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Abstract
Variational approximations to Gaussian processes
(GPs) typically use a small set of inducing points
to form a low-rank approximation to the co-
variance matrix. In this work, we instead ex-
ploit a sparse approximation of the precision ma-
trix. We propose variational nearest neighbor
Gaussian process (VNNGP), which introduces
a prior that only retains correlations within K
nearest-neighboring observations, thereby induc-
ing sparse precision structure. Using the vari-
ational framework, VNNGP’s objective can be
factorized over both observations and inducing
points, enabling stochastic optimization with a
time complexity of O(K3). Hence, we can arbi-
trarily scale the inducing point size, even to the
point of putting inducing points at every observed
location. We compare VNNGP to other scalable
GPs through various experiments, and demon-
strate that VNNGP (1) can dramatically outper-
form low-rank methods, and (2) is less prone to
overfitting than other nearest neighbor methods.

1. Introduction
Gaussian processes (GPs) provide rich priors over func-
tions (Rasmussen & Williams, 2006). While the GP poste-
rior can be computed in closed form for regression models,
variational posterior approximations (Titsias, 2009; Hens-
man et al., 2013; van der Wilk et al., 2020) have become
increasingly popular as they offer numerous advantages.
First, variational methods can utilize stochastic minibatch-
ing (Hensman et al., 2013), enabling inference for large-
scale datasets. Second, variational methods are compati-
ble with non-conjugate likelihoods (Hensman et al., 2015)
and simplify inference for interdomain observation models
(Lázaro-Gredilla & Figueiras-Vidal, 2009; Álvarez et al.,
2010; van der Wilk et al., 2020; Wu et al., 2021). Finally,
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black box variational methods (Ranganath et al., 2014) make
it possible to use GP as components of larger models, such
as Deep Gaussian Processes (Damianou & Lawrence, 2013).

To apply variational methods to large-scale GP, it is often
necessary to make additional approximations (Titsias, 2009;
Hensman et al., 2017). This is because making GP inference
with N observations incurs a O(N3) computation. A popu-
lar variational approach that aids this issue is the Stochastic
Variational Gaussian Process method (SVGP) (Hensman
et al., 2013), which essentially forms a low-rank approxi-
mation to the prior covariance. These approximations offer
well understood predictive properties (Bauer et al., 2016),
probable performance guarantees (Burt et al., 2019), and
competitive performance on numerous datasets. However,
there are also many instances when low-rank approxima-
tions are ill suited. For example, spatiotemporal datasets
often have intrinsically low lengthscale, meaning that the
data can vary rapidly with small changes in space and time.
In these settings, low-rank approximations cannot capture
fast variations, often resulting in low fidelity or “blurry” pre-
dictions (e.g. Datta et al., 2016a; Pleiss et al., 2020; Wu
et al., 2021).

In this paper, we are interested in making variational GP
methods more amenable to spatiotemporal data and other
domains with intrinsically low lengthscale, while retain-
ing (and even improving) scalability. To do so, we replace
SVGP’s low-rank approximation of the prior covariance
matrix with a sparse approximation of the prior precision
matrix. Whereas a low-rank approximation assumes that
observations are explained through a small number of global
latent variables, a sparse precision approximation instead
assumes that observations are conditionally independent
given their nearest neighboring observations. Mathemat-
ically, the joint GP prior is approximated by the product
of one-dimensional conditionals, each of which only de-
pends on a small subset of preceding observations based
on some predetermined ordering. This assumption is quite
reasonable in the context of spatiotemporal modeling. For
example, it is reasonable to assume that the weather in Los
Angeles and Maine are conditionally independent, given
neighboring cities in California.

