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Abstract
Representing visual signals by coordinate-based
deep fully-connected networks has been shown
advantageous in fitting complex details and solv-
ing inverse problems than discrete grid-based rep-
resentation. However, acquiring such a contin-
uous Implicit Neural Representation (INR) re-
quires tedious per-scene training on tons of sig-
nal measurements, which limits its practicality.
In this paper, we present a generic INR frame-
work that achieves both data and training effi-
ciency by learning a Neural Implicit Dictionary
(NID) from a data collection and representing
INR as a functional combination of basis sam-
pled from the dictionary. Our NID assembles
a group of coordinate-based subnetworks which
are tuned to span the desired function space. Af-
ter training, one can instantly and robustly ac-
quire an unseen scene representation by solving
the coding coefficients. To parallelly optimize a
large group of networks, we borrow the idea from
Mixture-of-Expert (MoE) to design and train our
network with a sparse gating mechanism. Our
experiments show that, NID can improve recon-
struction of 2D images or 3D scenes by 2 orders
of magnitude faster with up to 98% less input
data. We further demonstrate various applica-
tions of NID in image inpainting and occlusion
removal, which are considered to be challeng-
ing with vanilla INR. Our codes are available
in https://github.com/VITA-Group/
Neural-Implicit-Dict.

1. Introduction
Implicit Neural Representations (INRs) have recently
demonstrated remarkable performance in representing mul-
timedia signals in computer vision and graphics (Park et al.,
2019; Mescheder et al., 2019; Saito et al., 2019; Chen et al.,
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2021c; Sitzmann et al., 2020b; Tancik et al., 2020; Milden-
hall et al., 2020). In contrast to classical discrete representa-
tions, where real-world signals are sampled and vectorized
before processing, INR directly parameterizes the continu-
ous mapping between coordinates and signal values using
deep fully-connected networks (also known as multi-layer
perceptron or MLP). This continuous parameterization en-
ables to represent more complex and flexible scenes without
being limited by grid extents and resolution in a more com-
pact and memory efficient way.

However, one significant drawback of this approach is that
acquiring an INR usually requires a tedious per-scene train-
ing of neural networks on dense measurements, which limits
the practicality. Yu et al. (2021); Wang et al. (2021); Chen
et al. (2021a) generalizes Neural Radiance Field (NeRF)
(Mildenhall et al., 2020) across various scenes by projecting
image features to a 3D volumetric proxy and then rendering
feature volume to generate novel views. To speed up INR
training, Sitzmann et al. (2020a); Tancik et al. (2021) apply
meta-learning algorithms to learn the initial weight param-
eters for the MLP based on the underlying class of signals
being represented. However, this line of works are either
hard to be extended beyond NeRF scenario or incapable of
producing high-fidelity results with insufficient supervision.

In this paper, we design a unified INR framework that si-
multaneously achieves optimization and data efficiency. We
think of reconstructing an INR from few-shot measurements
as solving an underdetermined system. Inspired by com-
pressed sensing techniques (Donoho, 2006), we represent
every neural implicit function as a linear combination of
a function basis sampled from an over-complete Neural
Implicit Dictionary (NID). Unlike conventional basis rep-
resentation as a wide matrix, an NID is parameterized by
a group of small neural networks that acts as continuous
function basis spanning the entire target function space. The
NID is shared across different scenes while the sparse codes
are specified by each scene. We first acquire the NID “of-
fline” by jointly optimizing it with per-scene coding across
a class of instances in a training set. When transferring to
unseen scenarios, we re-use the NID and only solves the the
scene specific coding coefficients “online”.

To effectively scale to thousands of subnetworks inside our
dictionary, we employ the Mixture-of-Expert (MoE) training
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for NID learning (Shazeer et al., 2017). We model each
function basis in our dictionary as an expert subnetwork and
the coding coefficients as its gating state. During each feed-
forward, we utilize a routing module to generate sparsely
coded gates, i.e., activating a handful of basis experts and
linearly combining their responses. Training with MoE also
“kills two birds with one stone” by constructing transferable
dictionaries and avoiding extra computational overheads.

Our contributions can be summarized as follows:

• We propose a novel data-driven framework to learn
a Neural Implicit Dictionary (NID) that can transfer
across scenes, to both accelerate per-scene neural en-
coding and boost their performance.

• NID is parameterized by a group of small neural net-
works that acts as continuous function basis to span the
neural implicit function space. The dictionary learning
is efficiently accomplished via MoE training.

• We conduct extensive experiments to validate the ef-
fectiveness of NID. For training efficiency, we show
that our approach is able to achieve 100× faster
convergence speed for image regression task. For
data efficiency, our NID can reconstruct signed dis-
tance function with 98% less point samples, and op-
timize a CT image with 90% fewer views. We also
demonstrate more practical applications for NID, in-
cluding image inpainting, medical image recovery, and
transient object detection for surveillance videos.

