
ProgFed: Effective, Communication, and
Computation Efficient Federated Learning by Progressive Training

Hui-Po Wang 1 Sebastian U. Stich 1 Yang He 1 Mario Fritz 1

Abstract
Federated learning is a powerful distributed learn-
ing scheme that allows numerous edge devices to
collaboratively train a model without sharing their
data. However, training is resource-intensive for
edge devices, and limited network bandwidth is
often the main bottleneck. Prior work often over-
comes the constraints by condensing the models
or messages into compact formats, e.g., by gra-
dient compression or distillation. In contrast, we
propose ProgFed, the first progressive training
framework for efficient and effective federated
learning. It inherently reduces computation and
two-way communication costs while maintain-
ing the strong performance of the final models.
We theoretically prove that ProgFed converges at
the same asymptotic rate as standard training on
full models. Extensive results on a broad range
of architectures, including CNNs (VGG, ResNet,
ConvNets) and U-nets, and diverse tasks from sim-
ple classification to medical image segmentation
show that our highly effective training approach
saves up to 20% computation and up to 63% com-
munication costs for converged models. As our
approach is also complimentary to prior work on
compression, we can achieve a wide range of
trade-offs by combining these techniques, show-
ing reduced communication of up to 50× at only
0.1% loss in utility. Code is available at https:
//github.com/a514514772/ProgFed.

1. Introduction
Federated Learning (FL) has led to remarkable advances
in the development of extremely large machine learning
systems (McMahan et al., 2017). Federated training meth-
ods allow multiple clients (edge devices) to jointly train a

1CISPA Helmholz Center for Information Security, Germany.
Correspondence to: Hui-Po Wang <hui.wang@cispa.de>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

global model without sharing their private data with others.
Training methods in FL suffer from high communication
and computational costs, as edge devices are often equipped
with limited hardware resources and limited network band-
width.

Prior literature has studied various compression techniques
to address the computation and communication bottlenecks.
These methods can be divided into three main categories
(see also Table 1): (i) Compression techniques that rep-
resent gradients (or parameters) with fewer bits to reduce
communication costs. Prominent examples are quantiza-
tion (Alistarh et al., 2017; Lin et al., 2018; Fu et al., 2020)
or sparsification (Stich et al., 2018; Konečnỳ et al., 2016).
(ii) Model pruning techniques that identify (much smaller)
sub-networks within the original models to reduce computa-
tional cost at inference (Li & Wang, 2019; Lin et al., 2020).
And (iii) knowledge distillation (Hinton et al., 2015) tech-
niques that allow the server to distill the knowledge from the
clients with hold-out datasets (Li & Wang, 2019; Lin et al.,
2020). Despite the significant progress, most of them rarely
leverage learning dynamics to reduce resource demands.

Prior work has observed that neural networks tend to stabi-
lize from shallower to deeper layers during training (Raghu
et al., 2017). This behavior provides additional scope to
improve resource demands. We take advantage of this
opportunity by leveraging progressive learning (Karras
et al., 2018), a well-known technique in image generation.
It first trains the shallower layers on simpler tasks (e.g.,
images with lower resolution) and gradually grows the
network to tackle more complicated tasks (e.g., images with
higher resolution). The growing process inherently reduces
computation and communication costs when the models are
shallower. Despite the appealing features, current success
mainly focuses on centralized training, and no previous
study has systematically investigated exploiting progressive
learning to reduce the costs in federated learning.

We propose ProgFed, the first federated progressive learning
framework that reduces both communication and compu-
tation costs while preserving model utility. Our approach
divides the model into several overlapping partitions and
introduces lightweight local supervision heads to guide the
training of the sub-models. The model capacity is gradu-

https://github.com/a514514772/ProgFed
https://github.com/a514514772/ProgFed

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Table 1. Comparison of ProgFed to other compression schemes.

Technique Computation
Reduction

Communication
Reduction

Dataset
Efficiency

Message Compression ✗ ✓ ✓
Model Pruning ✓(only for inference) ✗ ✓
Model Distillation ✓ ✓ ✗
ProgFed (Ours) ✓ ✓ ✓

ally increased during training until it reaches the full model
of interest. Due to the nature of progressive learning, our
method can reduce computational overheads and provide
two-way communication savings (both from server-to-client
and client-to-server directions) since the shallow sub-models
have much fewer parameters than the complete model. We
show that ProgFed converges at the same asymptotic rate
as standard training on full models. Extensive results show
that our method can resemble and sometimes outperform
the baselines using much fewer costs. Moreover, ProgFed is
compatible with classical compression, including sparsifica-
tion and quantization, and various federated optimizations,
such as FedAvg, FedProx, and FedAdam. These results
confirm the generalizability of ProgFed and could motivate
more advanced FL compression schemes based on progres-
sive learning.

We summarize our main contributions as follows.

• We propose ProgFed, the first federated progressive learn-
ing framework to reduce the training resource demands
(computation and two-way communication). We show
that ProgFed converges at the same asymptotic rate as
standard training the full model.

• We conduct extensive experiments on various datasets
(CIFAR-10/100, EMNIST and BraTS) and architectures
(VGG, ResNet, ConvNets, 3D-Unet) to show that with
the same number of epochs, ProgFed saves around 25%
computation cost, up to 32% two-way communication
costs in federated classification, and 63% in federated
segmentation without sacrificing performance.

• Our method allows to reduce communication costs
around 2× in classification and 6.5× in U-net segmen-
tation while achieving practicable performance (≥ 98%
of the best baseline). This is beneficial for combating
limited training budgets in federated learning.

• We show that ProgFed is compatible with existing tech-
niques. It complements classical compression to reduce
up to 50× communication costs at only 0.1% loss in util-
ity and can generalize to advanced optimizations with up
to 4% improvement over standard training.

2. Related Work

Progressive Learning. Progressive learning was initially

proposed to stabilize training processes and has been widely
considered in vision tasks such as image synthesis (Karras
et al., 2018), image super-resolution (Wang et al., 2018),
facial attribute editing (Wu et al., 2020) and representation
learning (Li et al., 2019). The core idea is to train the model
from easier tasks (e.g., low-resolution outputs or shallower
models) to difficult but desired tasks (e.g., high-resolution
outputs or deeper models). The benefit of progressive learn-
ing in cost reduction, namely lower resource demands when
the models are shallow, has not been explored in FL. Recent
work has investigated partial updates for FL, but they either
fall in greedy layer-wise updates (Belilovsky et al., 2020) or
are specific to certain models, e.g., transformers (He et al.,
2021a). In this work, we systematically investigate the ap-
plication of progressive learning for general federated tasks
and demonstrate its convergence rate and compatibility.

Message compression. Prior work has studied message
compression (e.g., on gradients or model weights) to re-
duce the communication costs in distributed learning. The
first category focuses solely on client-to-server compres-
sion (Alistarh et al., 2017; Wen et al., 2017; Lin et al., 2018;
Bernstein et al., 2018; Stich et al., 2018; Konečnỳ et al.,
2016; Karimireddy et al., 2019; Fu et al., 2020; Stich, 2020).
To name a few, Konečnỳ et al. (2016) reduce the costs by
sending sparsified gradients and compressing them with
probabilistic quantization. Alistarh et al. (2017); Wen et al.
(2017) prove the convergence of probabilistic quantized
SGD. SignSGD (Bernstein et al., 2018; Karimireddy et al.,
2019) significantly compresses the gradients with only one
bit. Compression of server-to-client communication is non-
trivial and has been a focus of recent research (Yu et al.,
2019; Tang et al., 2019; Liu et al., 2020; Philippenko &
Dieuleveut, 2020; He et al., 2021b). Instead of dedicated
designs, our method inherently reduces two-way communi-
cation costs and complements existing methods, as we will
show in Section 4.

