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Abstract

Existing out-of-distribution (OOD) detection
methods are typically benchmarked on training
sets with balanced class distributions. However,
in real-world applications, it is common for the
training sets to have long-tailed distributions.
In this work, we first demonstrate that existing
OOD detection methods commonly suffer from
significant performance degradation when the
training set is long-tail distributed. Through
analysis, we posit that this is because the models
struggle to distinguish the minority tail-class
in-distribution samples, from the true OOD
samples, making the tail classes more prone to be
falsely detected as OOD. To solve this problem,
we propose Partial and Asymmetric Supervised
Contrastive Learning (PASCL), which explicitly
encourages the model to distinguish between
tail-class in-distribution samples and OOD
samples. To further boost in-distribution classi-
fication accuracy, we propose Auxiliary Branch
Finetuning, which uses two separate branches
of BN and classification layers for anomaly
detection and in-distribution classification,
respectively. The intuition is that in-distribution
and OOD anomaly data have different underlying
distributions. Our method outperforms previous
state-of-the-art method by 1.29%, 1.45%, 0.69%
anomaly detection false positive rate (FPR) and
3.24%, 4.06%, 7.89% in-distribution classifica-
tion accuracy on CIFAR10-LT, CIFAR100-LT,
and ImageNet-LT, respectively. Code and
pre-trained models are available at https:
//github.com/amazon-research/
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1. Introduction
Deep neural networks (DNNs) are widely known to be over-
confident on what they do not know. Given a test sample
that does not belong to any training class, DNNs tend to
recklessly predict this out-of-distribution (OOD) test sample
as one of the training classes with high confidence, which is
doomed to be wrong (Hendrycks & Gimpel, 2017; Hein
et al., 2019). Numerous OOD detection methods have
been proposed to solve this problem with promising re-
sults (Hendrycks et al., 2019; Mohseni et al., 2020; Liu
et al., 2020). The goal of OOD detection is two-fold: (i) to
distinguish OOD samples from in-distribution samples (i.e.,
anomaly detection), and (ii) to still achieve high accuracy
on the in-distribution sample classification.

Existing OOD detection methods are typically evaluated on
balanced training sets. However, the training sets in real-
world applications often follow a long-tailed distribution
(Van Horn & Perona, 2017; Liu et al., 2019; Cui et al., 2019;
Menon et al., 2021). In view of this, we benchmark existing
OOD detection methods (including both widely used classic
methods and recently published ones) on the long-tailed
training sets. We observe significant performance drop in
terms of both anomaly detection and in-distribution classi-
fication, when compared with the results obtained on the
balanced training sets (Table 1). This shows the challenge
of OOD detection on long-tailed recognition (LTR) task.
Moreover, we show that it cannot be easily fixed by naive
solutions such as combining state-of-the-art OOD detection
and long-tailed recognition methods (Table 2). Through
feature visualization (Fig. 1), we further unveil the underly-
ing cause for such performance drop: The model struggles
to distinguish tail-class in-distribution samples from OOD
samples. In contrast, the head-class in-distribution samples
can be easily distinguished from OOD samples.

Motivated by such observations, we propose Partial and
Asymmetric Supervised Contrastive Learning (PASCL) as
the solution for OOD detection in long-tailed recognition.
The key intuition is to push tail-class in-distribution sam-
ples away from OOD samples in the feature space through
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supervised contrastive learning (SCL). The core idea of our
technical design is that head-class in-distribution, tail-class
in-distribution, and OOD samples play different roles in
long-tailed OOD detection, and thus they should be treated
differently in contrastive learning. Compared to traditional
supervised contrastive learning (Khosla et al., 2020), PASCL
is featured by two important insights tailored for OOD detec-
tion on long-tailed training sets: partiality and asymmetry.

▷ Partiality: Through feature visualization (Fig. 1), we
observe tail-class in-distribution samples to be heavily over-
lapped with OOD samples in the feature space, while head-
class in-distribution samples are relatively well separated
from OOD samples. For this reason, we only partially ap-
ply contrastive loss on tail-class in-distribution and OOD
samples, rather than on all training samples. In other words,
we only push OOD data away from tail-class in-distribution
data. Otherwise, if we simultaneously pushed OOD sam-
ples away from all in-distribution samples, the learning
process would bias towards discriminating the head-class
in-distribution and OOD data, so that the difference between
tail-class in-distribution and OOD data could not be effec-
tively learned. This is because head-class in-distribution
and OOD data make up the great majority of the training
set. Experimental results show partiality plays an important
role in OOD detection under long-tailed recognition.

▷ Asymmetry: For traditional supervised contrastive
learning, samples from the same classes are considered
as positive pairs. However, in OOD detection, the training
OOD images are not necessarily from the same class, nor
should they be pulled together in the feature space. Indeed,
the OOD training set usually has vast diversity (in both low-
level visual features and high-level semantics) in order to be
representative enough for the open visual world. Therefore,
while pushing tail-class in-distribution samples away from
OOD samples, we pull tail-class in-distribution samples
within the same classes together, but do not pull OOD train-
ing samples together. Experimental results show that such
asymmetric push-and-pull operation on in-distribution and
OOD samples is an important knob for good performance.

To further boost the in-distribution classification accuracy
in OOD detection, we propose Auxiliary Branch Finetun-
ing (ABF). Current state-of-the-art OOD detection methods
train the models using both in-distribution and OOD data
(Hendrycks et al., 2019; Liu et al., 2020; Mohseni et al.,
2020), where the batch normalization (BN) statistics are
estimated using both in-distribution and OOD data. Al-
though such BN statistics of mixture distribution between
in-distribution and OOD data are beneficial for anomaly
detection, they are not the optimal choice for in-distribution
classification. This is because the in-distribution and OOD
data have different underlying distributions, so that the statis-
tics of the mixture distribution estimated in BN do not match
those of the in-distribution test data. Previous work has

shown that even slight mismatch in BN statistics can lead to
significant performance decay under covariate shifts (Chang
et al., 2019; Benz et al., 2021; Xie & Yuille, 2019). More-
over, the classification layer (i.e., the last fully connected
layer) has been empirically shown to play an important role
in long-tailed recognition (Kang et al., 2020). Therefore,
our auxiliary branch finetuning scheme uses two separate
branches of BN and classification layers for anomaly de-
tection and in-distribution classification, while all the other
layers are shared across the two tasks.

We evaluate our method on the recently published seman-
tically coherent OOD detection benchmarks (Yang et al.,
2021). PASCL outperforms previous state-of-the-art method
by 1.29%, 1.45%, 0.69% anomaly detection false positive
rate (FPR) and 3.24%, 4.06%, 7.89% in-distribution classifi-
cation accuracy on CIFAR10-LT, CIFAR100-LT (Cao et al.,
2019), and ImageNet-LT (Liu et al., 2019), respectively.

2. Related Work
OOD detection Hendrycks & Gimpel (2017) formally
studied the OOD detection problem in deep learning. The
authors proposed to use the maximum softmax probability
(MSP) as a naive baseline for OOD detection, and observed
DNNs are commonly overconfident on OOD test samples.
Other OOD detection measures such as Gram matrix (Sastry
& Oore, 2020), Mahalanobis distance (Lee et al., 2018), and
free energy (Liu et al., 2020) were also studied.