Sparse precision approximations are common in spatiotem-
poral modeling throughout the geostatisics literature (e.g.
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Vecchia, 1988; Stein et al., 2004; Datta et al., 2016a; Guin-
ness, 2018; Finley et al., 2019; Katzfuss et al., 2021), where
they often achieve higher predictive fidelity than low-rank
approximations. However, most existing approaches target
exact or MCMC inference and are not compatible with vari-
ational methods. As a result, it is not straightforward to use
sparse precision methods with non-conjugate or interdomain
likelihoods, or as part of larger probabilistic models without
resorting to sampling. Recently, Tran et al. (2021) made a
first key step in this direction. They introduce Sparse Within
Sparse Gaussian Processes (SWSGP), which combines a
similar nearest neighbor approximation with SVGP. Instead
of exploiting the sparse precision structure, SWSGP intro-
duces sparsity by constructing a hierarchical prior. While
successful, we will show an important technical opportunity
remains, which we offer here.

In this work, we propose a novel sparse precision approxi-
mation that is compatible with stochastic variational infer-
ence. Similar to SVGP, our proposed method—the Varia-
tional Nearest Neighbor Gaussian Process (VNNGP) 1—
formulates the variational objective and predictive distri-
bution through a set of M inducing points. Unlike SVGP,
our method applies 1) a sparse precision approximation to
the inducing point distribution and 2) a sparse dependency
approximation between observations and inducing points.
These approximations enable the VNNGP objective to fac-
torize over data and inducing points. Consequently, we can
minibatch over data and inducing points when evaluating
the variational objective, resulting in constant time compu-
tational complexity with respect to both N and M . This sig-
nificant reduction makes it possible to scale M well beyond
the limits of SVGP, even to the point of placing inducing
points at every observed location. Moreover, unlike SWSGP
and other sparse approximations (Vecchia, 1988; Katzfuss
et al., 2021), the VNNGP prior and variational distribution
both constitute valid GPs, enabling it to more faithfully re-
tain the features of the true GP prior. We compare VNNGP
to SVGP, SWSGP, and other scalable methods on numerous
toy experiments and benchmark datasets. Our results demon-
strate that VNNGP can offer higher fidelity predictions than
SVGP and is less prone to overfitting than SWSGP. These
advantages are most pronounced on spatiotemporal datasets
(including those with non-conjugate observational models),
but hold for high dimensional datasets as well.

1VNNGP is implemented in the GPyTorch library. See the
example in https://docs.gpytorch.ai/en/stable/
examples/04_Variational_and_Approximate_
GPs/VNNGP.html

2. Background
2.1. Gaussian Processes

Consider any finite dimensional realization f = {fi}Ni=1 of
a Gaussian process at locations x1,x2, · · · ,xN ∈ RD:

f(·) ∼ GP(0, k(·, ·))
fi ≡ f(xi) for i = 1 : N

(1)

where k(·, ·) is a kernel function that encodes the properties
of the prior. We can always factorize the joint probability
of a GP realization into a chain of conditional probabilities
subject to some ordering, for example

p(f) = p(f1)

N∏
i=2

p(fi|f1:i−1), (2)

where p(f1) = N (f1|0, k1,1),

p(fi|f1:i−1) = N (fi|k⊤
1:i−1,iK

−1
1:i−1,1:i−1f1:i−1,

ki,i − k⊤
1:i−1,iK

−1
1:i−1,1:i−1k1:i−1,i)

(3)

and we define ki,i ≡ k(xi,xi), k1:i−1,i ≡ k(x1:i−1,xi),
and K1:i−1,1:i−1 ≡ k(x1:i−1,i,x1:i−1). The following no-
tations will apply this convention accordingly.

2.2. Sparse Precision Approximations

GP approximations based on sparse precision matrices re-
main popular for years, largely in the geostatistics com-
munity (Vecchia, 1988; Datta et al., 2016a; Finley et al.,
2019; Katzfuss et al., 2021). They consider the following
approximation to Eq 2

p(f) ≈ p(f1)

N∏
i=2

p(fi|fn(i)), (4)

where p(f1) = N (f1|0, k1,1),

p(fi|fn(i)) = N (fi|k⊤
n(i),iK

−1
n(i),n(i)fn(i),

ki,i − k⊤
n(i),iK

−1
n(i),n(i)kn(i),i)