Model pruning and distillation. In addition to compress-
ing messages, model pruning discards redundant weights
according to diverse criteria (Mozer & Smolensky, 1989; Le-
Cun et al., 1990; Frankle & Carbin, 2019; Lin et al., 2019),
while model distillation (Buciluǎ et al., 2006; Hinton et al.,
2015) transmits logits rather than gradients to improve com-
munication efficiency (Li & Wang, 2019; Lin et al., 2020;

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

(a) Feed-forward networks (b) U-nets (symmetric growing).

Figure 1. An overview of ProgFed on (a) feed-forward networks and (b) U-nets (symmetric growing illustrated). We progressively train a
deep neural network from the shallower sub-models, e.g. M1 consisting of the main block E1 and head G1 (Eq. 2), gradually expanding
to the full model MS = M (Eq. 1). Note that the local heads Gi in feed-forward networks are only used for training sub-models and
discarded when progressing to the next stage.

He et al., 2020; Choquette-Choo et al., 2020). However,
the former usually happens after training, and the latter one
either requires additional query datasets (Li & Wang, 2019;
Lin et al., 2020) or cannot enjoy the merit of datasets from
different sources (Choquette-Choo et al., 2020). In con-
trast, ProgFed stays dataset-efficient and reduces resource
demands throughout training.

Early-exit networks. Early-exit networks (Kaya et al.,
2019; Scardapane et al., 2020; Teerapittayanon et al., 2016)
are equipped with multiple output branches. Each data sam-
ple can opt for different branches at test time, thus reducing
the computation costs of inference. Despite the efficiency
at test time, early-exit networks (Scardapane et al., 2020;
Teerapittayanon et al., 2016) often consume more compu-
tation power during training since they have to maintain
all auxiliary classifiers (heads). On the other hand, our
method is designed for computation and communication
cost reduction at training time. We discard temporal heads
and consume fewer costs than the entire and early-exit net-
works. These features outline the main difference between
our method and early-exit networks.

3. ProgFed
In this work, we leverage the learning dynamics that net-
works stabilize from shallower to deeper layers for cost
reduction. Motivated by progressive learning, we propose
ProgFed that progressively expands the network from a shal-
lower one to the complete model. We provide convergence
analysis on single-client training for conciseness while it
stays efficient and can generalize to federated multi-client
training. The proposed model splitting and progressive
growing are illustrated in Figure 1, and the federated opti-
mization scheme is summarized in Algorithm 1. We now
present the proposed method in detail below.

3.1. Proposed Method

Model Structure. We now describe the proposed training
method. For a given a machine learning modelM, i.e. a
functionM(·,x) : Rn → Rk that maps n-dimensional in-
put to k logits for parameters (weights) x ∈ Rd, we assume
that the network can be written as a composition of blocks
(feature extractors) Ei along with a task head GS , namely,

M := GS ◦
S

⃝
i=1

Ei = GS ◦ ES ◦ · · · ◦ E2 ◦ E1 . (1)

Note that the Ei’s could denote e.g., a stack of residual
blocks or simply a single layer. The learning task is solved
by minimizing a loss function of interest L : Rk → R (e.g.,
cross-entropy) that maps the predicted logits ofM to a real
value, i.e. minimization of f(x) := L ◦M(x).

Progressive Model Splitting. To achieve progressive learn-
ing, we first divide the networkM into S stages, denoted
by Ms, for s ∈ {1, . . . , S} associated with the split in-
dices. We additionally introduce local supervision heads for
providing supervision signals. Formally, we define

Ms := Gs ◦
s

⃝
i=1

Ei , (2)

where Gs is a newly introduced head. Each head Gs, for
s < S consists of only a pooling layer and a fully-connected
layer in our experiments for feed-forward networks. The
motivation is that simpler heads may encourage the feature
extractors Ei to learn more meaningful representations.
Note that the sub-model Ms : Rn → Rk produces the
same output size as the desired model M; therefore, its
corresponding loss fs(xs) := L ◦Ms(xs) can be trained
with the same loss criterion L as the full model.

Training of Progressive Models. We propose to train each
sub-modelMs for Ts iterations (a certain fraction of the
total training budget) and gradually grow the network from

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

M1 toMS =M. When growing the network from stage
s to s + 1, we pass the corresponding parameters of the
pretrained blocks Ei, i ≤ s, to the next modelMs+1 and
initialize its blocks Es+1 and Gs+1 with random weights.
Once the progressive training phase is completed, we con-
tinue training the full modelM in an end-to-end manner
for the remaining iterations. The length Ts of each progres-
sive training phase is a parameter that could be fine-tuned
individually for each stage (depending on the application)
for best performance. However, as a practical guideline
that we adopted for all experiments in this paper, we found
that denoting roughly half of the total number of training
iterations T to progressive training, and setting Ts =

T
2S for

s < S, TS = T (S+1)
2S , such that T =

∑S
s=1Ts, works well

across all considered training tasks.

Extension to U-nets. In addition to feed-forward networks
(Figure 1(a)), we show that our method can generalize
to U-net (Figure 1(b)). U-net typically consists of an
encoder and a decoder. Unlike feed-forward networks, the
encoder sends both the final and intermediate features to
the decoder. Therefore, we propose to grow the network
from outer to inner layers as shown in Figure 1(b) and
retain the original output heads as Gi. We refer to the
strategy as the Symmetric strategy. In contrast, we propose
another baseline, the Asymmetric strategy, which adopts
the full encoder at the beginning and gradually grows
until it reaches the full decoder. For this strategy, we also
adopt several temporal heads for earlier training stages.
As we will show in Section 4.3, the Symmetric strategy
significantly outperforms the Asymmetric strategy, which
supports the notion of progressive learning.

Practical considerations. We empirically observe that
learning rate restart (Loshchilov & Hutter, 2017) facilitates
training in the centralized setting. This is because sub-
models may overfit the local supervision while learning rate
restart helps the sub-models escape from the local minima
and quickly converge to a better minima. On the other hand,
warm-up (Goyal et al., 2017) for the new layers plays an
important role in federated learning. Model weights often
take a longer time to converge in federated learning, which
makes the newly added layers introduce more noise to the
previous layers. With warm-up, the new layers recover the
performance without affecting previous layers. In particular,
warm-up leads to around 2% difference (53.23 vs. 51.09)
on CIFAR-100 with ResNet-18.

3.2. Convergence Analysis

In this section we prove that progressing training converges
to a stationary point at the rate O

(
1
ϵ2

)
, i.e. with the same

asymptotic rate as SGD training on the full network. For
this, we extend the analysis from (Mohtashami et al., 2021)
that analyzed the training of partial subnetworks. However,

Algorithm 1 ProgFed—Progressive training in a Federated
Learning setting

1: Input: initialization x1
0, modelM(·,x0), iteration bud-

gets T , Ts, number of stages S, s = 1, desired number
of local updates J ≥ 1, learning rate η

2: Output: parameters xT and trained modelM(·,xT)
3: for t = 1, . . . , T do
4: // Switch fromMs toMs+1 after Ts iterations
5: if min(S, ⌈ t

Ts
⌉) > s then

6: // Initialize new block Es+1 and new head Gs+1

7: initialize parameter xs+1
t randomly

8: // Copy parameters of shared blocks E1, . . . , Es.
9: xs+1

t|Es
← xs

t|Es

10: s← s+ 1 (the old head Gs is discarded)
11: end if
12: // Standard Federated Learning on active modelMs

13: Sample a subset C of clients
14: for each active client c ∈ C do
15: initialize xs

c,1 ← xs
t (send xs

t to active clients)
16: if warm-up is needed after growing then
17: // Warm up the newly added layers
18: freeze xs

c,1|Es−1
and warm-up xs

c,1|E∁
s−1

19: end if
20: for j = 1, . . . , J ▽ Local SGD updates do
21: // Compute (mini-batch) gradient gsc on client

c’s data
22: xs

c,j+1 = xs
c,j − ηgsc(x

s
c,j)

23: end for
24: ∆c = xc,J − xc,1

25: end for
26: // Aggregate updates from the clients
27: xs

t+1 = xs
t +

1
|C|

∑C
c=1 ∆c

28: end for

in our case the networks are not subnetworks,Ms ̸⊂ Ms+1

(as the head is not shared), and we need to extend their
analysis to progressive training with different heads.

