
DynaMixer: A Vision MLP Architecture with Dynamic Mixing

Ziyu Wang 1 Wenhao Jiang 1 Yiming Zhu 2 Li Yuan 3 Yibing Song 4 Wei Liu 1

Abstract

Recently, MLP-like vision models have achieved
promising performances on mainstream visual
recognition tasks. In contrast with vision trans-
formers and CNNs, the success of MLP-like mod-
els shows that simple information fusion oper-
ations among tokens and channels can yield a
good representation power for deep recognition
models. However, existing MLP-like models fuse
tokens through static fusion operations, lacking
adaptability to the contents of the tokens to be
mixed. Thus, customary information fusion pro-
cedures are not effective enough. To this end,
this paper presents an efficient MLP-like network
architecture, dubbed DynaMixer, resorting to dy-
namic information fusion. Critically, we propose
a procedure, on which the DynaMixer model re-
lies, to dynamically generate mixing matrices
by leveraging the contents of all the tokens to
be mixed. To reduce the time complexity and
improve the robustness, a dimensionality reduc-
tion technique and a multi-segment fusion mech-
anism are adopted. Our proposed DynaMixer
model (97M parameters) achieves 84.3% top-1
accuracy on the ImageNet-1K dataset without ex-
tra training data, performing favorably against
the state-of-the-art vision MLP models. When
the number of parameters is reduced to 26M,
it still achieves 82.7% top-1 accuracy, surpass-
ing the existing MLP-like models with a simi-
lar capacity. The code is available at https:
//github.com/ziyuwwang/DynaMixer.

1Data Platform, Tencent 2Graduate school at ShenZhen,
Tsinghua university 3School of Electrical and Computer En-
gineering, Peking University 4Tencent AI Lab. Correspon-
dence to: Wenhao Jiang <cswhjiang@gmail.com>, Wei Liu
<wl2223@columbia.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

10 20 30 40 50 60 70 80 90 100
Number of Parameters (M)

77

78

79

80

81

82

83

84

To
p1

 A
cc

ur
ac

y
(%

)

MLP-Mixer
gMLP
Cycle-MLP
Hire-MLP
sMLPNet
S^2-MLPv2
ViP
DynaMixer

Figure 1. ImageNet accuracy v.s. model capacity. All models
are trained on ImageNet-1K without extra data. DynaMixer outper-
forms all the existing MLP-like models, such as MLP-Mixer (Tol-
stikhin et al., 2021), Hire-MLP (Guo et al., 2021), S2-MLP-v2 (Yu
et al., 2021a), ViP (Hou et al., 2021), and Cycle-MLP (Chen et al.,
2021b).

1. Introduction
Convolutional neural networks (CNNs) have been the dom-
inating solution for a wide range of computer vision tasks
for a long time, e.g., visual recognition and segmentation.
CNNs aim at training the whole network end-to-end to re-
move hand-crafted visual features and inductive biases. And
they heavily rely on convolution operators and pooling op-
erators, which introduce locality and spatial invariances.
Recently, Transformers (Vaswani et al., 2017), which have
achieved overwhelming success in natural language process-
ing, have also been introduced into the compute vision field.
The Vision Transformers (ViTs) (Dosovitskiy et al., 2021)
have achieved state-of-the-art performances on visual recog-
nition tasks. In ViT, images are first divided into a sequence
of non-overlapping patches, which can be seen as word to-
kens in the natural language processing field. Those patches
are then fed into a stack of blocks based on self-attention
to obtain the contextualized output tokens. ViT removes
the convolution and pooling operators from CNNs, and em-
ploys a self-attention mechanism to model the relationships
among image patches. Inspired by ViTs, many efforts have

https://github.com/ziyuwwang/DynaMixer
https://github.com/ziyuwwang/DynaMixer

DynaMixer: A Vision MLP Architecture with Dynamic Mixing

been made to designing simpler models in the setting with a
large amount of data available.

More recently, a pure multilayer perceptron (MLP) architec-
ture (Tolstikhin et al., 2021), called MLP-Mixer, was pro-
posed to reduce the inductive biases further and showed com-
petitive performance with CNN-based models and vision
transformers. MLP-Mixer is much simpler than transformer-
based models because it utilizes MLP as a building block, re-
moving the need of invoking self-attention. In MLP-Mixer,
each layer mainly relies on two steps to perform informa-
tion interaction: token mixing step and channel mixing step,
both based on MLP blocks. The token mixing step performs
fusion among the tokens, while the channel mixing step per-
forms fusion on the channel dimension. Inspired by this, a
number of MLP-like models (Chen et al., 2021b; Hou et al.,
2021; Yu et al., 2021a;b) have emerged for further improve-
ments. However, these MLP-like methods rely on fixed
static mixing matrices for patch communications, which
may restrict the adaptability to the contents to be fused.

To solve the above limitation, we propose a vision MLP ar-
chitecture with dynamic mixing, dubbed DynaMixer, which
can generate mixing matrices dynamically for each set of
tokens to be mixed by considering their contents. Note that
mixing all the image tokens consumes a significant time
cost. For a computational speedup, we mix tokens in a row-
wise and column-wise way. During each mixing process,
we reduce the feature dimensionality to generate the mixing
matrices. We empirically find that we can reduce feature
dimensionality significantly without undermining the per-
formance much. The feature dimensionality can even be
reduced to 1 in our experiments. Furthermore, we divide the
feature channels into multiple segments and perform token
mixing separately. This improves the mixing robustness as
well as efficiency. As a result, our method achieves state-of-
the-art performance among existing MLP-like vision models
on the ImageNet-1K dataset (Deng et al., 2009), as sum-
marized in Fig 1. Without any extra data, our DynaMixer
accomplishes 84.3% top-1 accuracy with 97M parameters.
When the model parameters are reduced to 26M, DynaMixer
can still reach 82.7% top-1 accuracy, far exceeding other
MLP-like models with a similar number of parameters.

2. Related Work
The deep neural networks for vision related tasks evolve
from CNNs to ViTs and MLPs. In this section, we review
these models and illustrate the relationships between our
DynaMixer and these models.