Hendrycks et al. (2019) proposed the classical Outlier Ex-
posure (OE) approach, which utilized unlabeled auxiliary
training set as OOD training data. OE assigns uniform dis-
tribution as pseudo labels for OOD training data, and then
minimizes the cross-entropy loss on both in-distribution and
OOD training data. The use of auxiliary OOD traing sam-
ple greatly boosts OOD detection performance compared
with previous methods that only use in-distribution train-
ing samples. OE has since become a cornerstone where
many following works are based upon. EnergyOE (Liu
et al., 2020) maximizes the free-energy of OOD training
samples. OECC (Papadopoulos et al., 2021) replaced the
cross-entropy loss in OE with total variance loss and further
added a confidence-calibration loss term. NTOM (Chen
et al., 2021) proposed to classify all OOD samples into one
abstaining class, and used hard-sample mining to select the
most informative OOD training samples in each epoch.

Lately, Yang et al. (2021) considered a more challenging
scenario where the unlabeled auxiliary training set may con-
tain both in-distribution and OOD data. They proposed
unsupervised dual grouping (UDG) to split the unlabeled
in-distribution and OOD training samples. The authors
also pointed out that in-distribution data even widely ex-
ist in previous OOD benchmarks. To solve this problem,
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the authors constructed a new OOD detection benchmark,
named semantically coherent out-of-distribution detection
(SC-OOD), which appears more challenging than previous
benchmarks (Yang et al., 2021).

Several previous works have shown that contrastive learning
(CL) and distance metric learning benefits OOD detection
on balanced training sets (Winkens et al., 2020; Zhou et al.,
2021a; Sohn et al., 2021; Yang et al., 2020). Our PASCL
differs from them since it is tailored for the OOD detection
problem on long-tailed dataset, which is a new challenge
unaddressed in the prior literature.

Long-tailed recognition The most straight forward solu-
tion for long-tailed recognition is to re-balance the training
set using undersampling or oversampling (He & Garcia,
2009). However, such methods lead to unsatisfactory perfor-
mance in large-scaled deep learning (Cui et al., 2019; Wang
et al., 2021b). Kang et al. (2020) observed that after the
DNN has been trained on imbalanced data, simply retraining
the classification layer on a re-balanced dataset can signifi-
cantly boost long-tailed recognition performance. Recently,
Menon et al. (2021) proposed a formal statistical frame-
work for long-tailed recognition and a statistically grounded
long-tailed recognition method termed logit adjustment that
achieves impressive improvements over previous methods.

Long-tailed OOD detection Roy et al. (2022) studied a
long-tail OOD detection problem in medical image analysis,
whose problem setting is relevant but intrinsically differ-
ent with ours. In their work, all the head-classes are in-
distribution while all the tail-classes are considered as OOD.
Their goal is to distinguish the head-class in-distribution
samples from the tail-class OOD samples. In contrast, in
our more general problem setting, the in-distribution sam-
ples come from both head-classes and tail-classes, and the
same goes for the OOD samples. OLTR (Liu et al., 2019)
is an long-tailed recognition method taking open set clas-
sification into consideration. Its main goal is to improve
in-distribution classification accuracy in long-tailed recogni-
tion instead of OOD detection. Although it achieves better
OOD detection performance than naive baselines such as
MSP, it is not comparable with state-of-the-art OOD detec-
tion methods such as OE (see Appendix C.3 for results). In
contrast, our paper focuses on improve OOD detection per-
formance on long-tailed training sets. More related works
are discussed in Appendix D.

3. The Challenge of OOD Detection in
Long-Tailed Recognition

In this section, we first examine the performance of exist-
ing OOD detection methods on long-tailed training sets.
Specifically, we benchmark six different OOD detection
methods, including both widely used classical methods (e.g.,
MSP (Hendrycks & Gimpel, 2017), OE (Hendrycks et al.,

2019), EnergyOE (Liu et al., 2020), SOFL (Mohseni et al.,
2020) and very recently published new methods (e.g., OECC
(Papadopoulos et al., 2021), NTOM (Chen et al., 2021)).
We train all methods on CIFAR10 (Krizhevsky, 2009) and
CIFAR10-LT (i.e., the long-tailed version of CIFAR10) with
imbalance ratio1 ρ = 100.

We then evaluate OOD detection performance on the re-
cently published SC-OOD benchmarks. The results are
summarized in Table 1.2 Compared with the results ob-
tained on the balanced CIFAR10 dataset, CIFAR10-LT leads
to significant performance drop in terms of both anomaly
detection and in-distribution classification.

Table 1. The challenge of OOD detection in long-tailed recogni-
tion: existing OOD detection methods suffer significant perfor-
mance drop when trained on long-tailed datasets. For each method,
we train two ResNet18 models on CIFAR10 and CIFAR10-LT,
respectively. Reported are the average performance across six
different OOD test sets in the SC-OOD detection benchmark. The
performance drop of each method from CIFAR10 training set to
CIFAR10-LT training set are shown in parenthesis. All results are
shown in percentage.

Method Dataset AUROC (↑) AUPR (↑) FPR95 (↓) ACC (↑)

NT
(MSP)

CIFAR10 85.86 84.37 52.52 93.45
CIFAR10-LT 72.28 (-13.58) 70.27 (-14.10) 66.07 (+13.55) 72.34 (-21.11)

OE CIFAR10 96.68 96.29 14.59 92.81
CIFAR10-LT 89.92 (-6.75) 87.71 (-8.58) 34.80 (+20.21) 73.30 (-19.51)

EnergyOE CIFAR10 96.59 96.37 14.80 93.07
CIFAR10-LT 89.31 (-7.27) 88.92 (-7.45) 40.88 (+26.08) 74.68 (-18.39)

SOFL CIFAR10 96.74 96.60 14.57 89.13
CIFAR10-LT 91.13 (-5.61) 90.49 (-6.10) 34.98 (+20.41) 54.42 (-34.71)

OECC CIFAR10 96.27 95.41 14.77 91.95
CIFAR10-LT 87.28 (-8.99) 86.29 (-9.12) 45.24 (+30.47) 60.16 (-31.79)

NTOM CIFAR10 96.92 96.95 14.95 91.44
CIFAR10-LT 92.89 (-4.03) 92.31 (-4.65) 29.03 (+14.09) 66.41 (-25.03)

Table 2. Naive combinations of state-of-the-art OOD detection and
long-tailed recognition methods cannot address the challenge of
OOD detection in long-tailed recognition (LTR). All methods are
trained on CIFAR10/100-LT using ResNet18 and evaluated on the
SC-OOD benchmarks. The best results are shown in bold and the
second-best ones are underlined. Mean and standard deviation
over six random runs are shown for our method.