2. Preliminaries
Compressed Sensing in Inverse Imaging. Compressed
sensing and dictionary learning are widely applied in inverse
imaging problems (Lustig et al., 2008; Metzler et al., 2016;
Fan et al., 2018). In classical signal processing, signals are
discretized and represented by vectors. A common goal is
to reconstruct signals (or digital images) x ∈ RN from M
measurements y ∈ RM , which are formed by linearly trans-
forming the underlying signals plus noise: y = Ax + η.
However,A is often highly ill-posed, i.e., number of mea-
surements is much smaller than the number of unknowns
(M ≪ N ), which makes this inverse problem rather chal-
lenging. Compressed sensing (Candès et al., 2006; Donoho,
2006) provides an efficient approach to solve this underdeter-
mined linear system by assuming signals x ∈ RN are com-
pressible and representing it in terms of few vectors inside a
group of spanning vectors Ψ =

[
ψi · · · ψK

]
∈ RN×K .

Then we can reconstruct x through the following optimiza-
tion objective:

argmin
α

∥α∥0 subject to ∥y −AΨα∥2 < ε (1)

where α ∈ RK is known as the sparse code coefficient, and
∥η∥2 ≤ ε is a bound on the noise level. One often replaces
the ℓ0 semi-norm with ℓ1 to obtain a convex objective. The
spanning vectors Ψ can be chosen from orthonormal bases
or, more often than not, over-complete dictionaries (N ≪
K) (Kreutz-Delgado et al., 2003; Tošić & Frossard, 2011;
Aharon et al., 2006; Chen & Needell, 2016). Rather than
a bunch of spanning vectors, Chan et al. (2015); Tariyal
et al. (2016); Papyan et al. (2017) proposed hierarchical
dictionary implemented by neural network layers.

Implicit Neural Representation. Implicit Neural Repre-
sentation (INR) in computer vision and graphics replaces
traditional discrete representations of multimedia objects
with continuous functions parameterized by multilayer per-
ceptrons (MLP) (Tancik et al., 2020; Sitzmann et al., 2020b).
Since this representation is amenable to gradient-based opti-
mization, prior works managed to apply coordinate-based
MLPs to many inverse problems in computational photogra-
phy (Park et al., 2019; Mescheder et al., 2019; Mildenhall
et al., 2020; Chen et al., 2021c;b; Sitzmann et al., 2021;
Fan et al., 2022; Attal et al., 2021b; Shen et al., 2021) and
scientific computing (Han et al., 2018; Li et al., 2020; Zhong
et al., 2021). Formally, we denote an INR inside a func-
tion space F by fθ : Rm → R, which continuously maps
m-dimension spatio-temporal coordinates (say (x, y) with
m = 2 for images) to the value space (say pixel intensity).
Consider a functional R : F × Ω → R, we intend to find
the network weights θ∗ such that:

R(fθ∗ |ω) = 0, for every ω ∈ Ω (2)

where Ω records the measurement settings. For instance,
in computed tomography (CT), R is called the volumetric
projection integral and Ω specifies the ray parameterization
and corresponding colors. When solving ordinal differential
equations, R takes form of ρ(x, f,∇f,∇2f, ...) if x ∈
Ω \ ∂Ω, while R = f(x) − C for some constant C if
x ∈ ∂Ω, given a compact set Ω and operator ρ(·) which
combines derivatives of f (Sitzmann et al., 2020b).

Mixture-of-Expert Training. Shazeer et al. (2017) pro-
posed outrageously wide neural networks with dynamic
routing to achieve larger model capacity and higher data par-
allel. Their approach is to introduce an Mixture-of-Expert
(MoE) layer with a number of expert subnetworks and train
a gating network to select a sparse combination of the ex-
perts to process each input. Let us denote by G(x) and
Ei(x) the output of the gating network and the output of
the i-th expert network for a given input x. The output of
the MoE module can be written as:

y =

n∑
i=1

G(x)iEi(x), (3)
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where n is the number of experts and ∥G(x)∥0 = k. In
Shazeer et al. (2017), computation is saved based on the
sparsity of G(x). The common sparsification strategy is
called noisy top-k gating, which can be formulated as:

G(x) = Normalize(TopK(H(x), k)), (4)

TopK(x, k)i =

{
xi if xi is in top k elements
0 otherwise , (5)

where H(x) synthesizes raw gating activations, TopK(·)
masks out n−k smallest elements, and Normalize(·) scales
the magnitude of remaining weights to a constant, which
can be chosen from softmax or ℓp-norm normalization.