2.1. Convolutional Neural Networks

The CNNs have drawn huge attention since
AlexNet (Krizhevsky et al., 2012) improved image

classification by a large margin. Convolution operations,
nonlinear activation, and pooling operations have become
prevalent for CNN architecture designs. Based on the
previous works on CNN, inceptions (Szegedy et al., 2015;
2016; 2017) were proposed by employing multiple parallel
branches. A breakthrough was made by ResNet (He
et al., 2016), in which the network depth was significantly
increased. To ease training, skip connections with identity
mapping were introduced into ResNets. They achieved
state-of-the-art visual recognition performances at that time
and inspired further research, including ResNeXt (Xie
et al., 2017) and DenseNet (Huang et al., 2017). Afterward,
attention mechanisms were gradually explored to benefit
CNNs. Examples include SENet (Hu et al., 2018), non-local
neural network (Wang et al., 2018), and local relationship
network (Hu et al., 2019). CNNs have been widely
applied to computer vision related tasks, such as visual
recognition, image/video generation, object detection,
semantic segmentation, and so on.

2.2. Vision Transformers

Transformer (Vaswani et al., 2017) was firstly proposed in
the machine translation area. It was then adopted for com-
puter vision applications in ViT (Dosovitskiy et al., 2021).
Input images in ViT are divided into a sequence of non-
overlapping patches, which are regarded as tokens and are
fed into transformers. Unlike CNNs aggregating informa-
tion within local windows, ViTs model global information
interactions among visual tokens via self-attention. Inspired
by ViTs, many variants are proposed to remove the draw-
backs of original ViTs. In DeepViT (Zhou et al., 2021a)
and CaiT (Touvron et al., 2021c), the problem that the per-
formance of ViTs saturates fast when scaled to be deeper
was addressed. In (Yuan et al., 2021b; Chen et al., 2021a;
Han et al., 2021; Liu et al., 2021b; Wang et al., 2021b; Fan
et al., 2021; Ge et al., 2021; Liang et al., 2022; Tong et al.,
2022; Bai et al., 2022; Zhou et al., 2021b), multi-granularity
was introduced into ViTs to improve the generalization abil-
ity. A complete survey on vision transformers can be found
in (Han et al., 2020; Khan et al., 2021). All transformer-
based models benefit from the self-attention mechanism for
its flexibility and adaptiveness. Our model does not involve
the self-attention mechanism while maintaining adaptability.
Differences will be discussed in the following section.

2.3. Vision MLPs

Recently, MLP-based vision models (Tolstikhin et al., 2021;
Touvron et al., 2021a) were proposed to reduce the induc-
tive bias further and showed competitive performances with
CNN-based models and ViTs. Existing MLP-like models
share a similar macro framework but have different micro
block designs. MLP-like models usually divide one input
image into patches, like in vision transformers, and then per-

DynaMixer: A Vision MLP Architecture with Dynamic Mixing

Figure 2. The basic architecture of our proposed DynaMixer. DynaMixer consists of a patch embedding layer, several mixer
layers, a global average pooling layer, and a classifier head. The patch embedding layer transforms input non-overlapping patches into
corresponding input tokens, which are fed into a sequence of mixer layers to generate the output tokens. All output tokens are averaged
in the average pooling layer, and the final prediction is generated with a classifier head. The mixer layer (middle part) contains two
layer-normalization layers, a DynaMixer block and a channel-MLP block. The DynaMixer block (right part) performs row mixing and
column mixing via the DynaMixer operations (depicted in Fig. 3), and a simple channel-mixing via linear projection. The mixing results
are summed and outputted with a linear transformation.

form two main steps: token mixing step and channel mixing
step. The specific details of these two steps, especially
token-mixing steps, are different among the existing meth-
ods. ViP (Hou et al., 2021) was proposed to perform token
mixing along the height and width dimensions with simple
linear projections to encode spatial information, which is
different from other MLP-like models that fuse token infor-
mation among all tokens in one step. S2-MLP (Yu et al.,
2021a) replaced the token mixing step with a spatial-shift
step to enable information interaction among tokens. Cy-
cleMLP (Chen et al., 2021b) samples local points along the
channel dimension in a cyclical style, while AS-MLP (Lian
et al., 2021) samples locations in a cross. Hire-MLP (Guo
et al., 2021) mixes tokens within a local region and across
local regions.

All these MLP-like methods rely on static mixing matrices
for patch communications, which may limit the performance
for lacking adaptiveness since it is natural that a different
set of tokens should be mixed differently. Thus, we propose
to generate the mixing matrices dynamically by considering
the contents of tokens to be mixed. A recent work, Synthe-
sizer (Tay et al., 2021), pointed out that either the attention
matrix in ViTs or the mixing matrix in MLP can be seen
as generated with a specially designed function. It is worth
noting that although the Synthesizer (Dense) (Tay et al.,
2021) adopts to generate the mixing matrix dynamically, the

mixing weights for a specific position are determined only
by the contents of the token at the same position. However,
the weights for it in our model are determined by all the
tokens. We will show how to design such a generating func-
tion and how to reduce the computational complexity in the
following section.

3. The Architecture of DynaMixer
In this section, we present our model designs. The overall
framework of our network is illustrated in Fig. 2. Like in
other MLP-based models, the input image is divided into
non-overlapping patches. All patches are projected onto the
embedding space with a shared matrix, which are then fed
into a sequence of mixer layers to generate the output tokens.
All output tokens are averaged in the average pooling layer,
and then sent into the classifier head to yield the final pre-
diction. Except for the layer-normalization layers and skip
connections, the mixer layer contains a DynaMixer block
and a channel-MLP block, which are responsible for fusing
token information and channel information, respectively.
The channel-MLP block is just a feed-forward layer as in
Transformer (Vaswani et al., 2017). The DynaMixer block
performs row mixing and column mixing via DynaMixer
operations, and channel-mixing via simple linear projec-
tion, respectively. The mixing results are aggregated and

DynaMixer: A Vision MLP Architecture with Dynamic Mixing

Linear

Reshape

Linear

Matmul

Linear

"× #

"× #

"×#

"×#

"×$

1×"$

Reshape

"×"

1×"!