Din

OOD
Detection
Method

LTR
Method AUROC (↑) AUPR (↑) FPR95 (↓) ACC (↑)

CIFAR
10-LT

OE +

None 89.92 87.71 34.80 73.30
Re-weighting 89.34 86.39 37.09 70.35

τ -norm 89.58 85.88 33.80 73.33
LA 89.46 86.39 34.94 73.93

Our method 90.99±0.19 89.24±0.34 33.36±0.79 77.08±1.01

CIFAR
100-LT

OE +

None 72.62 66.73 68.69 39.33
Re-weighting 72.07 66.05 70.62 39.42

τ -norm 72.71 66.59 68.04 40.87
LA 72.56 66.48 68.24 42.06

Our method 73.32 ± 0.32 67.18 ± 0.10 67.44 ± 0.58 43.10 ± 0.47

We further show that such challenge can not be easily solved

1Imbalance ratio: the number of training samples in the most
frequent class divided by that of the least frequent class.

2The evaluation measures will be described in Section 5.1.
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by naive solutions such as combining state-of-the-art OOD
detection methods with state-of-the-art long-tailed recog-
nition methods. Specifically, we combine OE with three
popular long-tailed recognition methods: re-weighting (Cui
et al., 2019), τ -norm (Kang et al., 2020), and logits adjust-
ment (LA) (Menon et al., 2021). The results are shown in
Table 2. As we can see, combining OE with long-tailed
recognition methods does not necessarily bring benefit com-
pared with the original OE baseline: E.g., on CIFAR10-LT,
OE has the best AUROC and AUPR compared with all
three combination methods. In contrast, our method (to be
introduced later) achieves considerable improvements.

OOD

Figure 1. Visualization of in-distribution and OOD samples in
the feature space. We visualize the penultimate layer features
of ResNet18 trained by OE on CIFAR10-LT, using the same visu-
alization method as in (Pang et al., 2020). 100 test samples from
each in-distribution class and 100 OOD samples are visualized.
The model struggles to distinguish tail-class in-distribution classes
like “horse” (grey) and “ship” (yellow) from OOD samples (black).
Note that in CIFAR10-LT, the number of training samples in each
class follows the alphabetic order: the “airplane” class has the
most training samples and the “truck” class has the least. For
comparison, see visualization on the balanced CIFAR10 training
set in Appendix B.

Why OE fails on long-tailed recognition Feature distri-
butions of models trained by OE on CIFAR10 and CIFAR10-
LT are visualized in Fig. 4 (in Appendix) and 1, respectively.
As we can see, on the balanced CIFAR10 dataset, the OOD
samples are well separated from all in-distribution classes
(Fig. 4). In contrast, when trained on CIFAR10-LT, the fea-
tures of tail-class in-distribution (e.g., horse, ship) samples
and OOD samples heavily overlap, while those of head-class
in-distribution (e.g., airplane, automobile, bird) samples are
well separated from OOD samples (Fig. 1). This indicates
that on long-tailed datasets, models trained by OE struggles
to distinguish tail-class in-distribution samples from OOD
samples, which is likely to be a major contributing cause
of the performance drop of OE on long-tailed recognition.
An intuitive explanation for this phenomenon is that the
tail-class in-distribution samples have few occurrence in
the training set, and are thus more likely to result in low-

confidence predictions like the OOD samples.

4. Method
4.1. Preliminary

State-of-the-art OOD detection methods train the model on
both in-distribution and OOD training data. Let Din and
Dout denote an in-distribution training set and an unlabeled
OOD training set, respectively. The training objective of
the existing OOD detection methods (e.g., OE, EnergyOE,
OECC, NTOM, etc.) is formulated as:

L = Ex∼Din [Lin(x)] + λEx∼Dout [Lout(x)], (1)

where Lin is for in-distribution classification and Lout is to
assign low prediction confidence to OOD data. For exam-
ple in OE, Lin = XEntropy(x, y(x)) is the cross-entropy
loss on in-distribution data x and the corresponding label
y(x), and Lout(x) = KL(f(x)∥u) is the KL divergence be-
tween the model output (i.e., logits) f(x) and the uniform
distribution vector u.

4.2. Partial and Asymmetric Contrastive Learning

Figure 2 illustrates the core idea of our partial and asym-
metric supervised contrastive learning strategy for OOD
detection in long-tailed recognition. Traditional supervised
contrastive learning treats all classes equally: pulling is
applied within each class and pushing between any two dif-
ferent classes (Figure 2 (a)). In contrast, PASCL treats head-
class in-distribution, tail-class in-distribution, and OOD
classes differently: PASCL applies pulling only within each
tail-class in-distribution class, and applies pushing among
tail-class in-distribution and OOD samples (Figure 2 (b)).

(a) The original SCL (b) Our PASCL

Figure 2. Illustration of our partial and asymmetric push-and-pull
strategy, in contrast to those in the original supervised contrastive
learning (SCL). The ellipses with different colors represent dif-
ferent types of training samples. Grey: tail-class in-distribution
classes; blue: head-class in-distribution classes; orange: OOD
training samples. The green and red arrows show pulling and
pushing operations in contrastive learning, respectively.

Next we formularize our method to achieve the above par-
tial and asymmetric push-and-pull strategy. Specifically,
we design the following partial and asymmetric supervised
contrastive learning (PASCL) loss:
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Lc = Ex∈I [Lc(x)], where Lc(x) =∑
p∈P(x)

− 1

|P(x)|
log

exp(z(x)T z(p)/τ)∑
a∈A(x)

exp(z(x)T z(a)/τ)
, (2)

where z(x) is the output of a non-linear projection on the
model’s penultimate layer at sample x (as in the original
supervised contrastive learning), τ is the scaling tempera-
ture, P(x) = {p|y(p) = y(x), p ∈ Din \ {x}} is the set of
positive samples with respect to x (i.e., the samples with
identical ground truth labels with x), A(x) is the set of
all contrastive samples with respect to x, and I is the set
of training samples where the PASCL loss is applied on.
At first glance, Eq. (2) seems identical with the original
supervised contrastive learning loss (Khosla et al., 2020),
previously used to learn good features for in-distribution
classification. However, the key difference lies in the defini-
tions of I and A(x), as we detail below.

The original supervised contrastive learning (Khosla
et al., 2020) All classes play the same role in the original
supervised contrastive learning: Pulling is done within every
class and pushing between every pair of different classes.
Such uniform contrastive loss can be applied either only on
in-distribution samples (i.e., I = Din, A(x) = Din \{x}) or
on both in-distribution and OOD samples (i.e., I = Din ∪
Dout, A(x) = Din ∪Dout \ {x}). In the latter case, all OOD
samples are assumed to form the (C+1)th class along with
the C in-distribution classes. Experimental results show the
latter empirically achieves slightly better performance than
the former when combined with OE (Appendix C.2).

Partial supervised contrastive learning Here we ap-
ply supervised contrastive learning only on tail-class in-
distribution and OOD data: I = Dtail ∪ Dout, A(x) =
Dtail ∪ Dout \ {x}, where Dtail is the set of all tail-class in-
distribution training data. This design is motivated by our
observations in Figure 1, where head-class in-distribution
samples are easier to be separated from the OOD samples,
since there are enough occurrence of them in the training
set. Thus, we do not use an extra supervised contrastive
learning loss to explicitly push them away. Otherwise, if
we simultaneously pushed OOD samples away from all
in-distribution training samples, the difference between
head-class in-distribution and OOD data would be over-
emphasized, hindering the learning of the difference be-
tween tail-class in-distribution and OOD samples.

