (1) , (14)

where the second inequality follows from Lemma B.10. In the following two subsections, we bound term (A) and (B),
respectively.

C.1.2. BOUNDING TERM (A)

The following lemma provides an upper bound on term (A).

Lemma C.6.

(A) ≤ O

(
lnT

(∆min
i )2

+M

)
, (15)

where we recall that ∆min
i = minp∈[M ] ∆p

i .

Proof of Lemma C.6. Recall the definition of Et in Definition B.9 and the definition of Hp
i (t) in Definition A.13, we have

(A) =
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qpi (t), Et, H

p
i (t)

}]
︸ ︷︷ ︸

(A1)

+
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qpi (t), Et, H

p
i (t)

}]
︸ ︷︷ ︸

(A2)

.

We first consider term (A1). Recall that, for simplicity, we let npi (t− 1) denote npi (t− 1) ∨ 1; also recall that Φ(·) is the
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complementary CDF of the standard Gaussian distribution, and (z)+ = z ∨ 0. We have

(A1) ≤
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
Qpi (t), Et, H

p
i (t)

}]
=
∑
t∈[T ]

∑
p∈Pt

E
[
E
[
1
{
Qpi (t), Et, H

p
i (t)

}
| Ft−1

]]

=
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
Et, Hp

i (t)
}
· E
[
1
{
θpi (t) > ypi

}
| Ft−1

]]

=
∑
t∈[T ]

∑
p∈Pt

E

[
1
{
Et, Hp

i (t)
}
· Φ
(√

npi (t− 1)/4
(
ypi − ind-µ̂pi (t− 1)

))]

≤
∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t)

}
· exp

(
−
npi (t− 1)(ypi − ind-µ̂pi (t− 1))2

+

8

)
≤
∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t)

}
· exp

(
−
npi (t− 1)(µpi + 3

8∆p
i − µ

p
i − 1

16∆p
i )

2
+

8

)
≤
∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t)

}
· exp

(
−n

p
i (t− 1)(∆p

i )
2

8(16)

)
≤
∑
t∈[T ]

∑
p∈Pt

1

T 2
= O (1) .

where the first inequality drops the indicator 1
{
ipt = i

}
; the first equality uses the law of total expectation; the second equality

follows from the observation that Et and Hp
i (t) are Ft−1-measurable; the third equality follows from the observation that

when Hp
i (t) happens, E

[
1
{
θpi (t) > ypi

}
| Ft−1

]
= P

(
θpi (t) > ypi | Ft−1

)
= Φ

(
ypi−ind-µ̂pi (t−1)√

4/npi (t−1)

)
; the second inequality

is from Lemma C.35 and that npi (t− 1) ≥ npi (t− 1); the third inequality follows from the facts that when Et and Hp
i (t)

happen,

1. npi (t− 1) ≥ npi (t− 1) ≥ 40 lnT
ε2 ≥ 2560 lnT

(∆p
i )2

(see Fact A.24),

2. ind-µ̂pi (t− 1) ≤ µpi +
√

10 lnT

npi (t−1)
≤ µpi + 1

16∆p
i (see Definition B.9), and

3. ypi = µpi + 1
2δ
p
i > µpi + 3

8∆p
i (see Fact C.4);

the fourth inequality is by algebra; and the fifth inequality again uses the observation that when Hp
i (t) happens, npi (t− 1) ≥

2560 lnT
(∆p

i )2
.
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We now turn our attention to term (A2). With foresight, let l = 10240 lnT

(∆min
i )

2 +M . We have

(A2) =
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qpi (t), Et, H

p
i (t)

}]

≤
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qpi (t), Et, H

p
i (t),mp

i (t− 1) < l
}]

+
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qpi (t), Et, H

p
i (t),mp

i (t− 1) ≥ l
}]

≤ (l +M) +
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
ipt = i, Qpi (t), Et, H

p
i (t),mp

i (t− 1) ≥ l
}]

. (16)

To see why Eq. (16) is true, it suffices to show that, with probability 1,

∑
t∈[T ]

∑
p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}
≤ l +M.

Indeed, let us define ι = min
{
t : ni(t) =

∑
s∈[t]

∑
p∈Ps 1 {i

p
s = i} ≥ l

}
. The above summation can be simplified as

T∑
t=1

∑
p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}

=

ι−1∑
t=1

∑
p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}

+

T∑
t=ι

∑
p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}

≤
ι−1∑
t=1

∑
p∈Pt

1
{
ipt = i

}
+
∑
p∈[M ]

∑
t≥ι:p∈Pt

1
{
ipt = i,mp

i (t− 1) < l
}

≤(l − 1) +M,

where the
∑
p∈[M ]

∑
t≥ι:p∈Pt 1

{
ipt = i,mp

i (t− 1) < l
}
≤M follows from the observation that, once the total number of

pulls of arm i by all players has reached l, any player p cannot pull arm i more than once before the aggregate number of
pulls of i maintained by p is updated to a value ≥ l (see Definition A.9).

Remark C.7. Eq. (16) can also be deducted from the more general Lemma C.38 in Section C.4, by taking fpt = 1 for all
t, p.

Now, recall that we denote
(
mp
i (t− 1)−M

)
∨ 1 by mp

i (t− 1). And again, recall that Φ(·) is the complementary CDF of
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the standard Gaussian distribution, and (z)+ = z ∨ 0. It follows from Eq. (16) that

(A2) ≤ (l +M) +
∑
t∈[T ]

∑
p∈Pt

E

[
E
[
1
{
Qpi (t), Et, H

p
i (t),mp

i (t− 1) ≥ l
}
| Ft−1

]]

= (l +M) +
∑
t∈[T ]

∑
p∈Pt

E
[
1
{
Et, Hp

i (t),mp
i (t− 1) ≥ l

}
E
[
1
{
θpi (t) > ypi

}
| Ft−1

]]

= (l +M) +
∑
t∈[T ]

∑
p∈Pt

E

[
1
{
Et, Hp

i (t),mp
i (t− 1) ≥ l

}
· Φ
(√

mp
i (t− 1)/4

(
ypi − agg-µ̂pi (t− 1)

))]

≤ (l +M) +
∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t),mp

i (t− 1) ≥ l
}
· exp

−mp
i (t− 1)

(
ypi − agg-µ̂pi (t− 1)

)2
+

8




≤ (l +M) +
∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t),mp

i (t− 1) ≥ l
}
· exp

−mp
i (t− 1)

(
µpi + 3

8∆p
i − µ

p
i − 9

32∆p
i

)2
+

8




≤ (l +M) +
∑
t∈[T ]

∑
p∈Pt

E

1{Et, Hp
i (t),mp

i (t− 1) ≥ l
}

exp

−mp
i (t− 1)

(
∆min
i

)2
(8)(256)




≤ (l +M) +
∑
t∈[T ]

∑
p∈Pt

1

T 2

= O

 lnT(
∆min
i

)2 +M

 ,

where the first inequality is from Eq. (16), dropping the indicator 1
{
ipt = i

}
and using the law of total expectation;

the first equality follows from the observation that Et, Hp
i (t), and

{
mp
i (t− 1) ≥ l

}
are Ft−1-measurable; the second

equality follows from the observation that when Hp
i (t) happens, E

[
1
{
θpi (t) > ypi

}
| Ft−1

]
= P

(
θpi (t) > ypi | Ft−1

)
=

Φ

(
ypi−agg-µ̂pi (t−1)√

4/mpi (t−1)

)
; the second inequality follows from Lemma C.35; the third inequality uses the facts that

1. when
{
mp
i (t− 1) ≥ l

}
happens, mp

i (t− 1) ≥ mp
i (t− 1)−M ≥ l −M = 10240 lnT

(∆min
i )

2 ,

2. ypi = µpi + 1
2δ
p
i > µpi + 3

8∆min
i (see Fact C.4), and

3. when Et happens, agg-µ̂pi (t−1) ≤ µpi +
√

10 lnT

mpi (t−1)
+2ε < µpi + 1

32∆min
i + 1

4∆min
i = µpi + 9

32∆min
i (see Definition B.9

and Fact A.24);

the fourth inequality is by algebra; and the fifth inequality again uses the fact that when
{
mp
i (t− 1) ≥ l

}
happens,

mp
i (t− 1) ≥ mp

i (t− 1)−M ≥ 10240 lnT

(∆min
i )

2 .

In summary, we have

(A) ≤ (A1) + (A2) +O(1) ≤ O

 lnT(
∆min
i

)2 +M

 .

C.1.3. BOUNDING TERM (B)

We now bound term (B) in Eq. (14).
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Lemma C.8.

(B) ≤ O

(
lnT

(∆min
i )2

+M

)
.

Proof. Lemma C.8 follows from Lemmas C.11 and C.12, which we present shortly.

Consider the following definition.

Definition C.9. In any round t ∈ [T ], for any active player p ∈ Pt, define

φpi,t = Pr
(
θp† (t) > ypi | Ft−1

)
.