Notation. We denote by xs the parameters of fs,
s ∈ {1, . . . , S} and abbreviate xS = x ∈ Rd for con-
venience. For s ≤ i ≤ S let xi

|Es
and ∇f i(xi)|Es

denote
the projection of the parameter xi and gradient ∇f i(xi) to
the dimensions corresponding to the parameters of E1 to Es

(without parameter of Es+1 to Ei and without head Gi). In
iteration t, the progressive training procedure updates the pa-
rameters of model fs, s = min(S, ⌈ t

Ts
⌉). For convenience,

we do not explicitly write the dependency of s on t below,
and use the shorthand xs

t to denote the corresponding model
at timestep t. We further define xt such that xt|Es

= xt
s|Es

and xt|E∁
s
= x0|E∁

s
on the complement.

Assumption 3.1 (L-smoothness). The function f : Rd → R

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

is differentiable and there exists a constant L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ . (3)

We assume that for every input xs, we can query an unbiased
stochastic gradient gs(xs) with E[gs(xs)] = ∇fs(xs). We
assume that the stochastic noise is bounded.
Assumption 3.2 (Bounded noise). There exist a parameter
σ2 ≥ 0 such that for any s ∈ {1, . . . , S}:

E ∥gs(xs)−∇fs(xs)∥2 ≤ σ2 , ∀xs . (4)

The progressive training updates xs
t+1 = xt

s−γtgs(xs
t) with

a SGD update on the model xs
t . With the two assumptions

above, which are standard in the literature, we prove the
convergence of sub-models Ms as well as the model of
interestM.
Theorem 3.3. Let Assumptions 3.1 and 3.2 hold, and
let the stepsize in iteration t be γt = αtγ with γ =

min
{

1
L , (

F0

σ2T)
1
2

}
, αt =min

{
1,

⟨∇f(xt)|Es ,∇fs(xs
t)|Es ⟩

∥∇fs(xs
t)|Es∥2

}
.

Then it holds for any ϵ > 0,

• 1
T

∑T−1
t=0 α2

t

∥∥∇fs(xs
t)|Es

∥∥2 < ϵ, after at most the fol-
lowing number of iterations T:

O
(
σ2

ϵ2
+

1

ϵ

)
· LF0 . (5)

• Let q := maxt∈[T]

(
qt := ∥∇f(xt)∥

αt∥∇fs(xs
t)|Es∥

)
, then

1
T

∑T−1
t=0 ∥∇f(xt)∥2 < ϵ after at most the following

iterations T :

O
(
q4σ2

ϵ2
+

q2

ϵ

)
· LF0 , (6)

where F0 := f(x0)− (minx f(x)).

Theorem 3.3 shows the convergence of the full modelM.
The convergence is controlled by two factors, the alignment
factor αt and the norm discrepancy qt. The former term
measures the similarity between the corresponding parts
of the gradients computed from the sub-models and the
full model (note that αt ≡ 1 in the last phase of training
on fS = f). The latter term q measures the magnitude
discrepancy (in Figure 7 we display the evolution of qt
during training for one example task, note that qt = 1 in the
last phase of training). We would like to highlight that the
convergence criterion in the first statement is lower bounded
by the average gradient in the last phase of the training,
1
2 ·

1
2T

∑T−1
t=T/2 ∥∇f(xt)∥2 ≤ 1

T

∑T−1
t=0 α2

t ∥∇fs(xs
t)|Es

∥2
(this is due to our choice of the length of the phases, with
TS ≥ T/2). This means, that progressive training will
provably require at most twice as many iterations but can
reach the performance of SGD training on the full model
with much cheaper per-iteration costs.

4. Experiments
4.1. Setup

We describe the main implementation details in this section
and provide supplementary details in Section B.

Datasets, tasks, and models. We consider four
datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), EMNIST (Cohen et al., 2017),
and BraTS (Menze et al., 2014; Bakas et al., 2017; 2018).
The former three are for image classification, while the
last one is a medical image dataset for tumor segmentation.
We conduct centralized experiments for analyzing the basic
properties of our method while considering practical appli-
cations in federated settings. For the centralized settings,
we train VGG-16, VGG-19 (Simonyan & Zisserman, 2014),
ResNet-18, and ResNet-152 (He et al., 2016) on CIFAR-100
(100 clients, IID). For the federated settings, we train Con-
vNets on CIFAR-10 and EMNIST (3400 clients, non-IID),
ResNet-18 on CIFAR-100 (500 clients, non-IID), and 3D-
Unet (Sheller et al., 2020) on the BraTS dataset (10 clients,
IID). Note that we follow Hsieh et al. (2020) to replace batch
normalization in ResNet-18 with group normalization.

Implementation. We implement all settings with Py-
torch (Paszke et al., 2019). In the centralized experiments,
we implement models based on DeVries & Taylor (2017),
where we run all experiments for 200 epochs and decay
the learning rates in {60, 120, 160} epochs by a factor of
0.1. We additionally adopt warm-up (Goyal et al., 2017)
and learning rate restart (Loshchilov & Hutter, 2017) in our
method to better fit in progressive learning. For federated
classification, we follow federated learning benchmarks in
(McMahan et al., 2017; Reddi et al., 2021) to implement
CIFAR-10, CIFAR-100, and EMNIST, respectively. For fed-
erated tumor segmentation, we follow Sheller et al. (2020)
for the settings and data splits. We run 1500 epochs for EM-
NIST, 2000 epochs for CIFAR-10, 3000 epochs for CIFAR-
100, and 100 epochs for BraTS. We set S = 3 for EMNIST
and S = 4 for all the other datasets and Ts as the practical
guideline described in Section 3. We adopt 5 and 25 warm-
up epochs for federated EMNIST and federated CIFAR-100,
respectively. We sample clients without replacement in the
same communication round but with replacement across
different rounds (Reddi et al., 2021). In each round, we
sample 10 out of 100 clients for CIFAR-10 (IID), 40 out of
500 clients for CIFAR-100 (non-IID), 68 out of 3400 clients
for EMNIST (non-IID), and 3 out of 10 clients for BraTS
(IID). The global models are synchronously updated in all
tasks.

4.2. Computation Efficiency

We first analyze the computation efficiency of our method
in the centralized setting (where all data is available on a

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Table 2. Results on CIFAR-100 in the centralized setting.

Accuracy Reduction

End-to-end Ours Walltime FLOPs

ResNet18 76.08±0.12 75.84±0.28 -24.75% -14.60%
ResNet152 77.77±0.38 78.57±0.33 -22.75% -19.68%
VGG16 71.79±0.15 71.54±0.45 -14.57% -13.02%
VGG19 70.81±1.18 70.90±0.43 -22.10% -14.43%

Figure 2. Accuracy (%) vs. GFLOPs on CIFAR-100 in the central-
ized setting.

single device) to study the effect of the progressive training
in isolation before moving to the federated use cases. We
average the outcomes over three random seeds and consider
four architectures on CIFAR-100, including VGG-16,
VGG-19, ResNet-18, and ResNet-152. As shown in Table 2,
our method performs comparably to the baselines (that train
on the full model) after 200 epochs while consuming fewer
floating-point operations per second (FLOPs) and training
wall-clock time.

