
ProgFed: Effective, Communication, and
Computation Efficient Federated Learning by Progressive Training

Hui-Po Wang 1 Sebastian U. Stich 1 Yang He 1 Mario Fritz 1

Abstract
Federated learning is a powerful distributed learn-
ing scheme that allows numerous edge devices to
collaboratively train a model without sharing their
data. However, training is resource-intensive for
edge devices, and limited network bandwidth is
often the main bottleneck. Prior work often over-
comes the constraints by condensing the models
or messages into compact formats, e.g., by gra-
dient compression or distillation. In contrast, we
propose ProgFed, the first progressive training
framework for efficient and effective federated
learning. It inherently reduces computation and
two-way communication costs while maintain-
ing the strong performance of the final models.
We theoretically prove that ProgFed converges at
the same asymptotic rate as standard training on
full models. Extensive results on a broad range
of architectures, including CNNs (VGG, ResNet,
ConvNets) and U-nets, and diverse tasks from sim-
ple classification to medical image segmentation
show that our highly effective training approach
saves up to 20% computation and up to 63% com-
munication costs for converged models. As our
approach is also complimentary to prior work on
compression, we can achieve a wide range of
trade-offs by combining these techniques, show-
ing reduced communication of up to 50× at only
0.1% loss in utility. Code is available at https:
//github.com/a514514772/ProgFed.

1. Introduction
Federated Learning (FL) has led to remarkable advances
in the development of extremely large machine learning
systems (McMahan et al., 2017). Federated training meth-
ods allow multiple clients (edge devices) to jointly train a

1CISPA Helmholz Center for Information Security, Germany.
Correspondence to: Hui-Po Wang <hui.wang@cispa.de>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

global model without sharing their private data with others.
Training methods in FL suffer from high communication
and computational costs, as edge devices are often equipped
with limited hardware resources and limited network band-
width.

Prior literature has studied various compression techniques
to address the computation and communication bottlenecks.
These methods can be divided into three main categories
(see also Table 1): (i) Compression techniques that rep-
resent gradients (or parameters) with fewer bits to reduce
communication costs. Prominent examples are quantiza-
tion (Alistarh et al., 2017; Lin et al., 2018; Fu et al., 2020)
or sparsification (Stich et al., 2018; Konečnỳ et al., 2016).
(ii) Model pruning techniques that identify (much smaller)
sub-networks within the original models to reduce computa-
tional cost at inference (Li & Wang, 2019; Lin et al., 2020).
And (iii) knowledge distillation (Hinton et al., 2015) tech-
niques that allow the server to distill the knowledge from the
clients with hold-out datasets (Li & Wang, 2019; Lin et al.,
2020). Despite the significant progress, most of them rarely
leverage learning dynamics to reduce resource demands.

Prior work has observed that neural networks tend to stabi-
lize from shallower to deeper layers during training (Raghu
et al., 2017). This behavior provides additional scope to
improve resource demands. We take advantage of this
opportunity by leveraging progressive learning (Karras
et al., 2018), a well-known technique in image generation.
It first trains the shallower layers on simpler tasks (e.g.,
images with lower resolution) and gradually grows the
network to tackle more complicated tasks (e.g., images with
higher resolution). The growing process inherently reduces
computation and communication costs when the models are
shallower. Despite the appealing features, current success
mainly focuses on centralized training, and no previous
study has systematically investigated exploiting progressive
learning to reduce the costs in federated learning.

We propose ProgFed, the first federated progressive learning
framework that reduces both communication and compu-
tation costs while preserving model utility. Our approach
divides the model into several overlapping partitions and
introduces lightweight local supervision heads to guide the
training of the sub-models. The model capacity is gradu-

https://github.com/a514514772/ProgFed
https://github.com/a514514772/ProgFed

ProgFed: Effective, Communication, and Computation Ef�cient Federated Learning by Progressive Training

Table 1.Comparison of ProgFed to other compression schemes.