3. Neural Implicit Dictionary Learning
As we discussed before, inverse imaging problems are often
ill-posed and it is also true for Implicit Neural Represen-
tation (INR). Moreover, training an INR network is also
time-consuming. How to kill two bird with one stone by
efficiently and robustly acquiring an INR from few-shot
observations remains uninvestigated. In this section, we
answer this question by presenting our approach Neural
Implicit Dictionary (NID), which are learned from data col-
lections a priori and can be re-used to quickly fit an INR.
We will first reinterpret two-layer SIREN (Sitzmann et al.,
2020b) and point out the limitation of current design. Then
we will elaborate on our proposed models and the techniques
to improve its generalizability and stability.

3.1. Motivation by Two-Layer SIREN

Common INR architectures are pure Multi-Layer Percep-
trons (MLP) with periodic activation functions. Fourier
Feature Mapping (FFM) (Tancik et al., 2020) places a sinu-
soidal transformation after the first linear layer, while Sinu-
soidal Representation Network (SIREN) (Sitzmann et al.,
2020b) replaces every nonlinear activation with a sinusoidal
function. For the sake of simplicity, we only consider two-
layer INR architectures to unify the formulation of FFM
and SIREN. To be consistent with the notation in Section 2,
let us denote INR by function f : Rm → R, which can be
formulated as below:

γ(x) =
[
sin(wT

1 x+ b1) · · · sin(wT
nx+ bn)

]T
, (6)

f(x) = αT γ(x) + c, (7)

where wi ∈ Rm, bi ∈ R,∀i ∈ [n] and α ∈ Rn, c ∈ R
are all network parameters, and mapping γ(·) (cf. Equation
6) is called positional embedding (Mildenhall et al., 2020;
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Figure 1. Illustration of our NID pipeline. The blue experts are
activated while grey ones are ignored.

Zhong et al., 2021). After simply rewriting, we can obtain:

f(x) =

n∑
i=1

αi sin(w
T
i x+ bi) + c (8)

≈
∫
Rm

α(w)√
π

sin
(
wTx+

π

4

)
dw, (9)

from which we discover Equations 6-7 can be considered
as an approximation of inverse Hartley (Fourier) transform
(cf. Equation 9). The weights of the first SIREN layer
sample frequency bands on the Fourier domain, and passing
coordinates through sinusoidal activation functions maps
spatial positions onto cosine-sine wavelets. Then training a
two-layer SIREN amounts to finding the optimal frequency
supports and fitting the coefficients in Hartley transform.

Although trigonometric polynomials are dense in continu-
ous function space, cosine-sine waves may not be always
desirable as approximating functions at arbitrary precision
with finite neurons can be infeasible. In fact, some other
bases, such as Gegenbauer basis (Feng & Varshney, 2021)
and Plücker embedding (Attal et al., 2021a), have been
proven useful in different tasks. However, we argue that
since handcrafted bases are agnostic to data distribution,
they cannot express intrinsic information about data, thus
may generalize poorly across various scenes. This causes
per-scene training to re-select the frequency supports and re-
fit the Fourier coefficients. Moreover, when observations are
scarce, sinusoidal basis can also result in severe over-fitting
in reconstruction (Sutherland & Schneider, 2015).

3.2. Learning Implicit Function Basis

Having reasoned why current INR architectures general-
ize badly and demand tons of measurements, we intend to
introduce the philosophy of sparse dictionary representa-
tion (Kreutz-Delgado et al., 2003; Tošić & Frossard, 2011;
Aharon et al., 2006) into INR. A dictionary contains a group
of over-complete basis that spans the signal space. In con-
trast to handcrafted bases or wavelets, dictionary are usu-
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ally learned from a data collection. Since it is aware of
the distribution of the underlying signals to be represented,
expressing signals using dictionary enjoys higher sparsity,
robustness and generalization power.

Even though dictionary learning algorithms are well es-
tablished in Aharon et al. (2006), it is far from trivial to
design dictionaries amenable to INR on the continuous do-
main. Formally, we want to obtain a set of continuous
maps: bi : Rm → R,∀i ∈ [n] such that for every signal
f : Rm → R inside our target signal space F , there exists a
sparse coding α ∈ Rn that can express the signal:

f(x) = α1b1(x) + · · ·+ αnbn(x) ∀x ∈ Rm, (10)

where n is the size of the dictionary, and α satisfies
∥α∥0 ≤ k for some sparsity k ≪ n. We parameterize each
component in the dictionary with small coordinate-based
networks by bθ1 , · · · , bθn , where θi denotes the network
weights of the i-th element. We call this group of function
basis Neural Implicit Dictionary (NID).

