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Abstract

In many real-world multi-agent systems, the spar-
sity of team rewards often makes it difficult for
an algorithm to successfully learn a cooperative
team policy. At present, the common way for
solving this problem is to design some dense in-
dividual rewards for the agents to guide the co-
operation. However, most existing works utilize
individual rewards in ways that do not always pro-
mote teamwork and sometimes are even counter-
productive. In this paper, we propose Individual
Reward Assisted Team Policy Learning (IRAT),
which learns two policies for each agent from the
dense individual reward and the sparse team re-
ward with discrepancy constraints for updating
the two policies mutually. Experimental results in
different scenarios, such as the Multi-Agent Parti-
cle Environment and the Google Research Foot-
ball Environment, show that IRAT significantly
outperforms the baseline methods and can greatly
promote team policy learning without deviating
from the original team objective, even when the
individual rewards are misleading or conflict with
the team rewards.

1. Introduction
Many control problems in real life require the mutual co-
operation among multiple agents. In recent years, coopera-
tive multi-agent reinforcement learning (MARL) has been
widely applied in many areas such as video games (Vinyals
et al., 2019; Berner et al., 2019; Kurach et al., 2020), aerial
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vehicles (Jin & Ma, 2019), transportation (Shamsoshoara
et al., 2019) and power grids (Jin & Ma, 2019). Coopera-
tive multi-agent tasks generally only have rewards for team
goals. In spite of the progress of the value-based and policy-
based MARL algorithms (Sunehag et al., 2018; Rashid et al.,
2018; Wang et al., 2021a; Lowe et al., 2017; Foerster et al.,
2018; Iqbal & Sha, 2019; Wang et al., 2021b; Yu et al., 2021)
made by researchers, the sparsity of the team rewards in
many multi-agent systems still remains a big challenge for
the state-of-the-art MARL algorithms. Practical application
of these algorithms usually requires some dense individual
rewards that can guide the agents perform the task. For
example, in the case of solving a football game, although
the team rewards (e.g., win or loss of the match, or scoring)
are very sparse, we can manually assign positive rewards to
the agents for performing a successful pass, a nice shot, and
a good tackle, and assign negative rewards for unexpected
behaviors such as offside and running out of the field.

There are usually two straightforward ways for utilizing
individual rewards. The first one is to distribute the sum
of the individual and team rewards of all agents equally
among them. The second one is to generate a new reward
function for each agent by adding its individual rewards to
the team rewards. However, such simple methods face three
problems: (1) The introduction of individual rewards will
change the learning objectives of the agents, resulting in
unexpected behaviors that deviate from the desired goal of
the team. For example, for training agents to play football
games, if too many individual rewards that encourage indi-
vidual skills (such as passing, shooting, and tackling) are
introduced, the agents may focus more on achieving those
skills rather than winning the game. (2) The mixing of the
individual and team rewards often involves weighting coef-
ficients and the corresponding fine-tuning work in practice.
(3) The mixture of the two types of rewards makes the credit
assignment problem (Foerster et al., 2018; Son et al., 2019)
more difficult. The learning of each agent is likely to be
disturbed by the individual rewards of other agents. Still
taking the football scenario as an example, if an agent runs
out of the playing field, distributing its punishment to all
agents will definitely affect the learning of other agents.

In this paper, we propose Individual Reward Assisted Team
Policy Learning (IRAT), a novel multi-agent policy gradient
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algorithm which provides a new way of utilizing individual
rewards to promote the cooperation among agents. The key
idea of our algorithm is to learn an individual policy and a
team policy for each agent, and put discrepancy constraints
on the two policies to guide the policy optimization process.
On the one hand, the individual policy learned from the
individual rewards is served as a way of exploration and
sampling, and is encouraged to approach to the team policy
gradually. On the other hand, the team policy, which is
learned from the sparse team rewards, constantly distills
knowledge from the individual policies, with the goal of
team cooperation kept unchanged at the same time. Ex-
periments in scenarios with various individual and team
reward settings demonstrate that our algorithm significantly
outperforms the baseline methods and can greatly promote
cooperation even when the individual rewards are mislead-
ing or conflict with the team rewards.

2. Background
In this section, we formalize the Dec-POMDPs with sepa-
rated rewards and briefly introduce the MAPPO algorithm.

Dec-POMDPs: The multi-agent reinforcement learning
problem is usually modeled as a Markov game (Littman,
1994). In this paper, we consider decentralized partially
observable Markov decision processes (Dec-POMDPs)
(Oliehoek & Amato, 2016) with shared rewards, which
is an extension of Markov game defined by a tuple(
N ,S,

{
Ai

}
i∈N ,P,R,

{
Zi

}
i∈N ,O, γ

)
, where N =

{1, . . . , N} is the set of agents, S denotes the state space
of the environment, Ai denotes the action space of agent
i. Let A := A1 × · · · × AN be the joint action space,
then P : S × A × S → [0, 1] denotes the transition prob-
ability from any state s ∈ S to any state s′ ∈ S for any
joint action a ∈ A, R : S × A × S → R is the reward
function that determines the immediate reward received by
the team for a transition from (s,a) to s′. The symbol
oi ∈ Zi, from observation function O(s, i), is the local
observation for agent i at global state s, and γ ∈ [0, 1] is
the discount factor. Each agent has local action-observation
history τ i ∈ T ≡ (Zi × Ai)∗, on which it conditions a
stochastic policy πi

(
ai | τ i

)
that maps each agent’s local

history to a distribution over its set of actions. The set of all
agents’ histories is given by τ :=

{
τ i
}N

i=1
.

For better modeling the multi-agent learning problem with
designed individual rewards, in this paper, we modify the re-
ward function as R : S×A×S → RN+1, namely a function
vector including each agent’s individual reward function and
the shared team reward function. At each time step t, when
all agents take the joint action a =

(
a1t , . . . , a

N
t

)
, the en-

vironment returns the reward r =
(
r1t , . . . , r

N
t , r̂t

)
, where

rit is the individual reward for agent i and r̂t is the team

reward. The team of cooperative agents attempts to learn a

joint policy π (a|τ ) :=
N∏
i=1

πi
(
ai|τ i

)
that maximises their

expected discounted team return, J (π)
.
= E

[ ∞∑
t=0

γtr̂t

]
.