Technique
Computation

Reduction
Communication

Reduction
Dataset

Ef�ciency

Message Compression 7 3 3
Model Pruning 3 (only for inference) 7 3
Model Distillation 3 3 7
ProgFed (Ours) 3 3 3

ally increased during training until it reaches the full model
of interest. Due to the nature of progressive learning, our
method can reduce computational overheads and provide
two-way communication savings (both from server-to-client
and client-to-server directions) since the shallow sub-models
have much fewer parameters than the complete model. We
show that ProgFed converges at the same asymptotic rate
as standard training on full models. Extensive results show
that our method can resemble and sometimes outperform
the baselines using much fewer costs. Moreover, ProgFed is
compatible with classical compression, including sparsi�ca-
tion and quantization, and various federated optimizations,
such as FedAvg, FedProx, and FedAdam. These results
con�rm the generalizability of ProgFed and could motivate
more advanced FL compression schemes based on progres-
sive learning.

We summarize our main contributions as follows.

• We propose ProgFed, the �rst federated progressive learn-
ing framework to reduce the training resource demands
(computation and two-way communication). We show
that ProgFed converges at the same asymptotic rate as
standard training the full model.

• We conduct extensive experiments on various datasets
(CIFAR-10/100, EMNIST and BraTS) and architectures
(VGG, ResNet, ConvNets, 3D-Unet) to show that with
the same number of epochs, ProgFed saves around25%
computation cost, up to32%two-way communication
costs in federated classi�cation, and63% in federated
segmentation without sacri�cing performance.

• Our method allows to reduce communication costs
around2� in classi�cation and6:5� in U-net segmen-
tation while achieving practicable performance (� 98%
of the best baseline). This is bene�cial for combating
limited training budgets in federated learning.

• We show that ProgFed is compatible with existing tech-
niques. It complements classical compression to reduce
up to50� communication costs at only0:1%loss in util-
ity and can generalize to advanced optimizations with up
to 4%improvement over standard training.

2. Related Work

Progressive Learning. Progressive learning was initially

proposed to stabilize training processes and has been widely
considered in vision tasks such as image synthesis (Karras
et al., 2018), image super-resolution (Wang et al., 2018),
facial attribute editing (Wu et al., 2020) and representation
learning (Li et al., 2019). The core idea is to train the model
from easier tasks (e.g., low-resolution outputs or shallower
models) to dif�cult but desired tasks (e.g., high-resolution
outputs or deeper models). The bene�t of progressive learn-
ing in cost reduction, namely lower resource demands when
the models are shallow, has not been explored in FL. Recent
work has investigated partial updates for FL, but they either
fall in greedy layer-wise updates (Belilovsky et al., 2020) or
are speci�c to certain models, e.g., transformers (He et al.,
2021a). In this work, we systematically investigate the ap-
plication of progressive learning for general federated tasks
and demonstrate its convergence rate and compatibility.

Message compression.Prior work has studied message
compression (e.g., on gradients or model weights) to re-
duce the communication costs in distributed learning. The
�rst category focuses solely on client-to-server compres-
sion (Alistarh et al., 2017; Wen et al., 2017; Lin et al., 2018;
Bernstein et al., 2018; Stich et al., 2018; Kone�cn�y et al.,
2016; Karimireddy et al., 2019; Fu et al., 2020; Stich, 2020).
To name a few, Kone�cn�y et al. (2016) reduce the costs by
sending sparsi�ed gradients and compressing them with
probabilistic quantization. Alistarh et al. (2017); Wen et al.
(2017) prove the convergence of probabilistic quantized
SGD. SignSGD (Bernstein et al., 2018; Karimireddy et al.,
2019) signi�cantly compresses the gradients with only one
bit. Compression of server-to-client communication is non-
trivial and has been a focus of recent research (Yu et al.,
2019; Tang et al., 2019; Liu et al., 2020; Philippenko &
Dieuleveut, 2020; He et al., 2021b). Instead of dedicated
designs, our method inherently reduces two-way communi-
cation costs and complements existing methods, as we will
show in Section 4.

Model pruning and distillation. In addition to compress-
ing messages, model pruning discards redundant weights
according to diverse criteria (Mozer & Smolensky, 1989; Le-
Cun et al., 1990; Frankle & Carbin, 2019; Lin et al., 2019),
while model distillation (Bucilu�a et al., 2006; Hinton et al.,
2015) transmits logits rather than gradients to improve com-
munication ef�ciency (Li & Wang, 2019; Lin et al., 2020;

ProgFed: Effective, Communication, and Computation Ef�cient Federated Learning by Progressive Training

(a) Feed-forward networks (b) U-nets (symmetric growing).