Remark C.10. Recall that Φ(·) denotes the complementary CDF of the standard Gaussian distribution; and recall npi (t−1) =

npi (t− 1) ∨ 1, and mp
i (t− 1) = (mp

i (t− 1)−M) ∨ 1. φpi,t can be explicitly written as:

φpi,t =Φ

ypi − µ̂p†(t− 1)√
varp†(t− 1)

 (17)

=Φ

(
(ypi − ind-µ̂p†(t− 1))

√
np†(t− 1)/4

)
· 1
{
Hp
† (t)

}
+ Φ

(
(ypi − agg-µ̂p†(t− 1))

√
mp
†(t− 1)/4

)
· 1
{
Hp
† (t)

}
.

(18)

Proof of Remark C.10. We have

φpi,t = Pr
(
θp† (t) > ypi | µ̂

p
†(t− 1), varp†(t− 1)

)
=1− Pr

(
θp† (t) ≤ y

p
i | µ̂

p
†(t− 1), varp†(t− 1)

)
=1− Φ

ypi − µ̂p†(t− 1)√
varp†(t− 1)

 = Φ

ypi − µ̂p†(t− 1)√
varp†(t− 1)

 .

Eq. (18) now follows by observing that:

1. if Hp
† (t) happens, then µ̂p†(t− 1) = ind-µ̂p†(t− 1) and varp†(t− 1) = 4

np†(t−1)∨1
;

2. if Hp
† (t) happens, then µ̂p†(t− 1) = agg-µ̂p†(t− 1) and varp†(t− 1) = 4

(mp†(t−1)−M)∨1
.

We now present the following lemma, which is inspired by a technique introduced in the work of (Agrawal & Goyal, 2017).

Lemma C.11.

(B) ≤
∑
t∈[T ]

∑
p∈Pt

E

(1− φpi,t
φpi,t

)
1
{
ipt = †, Et

}
︸ ︷︷ ︸

(B∗)

.
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Proof. In any round t and for any active player p ∈ Pt, consider

Pr
(
ipt = i, Qpi (t), Et | Ft−1

)
= Pr

(
ipt = i, θpi (t) ≤ ypi | Ft−1

)
· 1 {Et}

≤Pr
(
ipt = † | Ft−1

)
·

Pr
(
θp† (t) ≤ y

p
i | Ft−1

)
Pr
(
θp† (t) > ypi | Ft−1

) · 1 {Et}
=

(
1− φpi,t
φpi,t

)
· Pr

(
ipt = † | Ft−1

)
· 1 {Et}

=

(
1− φpi,t
φpi,t

)
Pr
(
ipt = †, Et | Ft−1

)
, (19)

where the first equality follows from the definition of Qpi (t) and that Et is Ft−1-measurable; the first inequality uses
Lemma C.40 with l = † and z = ypi ; the second equality inequality is from the definition of φpi,t; and the last equality is
again because Et is Ft−1-measurable.

Finally, we have

E
[
1
{
ipt = i, Qpi (t), Et

}]
= E

[
Pr
(
ipt = i, Qpi (t), Et | Ft−1

)]

≤ E

(1− φpi,t
φpi,t

)
Pr
(
ipt = †, Et | Ft−1

)
= E

E
(1− φpi,t

φpi,t

)
1
{
ipt = †, Et

}
| Ft−1




= E

(1− φpi,t
φpi,t

)
1
{
ipt = †, Et

} ,
where we use the law of total expectation and Eq. (19). The lemma follows by summing over all t, p’s.

With foresight, let L = 2560 lnT

(∆min
i )

2 +M . We further decompose term (B∗) as follows.

(B∗) =
∑
t∈[T ]

∑
p∈Pt

E

(1− φpi,t
φpi,t

)
1
{
ipt = †, Et

}
=
∑
t∈[T ]

∑
p∈Pt

E

(1− φpi,t
φpi,t

)
1
{
ipt = †, Et, Hp

† (t)
}

︸ ︷︷ ︸
(b1)

+
∑
t∈[T ]

∑
p∈Pt

E

(1− φpi,t
φpi,t

)
1
{
ipt = †, Et, Hp

† (t)
}

︸ ︷︷ ︸
(b2)

,

= (b1) +
∑
t∈[T ]

∑
p∈Pt

E

(1− φpi,t
φpi,t

)
1
{
ipt = †, Et, Hp

† (t),m
p
†(t− 1) < L

}
︸ ︷︷ ︸

(b2.1)

+
∑
t∈[T ]

∑
p∈Pt

E

(1− φpi,t
φpi,t

)
1
{
ipt = †, Et, Hp

† (t),m
p
†(t− 1) ≥ L

}
︸ ︷︷ ︸

(b2.2)

. (20)
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where the inequality uses Lemma C.11.

Lemma C.12.

(B∗) ≤ O

 lnT(
∆min
i

)2 +M

 .

Proof. Lemma C.12 follows directly from Eq. (20) and the following Lemma C.13, Lemma C.14 and Lemma C.18, which
provide upper bounds on terms (b1), (b2.1) and (b2.2), respectively.

Lemma C.13 (Bounding term (b1)).

(b1) ≤ O (M) .

Proof of Lemma C.13. For any player p ∈ [M ] and t ∈ [T ], recall that np†(t− 1) = np†(t− 1)∨ 1 and (z)+ = z ∨ 0. When
Et and Hp

† (t) happen, np†(t− 1) ≥ 40 lnT
ε2 =: Y ; we have:

1− φpi,t
= Pr

(
θp† (t) ≤ y

p
i | Ft−1

)
=Φ

(
(ypi − ind-µ̂p†(t− 1))

√
np†(t− 1)/4

)

≤ exp

−np†(t− 1)(ind-µ̂p†(t− 1)− ypi )2
+

8


≤ exp

(
−
np†(t− 1)(µp† −

1
4∆p

i − µ
p
† + 3

8∆p
i )

2
+

8

)

≤ exp

(
−
np†(t− 1)(∆p

i )
2

8(64)

)

≤ 1

T + 1
,

where the second equality uses Remark C.10; the first inequality uses Lemma C.35; the second inequality follows from the
observations that, when Et and Hp

† (t) happen:

1. np†(t− 1) ≥ np†(t− 1) ≥ Y = 40 lnT
ε2 ≥ 2560 lnT

(∆p
i )2

(see Fact C.4),

2. ind-µ̂p†(t− 1) ≥ µp† −
√

10 lnT

np†(t−1)
≥ µp† −

1
4∆p

i (see Definition B.9), and

3. ypi = µp† −
1
2δ
p
i < µp† −

3
8∆p

i ;

the third inequality is by algebra; and the last inequality follows because, again, when Hp
† (t) happens, np†(t− 1) ≥ Y =

40 lnT
ε2 ≥ 2560 lnT

(∆p
i )2

≥ 1280 ln(T+1)
(∆p

i )2
for T > 1.

It follows that, when Et and Hp
† (t) happen, φpi,t ≥ T

T+1 and
1−φpi,t
φpi,t

≤ 1
T . Hence,

(b1) ≤
∑
p∈[M ]

∑
t:p∈Pt

E

(1− φpi,t
φpi,t

)
1
{
Et, Hp

† (t)
} ≤M.
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Lemma C.14 (Bounding term (b2.1)).

(b2.1) ≤ O

 lnT(
∆min
i

)2 +M

 .

The remark below is useful for proving Lemma C.14.

Remark C.15 (Invariant property). Recall from Example A.21 that
{
Hp
† (t) : t ∈ [T ], p ∈ [M ]

}
satisfies the invariant

property with respect to †.

Moreover, the construction of Algorithm 1 enforces that
{
φpi,t : t ∈ [T ], p ∈ [M ]

}
satisfies the invariant property with

respect to † (note that it does not necessarily satisfy the invariant property with respect to i). Indeed, this follows from
Eq. (17), along with Example A.23 that shows that the posterior parameters,

{
(µ̂p†(t− 1), varp†(t− 1)) : t ∈ [T ], p ∈ [M ]

}
,

satisfy the invariant property with respect to †.

Combining the two observations above,

{(
1
φpi,t
− 1

)
1
{
Hp
† (t)

}
: t ∈ [T ], p ∈ [M ]

}
also satisfies the invariant property

with respect to arm †.

Proof of Lemma C.14. Proving Lemma C.14 requires more special care. Recall that

(b2.1) =
∑
t∈[T ]

∑
p∈Pt

E

(1− φpi,t
φpi,t

)
1
{
ipt = †, Et, Hp

† (t),m
p
†(t− 1) < L

}
≤
∑
t∈[T ]

∑
p∈Pt

E

(1− φpi,t
φpi,t

)
1
{
ipt = †, Hp

† (t),m
p
†(t− 1) < L

} .
Also recall the definition of stopping time τk(†) (Definition A.15), the round in which † is pulled the k-th time by any player.
To ease exposition, we abuse the notation and denote τk(†) by τk. Similarly, let pk := pk(†) denote the player that issues
the k-th pull of arm † (recall Definition A.17).

Since

{(
1
φpi,t
− 1

)
1
{
Hp
† (t)

}
: t ∈ [T ], p ∈ [M ]

}
satisfies the invariant property with respect to arm †, by Lemma C.38,

we have

(b2.1) ≤
M∑
p=1

E

( 1

φpi,1
− 1

)
1
{
Hp
† (1)

}+

L−1∑
k=1

E

( 1

φpki,τk+1

− 1

)
1
{
τk ≤ T,Hp

† (τk + 1)
} , (21)

where we also use the linearity of expectations.

