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Abstract
The space of value functions is a fundamental
concept in reinforcement learning. Characteriz-
ing its geometric properties may provide insights
for optimization and representation. Existing
works mainly focus on the value space for Markov
Decision Processes (MDPs). In this paper, we
study the geometry of the robust value space for
the more general Robust MDPs (RMDPs) set-
ting, where transition uncertainties are consid-
ered. Specifically, since we find it hard to directly
adapt prior approaches to RMDPs, we start with
revisiting the non-robust case, and introduce a
new perspective that enables us to characterize
both the non-robust and robust value space in a
similar fashion. The key of this perspective is to
decompose the value space, in a state-wise man-
ner, into unions of hypersurfaces. Through our
analysis, we show that the robust value space is
determined by a set of conic hypersurfaces, each
of which contains the robust values of all policies
that agree on one state. Furthermore, we find that
taking only extreme points in the uncertainty set
is sufficient to determine the robust value space.
Finally, we discuss some other aspects about the
robust value space, including its non-convexity
and policy agreement on multiple states.

1. Introduction
The space of value functions for stationary policies is a
central concept in Reinforcement Learning (RL), since
many RL algorithms are essentially navigating this space
to find an optimal policy that maximizes the value function,
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Figure 1. The value space can be decomposed in a state-wise man-
ner as an intersection of unions of hypersurfaces. Each union
corresponds to a state and each hypersurface contains the value
functions of policies agreeing on that state.

such as policy gradient (Sutton et al., 1999), policy itera-
tion (Howard, 1960) and evolutionary strategies (de Boer
et al., 2005). Characterizing the geometric properties for
the space of the value function (i.e., the value space) would
offer insights for RL research. A recent work (Dadashi
et al., 2019) shows that the value space for Markov Deci-
sion Processes (MDPs) is a possibly non-convex polytope,
which inspires new methods in representation learning in
RL (Bellemare et al., 2019; Dabney et al., 2021).

Compared to MDPs, Robust MDPs (RMDPs) are more gen-
eral, since they do not assume that the transition dynamics
are known exactly but instead may take any value from a
given uncertainty set (Xu & Mannor, 2006; Iyengar, 2005;
Nilim & El Ghaoui, 2005; Wiesemann et al., 2013). This
makes RMDPs more suitable for real-world problems where
parameters may not be precisely given. Therefore, character-
izing the geometric properties of the value space for RMDPs
(i.e., robust value space) is of interest.

However, we find it hard to directly adapt the prior ap-
proach (Dadashi et al., 2019) from MDPs to RMDPs. Their
method builds upon on a key theorem (the Line Theorem),
but we find it difficult to prove a robust counterpart of this
theorem (see more discussions in Section 5.3).

In this work, we introduce a new perspective for investigat-
ing the geometry of the space of value functions. Specifi-
cally, we start with revisiting the non-robust case due to its
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simplicity. By decomposing the value space in a state-wise
manner (as illustrated in Figure 1), we can give an explicit
form about the value function polytope.

With this decomposition-based perspective, we show that
the robust value space is determined by a set of conic hyper-
surfaces, each of which contains the robust value functions
for policies that agree on one state. Furthermore, from a
geometric perspective, we show that the robust value space
can be fully determined by a subset of the uncertainty set,
which composes of extreme points of the uncertainty set. As
a result, for polyhedral uncertainty set such as ‘1-ball and
‘1-ball (Ho et al., 2018; 2021; Behzadian et al., 2021), we
can replace the infinite uncertainty set with a finite active
uncertainty subset, without losing any useful information for
policy optimization. Finally, we discuss some other aspects
about the robust value space, including policy agreement on
more than one state, the non-convexity of the robust value
space, and why it is difficult to obtain a Line Theorem for
RMDPs.

All proofs and the specifics of MDPs and RMDPs used for
illustration can be found in Appendix.