(5)

and n(i) denotes the indices of K nearest neighbors of xi

in {xk}i−1
k=1. Typically K is set to be much smaller than

N , and when K = N Eq 4 recovers the original GP. This
approximation results in a sparse Cholesky factor of the pre-
cision matrix (Datta, 2021b). As a consequence, the model
complexity scales O(NK3). It has seen many successful
applications in spatiotemporal problems, e.g. predicting PM
polutant levels arocss Europe (Datta et al., 2016b), predict-
ing forest canopy height (Finley et al., 2017), estimating
forest biomass (Taylor-Rodriguez et al., 2019), etc.

https://docs.gpytorch.ai/en/stable/examples/04_Variational_and_Approximate_GPs/VNNGP.html
https://docs.gpytorch.ai/en/stable/examples/04_Variational_and_Approximate_GPs/VNNGP.html
https://docs.gpytorch.ai/en/stable/examples/04_Variational_and_Approximate_GPs/VNNGP.html


Variational Nearest Neighbor Gaussian Process

2.3. Stochastic Variational Gaussian Processes

Stochastic variational Gaussian process (SVGP) (Hensman
et al., 2013) defines a small set of M inducing points u =
{uj}Mj=1 which are GP latent variables at locations {zj}Mj=1.
It considers the joint latent generative process:

p(u, f) = N (

(
u
f

)
|0,

(
Kz,z Kz,x

Kx,z Kx,x

)
) (6)

and an independent observation model

p(y|f) =
N∏
i=1

p(yi|fi) (7)

where p(yi|fi) is an arbitrary likelihood function. SVGP is
optimized by maximizing the evidence lower bound (ELBO)
given below:

LSVGP =

N∑
i=1

E
q(fi)

[log p(yi|fi)]−KL [q(u) ∥ p(u)] , (8)

where q(u) is the variational posterior for u and q(fi) =∫
p(fi|u)q(u)du is the variational posterior for fi. The

SVGP approximation relies on the low-rank matrix
Kx,zK

−1
z,zKz,x instead of the full-rank matrix Kx,x to re-

duce the size of any matrix inversion to M . Therefore, we
refer to it as a low-rank approximation.

SVGP has several advantages compared to exact GP and
other scalable methods. First, as is shown in Eq 8, the ELBO
is factorzied over data points. Therefore, it is amenable
to stochastic optimization and the computational complex-
ity reduces to O(M3). Moreover, due to its variational
inference nature, SVGP can be applied to problems with
non-conjugate likelihoods, inter-domain observations or la-
tent variable models based on GPs. However, since SVGP
assumes M ≪ N , it may struggle to obtain accurate pre-
dictions for large-scale data that are not inherently low-rank
structured (Wu et al., 2021; Tran et al., 2021).

2.4. Other Related Works

Variational GP inference was first pursued by Csató et al.
(2000) and Gibbs & MacKay (2000). More recent works
connect variational inference with scalable methods. Titsias
(2009) ties inducing point approximations and variational
inference, and Hensman et al. (2013) extends this approach
to be compatible with minibatched optimization. Recent
extensions focus on inducing points in linearly transformed
domains (Lázaro-Gredilla & Figueiras-Vidal, 2009; van der
Wilk et al., 2020), inducing points with exploitable alge-
braic kernel structures (Wilson & Nickisch, 2015; Wu et al.,
2021), and inducing points with separable structure (Cheng
& Boots, 2017; Salimbeni et al., 2018; Shi et al., 2020). Be-
yond inducing point approximations, Hensman et al. (2017)
and John & Hensman (2018) combine variational inference
with finite basis approximations.