Since the variance of the aggregate posteriors are initialized as the constant c2 = 4 in ROBUSTAGG-TS(ε), we have that(
1
φpi,1
− 1

)
1
{
Hp
† (1)

}
≤ O (1) with probability 1. Therefore,

M∑
p=1

E

( 1

φpi,1
− 1

)
1
{
Hp
† (1)

} ≤ O (M) . (22)

It then suffices to bound the second term in Eq. (21)—it follows straightforwardly from Lemma C.16, which we present
shortly, that the second term is bounded by O (L). It then follows from Eq. (21), Eq. (22), and Lemma C.16 that

(b2.1) ≤ O
(

lnT

(∆min
i )

2 +M

)
.
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Lemma C.16. For any k ∈ [TM ],

E

( 1

φpki,τk+1

− 1

)
1
{
τk ≤ T,Hp

† (τk + 1)
} ≤ O (1) ,

where we recall that τk = τk(†) and pk = pk(†) is the player that issues the k-th pull of arm †.

Proof. Using Remark C.10, we observe that

φpki,τk+1 =

Φ

(
ypi − ind-µ̂p†(τk)

2

√(
np†(τk)

)
∨ 1

) · 1{Hp
† (τk + 1)

}

+

Φ

(
ypi − agg-µ̂p†(τk)

2

√(
mp
†(τk)−M

)
∨ 1

) · 1{Hp
† (τk + 1)

}
. (23)

We have

E

( 1

φpki,τk+1

− 1

)
1
{
τk ≤ T,Hpk

† (τk + 1)
}

=E




1

Φ

(ypki − agg-µ̂pk† (τk)
)√((

mpk
† (τk)−M

)
∨ 1

)
/4

 − 1


1
{
τk ≤ T,Hpk

† (τk + 1)
}


≤E


1

Φ

((
µpk† − agg-µ̂†(τk)

)√((
n†(τk)−M

)
∨ 1
)
/4

)1 {τk ≤ T}
 , (24)

where the last inequality uses the observations that ypki ≤ µ
pk
† , agg-µ̂pk† (τk) = agg-µ̂†(τk) and mpk

† (τk) = n†(τk), as well
as the monotonic increasing property of z 7→ 1

Φ(z)
.

Observe that, from Corollary B.4, for any z ≥ 1,

Pr

(τk ≤ T ) ∧

µpk† − agg-µ̂†(τk) ≥ z

√
4

(n†(τk)−M) ∨ 1




≤Pr

(τk ≤ T ) ∧

∃p ∈ [M ], µp† − agg-µ̂†(τk) ≥ z

√
4

(n†(τk)−M) ∨ 1




≤2e−2z2 ,

Applying Lemma C.36 with X =
(

agg-µ̂†(τk)− µpk†
)√((

n†(τk)−M
)
∨ 1
)
/4 and E = {τk ≤ T}, we conclude the

proof.
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Remark C.17. Note that it follows from our novel concentration inequality (Corollary B.4) that

Pr

τk ≤ T, µp† − agg-µ̂†(τk) >

√
2 ln

(
2
δ

)(
n†(τk)−M

)
∨ 1

 < δ;

this tight bound enables us to bound Eq. (24) by O (1), which is essential to our proof of Lemma C.16.

Since ni(τk) ≤ [k, k +M − 1], using the Azuma-Hoeffding inequality and the union bound, one can obtain

Pr

τk ≤ T, µp† − agg-µ̂†(τk) > O


√√√√ ln

(
M
δ

)
(
n†(τk)−M

)
∨ 1


 < δ;

and using Freedman’s inequality (e.g., Wang et al., 2021, Lemma 17), one can obtain

Pr

τk ≤ T, µp† − agg-µ̂†(τk) > O


√√√√ ln

(
lnT
δ

)
(
n†(τk)−M

)
∨ 1


 < δ.

However, naively combining the above bounds with Lemma C.36, one needs to set C1 in Lemma C.36 to be O (M) or
O (lnT ), which incurs extra (undesirable) O (M) or O (lnT ) factors for bounding Eq. (24).

Lemma C.18 (Bounding term (b2.2)).

(b2.2) ≤ O (M) .

Proof of Lemma C.18. For any player p ∈ [M ] and t ∈ [T ], recall that mp
†(t−1) = (mp

†(t−1)−M)∨1 and (z)+ = z∨0.

When Et,
{
mp
†(t− 1) ≥ L

}
and Hp

† (t) happen,

1− φpi,t
= Pr

(
θp† (t) ≤ y

p
i | Ft−1

)
=Φ

(
(ypi − agg-µ̂p†(t− 1))

√
mp
†(t− 1)/4

)

≤ exp

−mp
†(t− 1)(agg-µ̂p†(t− 1)− ypi )2

+

8


≤ exp

−mp
†(t− 1)(µp† −

1
4∆p

i − µ
p
† + 3

8∆p
i )

2
+

8


≤ exp

−mp
†(t− 1)(∆p

i )
2

8(64)


≤ 1

T + 1
,

where the second equality uses Remark C.10; the first inequality uses Lemma C.35; the second inequality follows from the
observations that, when Et,

{
mp
†(t− 1) ≥ L

}
and Hp

† (t) happen:

1. mp
†(t− 1) ≥ mp

†(t− 1)−M ≥ L−M ≥ 2560 lnT
(∆p

i )2
,
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2. agg-µ̂p†(t− 1) ≥ µp† −
√

10 lnT

mp†(t−1)
≥ µp† −

1
4∆p

i (see Definition B.9), and

3. ypi = µp† −
1
2δ
p
i < µp† −

3
8∆p

i ;

the third inequality is by algebra; and the last inequality follows from the observation that mp
†(t− 1) ≥ mp

†(t− 1)−M ≥
L−M ≥ 2560 lnT

(∆p
i )2

≥ 1280 ln(T+1)
(∆p

i )2
for T > 1.

It follows that, when Et,
{
mp
†(t− 1) ≥ L

}
and Hp

† (t) happen, φpi,t ≥ T
T+1 and

1−φpi,t
φpi,t

≤ 1
T . Hence,

(b2.2) ≤
∑
p∈[M ]

∑
t:p∈Pt

E

(1− φpi,t
φpi,t

)
1
{
Et, Hp

† (t),m
p
†(t− 1) ≥ L

} ≤M.

C.2. Non-subpar Arms

In this section, we provide a proof for Lemma C.2.

Let us fix any player p ∈ [M ] and any suboptimal arm i ∈ IC10ε for player p such that ∆p
i > 0. In the rest of this section, let

us also fix an optimal arm for player p, �p, and we abbreviate it by �. We have µp� = µp∗ = maxj∈[K] µ
p
j .

Definition C.19. Let zpi = µpi + 1
2∆p

i be a threshold. In any round t, define

W p
i (t) =

{
θpi (t) > zpi

}
to be the event that the sample θpi (t) from the posterior distribution associated with arm i and player p in round t is greater
than the threshold zpi . Therefore, W p

i (t) =
{
θpi (t) ≤ zpi

}
.

C.2.1. NON-SUBPAR ARMS—DECOMPOSITION

We consider the following decomposition.

E
[
npi (T )

]
=E

 ∑
t:p∈Pt

1
{
ipt = i

}
=E

 ∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
}+ E

 ∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
}+

∑
t:p∈Pt

E
[
1
{
ipt = i, Et

}]

≤E

 ∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
}

︸ ︷︷ ︸
(D)

+E

 ∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
}

︸ ︷︷ ︸
(E)

+O(1), (25)

where the last inequality follows from the observation that E
[
1
{
ipt = i, Et

}]
≤ E

[
1
{
Et
}]

and Lemma B.10.

Following this decomposition, Lemma C.2 is proved straightforwardly given Lemma C.20 and Lemma C.21 which we
present in what follows.

C.2.2. BOUNDING TERM (D)

We first bound term (D) in Eq. (25).

Lemma C.20.

(D) ≤ O

(
lnT

(∆p
i )

2
+M

)
.
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Proof of Lemma C.20. With foresight, let h = 4000 lnT
(∆p

i )2
+ 2M . Recall that Hp

i (t) is the event that the individual posterior
is used in round t by active player p for arm i (see Definition A.13). We have

(D) = E

 ∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
}

≤ h+
∑
t:p∈Pt

E
[
1
{
ipt = i,W p

i (t), Et, npi (t− 1) ≥ h
}]

= h+
∑
t:p∈Pt

E
[
1
{
ipt = i,W p

i (t), Et, Hp
i (t), npi (t− 1) ≥ h

}]
︸ ︷︷ ︸

(d)

,

where the last equality follows from the observation that
{
npi (t− 1) ≥ h

}
implies that Hp

i (t) happening. To see why this

is true, recall that Hp
i (t) =

{
npi (t− 1) ≥ 40 lnT

ε2 + 2M
}

; and observe that for non-subpar arm i ∈ IC10ε and player p,{
npi (t− 1) ≥ h = 4000 lnT

(∆p
i )2

+ 2M
}

implies
{
npi (t− 1) ≥ 40 lnT

ε2 + 2M
}

because ∆p
i ≤ 10ε.