2. Preliminaries
We introduce backgrounds for MDPs in Section 2.1 and for
RMDPs in Section 2.2. Importantly, Section 2.3 sets up
some essential concepts and notations for studying the value
space, which will be frequently used in the rest of paper.

Notations. We use 1 and 0 to denote vectors of all ones
and all zeros respectively, and their sizes can be inferred
from the context. For vectors and matrices, <, �, > and �
denote element-wise comparisons. Calligraphic letters such
as P are mainly for sets. For an index set Z = f1; � � � ; kg,
(xi)i2Z denotes a vector (x1; x2; � � � ; xk) if xi is a scalar,
or a matrix (x1; x2; � � � ; xk)> if xi is a vector. �U is used
to denote the space of probability distributions over a set
U. For a non-empty set U, we denote its polar cone as
U�(Bertsekas, 2009), given by

U� := fy j hy; xi � 0;8x 2 Ug: (1)

We use conv(�) to denote the convex hull of a set, and
ext(�) to denote the set of extreme points of a non-empty
convex set.

2.1. Markov Decision Processes

We consider an MDP (S;A; P; r; 
; p0) with a finite state
set S and a finite action set A. The number of states jSj
and the number of actions jAj are denoted with S and A,
respectively. The initial state is generated according to
the p0 2 �S. We use Ps;a 2 �S to specify the proba-
bilities of transiting to new states when taking action a in
state s, and employ P := (Ps;a)s2S;a2A 2 (�S)S�A as

a condensed notation. An immediate reward rs;a 2 R
is given after taking action a in state s, and similarly
r := (rs;a)s2S;a2A 2 RS�A is a condensed notation.

 2 [0; 1) is the discount factor. In addition, we also define
Ps := (Ps;a)a2A 2 (�S)A and rs := (rs;a)a2A 2 RA.

A stationary stochastic policy � := (�s;a)s2S;a2A 2
(�A)S specifies a decision making strategy, where �s;a 2
[0; 1] is the probability of taking some action a in current
state s. We denote �s := (�s;a)a2A 2 �A as the probabil-
ity vector over actions. In particular, we use ds;a 2 �A to
represent a deterministic �s that is all-zero except �s;a = 1.

Under a given policy �, we define the state-to-state transition
probability as

P� := (P�s)s2S 2 (�S)S; where

P�s := Ps�s =
X
a2A

�s;aPs;a 2 �S:
(2)

The reward function under this policy is defined as

r� := (r�s)s2S 2 RS; where

r�s := r>s �s =
X
a2A

�s;ars;a 2 R: (3)

The value V �;P 2 RS is defined to be the expected cumula-
tive reward from starting in a state and acting according to
the policy � under transition dynamic P :

V �;P (s) := EP�
" 1X
t=0


trst;at j s0 = s

#
: (4)

2.2. Robust Markov Decision Processes

Robust Markov Decision Processes (RMDPs) generalize
MDPs in that the uncertainty in the transition dynamic P
is considered (Iyengar, 2005; Nilim & El Ghaoui, 2005;
Wiesemann et al., 2013). In an RMDP, the transition dy-
namic P is chosen adversarially from an uncertainty set
P � (�S)S�A. We assume throughout the paper that the
set P is compact. The robust value function for a policy �
and the optimal robust value function are defined as

V �;P(s) := min
P2P

V �;P (s); (5)

V ?;P(s) := max
�2�

V �;P(s): (6)

Both the policy evaluation and policy improvement prob-
lems are intractable for generic P (Wiesemann et al., 2013).
However, they become tractable when certain independence
assumptions about P are made. Two common assumptions
are (s; a)-rectangularity (Iyengar, 2005; Nilim & El Ghaoui,
2005) and s-rectangularity (Wiesemann et al., 2013), which
we will use in this paper. The (s; a)-rectangularity assumes
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that the adversarial nature selects the worst transition prob-
abilities independently for each state and action. Under
(s; a)-rectangularity, the uncertainty setP can be factorized
into Ps;a � � S for each state-action pair,i.e.,