Asymmetric supervised contrastive learning In this
case, OOD training samples are only contained in A(x)
but not in I : I = Din, A(x) = Din ∪ Dout \ {x}. That is,
we still push in-distribution samples away from OOD sam-
ples and in-distribution samples from different classes, and
pull in-distribution samples within the same class together,
but do not pull OOD samples together. This is because the
OOD training samples are not necessarily from the same

class. Hence they should not be pulled together in the feature
space, as the OOD training set typically has huge diversity
in order to be representative for the open visual world.

Putting them together: the PASCL framework Com-
bining partiality and asymmetry together, we have

I = Dtail,A(x) = Dtail ∪ Dout \ {x}. (3)

In summary, our final loss function is
L = Ex∼Din [Lin(x)] + λ1Ex∼Dout [Lout(x)]

+ λ2Ex∼I [Lc(x)], (4)

where Lin(x) and Lout(x) are identical with those in OE
(see Eq. (1)), and Lc(x) is as defined in Eq. (2) with I and
A(x) defined in Eq. (3).

4.3. Auxiliary Branch Finetuning (ABF)

As demonstrated in Eq. (1), current state-of-the-art OOD de-
tection methods train the models using both in-distribution
and OOD data (Hendrycks et al., 2019; Liu et al., 2020;
Mohseni et al., 2020), where the BN statistics are estimated
using both in-distribution and OOD data. Such BN statistics
of mixture distribution between in-distribution and OOD
data are beneficial for anomaly detection (i.e., to distinguish
in-distribution from OOD samples), but not optimal for in-
distribution classification. The ideal case is to use mixture
BN statistics for anomaly detection and pure in-distribution
BN statistics for in-distribution classification. Moreover, the
classification layer (i.e., the last fully connected (FC) layer)
has been empirically shown to play an important role in long-
tailed recognition (Kang et al., 2020). Thus, it may also be
beneficial to use a separate classification layer trained only
on Din for better in-distribution classification. To this end,
we propose Auxiliary Branch Finetuning (ABF).

The overall framework of auxiliary branch finetuning is
shown in Figure 3. We add an auxiliary counterpart for
each BN layer and the classification layer in the model. The
training process consists of two stages. In the first stage, we
train the main branch using both in-distribution and OOD
data, by minimizing Eq. (4). In the second stage, we fine-
tune the auxiliary BN and classification layers, while fixing
all the other layers, by minimizing the logits-adjustment
(LA) cross-entropy loss (Menon et al., 2021) only on in-
distribution data3 for a few iterations:

Ex∼Din [LLA
in (x)]. (5)

During test time, we forward each test image twice, using
the main and auxiliary branches respectively. The outputs
from the main branch are used for anomaly detection, while
those from the second branch are used for in-distribution
classification.

3Naively combining LA with OE has been shown ineffective
in Table 2.
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Figure 3. The framework of auxiliary branch finetuning (ABF) at
(a) training and (b) test time. Orange layers are trained in stage
one. Green layers are finetuned in stage two, using the weights
learned in stage one as initialization. Blue layers are trained in
stage one and kept fixed (with the lock icon) in stage two.

The final PASCL framework is summarized in Algorithm 1.

Algorithm 1 Partial and Asymmetric Supervised Con-
trastive Learning (PASCL)

Input: in-distribution training set Din, OOD training set
Dout, main branch training iteration n1, auxiliary branch
finetuning iteration n2.
#Stage 1: Train main branch.
for i = 1 to n1 do

Sample a batch of in-distribution and OOD training
samples.
Update the main branch model by minimizing Eq. (4)

end for
#Stage 2: Finetune auxiliary branch.
Fix all layers except the auxiliary BN and classification
layers in the model.
for i = 1 to n2 do

Sample a batch of in-distribution training samples.
Update the auxiliary BN and classification layers by
minimizing Eq. (5).

end for

5. Experiments
5.1. Experiment Settings

In-distribution training and test sets (Din, Dtest
in ) We

use three popular long-tailed image classification datasets,
CIFAR10-LT, CIFAR100-LT (Cao et al., 2019), and
ImageNet-LT (Liu et al., 2019), as the in-distribution train-
ing data (i.e., Din). Following Menon et al. (2021), we use
the default imbalance ratio ρ = 100 on CIFAR10-LT and
CIFAR100-LT, and we conduct ablation studies on differ-

Table 3. Results on CIFAR10-LT using ResNet18. The best results
are shown in bold. Mean and standard deviation over six random
runs are reported for OE and our method. “Average” means the
results averaged across six different Dtest

out sets.
(a) OOD detection results and

in-distribution classification results in terms of ACC95.
Dtest

out Method AUROC (↑) AUPR (↑) FPR95 (↓) ACC95 (↑)

Texture OE 92.59 ± 0.42 83.32 ± 1.67 25.10 ± 1.08 84.52 ± 0.76
Ours 93.16 ± 0.37 84.80 ± 1.50 23.26 ± 0.91 85.86 ± 0.72

SVHN OE 95.10 ± 1.01 97.14 ± 0.81 16.15 ± 1.52 81.33 ± 0.81
Ours 96.63 ± 0.90 98.06 ± 0.56 12.18 ± 3.33 82.72 ± 1.51

CIFAR100 OE 83.40 ± 0.30 80.93 ± 0.57 56.96 ± 0.91 94.56 ± 0.57
Ours 84.43 ± 0.23 82.99 ± 0.48 57.27 ± 0.88 94.48 ± 0.31

Tiny
ImageNet

OE 86.14 ± 0.29 79.33 ± 0.65 47.78 ± 0.72 91.19 ± 0.33
Ours 87.14 ± 0.18 81.54 ±0.38 47.69 ± 0.59 91.20 ± 0.35

LSUN OE 91.35 ± 0.23 87.62 ± 0.82 27.86 ± 0.68 85.49 ± 0.69
Ours 93.17 ± 0.15 91.76 ± 0.53 26.40 ± 1.00 86.67 ± 0.90

Places365 OE 90.07 ± 0.26 95.15 ± 0.24 34.04 ± 0.91 87.07 ± 0.53
Ours 91.43 ± 0.17 96.28 ± 0.14 33.40 ± 0.88 87.87 ± 0.71

Average OE 89.77 ± 0.27 87.25 ± 0.61 34.65 ± 0.46 87.36 ± 0.51
Ours 90.99 ± 0.19 89.24 ± 0.34 33.36 ± 0.79 88.13 ± 0.56

(b) In-distribution classification results in terms of ACC@FPRn.

Method ACC@FPRn (↑)
0 0.001 0.01 0.1

OE 73.84 ± 0.77 73.90 ± 0.77 74.46 ± 0.81 78.88 ± 0.66
Ours 77.08 ± 1.01 77.13 ± 1.02 77.64 ± 0.99 81.96 ± 0.85

(c) Comparison with other methods.
Dtest

out Method AUROC (↑) AUPR (↑) FPR95 (↓) ACC (↑)

Average

ST (MSP) 72.28 70.27 66.07 72.34
OECC 87.28 86.29 45.24 60.16

EnergyOE 89.31 88.92 40.88 74.68
OE 89.77 ± 0.27 87.25 ± 0.61 34.65 ± 0.46 73.84 ± 0.77

Ours 90.99 ± 0.19 89.24 ± 0.34 33.36 ± 0.79 77.08 ± 1.01

ent ρ in Section 5.3. We use the original CIFAR10 and
CIFAR100 test sets and the ImageNet validation set as the
in-distribution test sets (i.e., Dtest

in ).