MAPPO: Policy gradient techniques (Sutton et al., 1999)
aim to estimate the gradient of an agent’s expected return
with respect to the parameters of its policy. MAPPO (Yu
et al., 2021) introduced single-agent PPO (Schulman et al.,
2017) into the multi-agent domain under the Centralized
Training with Decentralized Execution (CTDE) framework.
For each agent i, the objective is to maximize

JCLIP
(
θi
)
=E

[
min

(
ηit

(
θi
)
Ai

t, clip
(
ηit

(
θi
)

, 1− ϵ, 1 + ϵ)Ai
t

)]
.

where ηit
(
θi
)
=

πθi(a
i
t|τ

i
t)

π
θi
old

(ai
t|τ i

t)
denotes the probability ratio.

The function clip(·) removes ηit
(
θi
)

outside of the inter-
val [1− ϵ, 1 + ϵ] parameterized by ϵ. A is a generalized
advantage estimator (GAE) (Schulman et al., 2016)

Ai
t =

h∑
l=0

(γλ)
l
δit+l,

where δit = rit + γVϕi (st+1)− Vϕi (st) is the TD error at
time step t for agent i and h is the length of trajectory.

3. Related Work
The state-of-the-art MARL algorithms such as QMIX
(Rashid et al., 2018), QPLEX (Wang et al., 2021a), MAD-
DPG (Lowe et al., 2017), MAPPO (Yu et al., 2021) work
well in many environments, such as MPE and StarCraft II,
however, these algorithms still fail to effectively solve the
task with sparse team rewards. Reward Shaping (Rahmat-
talabi et al., 2016) is an approach for solving this problem,
which utilizes additional individual rewards1 that encode
prior knowledge to help the learning of team policy. How-
ever, this approach may alter the intended objective of the
cooperative task and lead to unexpected behaviors (Randløv
& Alstrøm, 1998; Russell & Norvig, 2020; Amodei et al.,
2016). Moreover, this class of methods is not generic and
needs to be customized according to the task. Although
the methods based on the potential function can ensure the
learning objective unchanged (Ng et al., 1999; Devlin &
Kudenko, 2011; Mannion et al., 2018), they cannot guide
the algorithms to learn the optimal policy in practice. Obvi-
ously, we are more concerned with how to utilize individual
rewards to learn team rewards effectively and efficiently.

1Note that the individual rewards also cover the shaping team
rewards designed for each of the agents. For simplicity, we treat
all shaping rewards as individual ones.
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For multi-agent policy gradient algorithms, many works
(Burda et al., 2019; Ye et al., 2020; Li et al., 2021) adopt
the Multi-Critic technique as a way of combining multi-
ple rewards, which allows each agent to maintain different
critics for different rewards and update the policy accord-
ing to an integration of them to decompose and simplify
the learning of the original value function. By treating the
maximization of individual rewards and team rewards as
two tasks, Multi-Task Learning (Yu et al., 2020; Zeng et al.,
2021; Omidshafiei et al., 2017) can be also adopted as a
way of utilizing individual rewards. For example, Yu et al.
propose a form of gradient surgery that projects a task’s
gradient onto the normal plane of the gradient of any other
task that has a conflicting gradient, avoiding detrimental
gradient interference between task gradients.

Another approach for utilizing individual rewards is Trans-
fer Learning (Liu et al., 2019; Da Silva & Costa, 2019).
Simply, the agents’ policies can be pre-trained in the source
task with the individual rewards, and then fine-tuned in the
target task with the sparse team rewards. Multi-agent Evolu-
tionary Reinforcement Learning (MERL) (Majumdar et al.,
2020) uses a gradient-based optimizer to train policies for
maximizing the dense agent-specific rewards and utilizes
an evolutionary algorithm to maximize the sparse team ob-
jective through neuroevolution on a population of teams.
Although MERL studies the same problem as ours, the high
computational and memory cost of the evolution process
would make it impractical for real-world applications. In ad-
dition, MERL only transfers the skills learned according to
the agent-specific rewards to the team population, and does
not consider using the team policy to guide the optimization
of agent-specific policies.

4. Method
In this paper, we study how to utilize the agents’ individual
rewards under the policy-based CTDE framework. We pro-
pose a novel multi-agent policy gradient algorithm, which
is easier to implement and does not involve high compu-
tational and space complexity. This section introduces the
methodology of this work. We begin with our motivation
and then provide algorithm details.

4.1. Motivation

As mentioned in the last section, individual rewards can
be utilized to assist the learning of team policy via Reward
Shaping, Multi-Critic, Multi-Task Learning and Transfer
Learning. Actually, all these approaches make a fusion of
the two learning goals (i.e., maximizing the individual and
team rewards) to some extent. In our opinion, Reward Shap-
ing, Multi-Critic and Multi-Task Learning make a strong fu-
sion of the two learning goals. However, as the team rewards
are much sparser than the individual rewards, such a strong

fusion may cause the learning objective to deviate from the
goal of team cooperation. In contrast, Transfer learning
conducts a weak fusion of the individual and team rewards,
since the individual rewards are only used for pre-training.
Although Transfer learning ensures that the ultimate goal of
the team remains unchanged, due to the sparsity of the team
rewards, the agents may quickly forget the pre-trained skills
after starting to learn from the team rewards. The above
methods all use one policy network to learn two rewards,
and the interference between them may not guarantee the
final learned policy is aimed at teamwork.

To address these issues, we propose Individual Reward As-
sisted Team Policy Learning (IRAT), which takes the ad-
vantages of the two types of fusion approaches, and mean-
while avoids their deficiencies. Firstly, for each agent, IRAT
adopts two policies to learn two objectives separately with-
out causing mutual interference between them. The indi-
vidual policy directly interacts with the environment for
sampling, served as a way of exploration and trajectory
generation for the team policy and the team policy learns
from these trajectories. Secondly, IRAT adds new policy
discrepancy constraints to constrain the difference between
the two policies so that the individual policy explores in the
direction of increasing team reward, ensuring their optimiza-
tion directions are consistent. Figure 1(a) visualizes the idea
of the IRAT algorithm. The details of the IRAT algorithm
will be given in the following subsections.