To analyze the efficiency, we report the performance when
consuming different levels of costs. Figure 2 shows that our
method (orange lines) consistently lies above end-to-end
training on the full model (blue lines), meaning that our
method consumes fewer computation resources to improve
the models. Moreover, we visualize 98%, 99%, 99.95%,
and the best of the performance of the converged baseline
(analysis with a larger range is presented in Figure 12).
Figure 3 indicates that our method improves computation
efficiency across architectures. In the best case, our method
can accelerate training up to 7× faster when considering
limited computation budgets. We also observe that VGG
models improve more than ResNets. A possible reason
might be that due to local supervision, sub-models enjoy
larger gradients compared to end-to-end training, while
it rarely benefits ResNets since skip-connections could
partially avoid the problem.

Figure 3. Computation cost reduction at 98%, 99%, 99.95%, best
compared to the baseline (training full models) performance in the
centralized setting on CIFAR-100.

Figure 4. Communication cost reduction at 98%, 99%, 99.95%,
best compared to the baseline performance in the federated setting.

4.3. Communication Efficiency

We experiment in the federated setting to verify the commu-
nication efficiency of our method with FedAvg (McMahan
et al., 2017). In particular, we consider classification tasks
on three datasets, EMNIST, CIFAR-10, and CIFAR-100,
and tumor segmentation tasks on the BraTS dataset. We
follow the standard protocol as described in Section 4.1
to train the models and average the results over three
random seeds. Results in Table 3 indicate that our method
achieves comparable results on EMNIST and outperforms
the baselines on all the other datasets. In addition, our
method saves 20% to 30% two-way communication costs
in classification and up to 63% costs in segmentation.
The result simultaneously confirms the effectiveness and
efficiency of our method. We discuss the effect of different
numbers of stages in Section C.6.

We compare the performance at different communica-
tion costs in Figure 5. We observe that our method is
communication-efficient over every cost budget, especially
when the model parameters are not evenly distributed
across sub-models. For instance, 3D-Unet has most of its
parameters in the middle part of the model, making our
Symmetric update strategy extremely efficient. On the other
hand, the Asymmetric strategy shows marginal improvement
since it starts from the heaviest portion of the model. The
finding aligns with the motivation of progressive learning:
learning from simpler models might facilitate training. We
leave more analysis on segmentation in Section C.4.

Lastly, we analyze the cost reduction when achieving
98%, 99%, 99.5%, and the best of the performance of the
converged baseline. This experiment studies the behavior
of our method when only granted limited budgets. Figure 4
(and Figure 13 in the appendix that displays a larger

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Figure 5. Communication cost vs. Accuracy (%) in federated set-
tings on EMNIST (3400 clients, non-IID), CIFAR-10 (100 clients,
IID), CIFAR-100 (500 clients, non-IID), and BraTS (10 clients,
IID).

Table 3. Results in federated settings. We report accuracy (%) for
classification and Dice scores (%) for segmentation, followed by
cost reduction (CR) as compared to the baselines (end-to-end).

Baseline Ours CR

EMNIST 85.75 ± 0.11 85.67 ± 0.06 -29.49%
CIFAR-10 84.67 ± 0.14 84.85 ± 0.30 -29.70%
CIFAR-100 52.08 ± 0.44 53.23 ± 0.09 -22.90%

BraTS (Aym.) 86.77 ± 0.45 87.66 ± 0.49 -5.02%
BraTS (Sym.) 86.77 ± 0.45 87.96 ± 0.03 -63.60 %

range) presents that except for the Asymmetric strategy,
our method improves communication efficiency across all
datasets. In particular, it achieves practicable performance
with 2x fewer costs in classification and up to 6.5x fewer
costs in tumor segmentation. We also observe that the
communication efficiency improves more when considering
lower budgets. This property benefits when the time and
communication budgets are limited (McMahan et al., 2017).

4.4. Compatibility

Advanced optimization. We show that ProgFed can gener-
alize to federated optimizations beyond FedAvg, including
FedProx (Li et al., 2020) and FedAdam (Reddi et al., 2021),
on CIFAR-100 and EMNIST. FedProx mitigates the non-
IID problem by penalizing the L2 distance between the
updated client models and the global model. On the other
hand, FedAdam approaches the problem by adopting an
Adam optimizer on the server side. These methods impose
client-side and server-side regularization on top of FedAvg.

Results in Table 4 show that our method works seamlessly
with FedProx and FedAdam. We first observe that the per-
formance improves on both datasets when applying FedProx
and FedAdam. Similar to the result in Table 3, our method
significantly outperforms the baseline on CIFAR-100 while

Table 4. Results of ProgFed with FedAvg, FedProx, and FedAdam
on CIFAR-100 in the federated setting.

EMNIST

FedAvg FedProx FedAdam
End-to-end 85.75 86.36 86.53
FedProg (S=4) 85.67 86.08 86.13

CIFAR-100

FedAvg FedProx FedAdam
End-to-end 52.08 53.25 56.21
FedProg (S=4) 53.23 54.28 60.55

(a) Moderate compression

(b) Intensive compression

Figure 6. Relative performance vs. communication cost reduction
with federated ResNet-18 on CIFAR-100 with (a) modest compres-
sion and (b) intensive compression.

performing comparably on EMNIST. The result verifies
that ProgFed can be readily applied to advanced federated
optimizations.

Compression. We show that our method complements
classical compression techniques including quantization and
sparsification. We train several ResNet-18 on CIFAR-100
in the federated setting and apply linear quantization and
sparsification following Konečnỳ et al. (2016). Specifically,
we consider 8 bits, 4 bits, and 2 bits for quantization (de-
noted by LQ-X), 25% and 10% for sparsification (denoted
by SP-X), and their combinations. Table 5 demonstrates the
results. Our method clearly outperforms the baselines in all
settings. It indicates that our method is more robust against
compression errors, compatible with classical techniques,
and thus permits a higher compression ratio.

In addition, we visualize 50%, 80%, 90%, 99%, 99.5%, and
the best of the performance of the converged baseline against
communication cost reduction in Figure 6. We observe that

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Table 5. Federated ResNet-18 on CIFAR-100 with compression. LQ-X denotes linear quantization followed by used bits representing
gradients, and SP-X denotes sparsification followed by the percentage of kept gradients (see Table 11 for standard deviations).

Float LQ-8 LQ-4 LQ-2 SP-25 SP-10 LQ-8
+SP-25

LQ-8
+SP-10

Accuracy (%)

Baseline 52.08 49.40 49.55 47.26 51.23 51.79 49.67 50.25
Ours 53.23 53.07 52.32 52.87 52.00 51.86 52.19 52.24

Compression Cost (%)

Baseline 100 25.00 12.50 6.25 25.00 10.00 6.25 2.50
Ours 77.10 19.28 9.64 4.82 19.28 7.71 4.82 1.93

Table 6. Comparison between update strategies on CIFAR-100 with ResNet-18 in the centralized setting.

Baseline Ours Layerwise Partial Mixed Random

Accuracy (%) 76.08±0.12 75.84±0.28 72.40±0.16 74.70±0.04 75.04±1.26 74.38±0.97
Cost 1 0.86 1 1 ≈ 1 0.88

Figure 7. Norm discrepancy.

our method is more efficient across all percentages in every
pair (Ours vs. Baseline, plotted in the same color). Besides,
the baseline fails to achieve comparable performance in
many settings, e.g., the ones with quantization, while our
method retains comparable performance even with high
compression ratios. Interestingly, even with additional
compression, our method still facilitates learning at earlier
stages. For example, Ours-LQ8+SP25 achieves comparable
performance around 50x faster than the baseline, 60x faster
to achieve 80%, and more than 200x faster to achieve 50%
of performance. Overall, these properties grant our method
to adequately approach limited network bandwidth and open
up the possibility of more advanced compression schemes.