OOD training set Dout For experiments on CIFAT10-LT
and CIFAR100-LT, we use TinyImages80M (Torralba et al.,
2008) as the unlabeled OOD training images (i.e., Dout) fol-
lowing (Hendrycks et al., 2019; Liu et al., 2020). For exper-
iments on ImageNet-LT, we construct our own Dout named
ImageNet-Extra. Specifically, ImageNet-Extra contains
517, 711 images belonging to 500 classes randomly sampled
from ImageNet-22k (Deng et al., 2009) but not overlapping
with the 1, 000 in-distribution classes in ImageNet-LT.

OOD test set Dtest
out For experiments on CIFAR10-LT and

CIFAR100-LT, we use the recently published semantically
coherent out-of-distribution detection (SC-OOD) bench-
mark datasets (Yang et al., 2021) as OOD test sets Dtest

out .
Specifically, for experiments on CIFAR10-LT, we use Tex-
tures (Cimpoi et al., 2014), SVHN (Netzer et al., 2011),
CIFAR100, Places365 (Zhou et al., 2017), LSUN (Yu et al.,
2015), and Tiny ImageNet (Le & Yang, 2015) as OOD
evaluation datasets Dtest

out ; for experiments on CIFAR100-LT,
we use Textures, SVHN, CIFAR10, Places365, LSUN, and
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Table 4. Results on CIFAR100-LT using ResNet18. The best re-
sults are shown in bold. Mean and standard deviation over six ran-
dom runs are reported for OE and our method. “Average” means
the results averaged across six different Dtest

out sets.
(a) OOD detection results and

in-distribution classification results in terms of ACC95.
Dtest

out Method AUROC (↑) AUPR (↑) FPR95 (↓) ACC95 (↑)

Texture OE 76.71 ± 1.20 58.79 ± 1.39 68.28 ± 1.53 71.43 ± 1.58
Ours 76.01 ± 0.66 58.12 ± 1.06 67.43 ± 1.93 73.11 ± 1.55

SVHN OE 77.61 ± 3.26 86.82 ± 2.50 58.04 ± 4.82 64.27 ± 3.26
Ours 80.19 ± 2.19 88.49 ± 1.59 53.45 ± 3.60 64.50 ± 1.87

CIFAR10 OE 62.23 ± 0.30 57.57 ± 0.34 80.64 ± 0.98 82.67 ± 0.99
Ours 62.33 ± 0.38 57.14 ± 0.20 79.55 ± 0.84 82.30 ± 1.07

Tiny
ImageNet

OE 68.04 ± 0.37 51.66 ± 0.51 76.66 ± 0.47 76.22 ± 0.61
Ours 68.20 ± 0.37 51.53 ± 0.42 76.11 ± 0.80 77.56 ± 1.15

LSUN OE 77.10 ± 0.64 61.42 ± 0.99 63.98 ± 1.38 65.64 ± 1.03
Ours 77.19 ± 0.44 61.27 ± 0.72 63.31 ± 0.87 68.05 ± 1.24

Places365 OE 75.80 ± 0.45 86.68 ± 0.38 65.72 ± 0.92 67.04 ± 0.49
Ours 76.02 ± 0.21 86.52 ± 0.29 64.81 ± 0.27 69.04 ± 0.90

Average OE 72.91 ± 0.68 67.16 ± 0.57 68.89 ± 1.07 71.21 ± 0.84
Ours 73.32 ± 0.32 67.18 ± 0.10 67.44 ± 0.58 72.43 ± 0.66

(b) in-distribution classification results in terms of ACC@FPRn.

Method ACC@FPRn (↑)
0 0.001 0.01 0.1

OE 39.04 ± 0.37 39.07 ± 0.38 39.38 ± 0.38 42.40 ± 0.44
Ours 43.10 ± 0.47 43.12 ± 0.47 43.39 ± 0.48 46.14 ± 0.38

(c) Comparison with other methods.
Dtest

out Method AUROC (↑) AUPR (↑) FPR95 (↓) ACC (↑)

Average

ST (MSP) 61.00 57.54 82.01 40.97
OECC 70.38 66.87 73.15 32.93

EnergyOE 71.10 67.23 71.78 39.05
OE 72.91 ± 0.68 67.16 ± 0.57 68.89 ± 1.07 39.04 ± 0.37

Ours 73.32 ± 0.32 67.18 ± 0.10 67.44 ± 0.58 43.10 ± 0.47

Tiny ImageNet as Dtest
out .

4 For experiments on ImageNet-
LT, we construct ImageNet-1k-OOD as Dtest

out . Specifi-
cally, ImageNet-1k-OOD contains 50, 000 OOD test im-
ages from 1, 000 classes randomly selected from ImageNet-
22k (with 50 images in each class), which is of the same
size as the in-distribution test set. The 1, 000 classes in
ImageNet-1k-OOD are not overlapped with either the 1, 000
in-distribution classes in ImageNet-LT or the 500 OOD
training classes in ImageNet-Extra.

Evaluation measures Following Hendrycks et al. (2019);
Mohseni et al. (2020); Yang et al. (2021), we use the below
evaluation measures:

• AUROC: The area under the receiver operating charac-
teristic curve. AUROC is equivalent to the probability
that a positive example has a larger detector score than a
negative example. A perfect detector has 100% AUROC,
while a random guess leads to 50% AUROC.

• AUPR: The area under precision-recall curve. This is also
known as the average precision over all recall values.

4According to Yang et al. (2021), not all images in those
datasets are OOD images with respect to CIFAR10 and CIFAR100.
We use the benchmarks released by Yang et al. (2021) where each
test image is categorized into either Dtest

in or Dtest
out according to their

ground-truth semantic meaning.

• FPR@TPRn: The false positive rate (FPR) when n
(in percentage) OOD samples have been successfully
detected (i.e., when the true positive rate (TPR) is n).
Previous papers (Hendrycks & Gimpel, 2017) mainly
use the measure FPR95, which is the abbreviation for
FPR@TPR95%. They set n to large values such as 95%
since they care about the FPR when most OOD samples
are successfully detected.

• ACC@TPRn: The classification accuracy on the remain-
ing in-distribution data when n (in percentage) OOD sam-
ples have been successfully detected. ACC95 is the ab-
breviation for ACC@TPR95%.

• ACC@FPRn: The classification accuracy on the re-
maining in-distribution date when n (in percentage) in-
distribution samples are mistakenly detected as OOD sam-
ples (i.e., when FPR is n). ACC@FPR0, also abbreviated
as ACC, is the accuracy on the entire in-distribution test
set. Previous papers (Yang et al., 2021) set n to small val-
ues such as 1% since they care about the accuracy when
few in-distribution samples are falsely detected as OOD.
By definition, the value of ACC@FPRn is irrelevant to
the choice of Dtest

out .