We adopt an end-to-end optimization scheme to learn the
NID. During training stage, we jointly optimize the sub-
networks inside NID and the sparse coding assigned with
each instance. Suppose we own a data collection with
measurements captured from T multimedia instances to
be represented (say T images or geometries of objects):
D = {Ω(i) ∈ Rti×m,Y (i) ∈ Rti}Ti=1, where Ω(i) is the
observation parameters (say coordinates on 2D lattice for
images), m is the dimension of such parameters, Y (i) are
measured observations (say corresponding RGB colors), ti
denotes the number of observations for i-th instance. Then
we optimize the following objective on the training dataset:

argmin
θ1,··· ,θn

α(1),··· ,α(T )

T∑
i=1

ti∑
j=1

L
(
R(f (i)|Ω(i)

j ),Y
(i)
j

)
(11)

+ λP
(
α(i), · · · ,α(T )

)
,

subject to f (i)(x) =

n∑
j=1

α
(i)
j bθj (x) ∀x ∈ Rm,

where f (i) ∈ F is the INR of the i-th instance, R(f |ω) :
F × Ω → R is a functional measuring function f with
respect to a group of parameters ω. L(·) is the loss function
dependent of downstream tasks. P(·) places a regularization
onto the sparse coding, λ = 0.01 is fixed in our experiments.
Besides sparsity penalty, we also consider some joint prior
distributions among all codings, which will be discussed
in Section 3.3. When transferring to unseen scenes, we fix
NID basis {bθi}Ni=1 and only compute the corresponding
sparse coding to minimize the objective in Equation 11.

3.3. Training Thousands of Subnetworks with
Mixture-of-Expert Layer

Directly invoking thousands of networks causes inefficiency
and redundancy due to sample dependent sparsity. More-
over, this brute force computational strategy fails to properly
utilize the advantage of modern computing architectures in
parallelism. As we introduced in Section 2, Mixture-of-
Expert (MoE) training system (Shazeer et al., 2017; He
et al., 2021) provides a conditional computation mechanism
that achieves stable and parallel training on a outrageously
large networks. We notice that MoE layer and NID share
the intrinsic similarity in the underlying running paradigm.
Therefore, we propose to leverage an MoE layer to represent
an NID accommodating thousands of implicit function basis.
Specifically, each element in NID is an expert network in
MoE layer, and the sparse coding encodes the gating states.
Below we elaborate on the implementation details of the
MoE based NID layer part by part:

Expert Networks. Each expert network is a small SIREN
(Sitzmann et al., 2020b) or FFM (Tancik et al., 2020) net-
work. To downsize the whole MoE layer, we share the
positional embedding and the first 4 layers among all expert
networks. Then we append two independent layers for each
expert. We note this design can make two experts share the
early-stage features and adjust their coherence.

Gating Networks. The generated gating is used as the
sparse coding of an INR instance. We provide two alterna-
tives to obtain the gating values: 1) We employ an encoder
network as the gating function to map the (partial) observed
measurements to the pre-sparsified weights. For grid-like
modality, we utilize convolutional neural networks (CNN)
(He et al., 2016; Liu et al., 2018; Gordon et al., 2019). For
unstructured point modality, we adopt set encoders (Zaheer
et al., 2017; Qi et al., 2017a;b). 2) We can also leverage a
lookup table (Bojanowski et al., 2017) where each scene is
assigned with a trainable embedding jointly optimized with
expert networks. After computing the raw gating weights,
we recall the method in Equation 3 to sparsify gates. Dif-
ferent from Shazeer et al. (2017), we do not perform soft-
max normalization to gating logits. Instead, we sort gating
weights with respect to their absolute values, and normal-
ize the weights by its ℓ2 norm. Comparing aforementioned
two gating functions, encoder-based gating networks bene-
fit in parameter saving and instant inference without need
of re-fitting sparse coding. However, headless embeddings
demonstrate more strength in training efficiency and achieve
better convergence.

Patch-wise Dictionary. It is implausible to construct an
over-complete dictionary to represent entire signals. We
adopt the walkround in (Reiser et al., 2021; Turki et al.,
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Table 1. Performance of NID compared with FFM, SIREN, and Meta on CelebA dataset. ↑ the higher the better, ↓ the lower the better.
The unit of # Params is megabytes, FLOPs is in gigabytes, and throughput is in #images/s.