It therefore suffices to bound term (d). We have

(d) ≤
∑
t:p∈Pt

E
[
1
{
W p
i (t), Et, Hp

i (t), npi (t− 1) ≥ h
}]

=
∑
t:p∈Pt

E
[
1
{
Et, Hp

i (t), npi (t− 1) ≥ h
}
E
[
1
{
W p
i (t)

}
| Ft−1

]]

=
∑
t:p∈Pt

E

[
1
{
Et, Hp

i (t), npi (t− 1) ≥ h
}

Φ

(
(zpi − ind-µ̂pi (t− 1))

√
npi (t− 1)/4

)]

≤
∑
t:p∈Pt

E

1{Et, Hp
i (t), npi (t− 1) ≥ h

}
exp

(
−
npi (t− 1)(zpi − ind-µ̂pi (t− 1))2

+

8

)
≤
∑
t:p∈Pt

E

1{Et, Hp
i (t), npi (t− 1) ≥ h

}
exp

(
−
npi (t− 1)(µpi + 1

2∆p
i − µ

p
i − 1

16∆p
i )

2
+

8

)
≤
∑
t:p∈Pt

E

1{Et, Hp
i (t), npi (t− 1) ≥ h

}
exp

(
−n

p
i (t− 1)(∆p

i )
2

8(16)

)
≤O (1) .

where the first inequality drops the indicator 1
{
ipt = i

}
; the first equality uses the law of total expectation and the observation

that Et, Hp
i (t) and

{
npi (t− 1) ≥ h

}
are Ft−1-measurable; the second inequality follows from Lemma C.35; the third

inequality is from the observations that when Et and Hp
i (t) happen:

1. npi (t− 1) ≥ npi (t− 1) ≥ h = 4000 lnT
(∆p

i )2
+ 2M ,

2. ind-µ̂pi (t− 1) ≤ µpi +
√

10 lnT

npi (t−1)
≤ µpi + 1

16∆p
i (see Definition B.9), and

3. zpi = µpi + 1
2∆p

i ;

the fourth inequality is by algebra; and the last inequality is from the observation that when npi (t − 1) ≥ h,

exp

(
−n

p
i (t−1)(∆p

i )2

8(16)

)
≤ 1

T .

In summary, (D) ≤ h+ (d) ≤ O
(

lnT
(∆p

i )2
+M

)
.
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C.2.3. BOUNDING TERM (E)

We now bound (E) in Eq. (25):

Lemma C.21.

(E) ≤ O

(
lnT

(∆p
i )

2
+M

)
.

Proof. Lemma C.21 follows from Lemma C.24, Eq. (29), Lemma C.25, and Lemma C.30 which we present shortly.

We begin with the following definition, similar to the notion of φpi,t used for subpar arms.

Definition C.22. Recall that p is a fixed player, i is a fixed suboptimal arm for p, and � is a fixed optimal arm for p. In any
round t, define

ψpi,t = Pr
(
θp�(t) > zpi | Ft−1

)
.

Remark C.23. Recall that np�(t − 1) = np�(t − 1) ∨ 1 and mp
�(t − 1) =

(
mp
�(t− 1)−M

)
∨ 1. ψpi,t can be explicitly

written as:

ψpi,t =Φ

(
zpi − µ̂

p
�(t− 1)√

varp�(t− 1)

)
(26)

=Φ

(
(zpi − ind-µ̂p�(t− 1))

√
np�(t− 1)/4

)
· 1
{
Hp
� (t)

}
+ Φ

(
(zpi − agg-µ̂p�(t− 1))

√
mp
�(t− 1)/4

)
· 1
{
Hp
� (t)

}
.

(27)

The proof for the above remark is omitted, as it is very similar to that of Remark C.10.

We now present the following lemma.

Lemma C.24.

(E) = E

 ∑
t:p∈Pt

1
{
ipt = i,W p

i (t), Et
} ≤ ∑

t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et

}
︸ ︷︷ ︸

(E∗)

Proof. The proof largely follows the same outline as that of Lemma C.11.

In any round t and such that p ∈ Pt, consider

Pr
(
ipt = i, Qpi (t), Et | Ft−1

)
= Pr

(
ipt = i, θpi (t) ≤ zpi | Ft−1

)
· 1 {Et}

≤Pr
(
ipt = � | Ft−1

)
·

Pr
(
θp�(t) ≤ zpi | Ft−1

)
Pr
(
θp�(t) > zpi | Ft−1

) · 1 {Et}
=

(
1− ψpi,t
ψpi,t

)
· Pr

(
ipt = � | Ft−1

)
· 1 {Et}

=

(
1− ψpi,t
ψpi,t

)
Pr
(
ipt = �, Et | Ft−1

)
, (28)

where the first equality follows from the definition of Qpi (t) and that Et is Ft−1-measurable; the first inequality uses
Lemma C.40 with l = � and z = zpi ; and the second equality inequality is from the definition of ψpi,t; the last equality is
again because Et is Ft−1-measurable.
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Finally, we have

E
[
1
{
ipt = i, Qpi (t), Et

}]
= E

[
Pr
(
ipt = i, Qpi (t), Et | Ft−1

)]

≤ E

(1− ψpi,t
ψpi,t

)
Pr
(
ipt = �, Et | Ft−1

)
= E

E
(1− ψpi,t

ψpi,t

)
1
{
ipt = �, Et

}
| Ft−1




= E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et

} ,
where we use the law of total expectation and Eq. (28). The lemma follows by summing over all t’s.

Let us further decompose (E∗) as follows.

(E∗) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et, Hp

� (t)
}

︸ ︷︷ ︸
(e1)

+
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et, Hp

� (t)
}

︸ ︷︷ ︸
(e2)

. (29)

We first consider term (e1).
Lemma C.25.

(e1) ≤ O

(
lnT

(∆p
i )

2

)
.

Proof of Lemma C.25. With foresight, let J = 640 lnT
(∆p

i )2
. We have

(e1) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et, Hp

� (t), n
p
�(t− 1) < J

}
︸ ︷︷ ︸

(e1.1)

+

∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et, Hp

� (t), n
p
�(t− 1) ≥ J

}
︸ ︷︷ ︸

(e1.2)

.

Lemma C.25 follows straightforwardly from Lemma C.26 and Lemma C.29, which bound (e1.1) and (e1.2), respectively.

Lemma C.26.

(e1.1) ≤ O

(
lnT

(∆p
i )

2

)
.

To prove Lemma C.26, we first present the following Remark C.15.
Remark C.27 (Invariant Property). Similar to Remark C.15, by the construction of Algorithm 1, we have that for any
arm i ∈ [K], and player p ∈ [M ],

{
ψpi,t : t ∈ [T ]

}
and

{
Hp
� (t) : t ∈ [T ]

}
satisfy the invariant property with respect to

(�, p) (Definition A.20). Indeed, the former follows from Eq. (26), along with Example A.23 that shows that the posterior
parameters,

{
(µ̂p�(t− 1), varp�(t− 1)) : t ∈ [T ]

}
, satisfy the invariant property with respect to (�, p); and the latter is from

Example A.21.
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Proof of Lemma C.26. We start by rewriting (e1.1) as follows, where we drop Et.

(e1.1) ≤E

 ∑
t:p∈Pt

(
1− ψpi,t
ψpi,t

)
1
{
ipt = �, Hp

� (t), n
p
�(t− 1) < J

}
=E

 ∑
t:p∈Pt

gt1
{
ipt = �, np�(t− 1) < J

} ,
where in the second line, we introduce the notation gt :=

(
1−ψpi,t
ψpi,t

)
1
{
Hp
� (t)

}
;

We now focus on the sum inside the expectation. Recall that πs(�, p) is the round in which player p pulls arm � the s-th time.
Here, we abuse the notation and denote πs(�, p) by πs. By Remark C.27,

{
gt : t ∈ [T ]

}
satisfies the invariant property with

respect to (�, p). Applying Lemma C.37 on
{
gt : t ∈ [T ]

}
’s, we have that the term inside the above expectation is at most:

J−1∑
s=1

(
1

ψpi,πs+1

− 1

)
1
{
πs ≤ T,Hp

� (πs + 1)
}
,

where we also use the observation that
(

1
ψpi,1
− 1

)
1
{
Hp
� (1)

}
= 0.

Therefore, by the linearity of expectation, we have

(e1.1) ≤
J−1∑
s=1

E

( 1

ψpi,πs+1

− 1

)
1
{
πs ≤ T,Hp

� (πs + 1)
} .

Therefore, the following Lemma C.28 suffices to prove Lemma C.26, which we prove next.

Lemma C.28. For any s ∈ [T ],

E

( 1

ψpi,πs+1

− 1

)
1
{
πs ≤ T,Hp

� (πs + 1)
} ≤ O(1),

where we recall that πs = πs(�, p) is the round in which player p pulls arm � the s-th time.