Nearest neighbor approximations. In addition to the
sparse precision approximations pursued by the geostatis-
tics community (see introduction), the machine learning
community has proposed nearest neighbor GP approxima-
tions (Kim et al., 2005; Nguyen-Tuong et al., 2008; Gramacy
& Apley, 2015; Park & Apley, 2018; Jankowiak & Pleiss,
2021). Besides SWSGP which is introduced before, we re-
view three methods that are most related to our method. Bui
& Turner (2014) proposes a sparse prior by imposing a tree
or chain structure over inducing points and calibrating the
posterior approximation with a KL divergence minimization.
This approach uses a message-passing inference algorithm
and learns the hyperparameters by maximizing the marginal
likelihood over inducing points. Stochastic gradient descent
GP (sgGP) forms a (biased) stochastic GP objective that
optimizes K-nearest-neighboring data points per iteration
(Chen et al., 2020). This method is an approximation to
exact GP inference, and therefore is limited to Gaussian
likelihood. Liu & Liu (2019) use amortized variational in-
ference for data points within a small neighborhood, where
the variational covariance is constructed to have a sparse
Cholesky factor. The latter two methods have computational
complexity cubic in the number of nearest neighbors.

3. Variational Nearest Neighbor GP
In this section, we develop VNNGP, a highly scalable varia-
tional GP method. VNNGP considers the same observation
model in Eq 7 and makes the following nearest neighbor
approximations to the latent generative process

p(u) ≈
M∏
j=1

p(ui|un(j)), p(f |u) ≈
N∏
i=1

p(fi|un(i)) (9)

where each conditional denotes a standard GP predictive
distribution, n(j) denotes the inducing point indices cor-
responding to zj’s (at most) K nearest neighbors selected
from {z1, · · · , zj−1} (with a special case of n(1) = ∅), and
we overload the notation n(i) to denote the inducing point
indices of xi’s K nearest neighbors in all {zj}Mj=1.

Because of this construction, VNNGP forms a sparse ap-
proximation to the prior precision matrix K−1

z,z (Datta,
2021b). Its Cholesky factor has at most K + 1 non-zero
elements per row, corresponding to the K-nearest-neighbor
dependency structure. Figure 1 plots the Cholesky factor of
K−1

z,z for M = 20 inducing points with varying number of
nearest neighbors K. We further see that, as K increases,
the Cholesky factor becomes denser and approaches the
exact one. In this case, K = 10 yields a quality approxima-
tion. Note that the sparsity pattern of the Cholesky factor
depends on the ordering of inducing points and the nearest
neighbor sets. In Figure 1 we use the coordinate ordering of
1-dimensional inducing points, thereby rendering a banded
sparsity pattern.
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Figure 1. The Cholesky factor of prior precision matrix for M =
20 inducing points (with even spacing of 1) by VNNGP with differ-
ent number of nearest neighbors K. We use a squared exponential
kernel with outputscale 1 and lengthscale 1. For each row of the
Cholesky factor, at most K + 1 elements are non-zero, and when
K = 10 the approximation is qualitatively close to the exact one.

Ordering of inducing points. The nearest neighbor ap-
proximation in Eq 9 is subject to a particular ordering of
inducing points. In all following experiments, we apply
random ordering and we find that different orderings do not
lead substantial differences on VNNGP’s performance.

Variational family. We consider a special choice of the
variational distribution q(f ,u) that will greatly simplify the
computation without sacrificing much prediction accuracy.
Specifically, we use a mean-field variational approximation
for u and approximate the posterior for f with the nearest
neighbor prior:

q(u) =

M∏
j=1

q(uj) =

M∏
j=1

N (uj |mj , sj), (10)

q(f) =

N∏
i=1

q(fi)=

N∏
i=1

∫
p(fi|un(i))q(un(i))dun(i). (11)

The choice of mean-field or sparse variational approxima-
tions are common for large-scale GP when full-rank ap-
proximations are impractical (Liu & Liu, 2019; Wu et al.,
2021; Tran et al., 2021). Empirically, we found that VN-
NGP with a mean-field variational distribution outperforms
SVGP with a full-rank one for most cases. However, we
also discuss the extension to a more expressive variational
family in appendix B.

Optimization objective is to maximize the VNNGP’s
ELBO as follows

LVNNGP =

N∑
i=1

E
q(fi)

[log p(yi|fi)]︸ ︷︷ ︸
data likehood

−KL [q(u) ∥ p(u)]︸ ︷︷ ︸
KL divergence

,

(12)

Note that the ELBO breaks into a data likelihood term and
a KL divergence term. In the following , we first discuss
the computation of these two terms. After that, we present
the advantages of VNNGP. Finally, we compare VNNGP to
other related works based on nearest neighbor approxima-
tions.