Methods PSNR (↑) SSIM (↑) LPIPS (↓) # Params FLOPs Throughput

FFM (Tancik et al., 2020) 22.60 0.636 0.244 147.8 20.87 0.479
SIREN (Sitzmann et al., 2020b) 26.11 0.758 0.379 66.56 4.217 0.540

Meta + 5 steps (Tancik et al., 2021) 23.92 0.583 0.322 66.69 4.217 0.536
Meta + 10 steps (Tancik et al., 2021) 29.64 0.651 0.182 66.69 4.217 0.536

NID + init. (k = 128) 28.75 0.892 0.061 8.972 23.30 30.37
NID + 5 steps (k = 128) 33.57 0.941 0.027 8.972 23.30 30.37
NID + 10 steps (k = 128) 35.10 0.954 0.021 8.972 23.30 30.37

NID + init. (k = 256) 30.26 0.919 0.045 8.972 29.55 21.23
NID + 5 steps (k = 256) 35.09 0.960 0.019 8.972 29.55 21.23
NID + 10 steps (k = 256) 37.75 0.971 0.012 8.972 29.55 21.23

2021) by partitioning the coordinate space into regular and
overlapped patches, and assign separate NID to each block.
We implement this by setting up multiple MoE layers and
dispatch the coordinate inputs to corresponding MoE with
respect to the region where they are located.

Utilization Balancing and Warm-Up. It was observed
that gating network tends to converge to a self-reinforcing
imbalanced state, where it always produces large weights
for the same few experts (Shazeer et al., 2017). To tackle
this problem, we pose a regularization on the Coefficient of
Variation (CV) of the sparse codings following Bengio et al.
(2015); Shazeer et al. (2017). The CV penalty is defined as:

PCV

(
α(i), · · · ,α(T )

)
=

Var(ᾱ)

(
∑n

i=1 ᾱi/n)
2 , (12)

where ᾱ =

T∑
i=1

α(i). (13)

Evaluating this regularization over the whole training set is
infeasible. Instead we estimate and minimize this loss per
batch. We also find hard sparsification will stop gradient
back-propagation, which leads to stationary gating states
equal to the initial stage. To address this side-effect, we first
abandon hard thresholding and train the MoE layer with ℓ1
penalty Pℓ1 =

∑T
i=1∥α(i)∥1 on codings for several epochs,

and enable sparsification afterwards.

4. Experiments and Applications
In this section, we demonstrate the promise of NID by show-
ing several applications in scene representation.

4.1. Instant Image Regression

A prototypical example of INR is to regress a 2D image
with an MLP which takes in coordinates on 2D lattice and
is supervised with RGB colors. Given a D × D image
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Figure 2. A closer look at the early training stages of FFM, SIREN,
Meta, and NID, respectively.

Y ∈ RD×D×3, our goal is to approximate the mapping
f : R2 7→ R3 by optimizing ∥f(i, j) − Y ij∥2 for every
(i, j) ∈ [0, D]2, where fθ =

∑
i αibθi . In conventional

training scheme, each image is encoded into a dedicated
network after thousands of iterations. Instead, we intend to
use NID to instantly acquire such INR without training or
with only few steps of gradient descent.

Experimental Settings. We choose to train our NID on
CelebA face dataset (Liu et al., 2015), where each image
is cropped to 178 × 178. Our NID contains 4096 experts,
each of which share a 4-layer backbone with 256 hidden
dimension and own a separate 32-dimension output layer.
We adopt 4 residual convolutional blocks (He et al., 2016)
as the gating network. During training, the gating network
is tuned with the dictionary. NID is warmed up within
10 epochs and then start to only keep top 128 experts for
each input for 5000 epochs. At the inference stage, we
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Reference Frame Decomposed Background Decomposed Transient Noise Annotated Transient Noises

Figure 3. Visualization of foreground-background decomposition results for surveillance video via principal component pursuit with NID.

let gating network directly output the sparse coding of the
test image. To further improve the precision, we utilize the
output as the initialization, and then use gradient descent
to further optimize the sparse coding with the dictionary
fixed. We contrast our methods to FFM (Tancik et al., 2020),
SIREN (Sitzmann et al., 2020b) and Meta (Tancik et al.,
2021). In Table 1, we demonstrate the overall PSRN, SSIM
(Wang et al., 2004), and LPIPS (Zhang et al., 2018) of
these four models on test set (with 500 images) under the
limited training step setting, where FFM and SIREN are
only trained for 100 steps. We also present the inference
time metrics in Table 1, including the number of parameters
to represent 500 images, FLOPs to render a single image,
and measured throughput of images rendered per second. In
Figure 2, we zoom into the initialization and early training
stages of each model.