Proof of Lemma C.28. We note that this proof is similar to that of Lemma C.16. We have

E

( 1

ψpi,πs+1

− 1

)
1
{
πs ≤ T,Hp

� (πs + 1)
}

=E


 1

Φ

((
zpi − ind-µ̂p�(πs)

)√
np�(πs)/4

) − 1

1
{
πs ≤ T,Hp

� (πs + 1)
}


≤E

 1

Φ

((
µp� − ind-µ̂p�(πs)

)√
np�(πs)/4

)1 {πs ≤ T}
 ,

where the inequality drops Hp
� (τs + 1) and uses the observation that zpi ≤ µ

p
�, and the monotonic increasing property of

z 7→ 1
Φ(z)

. Now, using Lemma C.36 and Corollary B.6, we conclude that this is at most O(1).
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Lemma C.29.
(e1.2) ≤ O (1) .

Proof. Recall that

(e1.2) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et, Hp

� (t), n
p
�(t− 1) ≥ J

} .
Dropping 1

{
ipt = ip�

}
, we have

(e1.2) ≤
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
Et, Hp

� (t), n
p
�(t− 1) ≥ J

} ,
When Et, Hp

� (t), and
{
np�(t− 1) ≥ J

}
happen, we have

1− ψpi,t
= Pr

(
θp�(t) ≤ z

p
i | Ft−1

)
=Φ

(
(zpi − ind-µ̂p�(t− 1))

√
np�(t− 1)/4

)

≤ exp

−np�(t− 1)
(
ind-µ̂p�(t− 1)− zpi

)2
+

8


≤ exp

−np�(t− 1)
(
µp� − 1

4∆p
i − µ

p
� + 1

2∆p
i

)2
+

8


≤ exp

(
−n

p
�(t− 1)(∆p

i )
2

8(16)

)

≤ 1

T + 1
,

where the first inequality uses Lemma C.35; the second inequality uses the observations that, when Et and
{
np�(t− 1) ≥ J

}
happen:

1. np�(t− 1) ≥ np�(t− 1) ≥ J = 640 lnT
(∆p

i )2
,

2. ind-µ̂p�(t− 1) ≥ µp� −
√

10 lnT

np�(t−1)
≥ µp� − 1

4∆p
i (see Definition B.9), and

3. zpi = µp� − 1
2∆p

i ;

the third inequality is by algebra; and the last inequality follows because when
{
np�(t− 1) ≥ J

}
happens, np�(t − 1) ≥

640 lnT
(∆p

i )2
≥ 320 ln(T+1)

(∆p
i )2

for T > 1.

It follows that, when Et and
{
np�(t− 1) ≥ J

}
happen, ψpi,t ≥ T

T+1 and
1−ψpi,t
ψpi,t

≤ 1
T . Hence, (e1.2) ≤ 1.

We now consider term (e2). Recall that

(e2) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et, Hp

� (t)
}
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Lemma C.30.

(e2) ≤ O

(
lnT

(∆p
i )

2
+M

)
.

Proof of Lemma C.30. With foresight, let Z = 640 lnT
(∆p

i )2
+M . We have

(e2) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et, Hp

� (t),m
p
�(t− 1) < Z

}
︸ ︷︷ ︸

(e2.1)

+

∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et, Hp

� (t),m
p
�(t− 1) ≥ Z

}
︸ ︷︷ ︸

(e2.2)

.

The proof follows straightforwardly from Lemma C.31 and Lemma C.33 which we present subsequently.

Lemma C.31.

(e2.1) ≤ O

(
lnT

(∆p
i )

2
+M

)
.

Proof of Lemma C.31. We have

(e2.1) ≤ E

 ∑
t:p∈Pt

(
1

ψpi,t
− 1

)
1
{
ipt = �, Hp

� (t),m
p
�(t− 1) < Z

}
≤ E

 ∑
t:p∈Pt

1

ψpi,t
1
{
ipt = �, Hp

� (t),m
p
�(t− 1) < Z

} ,
where we drop Et and use the observation that 1

ψpi,t
− 1 ≤ 1

ψpi,t
.

We now focus on sum inside the expectation. We denote τk(�) by τk and the player that makes the k’s pull of � by
pk := pk(�). Recall that we use mp

�(t− 1) to denote
(
mp
�(t− 1)−M

)
∨ 1. We have∑

t:p∈Pt

1

ψpi,t
1
{
ipt = �, Hp

� (t),m
p
�(t− 1) < Z

}
=
∑
t:p∈Pt

1

Φ

((
zpi − agg-µ̂p�(t− 1)

)√
mp
�(t− 1)/4

)1{ipt = �, Hp
� (t),m

p
�(t− 1) < Z

}

≤
∑
t:p∈Pt

1

Φ

((
µp� − agg-µ̂p�(t− 1)

)√
mp
�(t− 1)/4

)1{ipt = �,mp
�(t− 1) < Z

}
(30)

≤
∑
t∈[T ]

∑
q∈Pt

1

Φ

((
µq� − agg-µ̂q�(t− 1)

)√
mq
�(t− 1)/4

)1{iqt = �,mq
�(t− 1) < Z

}
, (31)

where the first equality uses Remark C.23; the first inequality drops Hp
� (t) and uses the observation that zpi ≤ µp� (see

Definition C.19), along with the monotonic increasing property of z 7→ 1
Φ(z)

.; the second inequality adds similar terms for
other players q 6= p.
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Now, define
{
fqt : t ∈ [T ], q ∈ [M ]

}
where fqt = 1

Φ

(
(µq�−agg-µ̂q�(t−1))

√
mq�(t−1)/4

) ; recall from Example A.22 that{
agg-µ̂q�(t− 1) : t ∈ [T ]

}
and

{
mq
�(t− 1) : t ∈ [T ]

}
both satisfy the invariant property with respect to (�, q); therefore,{

fqt : t ∈ [T ], q ∈ [M ]
}

satisfies the invariant property with respect to �. Applying Lemma C.38 to it, we have that

(31) ≤
∑
q∈[M ]

1

Φ (0)
+

Z−1∑
k=1

1

Φ

((
µpk� − agg-µ̂pk� (τk)

√
mpk
� (τk)/4

))1 {τk ≤ T} .

Since
∑
q∈[M ]

1
Φ(0)
≤ O (M), it then suffices to show that for every k ∈ N,

E

 1

Φ

(
(µpk� − agg-µ̂pk� (τk))

√
mpk
� (τk)/4

)1 {τk ≤ T}
 ≤ O (1) . (32)

Note that mpk
� (τk) =

(
n�(τk)−M

)
∨ 1. Directly applying Corollary B.4 and Lemma C.36 with X = (agg-µ̂pk� (τk) −

µpk� )

√
mpk
� (τk)/4 and E = {τk ≤ T} proves Eq. (32).

Remark C.32. In the above proof, we relaxed Eq. (30) to Eq. (31) by adding the corresponding terms for all other players
q 6= p. Alternatively, we could use the observation that np�(t− 1) ≤ mp

�(t− 1) to bound Eq. (30) by

∑
t:p∈Pt

1

Φ

((
µp� − agg-µ̂p�(t− 1)

)√
mp
�(t− 1)/4

)1{ipt = �, np�(t− 1) < Z
}
,

and apply Lemma C.37 and subsequently Lemma C.36. However, right now, we do not have tight-enough concentration
inequalities for agg-µ̂p�(πk(�, p))—the best known inequality here is Freedman’s inequality, which incurs an undesirable
extra O (lnT ) factor in the bound for (e2.1).

Lemma C.33.

(e2.2) ≤ O (1) .

Proof of Lemma C.33. Recall that

(e2.2) =
∑
t:p∈Pt

E

(1− ψpi,t
ψpi,t

)
1
{
ipt = �, Et, Hp

� (t),m
p
�(t− 1) ≥ Z

} .
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Recall that mp
�(t− 1) =

(
mp
�(t− 1)−M

)
∨ 1. When Et, Hp

� (t) and
{
mp
�(t− 1) ≥ Z

}
happen simultaneously,

1− ψpi,t
= Pr

(
θp�(t) ≤ z

p
i | Ft−1

)
=Φ

((
zpi − agg-µ̂p�(t− 1)

)√
mp
�(t− 1)/4

)

≤ exp

−mp
�(t− 1)

(
agg-µ̂p�(t− 1)− zpi

)2
+

8


≤ exp

−mp
�(t− 1)

(
µp� − 1

4∆p
i − µ

p
� + 1

2∆p
i

)2
+

8


≤ exp

(
−m

p
�(t− 1)(∆p

i )
2

8(16)

)

≤ 1

T + 1
,

where the first inequality uses Lemma C.35; the second inequality uses the observations that when Et, Hp
� (t) and{

mp
�(t− 1) ≥ Z

}
happen:

1. mp
�(t− 1) ≥ mp

�(t− 1)−M ≥ Z −M ≥ 640 lnT
(∆p

i )2
,

2. agg-µ̂p�(t− 1) ≥ µp� −
√

10 lnT

mp�(t−1)
≥ µp� − 1

4∆p
i (see Definition B.9), and

3. zpi = µp� − 1
2∆p

i (see Definition C.19);

the third inequality is by algebra; and the fourth inequality is by the fact that when mp
�(t− 1) ≥ Z, mp

�(t− 1) ≥ Z −M =
640 lnT
(∆p

i )2
≥ 320 ln(T+1)

(∆p
i )2

for T > 1.