Figure 1.An overview of ProgFed on (a) feed-forward networks and (b) U-nets (symmetric growing illustrated). We progressively train a
deep neural network from the shallower sub-models, e.g.M 1 consisting of the main blockE1 and headG1 (Eq. 2), gradually expanding
to the full modelM S = M (Eq. 1). Note that the local headsGi in feed-forward networks are only used for training sub-models and
discarded when progressing to the next stage.

He et al., 2020; Choquette-Choo et al., 2020). However,
the former usually happens after training, and the latter one
either requires additional query datasets (Li & Wang, 2019;
Lin et al., 2020) or cannot enjoy the merit of datasets from
different sources (Choquette-Choo et al., 2020). In con-
trast, ProgFed stays dataset-ef�cient and reduces resource
demands throughout training.

Early-exit networks. Early-exit networks (Kaya et al.,
2019; Scardapane et al., 2020; Teerapittayanon et al., 2016)
are equipped with multiple output branches. Each data sam-
ple can opt for different branches at test time, thus reducing
the computation costs of inference. Despite the ef�ciency
at test time, early-exit networks (Scardapane et al., 2020;
Teerapittayanon et al., 2016) often consume more compu-
tation power during training since they have to maintain
all auxiliary classi�ers (heads). On the other hand, our
method is designed for computation and communication
cost reduction attraining time. We discard temporal heads
and consume fewer costs than the entire and early-exit net-
works. These features outline the main difference between
our method and early-exit networks.

3. ProgFed

In this work, we leverage the learning dynamics that net-
works stabilize from shallower to deeper layers for cost
reduction. Motivated by progressive learning, we propose
ProgFed that progressively expands the network from a shal-
lower one to the complete model. We provide convergence
analysis on single-client training for conciseness while it
stays ef�cient and can generalize to federated multi-client
training. The proposed model splitting and progressive
growing are illustrated in Figure 1, and the federated opti-
mization scheme is summarized in Algorithm 1. We now
present the proposed method in detail below.

3.1. Proposed Method

Model Structure. We now describe the proposed training
method. For a given a machine learning modelM , i.e. a
functionM (�; x) : Rn ! Rk that mapsn-dimensional in-
put tok logits for parameters (weights)x 2 Rd, we assume
that the network can be written as a composition of blocks
(feature extractors)E i along with a task headGS , namely,

M := GS �
S

i =1

E i = GS � ES � � � � � E2 � E1 : (1)

Note that theE i 's could denote e.g., a stack of residual
blocks or simply a single layer. The learning task is solved
by minimizing a loss function of interestL : Rk ! R (e.g.,
cross-entropy) that maps the predicted logits ofM to a real
value, i.e. minimization off (x) := L � M (x).

Progressive Model Splitting. To achieve progressive learn-
ing, we �rst divide the networkM into S stages, denoted
by M s, for s 2 f 1; : : : ; Sg associated with the split in-
dices. We additionally introduce local supervision heads for
providing supervision signals. Formally, we de�ne

M s := Gs �
s

i =1

E i ; (2)

whereGs is a newly introduced head. Each headGs, for
s < S consists of only a pooling layer and a fully-connected
layer in our experiments for feed-forward networks. The
motivation is that simpler heads may encourage the feature
extractorsE i to learn more meaningful representations.
Note that the sub-modelM s : Rn ! Rk produces the
same output size as the desired modelM ; therefore, its
corresponding lossf s(x s) := L � M s(x s) can be trained
with the same loss criterionL as the full model.

Training of Progressive Models. We propose to train each
sub-modelM s for Ts iterations (a certain fraction of the
total training budget) and gradually grow the network from

ProgFed: Effective, Communication, and Computation Ef�cient Federated Learning by Progressive Training

M 1 to M S = M . When growing the network from stage
s to s + 1 , we pass the corresponding parameters of the
pretrained blocksE i , i � s, to the next modelM s+1 and
initialize its blocksEs+1 andGs+1 with random weights.
Once the progressive training phase is completed, we con-
tinue training the full modelM in an end-to-end manner
for the remaining iterations. The lengthTs of each progres-
sive training phase is a parameter that could be �ne-tuned
individually for each stage (depending on the application)
for best performance. However, as a practical guideline
that we adopted for all experiments in this paper, we found
that denoting roughly half of the total number of training
iterationsT to progressive training, and settingTs = T

2S for
s < S , TS = T (S+1)

2S , such thatT =
P S

s=1 Ts, works well
across all considered training tasks.