4.5. Analysis of ProgFed

Effect of norm discrepancy. As discussed in Section 3.2,
the convergence rate of the full model is controlled by norm
discrepancy, namely q. As qt approaches 1, the convergence
rate will be closer to the convergence speed of the sub-
models. We empirically evaluate the norm discrepancy
on CIFAR-100 with ResNet-18 in the centralized setting.
Figure 7 shows that the norm discrepancy decreases as the
sub-models gradually recover the full model. It suggests
that spending too much time on earlier stages may hurt
the convergence speed while offering a higher compression
ratio. This outlines the trade-off between communication
and training efficiency.

Comparison between update strategies. As described in
Section 3, ProgFed progressively trains the network from the
shallowest sub-modelM1 to the full modelM. We verify
our update strategy by comparing it with various baselines
in the centralized setting. Baseline: end-to-end training;
Layerwise only updates the latest layer Ei while still
passing the input through the whole modelM; Partial
partially updates Es but acquires supervision from the last
head GS ; Mixed combines Partial and Ours, trained
on supervision from both Gi and GS ; Random randomly
chooses a sub-model Ms to update, rather than follows
progressive learning.

Table 6 presents the performance and the computation cost
ratio. We make several crucial observations. (1) Ours and
Random do not pass the input through the whole network,
making them consume fewer computation costs. (2) Lay-
erwise greedily trains the network but achieves the worst
performance, which highlights the importance of end-to-
end fine-tuning. (3) Ours outperforms Random in both
costs and accuracy, verifying the necessity of progressive
learning. We also note that our method does not require
additional memory space (compared to Random) and is
easy to implement.

5. Discussion
There are two important hyperparameters S and {Ts}Ss=1 in
ProgFed (Sec. 3.1). We note that hyperparameter selection
in FL remains an open problem and could severely affect
performance. For instance, Reddi et al. (2021) show that
FL models are sensitive to learning rates. However, we
show in Section C.6 that ProgFed works smoothly with
various s at the cost of slightly more epochs while still
taking fewer costs to match the baseline performance. This

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

aligns with Theorem 3.3 that ProgFed may take more epochs
to converge but consume much fewer per-iteration costs.
Lastly, we note that Theorem 3.3 is general for partial model
updates. We leave incorporating structural updates and the
non-IID data assumption for future work.

In addition to the efficiency and efficacy of ProgFed, we
observe that the area under the curves of our method in Fig-
ure 2 and 5 are always larger than the end-to-end baselines.
It suggests that our approach can provide more practical
utility at all times. It aligns with the notion anytime learn-
ing (Caccia et al., 2021), where the models are expected
to provide the best utility at any time during training. This
feature is favorable in practice since users may access the
system at any time of training, and ProgFed demonstrates
great potential to implement such systems.

6. Conclusion
Beyond prior work on expressing models in compact for-
mats, we show a novel approach to modifying the training
pipeline to reduce the training costs. We propose ProgFed
and show that progressive learning can be seamlessly ap-
plied to federated learning for communication and com-
putation cost reduction. Extensive results on different ar-
chitectures from small CNNs to U-Net and different tasks
from simple classification to medical image segmentation
show that our method is communication- and computation-
efficient, especially when the training budgets are limited.
Interestingly, we found that a progressive learning scheme
has even led to improved performance in vanilla learning
and more robust results when learning is perturbed e.g. in
the case of gradient compression, which highlights progres-
sive learning as a promising technique in itself with future
application domains such as privacy-preserving learning, ad-
vanced compression schemes, and strong anytime-learning
performance.

Acknowledgment
This work was partially funded by the Helmholtz Asso-
ciation within the project ”Trustworthy Federated Data
Analytics (TFDA)” (ZT-I-OO1 4) and supported by the
Helmholtz Association’s Initiative and Networking Fund on
the HAICORE@FZJ partition.

References
Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,

M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. Advances in Neural Information
Processing Systems (NeurIPS), 30:1709–1720, 2017.

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki,
M., Kirby, J. S., Freymann, J. B., Farahani, K., and Da-

vatzikos, C. Advancing the cancer genome atlas glioma
mri collections with expert segmentation labels and ra-
diomic features. Scientific data, 4(1):1–13, 2017.

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M.,
Crimi, A., Shinohara, R. T., Berger, C., Ha, S. M., Rozy-
cki, M., et al. Identifying the best machine learning
algorithms for brain tumor segmentation, progression
assessment, and overall survival prediction in the brats
challenge. arXiv preprint arXiv:1811.02629, 2018.

Belilovsky, E., Eickenberg, M., and Oyallon, E. Decoupled
greedy learning of cnns. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), pp.
736–745. PMLR, 2020.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signsgd: Compressed optimisation for non-
convex problems. In Proceedings of the International
Conference on Machine Learning (ICML), pp. 560–569.
PMLR, 2018.

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. Model
compression. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 535–541, 2006.

Caccia, L., Xu, J., Ott, M., Ranzato, M., and Denoyer,
L. On anytime learning at macroscale. arXiv preprint
arXiv:2106.09563, 2021.

Choquette-Choo, C. A., Dullerud, N., Dziedzic, A., Zhang,
Y., Jha, S., Papernot, N., and Wang, X. Capc learning:
Confidential and private collaborative learning. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), 2020.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. Em-
nist: Extending mnist to handwritten letters. In 2017 Inter-
national Joint Conference on Neural Networks (IJCNN),
pp. 2921–2926. IEEE, 2017.

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Proceedings
of the International Conference on Learning Represen-
tations (ICLR), 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

Fu, F., Hu, Y., He, Y., Jiang, J., Shao, Y., Zhang, C., and
Cui, B. Don’t waste your bits! squeeze activations and
gradients for deep neural networks via tinyscript. In
Proceedings of the International Conference on Machine
Learning (ICML), pp. 3304–3314. PMLR, 2020.

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in Neural Information Processing Systems
(NeurIPS), 28, 2015.

Hassibi, B. and Stork, D. G. Second order derivatives
for network pruning: Optimal brain surgeon. Morgan
Kaufmann, 1993.

He, C., Annavaram, M., and Avestimehr, S. Group knowl-
edge transfer: Federated learning of large cnns at the
edge. Advances in Neural Information Processing Sys-
tems (NeurIPS), 33, 2020.

He, C., Li, S., Soltanolkotabi, M., and Avestimehr,
S. Pipetransformer: Automated elastic pipelining for
distributed training of transformers. arXiv preprint
arXiv:2102.03161, 2021a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

He, Y., Wang, H.-P., and Fritz, M. Cossgd: Communication-
efficient federated learning with a simple cosine-based
quantization. 1st NeurIPS Workshop on New Frontiers in
Federated Learning (NFFL), 2021b.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Hsieh, K., Phanishayee, A., Mutlu, O., and Gibbons, P. The
non-iid data quagmire of decentralized machine learn-
ing. In Proceedings of the International Conference on
Machine Learning (ICML), pp. 4387–4398. PMLR, 2020.

Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi, M. Er-
ror feedback fixes signsgd and other gradient compression
schemes. In Proceedings of the International Conference
on Machine Learning (ICML), pp. 3252–3261. PMLR,
2019.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive
growing of gans for improved quality, stability, and varia-
tion. In Proceedings of the International Conference on
Learning Representations (ICLR), 2018.

Kaya, Y., Hong, S., and Dumitras, T. Shallow-deep net-
works: Understanding and mitigating network overthink-
ing. In Proceedings of the International Conference on
Machine Learning (ICML), 2019.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 598–605, 1990.

Li, C., Wang, G., Wang, B., Liang, X., Li, Z., and Chang, X.
Dynamic slimmable network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8607–8617, 2021.

Li, D. and Wang, J. Fedmd: Heterogenous feder-
ated learning via model distillation. arXiv preprint
arXiv:1910.03581, 2019.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine Learning and Systems,
2:429–450, 2020.