It follows that, when Et, Hp
� (t) and

{
mp
�(t− 1) ≥ Z

}
happen, ψpi,t ≥ T

T+1 and
1−ψpi,t
ψpi,t

≤ 1
T . As a result, (e2.2) ≤

O(1).

C.3. Concluding the proofs of Theorems 4.1 and 4.2

Lemma C.34. Let a generalized ε-MPMAB problem instance and α > 0 be such that for all i ∈ Iα and all p ∈ [M ],
∆p
i ≤ 2∆min

i . If algorithm A guarantees that when interacting with this problem instance:

1. For any arm i ∈ Iα,

E
[
ni(T )

]
≤ O

(
lnT

(∆min
i )2

+M

)
; (33)

2. For any arm i ∈ ICα and player p ∈ [M ],

E
[
npi (T )

]
≤ O

(
lnT

(∆p
i )

2
+ C

)
, (34)

for some C ≥ 0, then it has the following regret bounds simultaneously:

1. gap-dependent regret bound:

Reg(T ) ≤ O

 1

M

∑
i∈Iα

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+
∑
i∈ICα

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+MK(1 + C)

, (35)
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2. gap-independent regret bound:

Reg(T ) ≤ Õ

√|Iα|P +
√
M
(
|ICα | − 1

)
P +MK(1 + C)

, (36)

where we recall that P =
∑T
t=1 |Pt|.

Proof. We prove the two items respectively. Recall that ∆min
i = minp∈[M ] ∆p

i .

1. Note that for all i ∈ Iα and all p ∈ [M ], ∆p
i ≤ 2∆min

i , and
∑M
p=1 E

[
npi (T )

]
= E

[
ni(T )

]
; as a consequence,

Reg(T ) =

M∑
p=1

K∑
i=1

E
[
npi (T )

]
∆p
i = O

∑
i∈Iα

E
[
ni(T )

]
∆min
i +

∑
i∈ICα

∑
p∈[M ]:∆p

i>0

E
[
npi (T )

]
∆p
i

 . (37)

Using Eq. (33), the first term can be bounded by:

∑
i∈Iα

E
[
ni(T )

]
∆min
i ≤ O

∑
i∈Iα

lnT

∆min
i

+MK

 ≤ O
 1

M

∑
i∈Iα

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+MK

 ,

where the second inequality follows from the assumption that for all i ∈ Iα and p ∈ [M ], ∆p
i ≤ 2∆min

i .

Using Eq. (34), the second term can be bounded by:

∑
i∈ICα

∑
p∈[M ]:∆p

i>0

E
[
npi (T )

]
∆p
i ≤ O

∑
i∈ICα

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+MKC

 .

Combining the above two bounds yields Eq. (35).

2. As with the proof of Eq. (36), we continue from Eq. (37), but look at the two terms respectively. For the first term,

∑
i∈Iα

E
[
ni(T )

]
∆min
i ≤O

∑
i∈Iα

min

(
E
[
ni(T )

]
,

lnT

(∆min
i )2

+M

)
∆min
i


≤O

∑
i∈Iα

min

(
E
[
ni(T )

]
∆min
i ,

lnT

∆min
i

)
+MK


≤O

∑
i∈Iα

√
E
[
ni(T )

]
lnT +MK


≤O

(√
|Iα|P lnT +MK

)
(38)

where the first inequality is from Eq. (33); the second inequality is by algebra; the third inequality is from the elementary
fact that min(A,B) ≤

√
AB; the last inequality is from Jensen’s inequality and the concavity of function x 7→

√
x, which implies that

∑
i∈Iα

√
E
[
ni(T )

]
≤
√
|Iα|

(∑
i∈Iα E

[
ni(T )

])
, and the fact that

∑
i∈Iα E

[
ni(T )

]
≤∑M

i=1 E
[
ni(T )

]
≤ P .

For the second term in Eq. (36), first observe that if
∣∣ICα ∣∣ = 1, then let i∗ be the only element in ICα ; it must be the

case that for all p ∈ [M ], i∗ is the optimal arm for player p. As a consequence,
∑
i∈ICα

∑M
p=1 E

[
npi (T )

]
∆p
i = 0 =

O(
√
M(
∣∣ICα ∣∣− 1)P ).
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Otherwise,
∣∣ICα ∣∣ ≥ 2. In this case,

∑
p∈[M ]

∑
i∈ICα

E
[
npi (T )

]
∆p
i ≤O

 ∑
p∈[M ]

∑
i∈ICα

min

(
E
[
npi (T )

]
,

lnT

(∆p
i )

2

)
∆p
i +MKC


≤O

 ∑
p∈[M ]

∑
i∈ICα

min

(
E
[
npi (T )

]
∆p
i ,

lnT

∆p
i

)
+MKC


≤O

 ∑
p∈[M ]

∑
i∈ICα

√
E
[
npi (T )

]
lnT +MKC


≤O

(√
M
∣∣ICα ∣∣P lnT +MKC

)
≤O

(√
M
(∣∣ICα ∣∣− 1

)
P lnT +MKC

)
.

where the first inequality is by Eq. (34) and algebra; the second inequality is by algebra; the third inequality is from
the elementary fact that min(A,B) ≤

√
AB; the fourth inequality is from Jensen’s inequality and the concavity

of function x 7→
√
x, which implies that

∑
i∈Iα

√
E
[
ni(T )

]
≤
√
|Iα|

(∑
i∈Iα E

[
ni(T )

])
, and the fact that∑

i∈Iα E
[
ni(T )

]
≤
∑M
i=1 E

[
ni(T )

]
≤ P ; the last inequality is from the simple observation that

∣∣ICα ∣∣ ≤ 2(
∣∣ICα ∣∣− 1)

when
∣∣ICα ∣∣ ≥ 2.

In summary,
∑M
p=1

∑
i∈ICα

E
[
npi (T )

]
∆p
i ≤ O

(√
M
(∣∣ICα ∣∣− 1

)
P lnT

)
+MKC. Combining this with Eq. (38),

this concludes the proof of Eq. (36).

Proofs of Theorems 4.1 and 4.2. Combining Lemmas C.1, C.2, C.34 with C = M and α = 10ε, Theorems 4.1 and 4.2
follow immediately.

C.4. Auxiliary Lemmas

Recall that we denote by Φ(x) =
∫∞
x

1√
2π
e−

z2

2 dz the complementary CDF of the standard normal distribution.

Lemma C.35. Φ is monotonically decreasing. In addition, for z ≥ 0,

1√
2π

z

z2 + 1
exp

(
−z

2

2

)
≤ Φ(z) ≤ exp

(
−z

2

2

)
,

where the first inequality (anti-concentration) is from (Gordon, 1941). In addition, for any z ∈ R,

Φ(z) ≤ exp

(
−

(z)2
+

2

)
, Φ(z) ≤ exp

(
−

(−z)2
+

2

)
,

where we recall that (z)+ = max(z, 0).

The following lemma is useful in bounding (b2.1), (e1.1), (e2.1); it can also be used to provide a simplified proof of the
first case of Agrawal & Goyal (2017, Lemma 2.13). Roughly speaking, the lemma shows that a random variable X with
a light lower probability tail must have a small value of E

[
1

Φ(−X)

]
; it crucially uses the lower bound on Φ (Gaussian

anti-concentration) given in Lemma C.35.
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Lemma C.36. There exists some absolute constants c1, c2 > 0 such that the following holds. Given a random variable X ,
an event E and some C1 > 0; if, for every z ≥ 1, P(X ≤ −z, E) ≤ C1 exp(−2z2), such that

E

[
1

Φ(−X)
1 {E}

]
≤ c1C1 + c2.

Proof. Define Y = −X; we have P(Y ≥ z, E) ≤ C1 exp(−2z2) for all z ≥ 1.

E

[
1

Φ(−X)
1 {E}

]

=E

[
1

Φ(−X)
1 {E,X ≤ −1}

]
+ E

[
1

Φ(−X)
1 {E,X ≥ −1}

]

≤E

[
1

Φ(Y )
1 {E, Y ≥ 1}

]
+

1

Φ(1)

≤8
√

2π · E
[
eY

2

1 {E, Y ≥ 1}
]

+
1

Φ(1)
.

where the first inequality follows due to the fact that 1
Φ(z)

increases monotonically as z increases; and the second inequality

is based on the observation that for y ≥ 1, 1
Φ(y)

≤
√

2π y
2+1
y exp(y

2

2 ) ≤ 8
√

2πey
2

(see Lemma C.35).

It suffices to show that E
[
eY

2

1 {E, Y ≥ 1}
]

is bounded by some constant, given the assumption on Y . Define W =

eY
2

1 {E, Y ≥ 1}. We have that for any w ≥ e,

P(W ≥ w) = P(E, Y ≥
√

lnw) ≤ C1

w2
.

As a result,

E [W ] =

∫ ∞
0

P(W ≥ w) dw

=

∫ e

0

P(W ≥ w) dw +

∫ ∞
e

P(W ≥ w) dw

≤e+

∫ ∞
e

C1

w2
dw

≤e+
C1

e
,

Therefore, the lemma holds by taking c1 = 8
√

2π
e and c2 = 8

√
2πe+ 1

Φ(1)
.