Extension to U-nets. In addition to feed-forward networks
(Figure 1(a)), we show that our method can generalize
to U-net (Figure 1(b)). U-net typically consists of an
encoder and a decoder. Unlike feed-forward networks, the
encoder sends both the �nal and intermediate features to
the decoder. Therefore, we propose to grow the network
from outer to inner layers as shown in Figure 1(b) and
retain the original output heads asGi . We refer to the
strategy as theSymmetricstrategy. In contrast, we propose
another baseline, theAsymmetricstrategy, which adopts
the full encoder at the beginning and gradually grows
until it reaches the full decoder. For this strategy, we also
adopt several temporal heads for earlier training stages.
As we will show in Section 4.3, theSymmetricstrategy
signi�cantly outperforms theAsymmetricstrategy, which
supports the notion of progressive learning.

Practical considerations. We empirically observe that
learning rate restart (Loshchilov & Hutter, 2017) facilitates
training in the centralized setting. This is because sub-
models may over�t the local supervision while learning rate
restart helps the sub-models escape from the local minima
and quickly converge to a better minima. On the other hand,
warm-up (Goyal et al., 2017) for the new layers plays an
important role in federated learning. Model weights often
take a longer time to converge in federated learning, which
makes the newly added layers introduce more noise to the
previous layers. With warm-up, the new layers recover the
performance without affecting previous layers. In particular,
warm-up leads to around 2% difference (53.23 vs. 51.09)
on CIFAR-100 with ResNet-18.

3.2. Convergence Analysis

In this section we prove that progressing training converges
to a stationary point at the rateO

�
1
� 2

�
, i.e. with the same

asymptotic rate as SGD training on the full network. For
this, we extend the analysis from (Mohtashami et al., 2021)
that analyzed the training of partial subnetworks. However,

Algorithm 1 ProgFed—Progressive training in a Federated
Learning setting

1: Input: initializationx1
0, modelM (�; x0), iteration bud-

getsT, Ts, number of stagesS, s = 1 , desired number
of local updatesJ � 1, learning rate�

2: Output: parametersxT and trained modelM (�; xT)
3: for t = 1 ; : : : ; T do
4: // Switch fromM s to M s+1 afterTs iterations
5: if min(S;d t

Ts
e) > s then

6: // Initialize new blockEs+1 and new headGs+1

7: initialize parameterx s+1
t randomly

8: // Copy parameters of shared blocksE1; : : : ; Es.
9: x s+1

t jE s
 x s

t jE s

10: s s + 1 (the old headGs is discarded)
11: end if
12: // Standard Federated Learning on active modelM s

13: Sample a subsetCof clients
14: for each active clientc 2 C do
15: initialize x s

c;1 x s
t (sendx s

t to active clients)
16: if warm-up is needed after growingthen
17: // Warm up the newly added layers
18: freezex s

c;1jE s � 1
and warm-upx s

c;1jE {
s � 1

19: end if
20: for j = 1 ; : : : ; J O Local SGD updatesdo
21: // Compute (mini-batch) gradientgs

c on client
c's data

22: x s
c;j +1 = x s

c;j � �g s
c (x s

c;j)
23: end for
24: � c = x c;J � x c;1

25: end for
26: // Aggregate updates from the clients
27: x s

t +1 = x s
t + 1

jCj

P C
c=1 � c

28: end for

in our case the networks are not subnetworks,M s 6� M s+1

(as the head is not shared), and we need to extend their
analysis to progressive training with different heads.

Notation. We denote byx s the parameters off s,
s 2 f 1; : : : ; Sg and abbreviatexS = x 2 Rd for con-
venience. Fors � i � S let x i

jE s andr f i (x i) jE s denote
the projection of the parameterx i and gradientr f i (x i) to
the dimensions corresponding to the parameters ofE1 to Es

(without parameter ofEs+1 to E i and without headGi). In
iterationt, the progressive training procedure updates the pa-
rameters of modelf s, s = min(S;d t

Ts
e). For convenience,

we do not explicitly write the dependency ofs on t below,
and use the shorthandxs

t to denote the corresponding model
at timestept. We further de�nex t such thatx t jE s = x t

sjE s

andx t jE {
s

= x0jE {
s

on the complement.