4.2. Individual Reward Assisted Team Policy Learning

In IRAT algorithm, each agent i learns an individual policy
πi parameterized by θi to maximize the expected discounted

accumulated individual reward J
(
θi
) .
= E

[ ∞∑
t=0

γtrit

]
, and

a team policy π̂i parameterized by θ̂i to maximize the
expected discounted accumulated team reward Ĵ

(
θ̂i
)

.
=

E
[ ∞∑
t=0

γtr̂t

]
. Two policies are learned simultaneously and

mutually constrained.

The learning structure of IRAT algorithm is shown in Figure
1(b). The individual policies use our proposed cooperation-
oriented objective to adjust their learning behaviors accord-
ing to the learning context of the team policies. Moreover,
they use an increasing-effect KL regularizer to distill team
policy knowledge so that their sampling behaviors can be
gradually biased towards regions with higher team reward.
Team policies use an importance-sampling-corrected opti-
mization objective and a decreasing-effect KL regularizer
to effectively learn from trajectories sampled by individual
policies. In the early stage of learning, for every agent i,
the KL regularizer hardly works for individual policy πi

and the KL regularizer of the team policy π̂i promotes π̂i

to be closer to πi, and the whole algorithm tends to learn
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Optimal Team Policy

Suboptimal Team Policy

IRAT

Team Reward

Individual 

Reward

(a) The process of learning with different rewards.

EnvironmentEnvironment

Individual

 Policies

Team

 Policies

(b) IRAT algorithm learning structure.

Figure 1. Team rewards are too sparse to guide the policy to the optimal policy (Red line). Individual rewards are dense but only
sub-optimal policies can be learned (Yellow line). IRAT is able to leverage individual rewards for efficient exploration and allows the
target policy to move quickly near the optimal team policy in the early learning stage and approach the optimal team policy based on the
team reward in the later learning stage (Blue line).

individual-reward skills. With the progress of learning, the
KL regularizer of πi begins to play a role, while the KL
regularizer of π̂i gradually expires. The whole algorithm
focuses on the learning of team reward.

4.2.1. INDIVIDUAL POLICY LEARNING

Team policies learn from trajectories sampled by individual
policies and the ultimate learning objective is to maximize
the expected accumulative team reward. The individual pol-
icy πi of each agent i needs to adjust its sampling behavior
based on the current learning of the team policy for produc-
ing samples with higher team reward. When two policies
are consistent, the individual policy πi should learn quickly,
while the individual policy πi should update carefully when
the two policies conflict too much so as not to deviate too
far from the team policy π̂i.

To measure the degree of conflict between individual policy
and team policy, we define the similarity between πi and π̂i

on
(
τ it , a

i
t

)
σi
t(θ

i) =
πθi

(
ait|τ it

)
π̂θ̂i

(
ait|τ it

) . (1)

Based on the policy similarity defined, we propose a new
cooperation-oriented objective for πi:

JIRAT
(
θi
)
= E

[
clip

(
σi
t(θ

i), 1− ξ, 1 + ξ
)
Ai

t

]
, (2)

where ξ is a varying coefficient that controls the update
range of σi

t. When ξ is larger, it indicates a weaker constraint
on the similarity of the two policies, and when ξ is smaller,
it indicates a stronger constraint.

The basic idea of JIRAT is to limit the update of πi within
the range defined by the policy similarity σi. To be con-
crete, if the individual policy πi is very different from the

team policy π̂i (i.e., σi is out of the interval [1− ξ, 1 + ξ]),
which may indicate that the two policies are not optimized
along the same or similar directions, the gradients of the pol-
icy parameters with respect to the accumulative individual
rewards will be clipped to make a small change to πi.

Now we introduce how to combine the two objectives
JIRAT and JCLIP for the optimization of individual policy.
Generally, the combination depends on the policy similarity
σi and the advantage function Ai that indicates the update
direction of individual policy.

For a given local trajectory-action pair (τ it , a
i
t), σ

i
t ≤ 1

means that π̂i has a higher probability of choosing ait than
πi. In this situation, a positive advantage Ai

t > 0 indicates
that the individual policy πi and the team policy π̂i tend
to be consistent on (τ it , a

i
t), because the resulted gradient

will make πi(ait|τ it ) increase and get closer to π̂i(ait|τ it ).
To make the approaching process faster, we can choose
a learning objective which can provide a steeper policy
gradient between JIRAT and JCLIP . When Ai

t ≤ 0, the
corresponding gradient would make πi(ait|τ it ) decrease and
lead to more inconsistency between πi(ait|τ it ) and π̂i(ait|τ it ).
So it could be better to carefully reduce the probability value
of πi(ait|τ it ), which suggests a learning objective whose
gradient makes a smaller change to πi. To summarize, the
learning objective of πi when σi

t ≤ 1 is

J
(
θi
)
= E

[
Iσi

t≤1 max
(
JCLIP

(
θi
)
, JIRAT

(
θi
))]

.

(3)

Correspondingly, when σi
t > 1, π̂i has a lower probabil-

ity of choosing ait than πi. Therefore, when Ai
t > 0, the

individual policy πi will further increase the probability
value of πi(ait|τ it ), making the choice of the two policies on
(τ it , a

i
t) more inconsistent. So it could be better to carefully
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increase the probability value of πi(ait|τ it ), which suggests
us to choose a smaller learning objective that can provide
a gentler policy gradient between JIRAT and JCLIP . The
negative advantage Ai

t < 0 in this situation indicates that
the individual policy πi and the team policy π̂i are tend to
be consistent on (τ it , a

i
t), because the resulted gradient will

make πi(ait|τ it ) have a lower probability of choosing ait. To
make the approaching process faster, a learning objective
whose gradient makes a larger change to πi is suggested.
The learning objective of πi in this situation is

J
(
θi
)
= E

[
Iσi

t>1 min
(
JCLIP

(
θi
)
, JIRAT

(
θi
))]

.

(4)

Since both the individual policy πi and the team policy π̂i

learn from the trajectories sampled by πi, in order to learn
the team policy efficiently, the individual policy should
sample trajectories that have higher team reward. Therefore,
for the learning objective of the individual policy πi, we
also add a regularizer that allows the individual policy πi

to distill the knowledge learned by the team policy π̂i and
gradually bias towards regions with higher team reward. In
this paper, we choose Kullback-Leibler (KL) divergence as
the regularizer, with an increasing coefficient α.