Results. Results in Table 1 show that NID (k = 256)
can achieve best performance among all compared mod-
els even without subsequent optimization steps. A relative
sparser NID (k = 128) can also surpass both FFM and
SIREN (trained with 100 steps) with the initially inferred
coding. Compared with meta-learning based method, our
model can outperform them by a significant margin (≥ 5dB)
within the same optimization steps. We note that since NID
only further tunes the coding vector, both computation and
convergence speed are much faster than meta-learning ap-
proaches which fine-tune parameters of the whole network.
Figure 2 illustrates that the initial sparse coding inferred
from the gating network is enough to produce high-accuracy
reconstructed images. With 3 more gradient descent steps
(which usually takes 5 seconds), it can reach the quality
of well-tuned per-scene training INR (which takes 10 min-
utes). We argue that although meta learning is able to find
a reasonable start point, but the subsequent optimization is
sensitive to saddle points where the represented images are
fuzzy and noisy. In regard to model efficiency, our NID is
8 times more compact than single-MLP representation, as
NID shares dictionary among all samples and only needs
to additionally record an small gating network. Moreover,
our MoE implementation results in a significant throughput
gain, as it makes inference highly parallelable. We point

Clean Corrupted SIREN  Meta  NID 

Figure 4. Qualitative results of inpainting image from corruptions
with NID.

out that meta-learning can only provide an initialization. To
represent all test images, one has to save all dense parame-
ters separately. Horizontally compared, denser NID is more
expressive than sparser one though sacrificing efficiency.

4.2. Facial Image Inpainting.

Image inpainting recovers images corrupted by occlusion.
Previous works (Liu et al., 2018; Yu et al., 2019) only es-
tablish algorithms based on discrete representation. In this
section, we demonstrate image inpainting directly on con-
tinuous INR. Given a corrupted image Y ∈ RD×D×3, we
remove outliers by projecting Y onto some low-dimension
linear (function) subspace spanned by components in a dic-
tionary. We achieve this by trying to represent the corrupted
image as a linear combination of a pre-trained NID, while
simultaneously enforcing the sparsity of this combination.
Specifically, we fix the dictionary in Equation 11 and choose
ℓ1 norm as the loss function L (Candès et al., 2011), where
we assume noises are sparsely distributed on images.

Experimental Settings. We corrupt images by randomly
pasting a 48× 48 color patch. To recover images, we bor-
row the dictionary trained on CelebA dataset from Section
4.1. However, we do not leverage the gating network to
synthesize the sparse coding. Instead, we directly optimize
a randomly initialized coding to minimize Equation 11. Our
baseline includes SIREN and Meta (Tancik et al., 2021). We
change their loss function to ℓ1 norm to keep consistent. To
inpaint with Meta, we start from its learned initialization,
and optimize two steps towards the objective.
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Results. The inpainting results are presented in Figure
4. Our findings are 1) SIREN overfits all given signals
as it does not rely on any image priors. 2) Meta-learning
based approach implicitly poses a prior by initializing the
networks around a desirable optimum. However, our ex-
periment shows that the learned initialization is ad-hoc to
a certain data distribution. When noises are added, Meta
turns unstable and converges to a trivial solution. 3) Our
NID displays stronger robustness by accurately locating and
removing the occlusion pattern.

4.3. Self-Supervised Surveillance Video Analysis

In this section, we establish a self-supervision algorithm
that can decompose foreground and background for surveil-
lance videos based on NID. Given a set of video frames
{Y (t) ∈ RD×D×3}Tt=1, our goal is to find a continuous
mapping f(x, y, t) representing the clip that can be decom-
posed to: f(x, y, t) = fX(x, y, t) + fE(x, y, t), where
fX is the background and fE are transient noises (e.g.,
pedestrians). We borrow the idea from Robust Principal
Component Analysis (RPCA) (Candès et al., 2011; Ji et al.,
2010) where background is assumed to be “low-rank” and
noises are assumed to be sparse. Despite well-established
for discrete representation, modeling “low-rank” in continu-
ous domain remains elusive. We achieve this by assuming
fX(x, y, t) at each time stamp are largely represented by
the same group of experts, i.e., the non-zero elements in
the sparse codings concentrate to several points, and the
coding weights follow a decay distribution. Mathemati-
cally, we first rewrite f by decoupling spatial coordinates
and time: f(x, y, t) =

∑
i αi(t)bθi(x, y), where every time

slice shares a same dictionary, and sparse coding αi(t) de-
pends on the timestamp. Then we minimize:

argmin
θ1,··· ,θn,

α(t)

T∑
t=1

∑
(x,y)

∥∥∥∥∥
n∑

i=1

αi(t)bθi(x, y)− Y
(t)
xy

∥∥∥∥∥
1

(14)

+ λ

T∑
t=1

n∑
i=1

|αi(t)|
exp(−βi)

,

where the second term penalize the sparsity of α(t) accord-
ing to an exponentially increasing curve (controlled by β),
which implies the larger i is, the more sparsity is enforced.
As a consequence, every time slice are largely approximated
by the first few components in NID, which simulates the na-
ture of “low-rank” representation for continuous functions.