Softmax

"×"

Input

Figure 3. The procedure of our proposed DynaMixer operation for
one segment.

outputted via a linear transformation. We first illustrate
our DynaMixer operation, and then elaborate on the Dy-
naMixer block. Finally, we analyze the differences from
other MLP-like models.

3.1. The DynaMixer Operation

Dynamic mixing matrix generation. The principle of
our design is to generate a dynamic mixing matrix P given
a set of input tokens X ∈ RN×D by considering their
contents, where N is the number of tokens, and D is the
feature dimensionality. Once we obtain P , we can mix the
tokens by Y = PX to obtain the output tokens Y . A simple
way to get P is utilizing a linear function of all input token
features to estimate it. Thus, we can simply flatten X into a
vector and generate the mixing matrix as

Pi· = softmax
(
flat(X)TW (i)

)
, (1)

where flat(X) ∈ RND×1 is a vector by flattening X ,
softmax(·) is the softmax operator performing on a row
vector, W (i) ∈ RND×N , and P is the mixing matrix. Pi·
is the i-th row of P , and it contains the mixing weights for
the i-th output token. However, the number of parameters
of the above process is too large since ND is usually too
big. Thus, we can perform dimensionality reduction first to
reduce the number of parameters. Therefore, we have the
following steps to generate the mixing matrix and perform

mixing on tokens:

X̂ = XWd, (2)

Pi· = softmax
(
flat(X̂)W (i)

)
, (3)

Y = PX, (4)

where X̂ ∈ RN×d, and d ≪ D is a quite small number, say
1 or 2. The whole procedure for generation and mixing is de-
scribed pictorially in Fig 3, which can be implemented easily
with PyTorch (Paszke et al., 2019) or TensorFlow (Abadi
et al., 2015).

Multi-segment fusion mechanism. To improve the ro-
bustness of our model, we divide features into S segments,
perform the mixing operation separately, and combine the
mixed results to obtain the final results:

X̂(s) = XW
(s)
d , (5)

P
(s)
i· = softmax

(
flat(X̂(s))W (s,i)

)
, (6)

Y = [P (0)X(0), · · · , P (S−1)X(S−1)]Wo, (7)

where X̂(s) ∈ RN×d,W (s,i) ∈ RNd×N , P (s)
i· is the i-th

row of the token mixing matrix for the s-th segment, X(s)

is the tokens in the s-th segment, [·, ·] is the concatenation
operation, and Wo ∈ RD×D is a feature fusion matrix for
output. Note that, different dimensionality reduction matri-
ces, i.e., W (s)

d , are used for different segments, which are
beneficial for the expressive power of the model. Moreover,
the mixing matrix for the s-th segment is also effected by
the contents of other segments. Thus, the mixing behaviours
for different segments are not independent.

Weights sharing among segments. To reduce the number
of parameters, the matrices W (s,i) are shared among all seg-
ments. Thus, the number of parameters of the DynaMixer
operation is S × D × d + N3 × d + D2. In practice, we
found that d can be quite small, e.g., d = 1 or d = 2.

We use the following expression to denote the DynaMixer
operation in the rest of this paper:

Y = DynaMixerOp(X). (8)

3.2. The DynaMixer Block

The number of parameters of the above operation mainly
depends on N , the number of tokens to be mixed, which is
H ×W , where H and W are the numbers of patches in the
height and width directions, respectively. Thus, to reduce
the computational complexity, we adopt a strategy similar
to ViP (Hou et al., 2021), which mixes tokens in a row or
column at one step. As depicted in the right part of Fig 2,
the DynaMixer block consists of three components, which

DynaMixer: A Vision MLP Architecture with Dynamic Mixing

Algorithm 1 Pseudo-code for DynaMixer Block (PyTorch-
like)
initializaiton
proj_c = nn.Linear(D, D)
proj_o = nn.Linear(D, D)

code in forward
def dyna_mixer_block(self, X):
H, W, D = X.shape

row mixing
for h = 1:H
Y_h[h,:,:] = DynaMixerOp_h(X[h,:,:])

column mixing
for w = 1:W
Y_w[:,w,:] = DynaMixerOp_w(X[:,w,:])

channel mixing
Y_c = proj_c(X)
Y_out = Y_h + Y_w + Y_c

return proj_o(Y_out)

are row mixing, column mixing, and channel mixing. In row
mixing, the tokens that belong to the same row are mixed via
DynaMixer operations. And the parameters of DynaMixer
operations are shared among all rows. Similarly, the tokens
that belong to the same column are mixed via DynaMixer
operation in column mixing, in which the parameters of
DynaMixer operations are also shared. The channel mixing
is simply a linear transformation on features. We denote the
outputs of the three components as Yh, Yw and Yc, and the
output of the DynaMixer block is

Yout = (Yh + Yw + Yc)W
′
o. (9)

The procedure for the DynaMixer block is summarized
in Algorithm 1, in which we denote the input as X ∈
RH×W×D for convenience.

In Algorithm 1, the three mixing results are just summed
to obtain the final result, as described in Eq. (9). To further
improve the performance, importances of the three compo-
nents can be estimated by a method similar to (Zhang et al.,
2020; Hou et al., 2021). In the following experiments, the
weighted DynaMixer block is used by default.

3.3. Discussion

DynaMixer v.s. Synthesizer (Dense). The weights for
the i-th output token generated by Synthesizer (Dense) are
only determined by the contents of the i-th input token.
Thus, it cannot model the effects from the other tokens, lead-
ing to inaccurate weight estimation. However, our model
considers all the tokens to generate more accurate mixing
weights. Moreover, our model divides the channel into

non-overlapping segments and performs separate mixing op-
erations on them. Such a design can improve the robustness
and expressive power of our model.

DynaMixer v.s. ViP. Except that the mixing matrices in
our model are generated dynamically, the mixing behaviors
are also quite different. Suppose W tokens in the h-th row
are to be mixed. Each token is divided into S segments
along channel dimension, and the dimensionality of channel
is denoted as D. In ViP, W ×S vectors of dimensionality D

S
will be mixed by multiplying one fixed matrix. However, in
DynaMixer, the mixing operation occurs S times. One time
for one segment. And each mixing operation is performed
on W vectors of dimensionality D

S with different mixing
matrices.