All things considered, the entire objective of the individual
policy πi is

J
(
θi
)
=E

[
Iσi

t≤1 max
(
JCLIP

(
θi
)
, JIRAT

(
θi
))

+Iσi
t>1 min

(
JCLIP

(
θi
)
, JIRAT

(
θi
))

−αKL
(
π̂i, πi

)]
.

(5)

4.2.2. TEAM POLICY LEARNING

The team policy π̂i learns from the trajectories sampled
by πi. Because sampling policies and learning policies
are different, it is necessary for π̂i to introduce importance
sampling to correct the learning objective. So the update
ratio of π̂i becomes

σ̂i
t

(
θ̂i
)
=

π̂θ̂i

(
ait|τ it

)
πθi

old

(
ait|τ it

) , (6)

where θiold is the parameter of the individual policy at the
time of sampling.

Seen from Equation 7, in the early stage of algorithm learn-
ing, the individual and team policies may be very different.
So the clip(·) function will clip off most of the gradients,
resulting in the team policy not being updated effectively.
To ensure the effective update of π̂i, a KL regularizer with
a decreasing coefficient β is used to control the distance
between the two policies. So for agent i, the objective of π̂i

is:

Ĵ
(
θ̂i
)
=E

[
min

(
σ̂i
t(θ̂

i)Ât, clip
(
σ̂i
t(θ̂

i),

1− ζ, 1 + ζ) Ât

)
− βKL

(
πi, π̂i

)]
.

(7)

5. Experiments
For complex multi-agent cooperation problems, artificially
designed dense individual rewards that help sparse team-
reward learning may not be perfect or always beneficial to
the learning of team policy. We design multiple scenarios
with different individual reward and team reward relation-
ships based on Multi-Agent Particle Environment (MPE)
(Lowe et al., 2017) and prove that our algorithm Individ-
ual Reward Assisted Team Policy Learning (IRAT), can
utilize individual rewards to learn team policy effectively,
even when the individual rewards sometimes mislead or
conflict with the team reward. Further, we demonstrate the
effectiveness of IRAT in the Multiwalker scenario created
by Stanford Intelligent Systems Laboratory (SISL) (Gupta
et al., 2017) and Google Research Football Environment
(Kurach et al., 2020).

This chapter introduces the methods utilizing individual re-
ward mentioned in Chapter 3 as the benchmark algorithms.
Individual-Reward-Only (IR) method and Team-Reward-
Only (TR) method are baseline algorithms that only learn
from the individual reward and the team reward respectively.
Reward Shaping (RS) method is an algorithm using Reward
Shaping which sums individual reward and team reward
together as the learning reward. Transfer method uses in-
dividual reward for learning in the first half of the training
process, and then changes to learn the team reward. Multi-
Critic method uses two critic networks to evaluate individual
reward and team reward respectively, and then uses the sum
of two advantages to guide the policy to update. PCGrad
(Yu et al., 2020) method treats the learning of individual
reward and team reward as two tasks, and applies one policy
network to learn two objectives.

All algorithms are based on the CTDE framework, and each
agent uses the actor network (for IRAT, the actor network
of the team policy) to make decisions based on local tra-
jectories during execution. The experimental results show
the average team reward per episode and the exponential
value of the average individual reward per step for each
algorithm. The experiments measure the performance of
each algorithm by the average team reward per episode. The
performance of the algorithms on individual and team re-
wards demonstrates the relationship between individual and
team rewards of the task. More details of the experiments
can be found in Appendix B 2.

2Code is available at https://github.com/MDrW/ICML2022-
IRAT.
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(a) Predator-Prey.
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(b) Spread.
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(c) Attack.
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(d) Multiwalker.

Figure 2. The results of different scenarios in MPE and Multiwalker. The first row shows the result of the average team reward per episode,
and the second row shows the result of the exponential value of the average individual reward per step.

5.1. Predator-Prey: Useful Individual Reward

In this scenario, 5 slower predators cooperate to capture 2
faster preys. There are 2 obstacles blocking the road in the
environment and the episode length is 25. Predator agents
are controlled by algorithms and preys are controlled by
a random policy, in which each prey randomly samples a
point in the environment as its action. For each predator
agent, there is a negative reward for the distance to the
nearest prey. If the agent hits any prey, it can get a 5 reward.
But only when more than 1 agent hit a same prey, the team
can get a 20 team reward. Predator agents do not know
this coupling information in advance. They must learn
cooperation through sparse team rewards.

The experimental results are shown in Figure 2(a). In this
scenario, individual reward encourages the agent to ap-
proach and hit preys. It is very helpful for team task but
lack of cooperation information. It can be seen from the re-
sults that the performance of all algorithms on team reward
is consistent with their performance on individual reward,
i.e., algorithms with higher team reward also have higher
individual reward. The individual reward in this scenario is
a good decomposition of the team reward for each agent.

In this scenario, TR could hardly learn an effective policy
due to the sparsity of team reward. Since individual reward
is helpful and dense for team learning, IR is able to learn a
sub-optimal policy that works well. RS does not perform
well due to the interference between the two reward tar-
gets and the cancellation of positive and negative rewards.
At the beginning, Transfer performs the same as IR, and
then gradually forgets the knowledge learned before and
approaches TR. Multi-Critic decomposes the learning of
the value network to accurately approximate the advantage

function, and PCGrad handles the gradient conflict between
the two learning targets. These two methods work better
than RS, but still worse than IR. This reflects that the per-
formance of these methods using one policy network to
learn two rewards is very affected by the quality of the re-
wards. If team reward is too sparse to learn from, it can even
negatively affect the effectiveness of individual reward that
can lead to a sub-optimal policy. IRAT learns to approach
the preys through individual reward, which increases the
probability of obtaining team reward. With the individual
policy distilling the knowledge of the team policy, IRAT
method further improves the success rate of teamwork and
outperforms other methods.