Assumption 3.1(L -smoothness). The functionf : Rd ! R

ProgFed: Effective, Communication, and Computation Ef�cient Federated Learning by Progressive Training

is differentiable and there exists a constantL > 0 such that

kr f (x) � r f (y)k � L kx � yk : (3)

We assume that for every inputx s, we can query an unbiased
stochastic gradientgs(x s) with E[gs(x s)] = r f s(x s). We
assume that the stochastic noise is bounded.

Assumption 3.2(Bounded noise). There exist a parameter
� 2 � 0 such that for anys 2 f 1; : : : ; Sg:

E kgs(x s) � r f s(x s)k2 � � 2 ; 8x s : (4)

The progressive training updatesx s
t +1 = x t

s �
 t gs(x s
t) with

a SGD update on the modelx s
t . With the two assumptions

above, which are standard in the literature, we prove the
convergence of sub-modelsM s as well as the model of
interestM .

Theorem 3.3. Let Assumptions 3.1 and 3.2 hold, and
let the stepsize in iterationt be
 t = � t
 with
 =

min
n

1
L ; (F0

� 2 T)
1
2

o
, � t =min

n
1; hr f (x t) j E s ;r f s (x s

t) j E s i
kr f s (x s

t) j E s k2

o
.

Then it holds for any� > 0,

• 1
T

P T � 1
t =0 � 2

t

 r f s(x s

t) jE s

 2

< � , after at most the fol-
lowing number of iterations T:

O
�

� 2

� 2 +
1
�

�
� LF 0 : (5)

• Let q := max t 2 [T]

�
qt := kr f (x t)k

� t kr f s (x s
t) j E s k

�
, then

1
T

P T � 1
t =0 kr f (x t)k

2 < � after at most the following
iterationsT:

O
�

q4� 2

� 2 +
q2

�

�
� LF 0 ; (6)

whereF0 := f (x0) � (min x f (x)) .

Theorem 3.3 shows the convergence of the full modelM .
The convergence is controlled by two factors, the alignment
factor � t and the norm discrepancyqt . The former term
measures the similarity between the corresponding parts
of the gradients computed from the sub-models and the
full model (note that� t � 1 in the last phase of training
on f S = f). The latter termq measures the magnitude
discrepancy (in Figure 7 we display the evolution ofqt

during training for one example task, note thatqt = 1 in the
last phase of training). We would like to highlight that the
convergence criterion in the �rst statement is lower bounded
by the average gradient in the last phase of the training,
1
2 � 1

2T

P T � 1
t = T=2 kr f (x t)k

2 � 1
T

P T � 1
t =0 � 2

t kr f s(x s
t) jE s k2

(this is due to our choice of the length of the phases, with
TS � T=2). This means, that progressive training will
provably require at most twice as many iterations but can
reach the performance of SGD training on the full model
with much cheaper per-iteration costs.

4. Experiments

4.1. Setup

We describe the main implementation details in this section
and provide supplementary details in Section B.

Datasets, tasks, and models. We consider four
datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), EMNIST (Cohen et al., 2017),
and BraTS (Menze et al., 2014; Bakas et al., 2017; 2018).
The former three are for image classi�cation, while the
last one is a medical image dataset for tumor segmentation.
We conduct centralized experiments for analyzing the basic
properties of our method while considering practical appli-
cations in federated settings. For the centralized settings,
we train VGG-16, VGG-19 (Simonyan & Zisserman, 2014),
ResNet-18, and ResNet-152 (He et al., 2016) on CIFAR-100
(100 clients, IID). For the federated settings, we train Con-
vNets on CIFAR-10 and EMNIST (3400 clients, non-IID),
ResNet-18 on CIFAR-100 (500 clients, non-IID), and 3D-
Unet (Sheller et al., 2020) on the BraTS dataset (10 clients,
IID). Note that we follow Hsieh et al. (2020) to replace batch
normalization in ResNet-18 with group normalization.