DynaMixer v.s. self-attention. The mixing matrix (at-
tention map) in self-attention models the pair-wise relation-
ships between tokens. Thus, it is a quadratic function of
token features. However, in our method, the mixing matrix
is estimated by computing the relationships between tokens
and a trainable matrix (W s,i in Eq. (6)).

4. Experimental Results
In this section, we present the experimental results and anal-
ysis. First, we will give the configurations of our DynaMixer
used in the experiments, and then the experimental settings
and results on the ImageNet-1K dataset are provided. At
last, the ablation studies are presented to provide a deep
understanding of the designs in our model.

4.1. Configurations of DynaMixer

The configurations of our model used in the experiments
are summarized in Table 1. There are three versions of
DynaMixer, denoted as “DynaMixer-S”, “DynaMixer-M”,
and “DynaMixer-L”, according to the model sizes. In all
our experiments, the input image size is 224× 224, and the
input patch size is 7 × 7. All our models have two stages,
and each starts with a patch embedding layer. The patch size
for the second stage is 2× 2. Thus, the corresponding patch
embedding layer can be seen as a downsampling layer.

4.2. Experimental Configurations

We train our proposed DynaMixer on the public image clas-
sification benchmark ImageNet-1K dataset (Deng et al.,
2009), which covers 1K categories of natural images and
contains 1.2M training images and 50K validation images.
Because the test set for this benchmark is unlabeled, we
follow the common practice by evaluating the performance
on the validation set. The code implementation is based on

DynaMixer: A Vision MLP Architecture with Dynamic Mixing

Specification DynaMixer-S DynaMixer-M DynaMixer-L

Patch size 7× 7 7× 7 7× 7
Hidden size 192 256 256
#Tokens 32× 32 32× 32 32× 32
#Mixer Layers 4 7 8
S 8 8 8

Patch size 2× 2 2× 2 2× 2
Hidden size 384 512 512
#Tokens 16× 16 16× 16 16× 16
#Mixer Layers 14 17 28
S 16 16 16

#Layers 18 24 36
MLP Ratio 3 3 3
Stoch. Dep. 0.1 0.1 0.3
d 2 2 8
#Parameters 26M 57M 97M

Table 1. The configurations of DynaMixers used. We design
three DynaMixers (DynaMixer-S, DynaMixer-M, and DynaMixer-
L) of different sizes (Small, Medium, and Large) for the experi-
ments, according to the number of parameters. The first two groups
of rows show the configurations of the first and the second stage
of the models, respectively. The third group of rows shows some
other hyperparameters.

PyTorch (Paszke et al., 2019) and the TIMM1 toolbox.

We train our model with one machine with 8 NVIDIA A100
GPUs with data parallelism. For model optimization, we
adopt the AdamW optimizer (Loshchilov & Hutter, 2017).
The learning rates for DynaMixer-S, DynaMixer-M, and
DynaMixer-L are 0.002, and the corresponding batch sizes
on one GPU are 256, 128, and 64, respectively. We set the
weight decay rate to 0.05 and set the warmup learning rate
to 10−6 to follow the settings in previous work (Touvron
et al., 2021b; Jiang et al., 2021). We use automatic mixed-
precision of the PyTorch version for training acceleration.
Stochastic Depth (Huang et al., 2016) is used, and the drop
rate varies with the size of the model. The model is trained
for 300 epochs. For data augmentation methods, we use
CutOut (Zhong et al., 2020), RandAug (Cubuk et al., 2020),
MixUp (Zhang et al., 2017), and CutMix (Yun et al., 2019).
Detailed settings about S, d, and the path drop rates for
different versions of DynaMixer can be found in Table 1.

4.3. Results on ImageNet-1K

In this subsection, we compare our model with MLP-like
models, CNN-based models, and transformer-based models
to show the advantages of our dynamic mixing mechanism.

Comparisons with MLP-like Models. First, we compare
our DynaMixer with MLP-like models. The top-1 accura-
cies of different MLP-like models on ImageNet-1K (Deng
et al., 2009) without external data are shown in Table 2.

1https://github.com/rwightman/pytorch-image-models

Model Date Param FLOPs Top-1 (%)

Mixer-B/16 (Tolstikhin et al., 2021) MAY, 2021 59M 12.7G 76.4
Mixer-B/16† (Tolstikhin et al., 2021) 59M 12.7G 77.3

ResMLP-S12 (Touvron et al., 2021a) 15M 3.0G 76.6
ResMLP-S24 (Touvron et al., 2021a) MAY, 2021 30M 6.0G 79.4
ResMLP-B24 (Touvron et al., 2021a) 116M 23.0G 81.0

gMLP-Ti (Liu et al., 2021a) 6M 1.4G 72.3
gMLP-S (Liu et al., 2021a) MAY, 2021 20M 4.5G 79.6
gMLP-B (Liu et al., 2021a) 73M 15.8G 81.6

ViP-Small/14 (Hou et al., 2021) 30M 6.9G 80.7
ViP-Small/7 (Hou et al., 2021) JUN, 2021 25M 6.9G 81.5
ViP-Medium/7 (Hou et al., 2021) 55M 16.3G 82.7
ViP-Large/7 (Hou et al., 2021) 88M 24.4G 83.2

AS-MLP-T (Lian et al., 2021) 28M 4.4G 81.3
AS-MLP-S (Lian et al., 2021) JUL, 2021 50M 8.5G 83.1
AS-MLP-B (Lian et al., 2021) 88M 15.2G 83.3

S2-MLPv2-Small/7 (Yu et al., 2021b) AUG, 2021 25M 6.9G 82.0
S2-MLPv2-Medium/7 (Yu et al., 2021b) 55M 16.3G 83.6

RaftMLP-36 (Tatsunami & Taki, 2021) AUG, 2021 44M 9.0G 76.9
RaftMLP-12 (Tatsunami & Taki, 2021) 58M 12.0G 78.0

sMLPNet-T (Tang et al., 2021) SEP, 2021 24M 5.0G 81.9
sMLPNet-S (Tang et al., 2021) 49M 10.3G 83.1
sMLPNet-B (Tang et al., 2021) 66M 14.0G 83.3