Li, Z., Murkute, J. V., Gyawali, P. K., and Wang, L. Pro-
gressive learning and disentanglement of hierarchical rep-
resentations. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2019.

Lin, T., Stich, S. U., Barba, L., Dmitriev, D., and Jaggi, M.
Dynamic model pruning with feedback. In Proceedings
of the International Conference on Learning Representa-
tions (ICLR), 2019.

Lin, T., Kong, L., Stich, S. U., and Jaggi, M. Ensemble
distillation for robust model fusion in federated learning.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, B. Deep gra-
dient compression: Reducing the communication band-
width for distributed training. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR),
2018.

Liu, X., Li, Y., Tang, J., and Yan, M. A double residual
compression algorithm for efficient distributed learning.
In Proceedings of the International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), pp. 133–143.
PMLR, 2020.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C.
Learning efficient convolutional networks through net-
work slimming. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pp. 2736–2744,
2017.

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gradient
descent with warm restarts. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR),
2017.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Proceedings of the
International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 1273–1282. PMLR, 2017.

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J.,
Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom,
J., Wiest, R., et al. The multimodal brain tumor image
segmentation benchmark (brats). IEEE transactions on
medical imaging, 34(10):1993–2024, 2014.

Mohtashami, A., Jaggi, M., and Stich, S. U. Simultane-
ous training of partially masked neural networks. arXiv
preprint arXiv:2106.08895, 2021.

Mozer, M. C. and Smolensky, P. Skeletonization: A tech-
nique for trimming the fat from a network via relevance
assessment. In Advances in Neural Information Process-
ing Systems (NeurIPS), pp. 107–115, 1989.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 32, pp. 8026–8037. Curran Associates, Inc., 2019.

Philippenko, C. and Dieuleveut, A. Bidirectional compres-
sion in heterogeneous settings for distributed or feder-
ated learning with partial participation: tight convergence
guarantees. arXiv preprint arXiv:2006.14591, 2020.

Polino, A., Pascanu, R., and Alistarh, D. Model compres-
sion via distillation and quantization. In Proceedings of
the International Conference on Learning Representa-
tions (ICLR), 2018.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J.
Svcca: singular vector canonical correlation analysis for
deep learning dynamics and interpretability. In Advances
in Neural Information Processing Systems (NeurIPS), pp.
6078–6087, 2017.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečnỳ, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR),
2021.

Scardapane, S., Scarpiniti, M., Baccarelli, E., and Uncini,
A. Why should we add early exits to neural networks?
Cognitive Computation, 12(5):954–966, 2020.

Sheller, M. J., Edwards, B., Reina, G. A., Martin, J., Pati, S.,
Kotrotsou, A., Milchenko, M., Xu, W., Marcus, D., Colen,
R. R., et al. Federated learning in medicine: facilitating
multi-institutional collaborations without sharing patient
data. Scientific reports, 2020.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Stich, S. U. On communication compression for distributed
optimization on heterogeneous data. arXiv preprint
arXiv:2009.02388, 2020.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified
SGD with memory. Advances in Neural Information
Processing Systems (NeurIPS), pp. 4452–4463, 2018.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient knowledge
distillation for bert model compression. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4323–4332, 2019.

Tang, H., Yu, C., Lian, X., Zhang, T., and Liu, J. Dou-
blesqueeze: Parallel stochastic gradient descent with
double-pass error-compensated compression. In Pro-
ceedings of the International Conference on Machine
Learning (ICML), 2019.

Teerapittayanon, S., McDanel, B., and Kung, H.-T.
Branchynet: Fast inference via early exiting from deep
neural networks. In Proceedings of the International
Conference on Pattern Recognition (ICPR), 2016.

Wang, Y., Perazzi, F., McWilliams, B., Sorkine-Hornung,
A., Sorkine-Hornung, O., and Schroers, C. A fully pro-
gressive approach to single-image super-resolution. In
Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pp. 864–873, 2018.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. Terngrad: ternary gradients to reduce communica-
tion in distributed deep learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Wu, R., Zhang, G., Lu, S., and Chen, T. Cascade ef-gan:
Progressive facial expression editing with local focuses.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5021–5030,
2020.

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. Slimmable
neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

Yu, Y., Wu, J., and Huang, L. Double quantization for
communication-efficient distributed optimization. In
Advances in Neural Information Processing Systems
(NeurIPS), 2019.

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

A. Appendix
A.1. Proof of Theorem 3.3

In this section we prove Theorem 3.3. The proof builds on (Mohtashami et al., 2021) that considered training of subnetworks,
but not the progressive learning case.

Lemma A.1. Let xt denote the weights of the full model, and xs
t the weights of the model that is active in iteration t. Note

that it holds xt|Es
= xs

t|Es
as per the definition in the main text. It holds,

Ef(xt+1) ≤ f(xt)−
γ

2
α2
t

∥∥∇fs(xs
t)|Es

∥∥2 + γ2L

2
σ2 (7)

Proof. Let’s abbreviate gs
t = gs(xs

t). By the update equation xs
t+1 = xs

t − γtg
s
t it holds xt+1|Es

= xt|Es
− γtg

s
t|Es

. With
the L-smoothness assumption and the definition of αt,

Ef(xt+1) ≤ f(xt)− γt⟨∇f(xt)|Es
,E[gs

t]|Es
⟩+ γ2

tL

2
E

∥∥∥gs
t|Es

∥∥∥2
= f(xt)− γt⟨∇f(xt)|Es

,E[gs
t]|Es
⟩+ γ2

tL

2
E(

∥∥∥gs
t|Es
− Egs

t|Es

∥∥∥2 + ∥∥∥Egs
t|Es

∥∥∥2)
≤ f(xt)− γt⟨∇f(xt)|Es

,∇fs(xs
t)|Es

⟩+ γ2
tL

2
E(∥gs − Egs

t∥
2
+
∥∥∇fs(xs

t)|Es

∥∥2)
≤ f(xt)− γt⟨∇f(xt)|Es

,∇fs(xs
t)|Es

⟩+ γ2
tL

2

∥∥∇fs(xs
t)|Es

∥∥2 + γ2
tL

2
σ2

≤ f(xt)− γtαt(1−
γt
2αt

L)
∥∥∇fs(xs

t)|Es

∥∥2 + γ2
tL

2
σ2

≤ f(xt)−
γt
2
αt

∥∥∇fs(xs
t)|Es

∥∥2 + γ2
tL

2
σ2

≤ f(xt)−
γ

2
α2
t

∥∥∇fs(xs
t)|Es

∥∥2 + γ2L

2
σ2

Where in the last equation we used the facts that αt ≤ 1 and γt = αtγ.

We now prove Theorem 3.3.

Proof. We first define Ft := Ef(xt)− (minx f(x)). By rearranging Lemma A.1, we have

1

2
Eα2

t

∥∥∇fs(xs
t)|Es

∥∥2 ≤ Ft − Ft+1

γ
+

γL

2
σ2. (8)

Next, with telescoping summation, we have

1

T

T−1∑
t=0

Eα2
t

∥∥∇fs(xs
t)|Es

∥∥2 ≤ 2(F0 − FT−1)

Tγ
+ γLσ2 ≤ 2F0

Tγ
+ γLσ2 (9)

We now can prove the first of part Theorem 3.3 by setting the step size γ to be O(min{ 1
L , (

F0

σ2T)
1
2 } as in (Mohtashami et al.,

2021).