Implementation. We implement all settings with Py-
torch (Paszke et al., 2019). In the centralized experiments,
we implement models based on DeVries & Taylor (2017),
where we run all experiments for 200 epochs and decay
the learning rates inf 60, 120, 160g epochs by a factor of
0.1. We additionally adopt warm-up (Goyal et al., 2017)
and learning rate restart (Loshchilov & Hutter, 2017) in our
method to better �t in progressive learning. For federated
classi�cation, we follow federated learning benchmarks in
(McMahan et al., 2017; Reddi et al., 2021) to implement
CIFAR-10, CIFAR-100, and EMNIST, respectively. For fed-
erated tumor segmentation, we follow Sheller et al. (2020)
for the settings and data splits. We run 1500 epochs for EM-
NIST, 2000 epochs for CIFAR-10, 3000 epochs for CIFAR-
100, and 100 epochs for BraTS. We setS = 3 for EMNIST
andS = 4 for all the other datasets andTs as the practical
guideline described in Section 3. We adopt 5 and 25 warm-
up epochs for federated EMNIST and federated CIFAR-100,
respectively. We sample clients without replacement in the
same communication round but with replacement across
different rounds (Reddi et al., 2021). In each round, we
sample 10 out of 100 clients for CIFAR-10 (IID), 40 out of
500 clients for CIFAR-100 (non-IID), 68 out of 3400 clients
for EMNIST (non-IID), and 3 out of 10 clients for BraTS
(IID). The global models are synchronously updated in all
tasks.

4.2. Computation Ef�ciency

We �rst analyze the computation ef�ciency of our method
in the centralized setting (where all data is available on a

ProgFed: Effective, Communication, and Computation Ef�cient Federated Learning by Progressive Training

Table 2.Results on CIFAR-100 in the centralized setting.

Accuracy Reduction

End-to-end Ours Walltime FLOPs

ResNet18 76.08� 0.12 75.84� 0.28 -24.75% -14.60%
ResNet152 77.77� 0.38 78.57� 0.33 -22.75% -19.68%
VGG16 71.79� 0.15 71.54� 0.45 -14.57% -13.02%
VGG19 70.81� 1.18 70.90� 0.43 -22.10% -14.43%

Figure 2.Accuracy (%) vs. GFLOPs on CIFAR-100 in the central-
ized setting.

single device) to study the effect of the progressive training
in isolation before moving to the federated use cases. We
average the outcomes over three random seeds and consider
four architectures on CIFAR-100, including VGG-16,
VGG-19, ResNet-18, and ResNet-152. As shown in Table 2,
our method performs comparably to the baselines (that train
on the full model) after 200 epochs while consuming fewer
�oating-point operations per second (FLOPs) and training
wall-clock time.

To analyze the ef�ciency, we report the performance when
consuming different levels of costs. Figure 2 shows that our
method (orange lines) consistently lies above end-to-end
training on the full model (blue lines), meaning that our
method consumes fewer computation resources to improve
the models. Moreover, we visualize98%, 99%, 99:95%,
and the best of the performance of the converged baseline
(analysis with a larger range is presented in Figure 12).
Figure 3 indicates that our method improves computation
ef�ciency across architectures. In the best case, our method
can accelerate training up to 7� faster when considering
limited computation budgets. We also observe that VGG
models improve more than ResNets. A possible reason
might be that due to local supervision, sub-models enjoy
larger gradients compared to end-to-end training, while
it rarely bene�ts ResNets since skip-connections could
partially avoid the problem.

Figure 3.Computation cost reduction at98%, 99%, 99:95%, best
compared to the baseline (training full models) performance in the
centralized setting on CIFAR-100.

Figure 4.Communication cost reduction at98%, 99%, 99:95%,
bestcompared to the baseline performance in the federated setting.

4.3. Communication Ef�ciency

We experiment in the federated setting to verify the commu-
nication ef�ciency of our method with FedAvg (McMahan
et al., 2017). In particular, we consider classi�cation tasks
on three datasets, EMNIST, CIFAR-10, and CIFAR-100,
and tumor segmentation tasks on the BraTS dataset. We
follow the standard protocol as described in Section 4.1
to train the models and average the results over three
random seeds. Results in Table 3 indicate that our method
achieves comparable results on EMNIST and outperforms
the baselines on all the other datasets. In addition, our
method saves 20% to 30% two-way communication costs
in classi�cation and up to 63% costs in segmentation.
The result simultaneously con�rms the effectiveness and
ef�ciency of our method. We discuss the effect of different
numbers of stages in Section C.6.