ConvMLP-S (Li et al., 2021) 9M 2.4G 76.8
ConvMLP-M (Li et al., 2021) SEP, 2021 17M 3.9G 79.0
ConvMLP-L (Li et al., 2021) 43M 9.9G 80.2

CycleMLP-T (Chen et al., 2021b) 28M 4.4G 81.3
CycleMLP-S (Chen et al., 2021b) NOV, 2021 50M 8.5G 82.9
CycleMLP-B (Chen et al., 2021b) 88M 15.2G 83.4

Hire-MLP-Ti (Guo et al., 2021) 18M 2.1G 79.7
Hire-MLP-S (Guo et al., 2021) NOV, 2021 33M 4.2G 82.1
Hire-MLP-B (Guo et al., 2021) 58M 8.1G 83.2
Hire-MLP-L (Guo et al., 2021) 96M 13.4G 83.8

DynaMixer-S 26M 7.3G 82.7
DynaMixer-M 57M 17.0G 83.7
DynaMixer-L 97M 27.4G 84.3

Table 2. Image classification results of our DynamMixer and other
MLP-like models on the ImageNet-1K benchmark without extra
data. “Top-1” denotes Top-1 accuracy. “Param” and FLOPs denote
the number of parameters and the number of floating point oper-
ations, respectively. Model with † was re-implemented by (Liu
et al., 2021a). The date column means the corresponding initial
release date on arXiv. The FLOPs are computed with the code of
CycleMLP (Chen et al., 2021b).

The “Param” and “FLOPs” columns denote the number of
parameters and the number of floating point operations, re-
spectively. The results are extracted from the corresponding
papers, and the FLOPs are computed with the code of Cy-
cleMLP2. Firstly, it is obvious that our model consistently
outperforms the other models of a similar number of param-
eters. In addition, we can see that our DynaMixer-S model
with 26M parameters achieves top-1 accuracy of 82.7%,
which has already surpassed most of the existing MLP-like
models of all sizes and is even better than gMLP-B (Liu
et al., 2021a) with 73M parameters. Increasing the number
of parameters to 57M, our DynamMixer-M obtains accuracy
83.7%, which is superior to all MLP-like models. Further
expanding the network to 97M parameters, DynaMixer-L
can achieve top-1 accuracy of 84.3%, which is a new state-
of-the-art among the MLP-like models.

2https://github.com/ShoufaChen/CycleMLP

DynaMixer: A Vision MLP Architecture with Dynamic Mixing

By comparing with ViP (Hou et al., 2021), which is the most
similar model to ours, we find that the number of parameters
and FLOPs of our model are only slightly larger than those
of ViP. However, the improvements of performance are not
caused by the increment on model size. The model sizes
of our model and ViP are similar. For example, the num-
ber of parameters and FLOPs of DynaMixer-M are 57M
and 17G. And those of ViP-Mediam/7 are 55M and 16.3G.
Thus, the model size of ours is about 5% larger than ViP.
But the performance is improved greatly from 82.7% to
83.7%. Therefore, the model structure should be attributed
to such improvements. Specifically, the designs of dynamic
mixing matrices and multi-segment fusion mechanism do
help improve the performance. The mixing matrices gen-
erated dynamically could capture the contents of tokens to
be mixed. Thus, different sets of tokens will be mixed with
different mixing matrices. Therefore, token information
could be fused more effectively. At last, the multi-segment
fusion mechanism improves the robustness of the whole
model. We also provide detailed ablation studies of these
two designs in the following subsection for gaining a deeper
understanding of our method.

Comparison with SOTA Classification Models. We also
compare our model with well-known state-of-the-art mod-
els, which include CNN-based models, transformer-based
models, and hybrid models. The results are shown in Ta-
ble 3. We can see that our proposed models still achieve
the best performance among models with a similar num-
ber of parameters. Specifically, our models achieve better
performance than Swin Transformer (Liu et al., 2021b),
which is the state-of-the-art transformer-based model. Our
DynaMixer-S achieves accuracy 82.7% with slightly fewer
parameters, while Swin-T achieved 81.3%. For medium-
sized and large-sized models, our models are still better than
Swin-S and Swin-B. Our model is also better than Cross-
Former (Wang et al., 2021b), which employs a multi-scale
strategy. We believe that by introducing multi-granularity,
the performance of our method could be further improved.
From the above comparisons, we can see that DynaMixer is
a promising architecture for visual recognition tasks.

Model Latency Comparison. We test the throughput of
our model, ViP, and ResMLP with a batch size set of 32 on a
single NVIDIA V100 GPU. Table 4 shows these results. We
can see that among models achieving similar top-1 accura-
cies, our model achieves the best throughput. For example,
DynaMixer-S and ViP-M/7 have similar top-1 performance.
The throughput of our model is 551 images/s, while the
throughput of ViP-M/7 is only 390 images/s. Moreover,
DynaMixer-S is also faster than ResMLP B24 with a higher
top-1 accuracy. This indicates that compared to SOTA MLP-
like models, our model achieves similar or better perfor-
mance with fewer parameters.