To prove the convergence of the model of interest (the second part),

1

T

T−1∑
t=0

∥∇f(xt)∥2 =
1

T

T−1∑
t=0

∥∇f(xt)∥2

α2
t

∥∥∇fs(xs
t)|Es

∥∥2α2
t

∥∥∇fs(xs
t)|Es

∥∥2
=

1

T

T−1∑
t=0

q2tα
2
t

∥∥∇fs(xs
t)|Es

∥∥2 ≤ q2
1

T

T−1∑
t=0

α2
t

∥∥∇fs(xs
t)|Es

∥∥2 (10)

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Table 7. Parameters for federated experiments

Dataset #clients #clients per epoch batch size #epochs

EMNIST 3400 68 20 1500
CIFAR-10 100 10 50 2000
CIFAR-100 500 40 20 3000
BraTS 10 10 3 100

#epoch per client #stages (S) Ts #epochs for warmup

EMNIST 1 3 250 5
CIFAR-10 5 4 250 0
CIFAR-100 1 4 375 25
BraTS 3 4 25 0

where

qt =
∥∇f(xt)∥

αt

∥∥∇fs(xs
t)|Es

∥∥ and q = max
t∈[T]

qt. (11)

By definition q ≥ qt for all t ∈ [T], we reach the last inequality and combine it with the first part of the theorem.

1

T

T−1∑
t=0

α2
t ∥∇fs(xt)∥2 ≤

ϵ

q2
(12)

Using ϵ
q2 as the new threshold, we immediately prove the second part.

B. Implementation details
We describe details of the datasets used in Section 4 and present the hyper-parameters in Table 7.

CIFAR-10. We conduct experiments on CIFAR-10 datasets for federated learning, following the setup of previous
work (McMahan et al., 2017). The dataset is divided into 100 clients randomly, namely iid distributions for every client. We
adopt the same CNN architecture with 122,570 parameters.

CIFAR-100. We follow the federated learning benchmark of CIFAR-100 proposed in (Reddi et al., 2021) to conduct the
experiments on CIFAR-100. We use ResNet-18/-152 (batch norm are replaced with group norm (Hsieh et al., 2020)) and
VGG-16/-19 in the centralized setting, while only considering ResNet-18 in the federated experiments. This setup allows us
to evaluate the federated learning systems on non-IID distributions, where we use the splits as suggested in (Reddi et al.,
2021).

EMNIST. We follow the benchmark setting in (Reddi et al., 2021) to experiment. There are 3,400 clients and 671,585
training examples distributed in a non-iid fashion. The models are eventually evaluated on 77,483 examples, resulting in a
challenging task.

BraTS. In addition to image classification, we conduct experiments on brain tumor segmentation based on (Sheller et al.,
2020). We train a 3D-Unet on the BraTS2018 dataset, which includes 285 MRI scans annotated by five classes of labels.
The network has 9,451,567 parameters. The training set is randomly partitioned into ten clients. All clients participate
in every training round and locally train their models for three local epochs. This setting matches the practical medical
applications. Institutions often own relatively stable network conditions, and the data are rare and of high resolution.

Architectures. ConvNets for EMNIST and MNIST consist of two convolution layers, termed Conv1 and Conv2, followed
by two fully connected layers, termed FC1 and FC2. To apply progressive learning with S = 3, we set Conv1, Conv2, FC1
to be the three stages, namely Ei, and FC2 to the final head, namely GS . As for VGGs, we divide the whole networks
into five components according to the max-pooling layers. We combine the first two to be E1 and set the others to be

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Figure 8. Performance vs. computation costs and Performance vs. epochs when comparing our method to different updating strategies.

Figure 9. Accuracy (%) vs. Epochs on CIFAR-100 in the centralized setting.

the remaining Ei under the setting S = 4. To apply ProgFed to ResNets (He et al., 2016), we first replace the batch
normalization layers with group normalization. By convention, ResNets have five convolution components, i.e. Conv1,
Conv2 x, Conv3 x, Conv4 x, and Conv5 x. We combine Conv1 and Conv2 x to be E1 and all the other components to be
the remaining Ei. It thus matches S = 4 in our setting.

C. More Results
C.1. Comparison between update strategies

As described in Section 4.5, we compare ProgFed to other baselines. We additionally report the performance vs. computation
costs and performance vs. epochs in Figure 8, where Ours reaches comparable performance while consuming the least cost.

C.2. Computation Efficiency

We present more experiments in the centralized setting to prove the computation efficiency of our method. Figure 9 presents
accuracy vs. epochs with four architectures on CIFAR-100. The result indicates that our method converges comparably
faster to end-to-end training in practice. Figure 11 presents Figure 3 in bar charts. Similar to Figure 3, our method improves
across architectures while VGGs benefit even more from our method. Figure 10 presents the computation costs of 3D-Unets
on the BraTS dataset. We make the first observation that tumor segmentation requires heavy computation. Interestingly, even
though the earlier stages of Symmetric consume much fewer communication costs (Figure 5), they require more computation
costs than Asymmetric. It might root from the higher resolution of feature maps that Symmetric keeps and thus lead to a
trade-off between communication and computation costs.

Figure 11 extend Figure 3 to a larger range {50%, 60%, 70%, 80%, 90% 98%, 99%, 99.95%, best}. The result shows that
our method benefits across models and is especially efficient when training budgets are limited.

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Figure 10. DICE (%) vs. computation costs on BraTS.

Figure 11. Computation acceleration at different percentage of performance. The orange bar indicates the best performance of our method.

Figure 12. Computation cost reduction at {50%, 60%, 70%, 80%,
90% 98%, 99%, 99.95%, best} of the baseline performance in
the centralized setting.

Figure 13. Communication cost reduction at {50%, 60%, 70%,
80%, 90% 98%, 99%, 99.95%, best} of the baseline performance
in the federated setting.

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

(a) ConvNet on EMNIST (b) ConvNet on CIFAR-10

(c) ResNet-18 on CIFAR-100 (d) 3D-Unet on BraTS

Figure 14. Accuracy vs. computation costs and accuracy vs. epochs in the federated setting. (a)(b)(c) shows the result for three
classification tasks; (d) shows the result for the segmentation task, where two update strategies Symmetric and Asymmetric are adopted for
3D-Unet.

Figure 15. Communication cost reduction at different percentage of performance. The orange bar indicates the best performance of our
method.

C.3. Communication Efficiency

We present more experiments in the federated setting to prove the communication efficiency of our method. To complement
Figure 5, we additionally visualize performance vs. communication costs and performance vs. epochs in Figure 14. Although
our method causes performance fluctuation in some datasets, the performance recovers very quickly. Figure 15 presents
Figure 4 in bar charts. The results show that our method saves considerable costs in almost all settings except for EMNIST
at 95%. It is because both baseline and our method improve fast at the beginning while our method stands out in the latter
phase of training (e.g. after 98%). The result also supports that our method improves across datasets.

We present Figure 4 in a region that models are applicable. Here, we plot the figure with a larger range {50%, 60%, 70%,
80%, 90% 98%, 99%, 99.95%, best} in Figure 13. The result is consistent, showing that our method benefits across datasets,
and is efficient when granted limited training budgets.

C.4. Visualization of Federated Segmentation

We visualize the outputs of 3D-Unet (see Section 4.3) in Figure 16. The result matches the number reported in Table 3
that the models perform similarly after they have converged. However, the communication cost consumption is disparate.
Symmetric only consumes 36.40% while the others either do not save any cost or marginally improve it. We visualize
the results in Figure 17 when granted limited communication budgets. Note that even with the same cost, Symmetric and
Asymmetric may stay in different stages because Symmetric starts from the outer part, consisting of significantly fewer
parameters. We find that Baseline and Asymmetric fail to compress the models with 0.18% since their models are of size 34

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Input Ground Truth Baseline
(100%)

Asymmetric
(94.98%)

Symmetric
(36.40%)

Figure 16. Visualization of federated segmentation. From left to right: Input, Ground Truth, Baseline, Asymmetric, and Symmetric
updating strategies. Despite the comparable performance, Symmetric consumes significantly fewer communication costs.