We compare the performance at different communica-
tion costs in Figure 5. We observe that our method is
communication-ef�cient over every cost budget, especially
when the model parameters are not evenly distributed
across sub-models. For instance, 3D-Unet has most of its
parameters in the middle part of the model, making our
Symmetricupdate strategy extremely ef�cient. On the other
hand, theAsymmetricstrategy shows marginal improvement
since it starts from the heaviest portion of the model. The
�nding aligns with the motivation of progressive learning:
learning from simpler models might facilitate training. We
leave more analysis on segmentation in Section C.4.

Lastly, we analyze the cost reduction when achieving
98%, 99%, 99:5%, and the best of the performance of the
converged baseline. This experiment studies the behavior
of our method when only granted limited budgets. Figure 4
(and Figure 13 in the appendix that displays a larger

ProgFed: Effective, Communication, and Computation Ef�cient Federated Learning by Progressive Training

Figure 5.Communication cost vs. Accuracy (%) in federated set-
tings on EMNIST (3400 clients, non-IID), CIFAR-10 (100 clients,
IID), CIFAR-100 (500 clients, non-IID), and BraTS (10 clients,
IID).

Table 3.Results in federated settings. We report accuracy (%) for
classi�cation and Dice scores (%) for segmentation, followed by
cost reduction (CR) as compared to the baselines (end-to-end).

Baseline Ours CR

EMNIST 85.75� 0.11 85.67� 0.06 -29.49%
CIFAR-10 84.67� 0.14 84.85� 0.30 -29.70%
CIFAR-100 52.08� 0.44 53.23� 0.09 -22.90%

BraTS (Aym.) 86.77� 0.45 87.66� 0.49 -5.02%
BraTS (Sym.) 86.77� 0.45 87.96� 0.03 -63.60 %

range) presents that except for theAsymmetricstrategy,
our method improves communication ef�ciency across all
datasets. In particular, it achieves practicable performance
with 2x fewer costs in classi�cation and up to 6.5x fewer
costs in tumor segmentation. We also observe that the
communication ef�ciency improves more when considering
lower budgets. This property bene�ts when the time and
communication budgets are limited (McMahan et al., 2017).

4.4. Compatibility

Advanced optimization. We show that ProgFed can gener-
alize to federated optimizations beyond FedAvg, including
FedProx (Li et al., 2020) and FedAdam (Reddi et al., 2021),
on CIFAR-100 and EMNIST. FedProx mitigates the non-
IID problem by penalizing the L2 distance between the
updated client models and the global model. On the other
hand, FedAdam approaches the problem by adopting an
Adam optimizer on the server side. These methods impose
client-side and server-side regularization on top of FedAvg.

Results in Table 4 show that our method works seamlessly
with FedProx and FedAdam. We �rst observe that the per-
formance improves on both datasets when applying FedProx
and FedAdam. Similar to the result in Table 3, our method
signi�cantly outperforms the baseline on CIFAR-100 while

Table 4.Results of ProgFed with FedAvg, FedProx, and FedAdam
on CIFAR-100 in the federated setting.

EMNIST

FedAvg FedProx FedAdam
End-to-end 85.75 86.36 86.53
FedProg (S=4) 85.67 86.08 86.13

CIFAR-100

FedAvg FedProx FedAdam
End-to-end 52.08 53.25 56.21
FedProg (S=4) 53.23 54.28 60.55

(a) Moderate compression

(b) Intensive compression

Figure 6.Relative performance vs. communication cost reduction
with federated ResNet-18 on CIFAR-100 with (a) modest compres-
sion and (b) intensive compression.

performing comparably on EMNIST. The result veri�es
that ProgFed can be readily applied to advanced federated
optimizations.

Compression. We show that our method complements
classical compression techniques including quantization and
sparsi�cation. We train several ResNet-18 on CIFAR-100
in the federated setting and apply linear quantization and
sparsi�cation following Kone�cn�y et al. (2016). Speci�cally,
we consider 8 bits, 4 bits, and 2 bits for quantization (de-
noted by LQ-X), 25% and 10% for sparsi�cation (denoted
by SP-X), and their combinations. Table 5 demonstrates the
results. Our method clearly outperforms the baselines in all
settings. It indicates that our method is more robust against
compression errors, compatible with classical techniques,
and thus permits a higher compression ratio.

In addition, we visualize 50%, 80%, 90%, 99%, 99.5%, and
the best of the performance of the converged baseline against
communication cost reduction in Figure 6. We observe that