Model Family Scale Param FLOPs Top-1 (%)

ResNet18 (He et al., 2016) CNN 2242 12M 1.8G 69.8
EffNet-B3 (Tan & Le, 2019) CNN 3002 12M 1.8G 81.6
PVT-T (Wang et al., 2021a) Trans 2242 13M 1.9G 75.1
GFNet-H-Ti (Rao et al., 2021) FFT 2242 15M 2.0G 80.1

ResNet50 (He et al., 2016) CNN 2242 26M 4.1G 78.5
RegNetY-4G (Radosavovic et al., 2020) CNN 2242 21M 4.0G 80.0
DeiT-S (Touvron et al., 2021b) Trans 2242 22M 4.6G 79.8
BoT-S1-50 (Srinivas et al., 2021) Hybrid 2242 21M 4.3G 79.1
PVT-S (Wang et al., 2021a) Trans 2242 25M 3.8G 79.8
T2T-14 (Yuan et al., 2021a) Trans 2242 22M 4.8G 81.5
Swin-T (Liu et al., 2021b) Trans 2242 29M 4.5G 81.3
GFNet-H-S (Rao et al., 2021) FFT 2242 32M 4.5G 81.5
CrossFormer-T (Wang et al., 2021b) Trans 2242 27M 2.9G 81.5
CrossFormer-S (Wang et al., 2021b) Trans 2242 30M 4.9G 82.5
DynaMixer-S MLP 2242 26M 7.3G 82.7

ResNet101 (He et al., 2016) CNN 2242 45M 7.9G 79.8
RegNetY-8G (Radosavovic et al., 2020) CNN 2242 39M 8.0G 81.7
BoT-S1-59 (Srinivas et al., 2021) Hybrid 2242 34M 7.3G 81.7
PVT-M (Wang et al., 2021a) Trans 2242 44M 6.7G 81.2
GFNet-H-B (Rao et al., 2021) FFT 2242 54M 8.4G 82.9
Swin-S (Liu et al., 2021b) Trans 2242 50M 8.7G 83.0
PVT-L (Wang et al., 2021a) Trans 2242 61M 9.8G 81.7
CrossFormer-B (Wang et al., 2021b) Trans 2242 52M 9.2G 83.4
T2T-24 (Yuan et al., 2021a) Trans 2242 64M 13.8G 82.1
DynaMixer-M MLP 2242 57M 17.0G 83.7

CrossFormer-L (Wang et al., 2021b) Trans 2242 92M 16.1G 84.0
Swin-B (Liu et al., 2021b) Trans 2242 88M 15.4G 83.3
DeiT-B (Touvron et al., 2021b) Trans 2242 86M 17.5G 81.8
DeiT-B (Touvron et al., 2021b) Trans 3842 86M 55.4G 83.1
DynaMixer-L MLP 2242 97M 27.4G 84.3

Table 3. Top-1 accuracy comparisons with CNN-based models and
transformer based models on the ImageNet-1K image classifica-
tion benchmark. Note that all models are trained without external
data. The “Scale” denotes the input size for training and testing
stages. The “Param” and “FLOPs” columns denote the number
of parameters and the number of floating point operations, respec-
tively. The values in the column Family, e.g., “CNN”, “Trans”,
“Hybrid”, and “FFT”, mean CNN-based, transformer-based, CNN-
and-transformer-based, and fast Fourier transform based models.

Limitations. The numbers of parameters and FLOPs of
DynaMixer are slightly larger than those of other models,
as the mixing matrix is generated dynamically. In practice,
such an increment over model size will affect the training
time. Compared with ViPs of a similar number of parame-
ters, the FLOPs of our models are slightly bigger and the
throughputs are about 16% ∼ 18% lower. Moreover, the in-
put image size for our model should be fixed, which restricts
its applications on some downstream tasks, e.g., object de-
tection, and segmentation.

4.4. Ablation Study

In this subsection, we present ablation study results with
DynaMixer-S to provide a deeper understanding of our meth-
ods.

Ablation on the number of segments S. To improve the
robustness and generalization ability of our network, we
introduce a multi-segment fusion mechanism in the Dy-
naMixer operation. To show the effects of the number of
segments, the performances with different values of segment
dimensionalities, which is D

S , are reported in Table 5. Con-

DynaMixer: A Vision MLP Architecture with Dynamic Mixing

Model # Param FLOPs
Throughput

image/s Top-1 (%)

ResMLP S24 30M 6.0G 680 79.4
ResMLP B24 116M 23.0G 215 81.0

ViP-M/7 55M 16.3G 390 82.7
DynaMixer-S 26M 7.3G 551 82.7

ViP-L/7 88M 24.4G 276 83.2
DynaMixer-M 57M 17.0G 326 83.7

Table 4. The number of parameters, FLOPs and throughput of
different models.

sidering the computational complexity, we only test 4 values
of segment dimensionalities, which are D, 96, 48, and 24.
We can see that even without multiple segments, our model
can still obtain satisfying accuracy (82.2%). As S increases
(DS decreases), the performance becomes better. Moreover,
our network is not sensitive to segment dimensionalities in
a quite large range.

Model D/S # parameters Top-1 (%)

DynaMixer-S D 26M 82.2
DynaMixer-S 96 26M 82.4
DynaMixer-S 48 26M 82.5
DynaMixer-S 24 26M 82.7

Table 5. The top-1 accuracies with different segment dimensionali-
ties.

Ablation on weight generation methods. We study the
effects of different methods to generate mixing matrices in
this paragraph. The methods include “Synthesizer (Ran-
dom)” and “Synthesizer (Dense)”, which are described in
(Tay et al., 2021). Once the mixing matrices are generated,
they are applied to mixing tokens by following the proce-
dure of DynaMixer, which means that tokens are mixed
row by row and column by column with the multi-segment
fusion mechanism. The mixing matrices generated by “Syn-
thesizer (Random)” are actually trainable parameters. Thus
it is similar to ViP (Hou et al., 2021), except that the in-
formation fusion among segments of channel is different.
The mixing matrix generated by “Synthesizer (Dense)” does
not consider the effects of other tokens. Thus, the mixing
weight vector for a specific output token in “Synthesizer
(Dense)” is generated merely with the information from
the token at the same position. The performances of these
methods are listed in Table 6. We can see that “Synthesize
(Random)” achieved an accuracy of 81.5%, which is close to
ViP’s. It is natural since their mixing matrices are generated
in the same way. The accuracy achieved by “Synthesizer
(Dense)”, which is 20% larger than DynaMixer-S, is only
81.4%, which demonstrates that leveraging the contents of
all tokens is necessary, and the technique of reducing the

computational complexity adopted in our model is effective.

Model generating methods # parameters Top-1 (%)

DynaMixer-S Synthesize(Random) 25M 81.5
DynaMixer-S Synthesizer(Dense) 32M 81.4
DynaMixer-S DynaMixer-S 26M 82.7

Table 6. The effects of different mixing matrix generation methods.