The following two lemmas are useful in bounding (e1.1) (Lemma C.37), as well as (b2.1) and (e2.1) (Lemma C.38),
respectively.

Lemma C.37. Fix any arm i ∈ [K] and player p ∈ [M ]. Let N ∈ N+. Suppose
{
gt : t ∈ [T ]

}
satisfies the invariant

property with respect to (i, p) (Definition A.20). Then,

∑
t:p∈Pt

gt1
{
ipt = i, npi (t− 1) < N

}
≤ g1 +

N−1∑
k=1

gπk+11 {πk ≤ T} ,

where πk = πk(i, p) denotes the round associated with the k-th pull of arm i by player p.
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Proof. Let ht = gt1
{
npi (t− 1) < N

}
. As seen in Example A.22,

{
npi (t− 1) : t ∈ [T ]

}
satisfies the invariant property

with respect to (i, p). This, combined with the assumption that
{
gt : t ∈ [T ]

}
satisfies the invariant property with respect to

(i, p), implies that
{
ht : t ∈ [T ]

}
is also invariant with respect to (i, p). Applying Lemma C.39 to the above

{
ht : t ∈ [T ]

}
,

we have ∑
t:p∈Pt

gt1
{
ipt = i, npi (t− 1) < N

}
=
∑
t:p∈Pt

ht1
{
ipt = i

}
≤h1 +

T∑
k=1

hπk+11 {πk ≤ T}

=g11
{
npi (0) < N

}
+

T∑
k=1

gπk+11
{
npi (πk) < N

}
1 {πk ≤ T}

=g1 +

T∑
k=1

gπk+11 {k < N}1 {πk ≤ T}

=g1 +

N−1∑
k=1

gπk+11 {πk ≤ T} ,

where the first inequality is by Equation (40) in Lemma C.39; the second equality is by expanding the definition of ht’s; the
third equality is from that npi (0) = 0 and npi (πk) = k; and the last eqaulity is by algebra.

Lemma C.38. Fix any arm i ∈ [K] and let N ∈ N+. Suppose
{
fpt : t ∈ [T ], p ∈ [M ]

}
satisfies the invariant property with

respect to arm i (Definition A.20), then,

∑
t∈[T ]

∑
p∈Pt

fpt 1
{
ipt = i,mp

i (t− 1) < N
}
≤
∑
p∈[M ]

fp1 +

N−1∑
k=1

fpkτk+11 {τk ≤ T} ,

where (τk, pk) = (τk(i), pk(i)) denote the round and player associated with the k-th pull of arm i by all players.

Proof of Lemma C.38. First, consider any fixed player p ∈ [M ]; let ht = fpt 1
{
mp
i (t− 1) < N

}
. As seen in Example A.22,{

mp
i (t− 1) : t ∈ [T ]

}
satisfies the invariant property with respect to (i, p). This, combined with the assumption that{

fpt : t ∈ [T ]
}

satisfies the invariant property with respect to (i, p), implies that
{
ht : t ∈ [T ]

}
is also invariant with respect

to (i, p). Applying Lemma C.39 to the above
{
ht : t ∈ [T ]

}
, we have

∑
t:p∈Pt

fpt 1
{
ipt = i,mp

i (t− 1) < N
}

=
∑
t:p∈Pt

ht1
{
ipt = i

}
≤h1 +

∑
t:p∈Pt

ht+11
{
ipt = i

}
=fp1 +

∑
t:p∈Pt

fpt+11
{
ipt = i,mp

i (t) < N
}

=fp1 +
∑
t:p∈Pt

fpt+11
{
ipt = i, ni(t) < N

}
(39)

where the first inequality is from Equation (41) of Lemma C.39; the second equality is by expanding the definition of ht and
noting that h1 = 1

{
mp
i (0) < N

}
fp1 = 1 {0 < N} fp1 = fp1 ; the third equality is from the observation that, if ipt = i and

upi (t) = t, then mp
i (t) = ni(u

p
i (t)) = ni(t).
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Now, summing Equation (39) over all players p ∈ [M ], we have∑
t∈[T ]

∑
p∈Pt

fpt 1
{
ipt = i,mp

i (t− 1) < N
}

≤
∑
p∈[M ]

fp1 +
∑
p∈[M ]

∑
t:p∈Pt

fpt+11
{
ipt = i, ni(t) < N

}
≤
∑
p∈[M ]

fp1 +

N−1∑
k=1

fpkτk+11 {τk ≤ T} ,

where the second inequality is from the observation that for every t ∈ [T ], p ∈ Pt such that ipt = i and ni(t) < N , there
must exists some unique k ∈ [N − 1] such that τk = t and pk = p.

The following auxiliary lemma facilitates the proofs of Lemmas C.37 and C.38.

Lemma C.39. Fix any arm i ∈ [K] and player p ∈ [M ]. Suppose
{
ht : t ∈ [T ]

}
satisfies the invariant property with

respect to (i, p) (Definition A.20). Then,

∑
t∈[T ]:p∈Pt

ht1
{
ipt = i

}
≤h1 +

T∑
k=1

hπk+11 {πk ≤ T} (40)

=h1 +
∑

t∈[T ]:p∈Pt

ht+11
{
ipt = i

}
, (41)

where πk = πk(i, p) denotes the round associated with the k-th pull of arm i by player p.

Proof.

∑
t∈[T ]:p∈Pt

ht1
{
ipt = i

}
=

T∑
k=1

hπk1 {πk ≤ T}

=

T∑
k=1

hπk−1+11 {πk ≤ T}

≤h1 +

T∑
k=2

hπk−1+11 {πk ≤ T}

=h1 +

T−1∑
k=1

hπk+11 {πk+1 ≤ T}

≤h1 +

T−1∑
k=1

hπk+11 {πk ≤ T}

=h1 +
∑

t∈[T ]:p∈Pt

ht+11
{
ipt = i

}
,

where the first equality uses the definition of πk; the second equality uses the invariant property, specifically, hπk = hπk−1+1;
the first inequality uses the observation that the first term hπ0+11 {π1 ≤ T} = h11 {π1 ≤ T} ≤ h1; the third equality
shifts the indices in the sum by 1; the second inequality uses the observation that πk+1 ≤ T =⇒ πk ≤ T ; and the last
equality is again by the definition of πk.

The following lemma is largely inspired by Agrawal & Goyal (2017, Lemma 2.8); here we generalize it to the multi-task
setting, for reducing bounding (B) and (E) to bounding (B∗) and (E∗) respectively.
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Lemma C.40. For any player p ∈ [M ], time step t ∈ [T ], and arm i ∈ [K], we have for any arm l ∈ [K] and any threshold
z ∈ R:

Pr
(
ipt = i, θpi (t) ≤ z | Ft−1

)
≤

Pr
(
θpl (t) ≤ z | Ft−1

)
Pr
(
θpl (t) > z | Ft−1

) · Pr
(
ipt = l | Ft−1

)
.

Proof. First,

Pr
(
ipt = i, Qpi (t) | Ft−1

)
≤Pr

(
∀j ∈ [K], θpj (t) ≤ z | Ft−1

)
= Pr

(
θpl (t) ≤ z | Ft−1

)
· Pr

(
∀j 6= l, θpj (t) ≤ z | Ft−1

)
,

where the first inequality follows because the event
{
ipt = i, Qpi (t)

}
happens only if ∀j ∈ [K], θpj (t) ≤ z; and the second

equality follows because conditional on Ft−1, the draws θpj (t)’s and θpl (t) are independent.

Now, observe that

Pr
(
∀j 6= l, θpj (t) ≤ z | Ft−1

)
=

Pr
(
θpl (t) > z, and ∀j 6= l, θpj (t) ≤ z | Ft−1

)
Pr
(
θpl (t) > z | Ft−1

)
≤

Pr
(
ipt = l | Ft−1

)
Pr
(
θpl (t) > z | Ft−1

)
where the equality follows, again, by the conditional independence of

{
θpj (t) : j 6= l

}
and θpl (t); and the inequality follows

because the event
{
θpl (t) > z, ∀j 6= l, θpj (t) ≤ ypi

}
implies that

{
ipt = l

}
happens. The lemma follows from combining

the above two inequalities.
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D. Theoretical Guarantees of Baselines
D.1. IND-UCB and IND-TS in the generalized ε-MPMAB setting

Theorem D.1. The expected collective regret of IND-UCB and IND-TS after T rounds satisfies the following two upper
bounds simultaneously:

Reg(T ) ≤O

 ∑
p∈[M ]

∑
i∈[K]:∆p

i>0

lnT

∆p
i

 (42)

Reg(T ) ≤Õ
(√

MKP
)
, (43)

where we recall that P =
∑T
t=1 |Pt|.

Proof sketch. For Eq. (42), we note that both IND-UCB and IND-TS guarantees that for every p ∈ [M ],

Regp(T ) ≤ O

 ∑
i∈[K]:∆p

i>0

lnT

∆p
i

 ;

summing over p yields Eq. (42).