5.2. Spread: Misleading Individual Reward

There are 4 agents and 2 landmarks in this scenario and
agents learn to cooperate to find all landmarks. For each
agent, individual reward is the minimum distance to all
undiscovered landmarks. Only if more than 1 agent detect
the landmark at the same time, the landmark will be dis-
covered, and all agents will be rewarded by a positive team
reward correlated with the number of landmarks discovered
at this time. The reward for discovering one landmark is 10.
As in the above experiment, agents do not know cooperation
information and can only learn cooperation through team
rewards.

Based on the individual reward, agents learn to get close
to undiscovered landmarks. It seems helpful for the learn-
ing of the team reward. However this individual reward
may mislead the agents. When a landmark is found, the
agent will suddenly receive a negative reward from a new
undiscovered landmark, which makes the agents stay where
they are and get into a stalemate, thus missing out on the
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exploration of higher team rewards. As can be seen from
the Figure 2(b), IRAT obtains fewer individual reward in the
later stages of learning, indicating that the agents overcome
the trap brought by individual rewards through cooperation.
TR and Transfer cannot learn a useful policy while other
baseline methods can only find one landmark and get team
reward of 10 in one episode with the length of 25. The
individual policy of IRAT will adjust its sampling behavior
according to the team policy, which can break through the
misleading of individual reward and makes IRAT reach a
higher team reward.

5.3. Attack: Conflicting Individual Reward

In this scenario, there is one landmark with a size of 0.02
and 3 agents with a size of 0.1. The team target is that the
three agents reach the landmark and attack at the same time.
If they complete the attack, the environment returns a team
reward of 20 and ends this episode. In order to assist the
learning, for each agent, a distance penalty to landmark is
added, and a reward of −1 is added to avoid collisions.

However, this widely used design of individual rewards will
have a negative impact on the learning of team goal. In this
scenario, individual rewards guide agents to get close to
landmark and not to collide with each other, but since the
size of landmark is smaller than that of agents, collisions
are bound to occur when three agents attack the landmark
at the same time. Therefore, this reward is beneficial to
learning at the beginning, but it will hinder the learning of
team rewards in the later stage.

As can be seen from Figure 2(c), TR and Transfer cannot
learn a useful policy. For IR, there is a conflict between in-
dividual reward and team reward, and optimizing individual
rewards will necessarily prevent the agents from completing
their attack. Therefore, the probability that IR successfully
samples non-zero team rewards decreases in the later stage.
Multi-Critic and PCGrad perform similarly to IR in the
early stage of learning, but their performance gradually de-
creases as the conflict between individual and team rewards
increases in the later stage of learning. The individual policy
of IRAT distills the knowledge of the team policy in the later
learning process and make the two policies very close to
each other. This dissolves the conflict between the individ-
ual and team rewards and makes IRAT method obtains much
higher team reward than any other benchmark algorithms.
At the same time, the IRAT method has a lower individual
reward than IR because the successful team attacks lead
to more collisions between the agents and generate more
negative rewards.

5.4. Multiwalker

In Multiwalker, a package is placed on top of 2 bipedal
robots which are controlled by algorithms. Bipedal robots

attempt to carry a package as far right as possible. One part
of team reward is the change in the package distance and the
walkers are given an additional team reward of −50 when
they fail the game by either condition. For each agent, it
has an individual reward related to the standing, a positive
reward that encourages the agent to move to the right and a
reward of −5 if it falls. The team reward for this scenario is
not sparse, and it can lead to a certain but not good policy
due to the interference of environmental noise.

The control of the robot is very complex. Although the team
reward is not sparse, due to the large exploration space, the
agent can only converge to a sub-optimal joint policy. As
can be seen in Figure 2(d), TR can learn a certain policy and
IR performs better. Due to the mixed effect between pos-
itive and negative rewards, it is difficult for other baseline
methods to outperform the performance of IR and TR. How-
ever, IRAT can utilize the knowledge contained in individual
rewards to get higher team reward.

5.5. Ablation

In this section, we conducted ablation experiments on
Predator-Prey to prove the role of cooperation-oriented clip
term ICP of individual policy, update clip term TCP modi-
fied by importance sampling of team policy, KL regularizer
IKL of individual policy and KL regularizer TKL of team
policy. To prove the role of the ICP and TCP, we implement
the following variants. KL is a variant of our algorithm that
uses only two KL regularizers. KLICP is a variant that only
use ICP and two KL regularizers while KLTCP is that only
use TCP and two KL regularizers.

As seen in Figure 3(a), the comparison between KL and
KLICP, IRAT and KLTCP shows that when ICP is used, the
individual policy will adjust its learning behavior according
to the performance of the team policy and can explore the
team reward faster. In contrast, when the individual policy
does not use ICP, it samples fewer trajectories of valid team
reward, leading to slower learning of team reward. Compar-
ing KL and KLTCP, IRAT and KLICP, it can be observed
that TCP enables a stable improvement in the performance
of team policy.
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Figure 3. Ablation Experiment in Predator-Prey.
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In order to analyze the impact of KL term, we implemented
and compared the following variant algorithms. CP is a
variant that removes two KL regularizers and uses ICP and
TCP. IKLCP is a variant removing TKL while TKLCP is a
variant removing IKL. The experimental results are shown
in Figure 3(b). ICP provides cooperation-oriented guid-
ance for individual policy updates, which enables individual
policy to adjust the update magnitude according to policy
similarity, but individual policy is still updated based on its
own advantage function, that is, it is still learning individ-
ual reward. Therefore, as learning proceeds, the similarity
between the two policies becomes weaker, the performance
of individual policy gradually decreases to IR, and the team
policy’s effective update decreases accordingly. Compar-
ing CP and IKLCP, IRAT and TKLCP, it can be seen from
their performance that IKL allows the individual policy to
gradually distill the knowledge of the team policy, keeping
the cooperation all the time. So, when IKL is used, the
algorithm gradually focuses on learning the team reward
and obtaining higher team reward. TKL controls the dis-
tance between the two policies in the pre-learning period to
ensure effective updating of the team policy. When the two
rewards are consistent and the policies do not differ much,
the effect of TKL is not obvious, but it does not harm the
performance.