Ablation on the reduced dimensionality d. In our model,
dimensionality is reduced to d by a liner projection to de-
crease the number of parameters. Ideally, d should be large
to provide enough information. However, we found that
d can be extremely low in practice. The top-1 accuracies
with different values of d are shown in Table 7. We can
see that our model with d = 1 can still achieve an accu-
racy of 82.4%, which is an absolute improvement of 0.9%
compared with ViP. Thus, even dimensionality is reduced
to 1, the reduced token feature could provide information
of all tokens to some extent. The performances with values
of d set to 2, 4, and 8 are similar. Thus, d is set to 2 for
DynaMixer-S in our experiments.

Model d # parameters Top-1 (%)

DynaMixer-S 1 26M 82.4
DynaMixer-S 2 26M 82.7
DynaMixer-S 4 27M 82.6
DynaMixer-S 8 29M 82.7

Table 7. The effects of reduced dimensionality.

Ablation on the designs of DynaMixer Block. In the Dy-
naMixer block, the final results are from three components:
row mixing, column mixing, and channel mixing. The final
results are a weighted sum of the above three. In this para-
graph, we study the effects of row mixing, column mixing,
channel mixing, and reweighting by removing one of them
in turn from our model while keeping the other components
unchanged. The results are shown in Table 8. We can see
that without row mixing or column mixing, the performance
will decrease from 82.7% to about 79%. Moreover, if the
channel mixing component is removed, the performance
will drop 0.6% absolutely (from 82.7% to 82.1%). With-
out the reweighting step, the performance will also become
worse. Thus, all the components in our DynaMixer block
are necessary for our model. Finally, we evaluate the per-
formance of our model when the parameters of DynaMixer
operations for row mixing and column mixing are shared,
which is a straightforward way to reduce the number of pa-
rameters. We can see that the accuracy only drops to 82.2%,
which is still better than the other vision MLPs of similar
size.

DynaMixer: A Vision MLP Architecture with Dynamic Mixing

Model # parameters Top-1 (%)

DynaMixer-S 26M 82.7
- column mixing 23M 79.2
- row mixing 23M 79.4
- channel fusion 23M 82.1
- reweighting 24M 81.9
+ sharing DynaMixer op 23M 82.2

Table 8. The effects of different components in the DynaMixer
block.

4.5. Transfer Learning

In this subsection, we show the advantages of our models
on the transfer learning tasks. We transfer our pre-trained
DynaMixer-S to downstream datasets such as CIFAR10 and
CIFAR100. We finetune our Dynamixer-S with 60 epochs
by using the SGD optimizer and cosine learning rate decay.
The results are given in Table 9. We find that our DynaMixer
can achieve higher accuracies than ViP and the original ViT
with similar model sizes on the downstream datasets.

Model dataset # parameters Top-1 (%)

ViT-S/16 (Dosovitskiy et al., 2021) CIFAR-10 49M 97.1
T2T-14 (Yuan et al., 2021a) CIFAR-10 22M 97.5
ViP-S/7 (Hou et al., 2021) CIFAR-10 25M 98.0
DynaMixer-S CIFAR-10 26M 98.2

ViT-S/16 (Dosovitskiy et al., 2021) CIFAR-100 49M 87.1
T2T-14 (Yuan et al., 2021a) CIFAR-100 22M 88.4
ViP-S/7 (Hou et al., 2021) CIFAR-100 25M 88.4
DynaMixer-S CIFAR-100 26M 88.6

Table 9. The results of fine-tuning the pre-trained DynaMixer on
ImageNet to downstream datasets: CIFAR10 and CIFAR100.

5. Conclusion
MLP-based networks have recently been designed for vision
recognition, targeting at introducing less inductive biases.
The performances of MLP-based networks have been shown
better than or comparable with transformer-based models.
Existing MLP-based vision models utilize static trainable
mixing matrices to perform token information fusion. In
this paper, we proposed a novel MLP-based vision architec-
ture, called DynaMixer, which further improves the visual
recognition performance. In DynaMixer, the mixing matri-
ces are generated dynamically by leveraging the contents of
all the tokens to be mixed. To reduce the time complexity
and meanwhile improve the robustness, we exerted a dimen-
sionality reduction technique and a multi-segment fusion
mechanism. Our DynaMixer model has been demonstrated
to achieve state-of-the-art performance on the ImageNet
recognition task. We also provided an insightful analysis
for gaining a deeper understanding of our model.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/.

Bai, J., Yuan, L., Xia, S.-T., Yan, S., Li, Z., and Liu, W. Im-
proving vision transformers by revisiting high-frequency
components. arXiv preprint arXiv:2204.00993, 2022.

Chen, C.-F., Fan, Q., and Panda, R. Crossvit: Cross-
attention multi-scale vision transformer for image classi-
fication. arXiv preprint arXiv:2103.14899, 2021a.

Chen, S., Xie, E., Ge, C., Liang, D., and Luo, P. Cy-
clemlp: A mlp-like architecture for dense prediction.
arXiv preprint arXiv:2107.10224, 2021b.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
daugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 702–703, 2020.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2021.

Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik,
J., and Feichtenhofer, C. Multiscale vision transformers.
arXiv preprint arXiv:2104.11227, 2021.

Ge, C., Liang, Y., Song, Y., Jiao, J., Wang, J., and Luo,
P. Revitalizing cnn attention via transformers in self-
supervised visual representation learning. Advances in
Neural Information Processing Systems, 2021.

Guo, J., Tang, Y., Han, K., Chen, X., Wu, H., Xu, C., Xu,
C., and Wang, Y. Hire-mlp: Vision mlp via hierarchical
rearrangement. arXiv preprint arXiv:2108.13341, 2021.

https://www.tensorflow.org/

DynaMixer: A Vision MLP Architecture with Dynamic Mixing

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z.,
Tang, Y., Xiao, A., Xu, C., Xu, Y., et al. A survey on
visual transformer. arXiv preprint arXiv:2012.12556,
2020.

Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., and
Wang, Y. Transformer in transformer. arXiv preprint
arXiv:2103.00112, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hou, Q., Jiang, Z., Yuan, L., Cheng, M.-M., Yan, S.,
and Feng, J. Vision permutator: A permutable mlp-
like architecture for visual recognition. arXiv preprint
arXiv:2106.12368, 2021.

Hu, H., Zhang, Z., Xie, Z., and Lin, S. Local relation
networks for image recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 3464–3473, 2019.

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7132–7141,
2018.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger,
K. Q. Deep networks with stochastic depth. In European
conference on computer vision, pp. 646–661. Springer,
2016.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Jiang, Z.-H., Hou, Q., Yuan, L., Zhou, D., Shi, Y., Jin,
X., Wang, A., and Feng, J. All tokens matter: Token
labeling for training better vision transformers. Advances
in Neural Information Processing Systems, 34, 2021.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S.,
and Shah, M. Transformers in vision: A survey. arXiv
preprint arXiv:2101.01169, 2021.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25:
1097–1105, 2012.

Li, J., Hassani, A., Walton, S., and Shi, H. Convmlp: Hi-
erarchical convolutional mlps for vision. arXiv preprint
arXiv:2109.04454, 2021.

Lian, D., Yu, Z., Sun, X., and Gao, S. As-mlp: An ax-
ial shifted mlp architecture for vision. arXiv preprint
arXiv:2107.08391, 2021.

Liang, Y., Ge, C., Tong, Z., Song, Y., Wang, J., and Xie,
P. Not all patches are what you need: Expediting vision
transformers via token reorganizations. arXiv preprint
arXiv:2202.07800, 2022.

Liu, H., Dai, Z., So, D. R., and Le, Q. V. Pay attention to
mlps. arXiv preprint arXiv:2105.08050, 2021a.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z.,
Lin, S., and Guo, B. Swin transformer: Hierarchical
vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021b.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. 2019.

Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and
Dollár, P. Designing network design spaces. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10428–10436, 2020.

Rao, Y., Zhao, W., Zhu, Z., Lu, J., and Zhou, J. Global
filter networks for image classification. arXiv preprint
arXiv:2107.00645, 2021.

Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel,
P., and Vaswani, A. Bottleneck transformers for visual
recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16519–
16529, 2021.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In Thirty-first AAAI conference
on artificial intelligence, 2017.

DynaMixer: A Vision MLP Architecture with Dynamic Mixing

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International Con-
ference on Machine Learning, pp. 6105–6114. PMLR,
2019.

Tang, C., Zhao, Y., Wang, G., Luo, C., Xie, W., and Zeng, W.
Sparse mlp for image recognition: Is self-attention really
necessary? arXiv preprint arXiv:2109.05422, 2021.

Tatsunami, Y. and Taki, M. Raftmlp: Do mlp-based mod-
els dream of winning over computer vision? CoRR,
abs/2108.04384, 2021.

Tay, Y., Bahri, D., Metzler, D., Juan, D.-C., Zhao, Z., and
Zheng, C. Synthesizer: Rethinking self-attention for
transformer models. In International Conference on Ma-
chine Learning, pp. 10183–10192. PMLR, 2021.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Steiner, A., Keysers, D.,
Uszkoreit, J., et al. Mlp-mixer: An all-mlp architecture
for vision. arXiv preprint arXiv:2105.01601, 2021.

Tong, Z., Song, Y., Wang, J., and Wang, L. Video-
mae: Masked autoencoders are data-efficient learners
for self-supervised video pre-training. arXiv preprint
arXiv:2203.12602, 2022.

Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-
Nouby, A., Grave, E., Izacard, G., Joulin, A., Synnaeve,
G., Verbeek, J., et al. Resmlp: Feedforward networks for
image classification with data-efficient training. arXiv
preprint arXiv:2105.03404, 2021a.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International Con-
ference on Machine Learning, pp. 10347–10357. PMLR,
2021b.

Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., and
Jégou, H. Going deeper with image transformers. arXiv
preprint arXiv:2103.17239, 2021c.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D.,
Lu, T., Luo, P., and Shao, L. Pyramid vision transformer:
A versatile backbone for dense prediction without convo-
lutions. arXiv preprint arXiv:2102.12122, 2021a.

Wang, W., Yao, L., Chen, L., Lin, B., Cai, D., He, X.,
and Liu, W. Crossformer: A versatile vision trans-
former hinging on cross-scale attention. arXiv preprint
arXiv:2108.00154, 2021b.

Wang, X., Girshick, R., Gupta, A., and He, K. Non-local
neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 7794–
7803, 2018.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1492–1500, 2017.

Yu, T., Li, X., Cai, Y., Sun, M., and Li, P. S2-mlp:
Spatial-shift mlp architecture for vision. arXiv preprint
arXiv:2106.07477, 2021a.

Yu, T., Li, X., Cai, Y., Sun, M., and Li, P. S2-mlpv2:
Improved spatial-shift mlp architecture for vision. arXiv
preprint arXiv:2108.01072, 2021b.

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.-H.,
Tay, F. E., Feng, J., and Yan, S. Tokens-to-token vit:
Training vision transformers from scratch on imagenet.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 558–567, October
2021a.

Yuan, L., Hou, Q., Jiang, Z., Feng, J., and Yan, S. Volo:
Vision outlooker for visual recognition. arXiv preprint
arXiv:2106.13112, 2021b.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 6023–6032, 2019.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz,
D. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412, 2017.

Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang,
Z., Sun, Y., He, T., Mueller, J., Manmatha, R., et al.
Resnest: Split-attention networks. arXiv preprint
arXiv:2004.08955, 2020.

Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. Ran-
dom erasing data augmentation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 13001–13008, 2020.

Zhou, D., Kang, B., Jin, X., Yang, L., Lian, X., Jiang, Z.,
Hou, Q., and Feng, J. Deepvit: Towards deeper vision
transformer. arXiv preprint arXiv:2103.11886, 2021a.

Zhou, D., Shi, Y., Kang, B., Yu, W., Jiang, Z., Li, Y., Jin, X.,
Hou, Q., and Feng, J. Refiner: Refining self-attention for
vision transformers. arXiv preprint arXiv:2106.03714,
2021b.