For Eq. (43), we note that for every p ∈ [M ],

Regp(T ) ≤ Õ
(√

K
∣∣{t : p ∈ Pt}

∣∣) .
Summing over all p ∈ [M ], we have

Reg(T ) =

M∑
p=1

Regp(T ) ≤ Õ

 M∑
p=1

√
K
∣∣{t : p ∈ Pt}

∣∣ ≤ Õ

√√√√MK

M∑
p=1

∣∣{t : p ∈ Pt}
∣∣
 = Õ

(√
MKP

)
.

D.2. ROBUSTAGG(ε) and its regret analysis in the generalized ε-MPMAB setting

Wang et al. (2021) study a special case of ε-MPMAB problem, which can be viewed as ε-MPMAB problem defined in
Section 2, with active sets of players Pt ≡ [M ]. In this specialized setting, they propose ROBUSTAGG(ε), a UCB-based
algorithm that achieves a gap-dependent and gap-independent regret of

O

 1

M

∑
i∈I5ε

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+
∑
i∈IC5ε

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+MK

 , (44)

and

Õ
(√

M |I5ε|T +M
√
|IC5ε|T +MK

)
, (45)

respectively. In this section, we show that, with a few small modifications, their algorithm and analysis can be used in our
(more general) ε-MPMAB setting, where the active sets Pt can change over time.
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Algorithm 2 ROBUSTAGG(ε) for the generalized ε-MPMAB setting
1: Input: Dissimilarity parameter ε ∈ [0, 1]
2: Initialization: Set npi = 0 for all p ∈ [M ] and all i ∈ [K].
3: for t = 1, 2 . . . , T do
4: Receive active set of players Pt
5: for p ∈ Pt do
6: for i ∈ [K] do
7: Let mp

i =
∑
q∈[M ]:q 6=p n

q
i

8: Let npi = npi ∨ 1 and mp
i = mp

i ∨ 1
9: Let

ζpi (t) =
1

npi

∑
s<t:

p∈Ps,ips=i

rps , η
p
i (t) =

1

mp
i

∑
s<t

∑
q∈Ps:

q 6=p,iqs=i

rqs , and κpi (t, λ) = λζpi (t) + (1− λ)ηpi (t);

10: Let F (npi ,m
p
i , λ, ε) = 8

√
13 lnT

[
λ2

npi
+ (1−λ)2

mpi

]
+ (1− λ)ε

11: Compute λ∗ = argminλ∈[0,1] F (npi ,m
p
i , λ, ε)

12: Compute an upper confidence bound of the reward of arm i for player p:

UCBpi (t) = κpi (t, λ
∗) + F (npi ,m

p
i , λ
∗, ε).

13: end for
14: Let ipt = argmaxi∈[K]UCBpi (t)

15: Player p pulls arm ipt and observes reward rpt
16: end for
17: for active players p ∈ Pt do
18: Let i = ipt and set npi ← npi + 1.
19: end for
20: end for

Specifically, Algorithm 2 is our modified version of ROBUSTAGG(ε). Recall that ROBUSTAGG(ε) performs an UCB-based
exploration (Auer et al., 2002): for every player and every arm, it constructs high-probability UCBs on the expected rewards
(line 7 to 12); to this end, it makes careful use of both the player and other players’ data, and construct a series of UCBs
parameterized by λ (line 10), and selects the tightest one (line 11 and 12). Compared to ROBUSTAGG(ε), for every round t,
Algorithm 2 only computes expected reward UCBs for active players p ∈ Pt (line 5), and updates arm pull counts on active
players (line 17).

We show that Algorithm 2, when applied to our ε-MPMAB setting, has regret guarantees that recover and generalize
ROBUSTAGG(ε)’s original guarantees. Specifically, in the specialized ε-MPMAB setting where Pt ≡ [M ], we recover the
regret guarantees of ROBUSTAGG(ε) (Equations (44) and (45)).
Theorem D.2. The expected collective regret of ROBUSTAGG(ε) after T rounds satisfies the following two upper bounds
simultaneously:

Reg(T ) ≤O

 1

M

∑
i∈I5ε

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+
∑
i∈IC5ε

∑
p∈[M ]:∆p

i>0

lnT

∆p
i

+MK

, (46)

Reg(T ) ≤Õ

√|I5ε|P +
√
M
(
|IC5ε| − 1

)
P +MK

, (47)

where we recall that P =
∑T
t=1 |Pt|.
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Proof sketch. Even in the general setting where Pt is not necessarily [M ], Freedman’s inquality can still be applied to
establish the high-probability concentration of the empirically averaged rewards ζpi (t) and ηpi (t); therefore, Lemma 17
of Wang et al. (2021) still holds in the general setting. As a result, Lemmas 20 and 21 of Wang et al. (2021) carries over;
hence, for all i ∈ I5ε, Algorithm 2 still satisfies that

E[ni(T )] ≤ O

(
lnT

(∆min
i )2

+M

)
, (48)

and for all i ∈ IC5ε and all p ∈ [M ],

E[npi (T )] ≤ O

(
lnT

(∆p
i )

2

)
. (49)

Equations (46) and (47) now follows directly from applying Lemma C.34 with C = 0 and α = 5ε.

E. Additional Experimental Results
In this section, we present the rest of the experimental results. Figures 3, 4, and 5 compare the average performance
of ROBUSTAGG-TS(0.15), ROBUSTAGG(0.15), IND-UCB, and IND-TS in randomly generated 0.15-MPMAB problem
instances with different numbers of subpar arms.

Note that, when |I5ε| = 9, we have
∣∣IC5ε∣∣ = 1 which means that there exists one arm that is optimal to all the players

and the other arms are all subpar. In this favorable special case, ROBUSTAGG-TS(0.15) and ROBUSTAGG(0.15) perform
significantly better than the baseline algorithms without transfer, as expected.

Furthermore, when |I5ε| = 0, i.e., there is no subpar arm and all the arms have relatively small suboptimality gaps. In
this unfavorable special case, ROBUSTAGG-TS(0.15)’s performance is still very competitive in comparison with IND-TS,
which demonstrates the robustness of our proposed algorithm.

E.1. Empirical Comparison with ROBUSTAGG-TS-V(ε)

We empirically evaluated a variant of Algorithm 1, which we refer to as ROBUSTAGG-TS-V(ε). ROBUSTAGG-TS-V(ε)
differs from ROBUSTAGG-TS(ε) (Algorithm 1) in one way: in each round, instead of only updating the posteriors associated
with each active player and its pulled arm (i.e., delayed update, line 20 of Algorithm 1), ROBUSTAGG-TS-V(ε) updates the
posteriors associated with every arm and player. Note that this change only affects the aggregate posteriors, as the individual
posteriors associated with a player and an arm remains the same if the player does not pull the arm in this round.

Figure 6 compares the average cumulative regret of ROBUSTAGG-TS(0.15), ROBUSTAGG-TS-V(0.15),
ROBUSTAGG(0.15), IND-UCB, and IND-TS in randomly generated 0.15-MPMAB problem instances with differ-
ent numbers of subpar arms. The instances were generated following the same procedure as the other experiments. Observe
that ROBUSTAGG-TS-V(0.15)’s empirical performance is on par with that of ROBUSTAGG-TS(0.15). However, our
analysis in this paper takes advantages of the design choice made for ROBUSTAGG-TS(ε), i.e., delayed update which leads
to the invariant property (Definition A.20 and Examples A.21, A.22 and A.23). It is unclear whether ROBUSTAGG-TS-V(ε)
enjoys similar near-optimal guarantees.
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(a) |I5ε| = 9 (b) |I5ε| = 8 (c) |I5ε| = 7

(d) |I5ε| = 6 (e) |I5ε| = 5 (f) |I5ε| = 4

(g) |I5ε| = 3 (h) |I5ε| = 2 (i) |I5ε| = 1

(j) |I5ε| = 0

Figure 3. Compares the cumulative collective regret of the 4 algorithms over a horizon of T = 50, 000 rounds.



Thompson Sampling for Robust Transfer in Multi-Task Bandits

(a) |I5ε| = 9 (b) |I5ε| = 8 (c) |I5ε| = 7

(d) |I5ε| = 6 (e) |I5ε| = 5 (f) |I5ε| = 4

(g) |I5ε| = 3 (h) |I5ε| = 2 (i) |I5ε| = 1

(j) |I5ε| = 0

Figure 4. Compares the percentage of arm pulls by arm optimality for the 4 algorithms in T = 50, 000 rounds.
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(a) |I5ε| = 9 (b) |I5ε| = 8 (c) |I5ε| = 7

(d) |I5ε| = 6 (e) |I5ε| = 5 (f) |I5ε| = 4

(g) |I5ε| = 3 (h) |I5ε| = 2 (i) |I5ε| = 1

(j) |I5ε| = 0

Figure 5. Compares the cumulative collective regret incurred by arm optimality for the 4 algorithms in T = 50, 000 rounds.
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(a) |I5ε| = 9 (b) |I5ε| = 8 (c) |I5ε| = 7

(d) |I5ε| = 6 (e) |I5ε| = 5 (f) |I5ε| = 4

(g) |I5ε| = 3 (h) |I5ε| = 2 (i) |I5ε| = 1

(j) |I5ε| = 0

Figure 6. Compares the cumulative collective regret of the 5 algorithms over a horizon of T = 50, 000 rounds.