Methods in comparison As shown in Table 1, among
all those OOD detection methods we evaluated, OE has
arguably the best OOD detection performance on long-tailed
datasets. Thus we use OE as the main baseline method. We
also compare with two more recent methods: EnergyOE
(Liu et al., 2020) and OECC (Papadopoulos et al., 2021). We
also show results of MSP on standard training (ST) models.

Models For experiments on CIFAR10 and CIFAR100,
we use the standard ResNet18 (He et al., 2016) following
Yang et al. (2021). For experiments on ImageNet, we use
ResNet50 (He et al., 2016). More details on experimental
settings (e.g., learning rate, etc.) are in Appendix A.

5.2. Main Results

Results on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT
are shown in Table 3, 4, and 5, respectively. Table 3 and 4
both contain three sub-tables: In sub-table (a), we show AU-
ROC, AUPR, FPR95 and ACC95 on each Dout and also the
average value on all six Dtest

out datasets, since these four mea-
sures may vary among different Dtest

out . In sub-table (b), we
show ACC@FPRn with different n values, which remains
the same regardless of the choice of Dtest

out . The results of
other baseline methods (in terms of both anomaly detection
and in-distribution classification) are summarized in sub-
table (c) due to space limit. The results on ImageNet-LT can
be reported within one table, since there is only one Dtest

out .

As we can see, our method outperforms OE and also other
baseline methods by a considerable margin. For example,
on CIFAR10-LT, our method achieves 1.22% higher aver-
age AUROC, 1.99% higher average AUPR, 1.29% lower
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Table 5. Results on ImageNet-LT using ResNet50. The best and second-best results are bolded and underlined, respectively. Improvements
of our method over OE are shown in parentheses.

Dtest
out Method AUROC (↑) AUPR (↑) FPR@TPRn (↓) ACC@TPRn (↑) ACC@FPRn (↑)

0.98 0.95 0.90 0.80 0.98 0.95 0.90 0.80 0 0.001 0.01 0.1

ImageNet
-1k-OOD

ST (MSP) 53.81 51.63 95.38 90.15 83.52 72.97 96.67 92.61 87.43 77.52 39.65 39.68 40.00 43.18
OECC 63.07 63.05 93.15 86.90 78.79 65.23 94.25 88.23 80.12 68.36 38.25 38.28 38.56 41.47

EnergyOE 64.76 64.77 94.15 87.72 78.36 63.71 80.18 74.38 67.65 59.68 38.50 38.52 38.72 40.99
OE 66.33 68.29 95.11 88.22 78.68 65.28 95.46 88.22 78.68 65.28 37.60 37.62 37.79 40.00

Ours 68.00 70.15 94.38 87.53 78.12 62.48 95.69 89.55 80.88 69.60 45.49 45.51 45.62 47.49
(+1.67) (+1.86) (-0.73) (-0.69) (-0.56) (-2.80) (+0.23) (+1.33) (+2.20) (+4.32) (+7.89) (+7.89) (+7.83) (+7.49)

Table 6. The importance of each component (i.e., partiality, asymmetry, and the auxiliary branch) in PASCL. Experiments are conducted
on CIFAR10-LT and CIFAR100-LT (both with ρ = 100) with ResNet18. The first row in each block, where no supervised contrastive
learning is used, is the OE baseline. SVHN is used as Dtest

out . Mean and standard deviation over six random runs are reported.

Din Asymmetry Partiality ABF AUROC (↑) AUPR (↑) FPR95 (↓) ACC95 (↑) ACC@FPRn (↑)
0 0.001 0.01 0.1

CIFAR10-LT

No contrastive loss (OE) 95.10 ± 1.01 97.14 ± 0.81 16.15 ± 1.52 81.33 ± 0.81 73.84 ± 0.77 73.90 ± 0.77 74.46 ± 0.81 78.88 ± 0.66
✗ ✗ ✗ 95.34 ± 1.58 97.30 ± 1.20 15.12 ± 3.07 81.94 ± 1.28 75.03 ± 1.46 75.09 ± 1.45 75.60 ± 1.44 80.02 ± 1.10
✗ ✓ ✗ 95.01 ± 1.25 96.74 ± 0.78 15.31 ± 4.35 82.34 ± 1.56 74.46 ± 1.80 74.52 ± 1.80 75.04 ± 1.76 80.21 ± 0.99
✓ ✗ ✗ 94.91 ± 1.43 96.86 ± 1.47 15.57 ± 1.19 82.08 ± 0.47 75.24 ± 0.99 75.29 ± 0.98 75.77 ± 0.98 79.85 ± 0.77
✓ ✓ ✗ 96.63 ± 0.90 98.06 ± 0.56 12.18 ± 3.33 81.70 ± 1.21 76.20 ± 0.79 76.26 ± 0.79 76.85 ± 0.81 81.07 ± 0.58
✓ ✓ ✓ 96.63 ± 0.90 98.06 ± 0.56 12.18 ± 3.33 82.72 ± 1.51 77.08 ± 1.01 77.13 ± 1.02 77.64 ± 0.99 81.96 ± 0.85

CIFAR100-LT

No contrastive loss (OE) 77.61 ± 3.26 86.82 ± 2.50 58.04 ± 4.82 64.27 ± 3.26 39.04 ± 0.37 39.07 ± 0.38 39.38 ± 0.38 42.40 ± 0.44
✗ ✗ ✗ 78.05 ± 2.12 87.18 ± 0.87 59.10 ± 5.03 66.44 ± 3.90 40.21 ± 0.43 40.25 ± 0.43 40.56 ± 0.45 43.71 ± 0.42
✗ ✓ ✗ 79.46 ± 1.83 88.01 ± 1.90 54.59 ± 3.34 63.86 ± 2.52 40.24 ± 0.53 40.28 ± 0.53 40.60 ± 0.55 43.93 ± 0.57
✓ ✗ ✗ 79.54 ± 2.38 87.68 ± 1.51 54.27 ± 3.69 63.33 ± 2.87 40.00 ± 0.42 40.04 ± 0.41 40.36 ± 0.42 43.60 ± 0.42
✓ ✓ ✗ 80.19 ± 2.19 88.49 ± 1.59 53.45 ± 3.60 63.10 ± 1.87 40.33 ± 0.20 40.36 ± 0.20 40.66 ± 0.18 43.79 ± 0.22
✓ ✓ ✓ 80.19 ± 2.19 88.49 ± 1.59 53.45 ± 3.60 64.50 ± 1.87 43.10 ± 0.47 43.12 ± 0.47 43.39 ± 0.48 46.14 ± 0.38

average FPR95, 0.77% higher average ACC95, and 3.24%
higher in-distribution accuracy than OE. On CIFAR100-LT,
our method achieves 1.45% lower average FPR95, 1.22%
higher average ACC95 and 4.06% higher in-distribution
accuracy than OE. On ImageNet-LT, our method acheives
1.67% higher AUROC, 1.86% higher AUPR, 1.33% higher
average ACC95, and 7.89% higher in-distribution accuracy
than OE.
Simultaneously improving FPR95 and ACC95 Previous
work has shown it extremely challenging to simultaneously
improve FPR95 and ACC95 (Mohseni et al., 2020). The rea-
son is simple: When the FPR95 is high, many in-distribution
samples are falsely detected as OOD, including those hard
or corner-case in-distribution samples. In result, the re-
maining in-distribution samples are mostly easy to classify,
leading to high ACC95. We highlight that our method si-
multaneously achieves better FPR95 and ACC95 than OE.
This crucial improvement shows our method learns better
features for both the anomaly detection and in-distribution
classification tasks.