5.6. Google Research Football

We also conduct experiments in the very challenging Google
Research Football Environment (GRF) to verify the perfor-
mance of IRAT in complex scenarios. Specifically, we test
IRAT and 5 baseline methods in the 5-vs-5 half-court of-
fense GRF task. Each tested method should learn to control
the players of the left team (dressed in yellow) except the
goalie to play football match against the right team (dressed
in blue). The goalie and all players of the right team are
controlled by the rule-based program provided by GRF. The
playing area of the game is restricted within the frontcourt
of the left team. In the beginning of each episode, the po-
sitions of all non-goalie players are randomly set, and the
ball is randomly assigned to one player of the left team. An
episode will end when the left team scores a goal, or the
ball gets into the backcourt of the left team, or the maximal
time step 3000 is reached. All of the tested methods adopt
MAPPO as the base learning algorithm.

The team reward for the left team is 1 only when the team
goals and is 0 in other cases. We design four types of indi-
vidual rewards to help with learning, including the position
rewards, shooting rewards, ball-passing rewards, and ball-
possession rewards. The position rewards are punishments
for running out of the field or moving beyond the offside
line. The shooting rewards encourage the shots in the area
with high goal-scoring chance and punish very long or mean-
ingless shots. The ball-passing rewards depends on how the

ball passes between players are performed. While success-
ful ball passes are positively rewarded, the passes leading to
the loss of ball possession, worse offense status, and offside
are punished. The ball-possession rewards are individual
rewards with respect to the switch of the ball possession.
The reward details are given in Appendix.

Each method is trained for 50 million steps and is evaluated
every 500, 000 steps. The evaluation process of a method
contains 50 games and each game lasts for 3000 steps. We
record the number of goals scored by each method in each
game and get the average goal scores in the 50 games. All
tests of the algorithms are conducted with 4 random seeds
and the results are given in Figure 4. It can be found that
IRAT significantly outperforms the other methods, with
higher goal scores and much faster convergence. While
IRAT achieves a goal-score value of 6 within 5 million
steps, the other methods would take at least 20 million steps
to reach such performance. As for the asymptotic perfor-
mance, both IRAT and the Team-Reward-Only (TR) method
finally achieve the highest average goal scores, but the latter
converges much slower and reaches the performance level
of IRAT almost at the end of the training process.

It is also interesting to investigate the learning process of
the other methods. During the early training phase, the
Individual-Reward-Only (IR) method has a much higher
goal-score value than the TR method. This is because the
four types of individual rewards can guide the agents take
behaviors beneficial to score a goal. For example, the ball-
possession rewards require the agents to keep the ball pos-
session when they control the ball and try to get the pos-
session when the ball is owned by the opponent team. The
ball-passing and shooting rewards together can guide the
agents pass the ball to the area with high scoring chance
and make a shot. However, since the individual rewards
are not completely consistent with the team rewards, the
goal-score value of IR decreases after about 15 million steps,
which indicates that IR finds a better way to get higher in-
dividual rewards. The Transfer method uses the individual
rewards to train the agents’ policies in the first 20 million
steps, and switches to use the team rewards to train there-
after. Therefore, the learning curves of the Transfer and IR
methods almost overlap during the initial phase, and after
switching the learning objective, the average goal scores
of the Transfer method begin to increase. Like our IRAT
method, the Reward-Shaping (RS) and Multi-Critic (MC)
methods also combine the team and individual rewards.
With the individual rewards, both the methods can quickly
raise their goal scores in the early stage, and based on the
team rewards, their score values keep increasing as training
proceeds. However, due to the conflict between the individ-
ual and team rewards, the asymptotic performance of the
two methods fail to reach the performance level of the IRAT
and TR methods.
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(a) Number of Goals (b) Number of Tackles (c) Number of Passes (d) Number of Shots

Figure 4. The results of the Google Research Football experiment

Besides the indicator of goal scores, we also examine what
behaviors have been learnt by the agents with the tested
methods. Specifically, in each evaluation game of the meth-
ods, we record the number of tackles, ball passes, and shots
performed by the left team, which directly indicate how
the learning methods deal with the individual rewards. The
results are also shown in Figure 4. Compared with the base-
line methods, the agents controlled by IRAT learn better
skills of tackling and shooting, as the numbers of tackles
and shots performed by the IRAT agents are always the
largest during training. Surprisingly, Figure 4(c) shows that
none of the test methods learn a ball-pass-preferring policy.
As we have observed in the gameplay videos after training,
the offense tactics learnt by these methods are all to let the
agents dribble the ball into the box and take a shot, which
is a simple but effective tactic for beating the rule-based
bot. Obviously, learning such a tactic is much easier than
learning ball-passing tactics.

6. Conclusion
In this paper, we investigate how individual rewards can be
used to assist multi-agent reinforcement learning in cooper-
ative tasks with sparse team rewards. We introduce IRAT,
a novel multi-agent policy gradient algorithm which pro-
vides a new way of utilizing individual rewards to promote
cooperation. The basic idea of IRAT is to learn an indi-
vidual policy and a team policy for each agent, update the
two policies in their common trust regions, and meanwhile
put discrepancy constraints on them to distill knowledge
from each other. Experiments in various scenarios such
as Multi-Agent Particle Environment and Google Research
Football Environment demonstrate that IRAT can greatly
promote team policy learning with individual rewards and
significantly outperforms the state-of-the-art methods.
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A. Pseudo-Code of IRAT
The pseudo-code of the IRAT algorithm is shown in Algorithm 1.