Results. We test the above algorithm on BMC-Real
dataset (Vacavant et al., 2012). In our implementation,
α(t) is also parameterized by another MLP, and we choose
β = 0.5. Our qualitative results are presented in Figure 3.
We verify that our algorithm can decompose the background
and foreground correctly by imitating the behavior of RPCA.
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Figure 5. Qualitative results of CT reconstruction from sparse mea-
surements.

This application further demonstrates the potential of our
NID in combining with subspace learning techniques.

Table 2. Quantitative results of CT reconstruction compared with
FFM, SIREN, and Meta. (PSNR in dB)

Methods 128 views 16 views 8 views
PSNR SSIM PSNR SSIM PSNR SSIM

FFM (Tancik et al., 2020) 22.81 0.845 15.22 0.122 13.58 0.095
SIREN (Sitzmann et al., 2020b) 24.32 0.891 18.48 0.510 17.26 0.483
Meta (Tancik et al., 2021) 32.70 0.948 21.39 0.822 18.28 0.574

NID (k = 128) 36.56 0.939 24.48 0.818 16.24 0.619
NID (k = 256) 37.49 0.944 26.32 0.829 16.77 0.636

4.4. Computed Tomography Reconstruction

Computed tomography (CT) is a widely used medical imag-
ing technique that captures projective measurements of the
volumetric density of body tissue. This imaging formation
can be formulated as below:

Y (r, ϕ) =

∫
R2

f(x, y)δ(r − x cosϕ− y sinϕ)dxdy,

where r is the location on the image plane, ϕ is the viewing
angle, and δ(·) is known as Dirac delta function. Due to
limited number of measurements, reconstructing f through
inversing this integral is often ill-posed. We propose to
shrink the solution space by using NID as a regularization.

Experimental Settings. We conduct experiments on
Shepp-Logan phantoms dataset (Shepp & Logan, 1974)
with 2048 randomly generated 128 × 128 CTs. We first
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directly train an NID over 1k CT images, during which
the total number of experts is 1024, and each CT selects
128/256 experts. In CT scenario, a look-up table is chosen
as our gating network. Afterwards, we randomly sample
128 viewing angles, and synthesize 2D integral projections
of a bundle of 128 parallel rays from these angles as the
measurement. To testify the effectiveness of our method
under limited number of observations, we downsample 128
views by 12.5%(16) and 6.25%(8) respectively. Again, we
choose FFM (Tancik et al., 2020), SIREN (Sitzmann et al.,
2020b), and Meta (Tancik et al., 2021) as our baselines.

Results. The quantitative results are listed in Table 2. We
observe that our NID consistently leads two metrics in the
table. When sampled views are sufficient, NID achieves
the highest PSNR, while when views are reduced, our NID
takes advantage in SSIM. We also plot the qualitative results
in Figure 5. We find that our NID can regularize the recon-
structed results to be smooth and shape-consistent, which
leads to less missing wedge artifacts.

4.5. Shape Representation from Point Clouds

Recent works (Park et al., 2019; Sitzmann et al., 2020a;b;
Gropp et al., 2020) convert point clouds to continuous sur-
face representation through directly regressing a Signed
Distance Function (SDF) parameterized by MLPs. Suppose
f : R3 → R is our target SDF, given a set of points Ω ⊂ R3,
we fit f by solving a integral equation of the form below
(Park et al., 2019):

argmin
f

∫
x∈Ω

|f(x)|dx+

∫
x∈R3\Ω

|f(x)− d(x,Ω)|dx,

(15)

where d(x,Ω) denotes the signed shortest distance from
point x to point set Ω. During optimization, we evaluate
the first integral via sampling inside the given point cloud
and the second term via uniformly sampling over the whole
space. Tackling this integral with sparsely sampled points
around the surface is challenging (Park et al., 2019). Sim-
ilarly, we introduce NID to learn a priori SDF basis from
data and then leverage it to regularize the solution.

Table 3. Quantitative results of SDF reconstruction compared with
SIREN, DeepSDF, MetaSDF. CD is short for Chamfer Distance
(magnified by 103), NC means Normal Consistency. ↑ the higher
the better, ↓ the lower the better.

Methods 500k points 50k points 10k points
CD(↓) NC(↑) CD(↓) NC(↑) CD(↓) NC(↑)

SIREN (Sitzmann et al., 2020b) 0.051 0.962 0.163 0.801 1.304 0.169
IGR (Gropp et al., 2020) 0.062 0.927 0.170 0.812 0.961 0.676
DeepSDF (Park et al., 2019) 0.059 0.925 0.121 0.856 2.751 0.194
MetaSDF (Sitzmann et al., 2020a) 0.067 0.884 0.097 0.878 0.132 0.755
ConvONet (Peng et al., 2020) 0.052 0.938 0.082 0.914 0.133 0.845