Table 7. The results on head and tail
classes of ImageNet-LT. The improve-
ments of our method over OE are shown
in parentheses.

Method ACC (↑)
Head classes Tail classes

OE 54.29 20.90
Ours 54.73 (+0.44) 36.26 (+15.36)

Improvements
on head and tail
in-distribution
classes In Table
7, we show the
improvements of
our method over
OE on head and
tail in-distribution classes separately. As we can see, our
method mainly benefits the tail classes.

5.3. Ablation Study

On partiality, asymmetry, and auxiliary branch finetun-
ing As introduced in Section 4, there are three building
blocks in our PASCL framework: (i) partiality and (ii) asym-
metry in supervised contrastive learning and the (iii) aux-
iliary branch finetuning (ABF). In Table 6, we report the
results of ablation studies on the three components using
both CIFAR10-LT and CIFAR100-LT, to show the impor-
tance of each one. Here we use SVHN as Dtest

out since our
method has relatively large performance gain over OE on
SVHN, making it easier to identify where the performance
gain come from. First, on both datasets, simply applying the
original supervised contrastive learning onto the OE frame-
work (i.e., the second rows in each block in Table 6) only
brings marginal improvements over the OE baseline (i.e.,
the first rows in each block in Table 6), especially in terms
of AUROC and AUPR. Second, partiality and asymmetry
should always be used together for better performance. For
example, on CIFAR10-LT, neither asymmetric nor partiality
brings benefit over the original supervised contrastive learn-
ing when applied alone, while great improvements are made
when they are used together. Third, the auxiliary branch fine-
tuning can significantly boot in-distribution classification
results (i.e., the last row in each block in Table 6).

On the percentage of tail classes As mentioned in Sec-
tion 4, we apply contrastive loss on tail-class samples to
push them away from OOD samples. A key hyper-parameter
here is the threshold to define the separation of head and tail
classes: the k (in percentage) classes with the least training
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samples are defined as tail classes. Ablation study on k
is provided in Table 8. As we can see, on both CIFAR10-
LT and CIFAR100-LT, the best results are achieved around
k = 50% (the default value in our experiments). The results
at k = 50% are considerably better than those at k = 100%
(without partiality in supervised contrastive learning) and
k = 0% (without supervised contrastive learning, i.e., the
OE baseline), showing the importance of our partiality de-
sign in supervised contrastive learning. Also, the perfor-
mance of our method is stable with respect to k within a
large range (e.g, k ∈ [40%, 60%]).

Table 8. Ablation study on the percentage (k) of tail classes. Ex-
periments are conducted on CIFAR10/100-LT (both with ρ = 100)
using ResNet18. The first row (k = 100%) means to apply the
asymmetric supervised contrastive learning on all in-distribution
training samples (without partiality). The last row (k = 0%) is the
OE baseline where no supervised contrastive learning is used. Av-
erage results over six Dtest

out in SC-OOD benchmarks are reported.
Din k AUROC (↑) AUPR (↑) FPR95 (↓)

CIFAR10-LT

100% 89.73 87.05 33.05

60% 90.44 88.51 32.90
50% 91.10 89.01 32.63
40% 90.66 88.90 33.30

0% (OE) 89.45 86.85 35.21

CIFAR100-LT

100% 72.95 66.36 67.86

60% 73.24 67.26 67.59
50% 73.54 67.29 66.92
40% 72.76 67.07 68.37

0% (OE) 72.62 66.73 68.69

On auxiliary branch finetuning layers As described in
Section 4, auxiliary branch finetuning updates all BN layers
and the classification (CLF) layer. In this section, we experi-
ment with the following choices of finetuned layers: none of
the layers (denoted as None), all BN layers (denoted as BN),
the classification layer (denoted as CLF), all BN layers and
the classification layer (denoted as BN & CLF), and every
layer in the model (denoted as All). The results are shown in
Table 9. As we can see, finetuning all BN layers or the clas-
sification layer both helps improve accuracy. Finetuning BN
and classification layers simultaneously (our default setting)
achieves the best accuracy, even outperforming finetuning
all layers. A likely explanation is that the convolutional
layers from stage one have learned features from OOD train-
ing data that are transferable to in-distribution data. Also,
auxiliary branch finetuning (on BN & CLF layers) adds only
a tiny overhead on model size.

More experimental results (e.g., ablation study on imbalance
ratio, model structure, etc.) can be be found in Appendix C.

6. Summary
To address the new challenging problem of OOD detec-
tion in long-tailed recognition, we proposd a novel PASCL

Table 9. Ablation study on auxiliary branch finetuning layers using
ImageNet-LT and ResNet50. Model size in Million Bytes (MBs).

Layers None BN CLF BN & CLF All

ACC (%) 41.32 43.42 44.57 45.49 45.12
Model size (MB) 94.11 94.30 94.20 94.38 188.23

framework to explicitly encourage the model to distinguish
tail-class in-distribution samples from OOD samples. The
core idea of PASCL is that head-class in-distribution, tail-
class in-distribution, and OOD samples play different roles
in OOD detection under long-tailed recognition and thus
should be treated differently in contrastive learning. Experi-
ments on long-tailed image classification datasets demon-
strated the empirical effectiveness of PASCL.
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A. More Details on Experimental Settings
In this section, we provide more details on experimental set-
tings in addition to those in Section 5.1. For experiments on
CIFAR10-LT and CIFAR100-LT, we train the main branch
(i.e., stage 1 in Algorithm 1) for 200 epochs using Adam
(Kingma & Ba, 2014) optimizer with initial learning rate
1×10−3 and batch size 256. We decay the learning rate to 0
using a cosine annealing learning rate scheduler (Loshchilov
& Hutter, 2016). For auxiliary branch finetuning (i.e., stage
2 in Algorithm 1), we finetune the auxiliary branch for
3 epochs using Adam optimizer with initial learning rate
5× 10−4. Other hyper-parameters are the same as in main
branch training. For experiments on ImageNet-LT, we fol-
low the settings in (Wang et al., 2021b). Specifically, we
train the main branch for 100 epochs using SGD optimizer
with initial learning rate 0.1 and batch size 256. We de-
cay the learning rate by a factor of 10 at epoch 60 and 80.
For auxiliary branch finetuning , we finetune the auxiliary
branch for 3 epochs using SGD optimizer with initial learn-
ing rate 0.01, which is decayed by a factor of 10 after each
finetune epoch. On all datasets, we set τ = 0.1 following
(Khosla et al., 2020), λ1 = 0.5 following (Hendrycks et al.,
2019), and empirically set λ2 = 0.1 for PASCL. The total
training epochs are kept the same across all compared meth-
ods. For other hyper-parameters in the baseline methods,
we use the suggested values in the original papers.