Algorithm 1 Individual Reward Assisted Team Policy Learning (IRAT)
Initialize the parameters θi of individual policy πi for each agent, the parameters ϕi of individual critic V i for each
agent, the parameters θ̂i of team policy π̂i for each agent and the parameters ϕ̂i of team critic V̂ i for each agent, using
Orthogonal initialization
Set learning rate α
while step ≤ stepmax do

set data buffer D = {}
for b = 1 to batch_size do
T = [] empty list
for t = 1 to T do

for all agents i do
pit = πi(τ it ; θ

i)
ait ∼ pit
vit = V i(st;ϕ

i)

p̂it = π̂i(τ it ; θ̂
i)

v̂it = V̂ i(st; ϕ̂
i)

end for
Execute actions a ≡ (a1t , ..., a

n
t ), observe r1t , ..., r

n
t , r̂t, st+1, o

1
t+1, ..., o

n
t+1

T + = [st, o
1
t , ..., o

n
t ,a, p

1
t , ..., p

n
t , p̂

1
t , ..., p̂

n
t , r

1
t , ..., r

n
t , r̂t, o

1
t+1, ..., o

n
t+1]

end for
Compute advantage estimate Ai

t for individual policy via GAE on T , using PopArt
Compute advantage estimate Ât for team policy via GAE on T , using PopArt
D = D ∪ T

end for
for p = 1 to train_epoch do

Sample data d from D
Adam update θi on J(θi) with data d for each agent
Adam update ϕi on L(ϕi) with data d for each agent
Adam update θ̂i on Ĵ(θ̂i) with data d for each agent
Adam update ϕ̂i on L̂(ϕ̂i) with data d for each agent

end for
for e = 1 to eval_episodes do

Evaluate team policy π̂i of each agent
end for

end while

The individual critic network for agent i is trained to minimize the loss function

L(ϕi) =
1

B

B∑
k=1

max
[
(V i

ϕi(sk)−Ri
k)

2, (clip(V i
ϕi(sk), V

i
ϕi
old

(sk)− ϵ, V i
ϕi
old

(sk) + ϵ)−Ri
k)

2
]

The team critic network for agent i is trained to minimize the loss function

L̂(ϕ̂i) =
1

B

B∑
k=1

max
[
(V̂ i

ϕ̂i(sk)− R̂k)
2, (clip(V̂ i

ϕ̂i(sk), V̂
i
ϕ̂i
old

(sk)− ϵ̂, V̂ i
ϕ̂i
old

(sk) + ϵ̂)− R̂k)
2
]

where B refers to the batch size, Ri
k is the discounted reward-to-go of agent i’s individual reward and R̂k is the discounted

reward-to-go of team reward.
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Table B.1. Common hyperparameters used in all algorithms in MPE and Multiwalker.

Common hyperparameters Value

num GRU layers 1
RNN hidden state dim 64

fc layer dim 64
num fc 2

num fc after 1
recurrent data chunk length 10

gradient clip norm 10.0
gae lamda 0.95

gamma 0.99
value loss huber loss

huber delta 10.0
batch size num envs × buffer length × num agents

mini batch size batch size / mini-batch
optimizer Adam

optimizer epsilon 1e-5
weight decay 0

network initialization Orthogonal
use reward normalization True
use feature normalization True

activation ReLU
mini-batch 1

epoch 10
gain 0.01
clip 0.2

num envs 8

B. Implementation Details
B.1. MPE and Multiwalker Experiment

The common parameters of all algorithms in different scenarios are shown in Table B.1, and the parameters of IRAT are
shown in Table B.2.

B.2. Google Research Football Experiment

Problem Setting: In the football experiment, the playing field of the game is restricted within the frontcourt of the left team,
which is also the backcourt of the right team. According to the internal coordinate representation, the coordinates of the
four corners of the playing field are (0,−0.42), (0, 0.42), (1.0,−0.42), and (1.0, 0.42). The 4 non-goalie players of the
left team are randomly placed onto the field at the beginning of an episode, with their x-coordinates and y-coordinates
uniformly sampled from [0.51, 0.65] and [−0.42, 0.42], respectively. The initial positions of the non-goalie players of the
right team are also randomly initialized, with the x-coordinates and y-coordinates uniformly sampled from [0.66, 0.8] and
[−0.24, 0.24], respectively. In each episode, the ball is randomly assigned to one of the 4 non-goalie players of the left team
initially. The roles of the four players are center forward (CF), right midfield (RM), left back (LB), and right back (RB) in
both the two teams. The difficulty level of the right team is 0.05. Although the highest difficulty level is 1.0, beating a 0.05
difficulty-level opponent team is not that easy for the tested methods.

Reward Setting: As mentioned in the paper, the team reward is 1 only when the yellow team scores a goal and is 0 in other
cases. The setting of the individual rewards is much more complicated. We summarize the specific rules for setting the
position reward rxy , shooting reward rsh, ball-passing reward rpass, and ball-possession reward rposs in Table B.3.

Observation Representation: As the 5-vs-5 football task is extremely difficult, we have designed a very comprehensive
representation of the agents’ observations in our experiment. Specifically, we extract 14 groups of information from a single
agent’s perspective and generate a 14-vector representation of the agent’s observation, which is adopted as the input of the
agent’s policy network. The input of each agent’s critic networks is the concatenation of the first layers of all agents’ policy
networks. The details of the 14 groups of observation information are listed in Table B.4.
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Table B.2. Hyperparameters of IRAT used in different scenarios of MPE and Multiwalker.

Scenarios Hyperparameters of IRAT

Predator-Prey

The Policy Clipping Ratio ξ in JIRAT : 3.0 → 0.5, decaying in 2 million steps
The Policy Clipping Ratio ζ in Ĵ : 0.2
KL Loss Coefficient in JIRAT : 0 → 1.0, growing in 2 million steps
KL Loss Coefficient in Ĵ : 1.0 → 0, decaying in 2 million steps

Spread

The Policy Clipping Ratio ξ in JIRAT : 3.0 → 0.5, decaying in 2 million steps
The Policy Clipping Ratio ζ in Ĵ : 0.2
KL Loss Coefficient in JIRAT : 0.2 → 2.0, growing in 2 million steps
KL Loss Coefficient in Ĵ : 1.5 → 0, decaying in 1.6 million steps

Attack

The Policy Clipping Ratio ξ in JIRAT : 3.0 → 0.5, decaying in 2 million steps
The Policy Clipping Ratio ζ in Ĵ : 0.2
KL Loss Coefficient in JIRAT : 0 → 1.0, growing in 2 million steps
KL Loss Coefficient in Ĵ : 1.0 → 0, decaying in 2 million steps

Multiwalker

The Policy Clipping Ratio ξ in JIRAT : 0.2 → 0.5, growing in 6 million steps
The Policy Clipping Ratio ζ in Ĵ : 0.2
KL Loss Coefficient in JIRAT : 0 → 1.0, growing in 6 million steps
KL Loss Coefficient in Ĵ : 1.5 → 0.5, decaying in 6 million steps

Hyperparameters: The hyperparameters chosen for the tested methods in the football experiment are listed in Table B.5.