NID (k = 128) 0.058 0.940 0.067 0.948 0.093 0.921
NID (k = 256) 0.053 0.956 0.063 0.952 0.088 0.945

Experimental Settings. Our experiments about SDF are
conducted on ShapeNet (Chang et al., 2015) datasets, from
which we pick the chair category for demonstration. To
guarantee meshes are watertight, we run the toolkit provided
by Huang et al. (2018) to convert the whole dataset. We
split the chair category following Choy et al. (2016), and fit
our NID over the training set. The total number of experts
is 4096, and after 20 warm-up epochs, only 128/256 experts
will be preserved for each sample. We choose lookup table
as our gating network. During inference time, we sample
500k, 50k and 10k point clouds, respectively, from the test
surfaces. Then we optimize objective in Equation 15 to
obtain the regressed SDF with f represented by our NID.
In addition to SIREN and IGR (Gropp et al., 2020), We
choose DeepSDF (Park et al., 2019), MetaSDF (Sitzmann
et al., 2020a), and ConvONet (Peng et al., 2020) as our
baselines. Our evaluation metrics are Chamfer distance (the
average minimal pairwise distance) and normal consistency
(the angle between corresponding normals).
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Figure 6. Qualitative results of SDF reconstruction from sparse
point clouds.

Results. We put our numerical results in Table 3, from
which we can summarize that our NID is more robust to
smaller number of points. As the performance of other meth-
ods drops quickly, the CD metric of NID stays below 0.1 and
NC keeps above 0.9. We also provide qualitative illustration
in Figure 6. We conclude that thanks to the constraint of our
NID, the SDF will not collapse at some point where observa-
tions are missing. DeepSDF and ConvONet reply on latent
feature space to decode geometries, which shows the poten-
tial in regularizing geometries. However, the superiosity of
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our model suggests our dictionary based representation is
advantageous over conditional implicit representation.

5. Related Work
Generalizable Implicit Neural Representations. Im-
plicit Neural Representation (INR) (Tancik et al., 2020;
Sitzmann et al., 2020b) notoriously suffers from the limited
cross-scene generalization capability. Tancik et al. (2021);
Sitzmann et al. (2020a) propose meta-learning based al-
gorithms to better initialize INR weights for fast conver-
gence. Chen et al. (2021c); Park et al. (2019); Chabra
et al. (2020); Chibane et al. (2020); Jang & Agapito (2021);
Martin-Brualla et al. (2021); Rematas et al. (2021) intro-
duce learnable latent embeddings to encode scene specific
information and condition the INR on the latent code for
generalizable representation. In Sitzmann et al. (2020b), the
authors further utilize a hyper-network (Ha et al., 2016) to
predict INR weights directly from inputs. Compared with
conditional fields or hyper-network based methods, sparse
coding based NID, with just one last layer, can achieve
faster adaptation. The dictionary representation simplifies
the mapping between latent spaces to a sparse linear com-
bination over the additive basis, which can be manipulated
more interpretably and also contributes to transferability.
Last but not least, it is known that imposing sparsity can
help overcome noise in ill-posed inverse problems (Donoho,
2006; Candès et al., 2011).

Mixture of Experts (MoE). Mixture of Experts (Jacobs
et al., 1991; Jordan & Jacobs, 1994; Chen et al., 1999; Yuk-
sel et al., 2012; Roller et al., 2021) perform conditional
computations composed of a group of parallel sub-models
(a.k.a. experts) according to a routing policies (Dua et al.,
2021; Roller et al., 2021). Recent advances (Shazeer et al.,
2017; Lepikhin et al., 2020; Fedus et al., 2021) improve
MoE by adopting a sparse-gating strategy, which only ac-
tivates a minority of experts by selecting top candidates
according to the scores given by the gating networks. This
brings massive advantages in model capacity, training time,
and achieved performance (Shazeer et al., 2017). Fedus
et al. (2021) even built language models with trillions of
parameters. To stabilize the training, Hansen (1999); Lep-
ikhin et al. (2020); Fedus et al. (2021) investigated auxiliary
loading loss to balance the selection of experts. Alterna-
tively, Lewis et al. (2021); Clark et al. (2022) encourage a
balanced routing by solving a linear assignment problem.

6. Conclusion
We propose Neural Implicit Dictionary (NID) learned from
data collection to represent the signals as a sparse combi-
nation of the function basis inside. Unlike tradition dictio-
nary, our NID contains continuous function basis, which

are parameterized by subnetworks. To train thousands of
networks efficiently, we employ Mixture-of-Expert training
strategy. Our NID enjoys higher compactness, robustness,
and generalization. Our experiments demonstrate promising
applications of NID in instant regression, image inpainting,
video decomposition, and reconstruction from sparse obser-
vations. Our future work may bring in subspace learning
theories to analyze NID.
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