B. Feature Visualization on CIFAR10 and
CIFAR10-LT

In Figure 1 (in Section 3), we showed the feature distri-
bution of OE trained on CIFAR10-LT. In this section, we
compare the feature distribution of OE trained on the bal-
anced CIFAR10 (Figure 4 (a)) and CIFAR10-LT (Figure
4 (b)). As we mentioned in Section 3, we can see that,
on the balanced CIFAR10 dataset, the OOD samples are
well separated from all in-distribution classes. In contrast,
when trained on CIFAR10-LT, the features of tail-class in-
distribution (e.g., horse, ship) samples and OOD samples
heavily overlap, while those of head-class in-distribution
(e.g., airplane, automobile, bird) samples are well separated
from OOD samples.

C. More Experimental Results
C.1. More Ablation Study

On imbalance ratio ρ In Section 5.2, we use imbalance
ratio ρ = 100 on both CIFAR10-LT and CIFAR100-LT.
In this section, we show that our method can work well
under different imbalance ratios. Specifically, we conduct
experiments on CIFAR10-LT with ρ = 50. The results are
shown in Table 10. Our method also outperforms the OE
baseline by a considerable margin when ρ = 50.

(a) CIFAR10

(b) CIFAR10-LT

OOD

OOD

Figure 4. Visualization of in-distribution and OOD samples in
the feature space. We visualize the penultimate layer features
of ResNet18 trained by OE on (a) CIFAR10 and (b) CIFAR10-LT,
using the same visualization method as in (Pang et al., 2020). 100
test samples from each in-distribution class and 100 OOD samples
are visualized. The model trained on CIFAR10-LT struggles to
distinguish tail in-distribution classes like “horse” (grey) and “ship”
(yellow) from OOD samples (black). Note that in CIFAR10-LT,
the number of training samples in each class follows the alphabetic
order: the “airplane” class has the most training samples and the
“truck” class has the least.

On model structures In Section 5.2, we use the stan-
dard ResNet18 as the backbone model. In this section, we
show that our method can work well under different model
structures, but conducting experiments using the standard
ResNet34 (He et al., 2016). The results are shown in Ta-
ble 11. Our method also outperforms the OE baseline by a
considerable margin on ResNet34.

Ablation study on λ2 The results are shown in Table 12.
The performance of our method is stable with respect to
different λ2 values.

C.2. Combining OE with the Original Supervised
Contrastive Learning on Din or Din ∪ Dout

In Section 4, we mentioned that when combined with OE,
the original supervised contrastive learning achieves slightly
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Table 10. Results on CIFAR10-LT (ρ = 50) using ResNet18.
Dtest

out Method AUROC (↑) AUPR (↑) FPR95 (↓) ACC (↑)

Average OE 93.13 91.06 24.73 83.34
Ours 93.94 92.79 22.80 85.44

Table 11. Results on CIFAR10-LT (ρ = 100) using ResNet34.
Dtest

out Method AUROC (↑) AUPR (↑) FPR95 (↓) ACC (↑)

Average OE 89.86 87.28 33.66 73.39
Ours 91.11 89.28 33.21 75.34

better OOD detection performance if applied on Din ∪ Dout
than on Din. In this section, we provide experimental results
to support this. Specifically, we compare the two methods
on CIFAR10-LT and CIFAR100-LT, and show the results in
Table 13. As we can see, these two methods achieve almost
identical performance, although those on Din∪Dout are only
slightly better. For that reason, we use the second method
(i.e., supervised contrastive learning on Din ∪ Dout) as “the
original SCL” baseline in Table 9 (i.e., the second rows in
each block in Table 9).

C.3. OLTR Results

As discussed in Section 2, OLTR (Liu et al., 2019) focuses
on in-distribution classification in long-tailed recognition
instead of OOD detection. Although it achieves better OOD
detection performance than naive baselines such as MSP,
it is not comparable with state-of-the-art OOD detection
methods such as OE. In contrast, our paper focuses on im-
prove OOD detection performance on long-tailed training
sets. The results of OLTR and other methods (including our
PASCL) on ImageNet-LT are compared in Table 14.

D. More Related Works
In this section, we discuss more related works along with
those in Section 2.

OOD detection ODIN (Liang et al., 2018) improved MSP
by adding temperature scaling and adversarial attacks to en-
large the differences in MSP between in-distribution and
OOD data. Hein et al. (2019) theoretically explained why
piecewise linear models tend to give high confident predic-
tions on OOD data, and proposed a new robust learning
method to prevent such overconfidence issue. Meinke &
Hein (2020) proposed Certified Certain Uncertainty (CCU),
a robust learning method which achieves provably low con-
fidence predictions on OOD samples. Self-Supervised Fea-
ture Learning (SOFL) (Mohseni et al., 2020) proposed to
classify all OOD samples into several abstaining classes,
where the pseudo labels for OOD training samples are as-
signed in a self-supervised manner. Tang et al. (2021) pro-
posed to generate Chamfer OOD samples (i.e., the OOD

Table 12. Ablation study results on λ2. CIFAR100-LT is used as
in-distribution training set. SVHN is used as OOD test set.

λ2 0 0.05 0.1 0.5

AUPR (↑) 86.82 88.12 88.49 88.46

Table 13. Combining OE with the original supervised contrastive
learning (SCL) on Din and Din ∪ Dout. Experiments are conducted
on CIFAR10/100-LT (both with ρ = 100) using ResNet18. SVHN
is used as Dtest

out .
Din Method AUROC (↑) AUPR (↑) FPR95 (↓)

CIFAR10-LT OE + SCL on Din 95.30 ± 1.42 97.19 ± 1.02 15.08 ± 2.54
OE+SCL on Din ∪ Dout 95.34 ± 1.58 97.30 ± 1.20 15.12 ± 3.07

CIFAR100-LT OE + SCL on Din 78.01 ± 1.95 87.16 ± 0.62 59.36 ± 4.52
OE+SCL on Din ∪ Dout 78.05 ± 2.12 87.18 ± 0.87 59.10 ± 5.03

Table 14. Comparing OLTR with our PASCL and other methods.
Experiments are conducted on ImageNet-LT using ResNet50.

Method AUROC (↑) AUPR (↑) FPR95 (↓)

ST (MSP) 53.81 51.63 90.15
OLTR 55.68 54.02 90.02

OE 66.33 68.29 88.22
Ours 68.00 70.15 87.53

samples that are close to the in-distribution samples), when
there is no OOD samples directly available for training. Fort
et al. (2021) observed that large-scale vision transformers
achieves significantly better OOD detection performance
than CNNs. They further proposed a simple but surprisingly
effective OOD detection method based on multi-model trans-
formers. Zhou et al. (2021b) studied a new problem setting
where the number of labeled in-distribution samples are
limited. Wang et al. (2021a) studied the OOD detection
problem in multi-label classification.

Long-tailed recognition Cui et al. (2019) proposed a loss
reweighing method based on the effective numbers of train-
ing samples in each class. BBN (Zhou et al., 2020) used two
separate branches which focus on learning universal and tail-
class-specific features, respectively. Xiang et al. (2020) split
the unbalanced training set into several relatively balanced
subsets, and then trained a separate model on each subset,
whose knowledge is later distilled into a single model. RIDE
(Wang et al., 2021b) used mixture of experts and a novel
dynamic expert routing module to largely boost long-tailed
recognition performance.