Input ≈ 0.18% ≈ 9.40% ≈ 36.40% Ground Truth

Figure 17. Segmentation results under {≈ 0.18%, ≈ 9.40% , ≈ 36.40%} of communication costs of the converged baseline. From top
to bottom: baseline, Asymmetric (Ours), and Symmetric (Ours). Only Symmetric can achieve 0.18% (6.7536 MB) compression ratio,
since the size of the other models is already around 34 MB (i.e. 0.908%).

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Table 8. Raw results on CIFAR-100 with four architectures in the centralized setting (to complement Table 2).

End-to-End ProgFed (Ours)

Seed1 Seed2 Seed3 Mean Std Seed1 Seed2 Seed3 Mean Std
ResNet-18 75.95 76.12 76.17 76.08 0.12 75.57 76.13 75.83 75.84 0.28
ResNet-152 77.69 77.44 78.19 77.77 0.38 78.95 78.46 78.31 78.57 0.33
VGG16 (bn) 71.94 71.77 71.65 71.79 0.15 71.36 72.05 71.21 71.54 0.45
VGG19 (bn) 69.47 71.25 71.70 70.81 1.18 71.30 70.45 70.95 70.90 0.43

Table 9. Raw results in federated settings on EMNIST, CIFAR-10, and CIFAR-100 (to complement Table 3).

EMNIST

Seed1 Seed2 Seed3 Mean Std
Baseline 85.63 85.77 85.85 85.75 0.11
Ours 85.65 85.62 85.73 85.67 0.06

CIFAR-10

Seed1 Seed2 Seed3 Mean Std
Baseline 84.62 84.82 84.56 84.67 0.14
Ours 84.64 84.73 85.19 84.85 0.30

CIFAR-100

Seed1 Seed2 Seed3 Mean Std
Baseline 51.79 51.86 52.58 52.08 0.44
Ours 53.33 53.16 53.21 53.23 0.09

MB (i.e. 0.908%), while only Symmetric achieve it. Interestingly, Symmetric has produced promising results at 0.18% of
costs. It suggests that our method significantly facilitates learning even given limited communication budgets. Meanwhile,
we hope these findings could inspire more further work on medical learning problems.

C.5. Raw numbers and more statistics

Table 8 9, and 10 present the raw numbers of the experiments in Table 2 and 3 over three random seeds. Table 11 presents
the standard deviations of Table 5 over three random seeds.

C.6. Ablation study on the number of stages

We conduct an ablation study on CIFAR-100 with ResNet-18 to verify the influence of different numbers of stages S,
namely S = 3, 4, 5, and 8. We set the remaining hyper-parameters as discussed in Section 3.1 to ensure a fair comparison.
Table 12 shows that S = 4 performs the best among all settings when the number of total epochs is equal to 3000. However,
Theorem 3.3 suggests that ProgFed could be at most two times slower than the end-to-end training. Therefore, we show that
the performance immediately improves if we slightly increase the number of total epochs. Table 12 summarizes the result.
Despite the improved performance, the final costs also increase subsequently.

To fairly compare these two settings, we summarize the results in Table 13 when all settings achieve the end-to-end baseline

Table 10. Raw results on BraTS in the federated setting (to complement Table 3).

Seed 1 Seed 2 Seed 3 Mean Std

Baseline 87.29 86.51 86.51 86.77 0.45
Idea1 (Ours) 88.19 87.22 87.57 87.66 0.49
Idea2 (Ours) 87.92 87.98 87.98 87.96 0.03

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

Table 11. Federated ResNet-18 on CIFAR-100 with compression. LQ-X denotes linear quantization followed by used bits representing
gradients, and SP-X denotes sparsification followed by the percentage of kept gradients. (to complement Table 5).

Float LQ-8 LQ-4 LQ-2

Accuracy (%)

Baseline 52.08 ± 0.44 49.40 ± 0.75 49.55 ± 0.59 47.26 ± 0.29
Ours 53.23 ± 0.09 53.07 ± 1.00 52.32 ± 0.15 52.87 ± 0.54

Compression ratio (%)

Baseline 100 25.00 12.50 6.25
Ours 77.10 19.28 9.64 4.82

SP-25 SP-10
LQ-8

+SP-25
LQ-8

+SP-10

Accuracy (%)

Baseline 51.23 ± 0.56 51.79 ± 0.10 49.67 ± 1.58 50.25 ± 1.03
Ours 52.00 ± 0.19 51.86 ± 0.23 52.19 ± 0.03 52.24 ± 0.12

Compression ratio (%)

Baseline 25.00 10.00 6.25 2.50
Ours 19.28 7.71 4.82 1.93

Table 12. Ablation study on numbers of stages with different numbers of total epochs on CIFAR-100.

Accuracy (%) Cost (GB) Accuracy (%) Cost (GB)

#epoch=3000 #epoch=4000
End-to-End 52.08 5368 - -
ProgFed (S=3) 51.33 4418 53.80 5695
ProgFed (S=4) 53.23 4179 - -
ProgFed (S=5) 51.53 4264 54.25 5479
ProgFed (S=8) 50.70 3901 54.46 5166

Table 13. Communication costs of ProgFed when achieving the performance of end-to-end training (52.08%).

#Total epochs Cost

End-to-End 3000 5368
ProgFed (S=3) 4000 4365
ProgFed (S=4) 3000 3804
ProgFed (S=5) 4000 3781
ProgFed (S=8) 4000 3421

Table 14. Performance of ProgFed when consuming the same amount of communication costs as S=4 and #Total epochs = 3000 (4179GB).

#Total epochs Accuracy (%)

End-to-end 3000 51.19
ProgFed (S=3) 4000 52.33
ProgFed (S=4) 3000 53.23
ProgFed (S=5) 4000 53.56
ProgFed (S=8) 4000 53.50

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

performance (52.08%). It is observed that all settings, including those with more epochs, achieve the same performance as
the baseline at much fewer costs. Moreover, the cost decreases as the number of stages S increases. On the other hand, we
report the performance when all settings consume the same amount of costs as S = 4 with 3000 epochs. Table 14 shows that
all settings perform better than the baseline and similarly well except S = 3. It might indicate that ProgFed is insensitive to
S and the number of total epochs when given the same budget.

D. More Related work
We discuss more related work in this section.

Model pruning. Model pruning removes redundant weights to address the resource constraints (Mozer & Smolensky,
1989; LeCun et al., 1990; Frankle & Carbin, 2019; Lin et al., 2019). There are two categories: unstructured and structured
pruning. Unstructured methods prune individual model weights according to certain criteria such as Hessian of the loss
function (LeCun et al., 1990; Hassibi & Stork, 1993) and small magnitudes (Han et al., 2015). However, these methods
cannot fully accelerate without dedicated hardware since they often result in sparse weights. In contrast, structured pruning
methods prune channels or even layers to alleviate the issue. They often learn importance weights for different components
and only keep relatively important ones (Liu et al., 2017; Yu et al., 2018; Mohtashami et al., 2021; Li et al., 2021). Despite
the efficiency, model pruning usually happens at inference and does not reduce training costs while our method achieves
computation- and communication-efficiency even during training.

Model distillation. Another line of research for model compression is model distillation (Buciluǎ et al., 2006; Hinton
et al., 2015), which requires a student model to mimic the behavior of a teacher model (Polino et al., 2018; Sun et al.,
2019). Recent work has investigated transmitting logits rather than gradients (Li & Wang, 2019; Lin et al., 2020; He et al.,
2020; Choquette-Choo et al., 2020), which significantly reduces communication costs. However, these methods either
require additional query datasets (Li & Wang, 2019; Lin et al., 2020) or cannot enjoy the merit of datasets from different
sources (Choquette-Choo et al., 2020). In contrast, our work reduces the costs while retaining the dataset efficiency.