P = f P j Ps;a 2 Ps;a ; 8 s 2 S; 8 a 2 Ag; (7)

or in shortP = �
(s;a )2 S� A

Ps;a where� denotes Cartesian

product. Thes-rectangularityis less restrictive and assumes
the adversarial nature selects the worst transition probabil-
ities independently for each state. Unders-rectangularity,
the uncertainty setP can be factorized intoPs � (� S)A

for each state,i.e.,

P = f P j Ps 2 Ps; 8 s 2 Sg; (8)

or in shortP = �
s2 S

Ps. Note that(s; a)-rectangularity is

a special case ofs-rectangularity. Below we present a re-
statement of the remark in (Ho et al., 2021) that the optimal
policy for the robust policy evaluation MDP is deterministic.
This restatement will be used later. Unders-rectangularity,
we have for any� ,

9 P 2 P s.t. V �;P (s) = V �; P (s); 8s 2 S: (9)

2.3. The Space of Value Functions

The space of value functions (or value space in short) is the
set of value functions for all stationary policies. We usef P

andf P to respectively represent the mapping between a set
of policies and their non-robust and robust value functions,
i.e.,

f P (U) := f V �;P j � 2 Ug; (10)

f P (U) := f V �; P j � 2 Ug: (11)

The set of all stationary stochastic policies is denoted as� =
(� A )S. Then, the non-robust value space for a transition
dynamicP and the robust value space for an uncertainty set
P can be respectively expressed as

VP := f P (�) ; (12)

VP := f P (�) : (13)

We then introduce some notations that will be frequently
used later. We useY � s to denote the set of policies that
agree with� ons, i.e.,

Y � s := f � 0 j � 0
s = � sg: (14)

Note that policy agreement on states does not imply dis-
agreement on other states. Thus,� itself is also inY � s . The
row of the matrixI � 
P � corresponds to states is denoted
asL � s ;P s , i.e.,

L � s ;P s := es � 
P � s = es � 
P s � s (15)

wherees 2 RS is an all-zero vector except the entry corre-
sponding tos being 1.

Figure 2.HyperplanesH � s ;P s corresponding to differents inter-
sect at the value functionV �;P .

3. The Value Function Polytope Revisited

In this section, we revisit the non-robust value space from a
new perspective, where the value space is decomposed in
a state-wise manner. This perspective enables us to char-
acterize the polytope shape of the value space in a more
straightforward way, and leads to an explicit form of the
value polytope.

Our �rst step is to connect a single value functionV �;P to
a set of hyperplanes, each of which can be expressed as:

H � s ;P s := f x 2 RS j hx; L � s ;P s i = r � s g: (16)

As shown in Lemma 3 in (Dadashi et al., 2019), the value
functionsf P (Y � s ) lie in the hyperplaneH � s ;P s .

Speci�cally, since� 2 Y � s , we know every hyperplane
H � s ;P s passes throughV �;P (see examples in Figure 2).
The following lemma states that this intersecting point is
unique.

Lemma 3.1. Consider a policy� and a transition dynamic
P, we have

f V �;P g =
\

s2 S

H � s ;P s (17)

Lemma 3.1 bridges between a single value function and
the intersection ofS different hyperplanes, each of which
corresponds to a states. Then, by de�nition (Eqn.(12)),
we can obtain the value space by taking the union over all
� 2 � , i.e.,

VP =
[

� 2 �

\

s2 S

H � s ;P s ; (18)

as illustrated in Figure 3(a).

From Eqn.(18), we observe that the value spaceVP can
also be expressed from an alternative perspective (as shown
in Figure 3(b)): 1) for each states 2 S, taking the union
of all hyperplanes corresponding to different� s 2 � A ; 2)
taking the intersection of the unions obtained in previous
step. The following lemma formalizes this perspective.