C. Additional Experiments
C.1. Positive Individual Reward in Predator-Prey

To verify whether individual rewards with the same guiding meaning but different positive and negative values have an
effect on the effectiveness of algorithms, we designed a Predator-Prey scenario with totally positive individual rewards. The
scenario uses 1.0/(0.05 + nearest distance to prey) instead of the negative distance penalty of the previous experiment to
guide the predator closer to the prey. The results of the experiment are shown in Figure 5(a).

Comparing Figure 5(a) and Figure 2(a), it can be seen that negative individual reward cancels out with positive team rewards,

Table B.3. The individual reward setting adopted in the football experiment
Reward Type Rules

Position Reward
rxy = −0.02 if a player runs out of the playing field
rxy = −0.04 if a player goes beyond the offside line
rxy = −0.01 if a player is still in an offside position

Shooting Reward
rsh = 0.16 if a player shoots when its x-coordinate is larger than 0.66 and
its y-coordinate is in [−0.25, 0.25]
rsh = −0.08 if a player shoots when its x-coordinate is smaller than 0.3

Ball-Passing Reward
rpass = −0.2 if a player performs an offside pass
rpass = 0.4 if the ball is successfully passed from one player to another
rpass = −0.4 if the ball get lost after a player performs a pass

Ball-Possession Reward
rposs = −0.3 if a player takes the ball into the backcourt of the left team
rposs = −0.03 if the ball player loses the ball possession
rposs = 0.03 if a player gets the ball possession back
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Table B.4. The observation features designed for the tested methods in the football experiment
Observation Info Description

Ball ball position, ball direction, ball rotation
Ball Possession one-hot id of the ball-owned team, one-hot id of the player having the ball

Player Info the player’s one-hot id, position, moving direction, tired factor, and yellow-card indicator

Player-Ball Info the player’s relative position w.r.t. the ball, the distance between the player and the ball,
and the reciprocal of the distance

Player-Ball Player Info the player’s relative position w.r.t. the ball player, the distance between the player and
the ball player, and the reciprocal of the distance

Player-Teammates Info

the player’s relative positions w.r.t. the teammates, the distance between the player and
the teammates, the reciprocals of the distances, cosine values of the angles between
the player’s and the teammates’ moving directions, cosine values of the angles between
the player’s moving direction and the teammates’ position vectors

Player-Opponents Info

the player’s relative positions w.r.t. the opponents, the distance between the player and
the opponents, the reciprocals of the distances, cosine values of the angles between
the player’s and the opponents’ moving directions, cosine values of the angles between
the player’s moving direction and the opponents’ position vectors

Left Team Info the positions, moving directions, tired factors, offside and yellow-card indicators of all
players in the left team

Right Team Info the positions, moving directions, tired factors, offside and yellow-card indicators of all
players in the right team

Special Player Info the relative positions, distances, distance reciprocals, cosine values w.r.t. two nearest
teammates, two nearest opponents, and the goalie of the right team

Game Mode one-hot id of the game mode (e.g., normal, penalty, corner, free kick)
Action Mask a vector indicating which actions of the player are legal currently

Action Sequence one-hot ids of the actions taken by the player in the last 4 steps

Team Formation the mean and variance of the positions of the left-team players, the mean and variance of
the positions of the right-team players

which can interfere with learning. With positive individual reward, IR, RS, Transfer, Multi-Critic and PCGrad all achieve
higher team reward. IRAT utilizes individual policies and their sampled trajectories, a high-level knowledge, rather than raw
reward values, that is free from such cancellation. Thus IRAT can perform equally excellent performance in both scenarios.
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(a) Positive Individual Reward in
Predator-Prey.
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(b) Predator-Prey.
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(c) Spread.
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(d) Attack.

Figure 5. The additional results of different scenarios in MPE.

C.2. MPE with Discrete Action Space

We also append the experiments in three scenarios of MPE with discrete action space, and it can be seen in Figure 5(b), 5(c),
5(d) that IRAT still outperforms the other algorithms in discrete action space.

C.3. SMAC Experiment

Further, we verify the performance of the IRAT algorithm in two maps, 3s_vs_5z and 10m_vs_11m, of the StarCraft II
Multi-Agent Challenge Environment (SMAC). We directly adopt the default dense rewards of SMAC (which are commonly
used by most multi-agent algorithms such as MAPPO) as the agents’ individual rewards. The team reward is set 20 when
the agents’ team wins the game. The experimental results are shown in Figure 6. In 3s_vs_5z, IRAT is able to reach the 100
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Table B.5. The hyperparameters of the tested methods in the Google Research Football experiment
Method Hyperparameters

Base Learner (MAPPO)

Policy Network: The first layer is the concatenation of 14 private FC layers, which have 16, 16, 16, 16,
16, 32, 32, 32, 32, 32, 16, 32, 64, and 32 units, respectively. Each of the private layers
is fully connected to the corresponding feature vector input.
The second layer is a 128-unit FC layer.
The third layer is a 96-unit FC layer.
Relu activation

Value Network: The first layer is a 128-unit FC layer.
The second layer is a 96-unit FC layer.
Relu activation

The Policy Clipping Ratio ϵ: 0.2
Update Period: 1, 024 steps
Number of Epochs Per Update: 8
Batch Size: 256
GAE Parameter (λ): 0.97
Optimizer: Adam (β1 = 0.9, β2 = 0.999, ϵadam = 10−5)
Learning Rate: 0.00019896
Value Loss Coefficient: 0.25
Entropy Term Coefficient: 0.001
Gradient Clip Norm: 40.0
Discount Rate (γ): 0.993
Reward Scaling Factor: 5.0

IRAT

The Policy Clipping Ratio ξ in JIRAT : 0.5 → 0.2, decaying in 10 million steps
The Policy Clipping Ratio ζ in Ĵ : 0.2
KL Loss Coefficient in JIRAT : 0 → 0.005, growing in 10 million steps
KL Loss Coefficient in Ĵ : 0.005 → 0, decaying in 10 million steps

percent win rate faster while in 10m_vs_11m, IRAT eventually converges to higher win rate.
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(a) 3s_vs_5z.
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(b) 10m_vs_11m.

Figure 6. The results of StarCraft II.