3.1. Computing the Data Likelihood Term

Similar to SVGP, the data likelihood term for VNNGP fac-
torizes over data points. Unlike SVGP that considers all M
inducing points in making the prediction for one data point,
VNNGP makes use of the sparse prior in Eq 9 such that the
prediction is based on only K nearest inducing points. As a
result, VNNGP’s data likelihood term is reduced to

N∑
i=1

∫
p(fi|un(i))q(un(i)) log p(yi|fi)dfidun(i) (13)

where only K nearest inducing points are involved in com-
puting the expected log likelihood for each data point.

3.2. Computing the KL Divergence

We now show how we can write KL divergence as a summa-
tion over inducing points. Note that it is not possible for the
standard SVGP: SVGP’s KL requires accessing parameters
for all inducing points at the same time.

We first break the prior into a chain of conditionals using
the nearest neighbor assumption in Eq 9 and utilize the
mean-field assumption in Eq 10:

KL [q(u) ∥ p(u)] = KL

 M∏
j=1

q(uj) ∥
M∏
j=1

p(uj |un(j))


= E

q(u)

 M∑
j=1

log
q(uj)

p(uj |un(j))

 (14)

exchanging the order of summation and expectation and
integrating out irrelevant variables

=

M∑
j=1

E
q(un(j))

[
Eq(uj)

[
log

q(uj)

p(uj |un(j))

]]
(15)

=

M∑
j=1

E
q(un(j))

[
KL

[
q(uj) ∥ p(uj |un(j))

]]
(16)

where

p(uj |un(j)) = N (uj |k⊤
n(j),jK

−1
n(j),n(j)un(j), (17)

kj,j − k⊤
n(j),jK

−1
n(j),n(j)kn(j),j). (18)

3.3. Advantages

Having factorized the data likelihood term and KL diver-
gence over data points and inducing points, we are now
ready to present VNNGP’s key advantages as follows.

Stochastic optimization. The summation structure of VN-
NGP’s ELBO, as detailed in Eq 13 and 16, makes it immedi-
ately available for stochastic optimization: in every training
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iteration, we randomly sample a mini-batch of training data
indices I = {ik}Nb

k=1 and a mini-batch of inducing point in-
dices J = {jl}Mb

l=1; we then optimize the unbiased estimate
of the ELBO as follows

LVNNGP ≈ N

Nb

∑
i∈I

E
q(fi)

[log p(yi|fi)]

− M

Mb

∑
j∈J

E
q(un(j))

[
KL

[
q(uj) ∥ p(uj |un(j))

]]
.

(19)

We include the exact computation of ELBO in Appendix A.
Note that the sampling distributions for data points and
inducing points can be arbitrary as long as both remain
marginally a uniform distribution. We emphasize that this
is a key advantage over SVGP: we are not able to perform
stochastic optimization for inducing points with SVGP.

Computational complexity. Once the nearest neighbor
structure is computed, optimizing the objective in Eq 19
requires O((Nb+Mb)K

3) computations for inverting K ×
K kernel matrices induced by nearest neighbor mini-batches.
See Appendix A for mathematical details.

The computational overhead comes from determining near-
est neighbor structures for observations and inducing points.
The brute-force complexity of finding any point’s K nearest
neighbors within M points is O(KM). With the help of
modern similarity search packages such as Johnson et al.
(2017), we are able to dramatically speed up billion-scale
similarity search with gpus. For example, for medium-sized
datasets, e.g. Protein (N = 25.6K, D = 9), it takes no
more than 30 seconds to build up nearest neighbor struc-
tures with K = 256 and M = N on an NVIDIA RTX2080
gpu; for the largest dataset we experiment with (Covtype:
N = 372K and D = 54), it takes approximately 12 minutes
with K = 256 and M = N .

More inducing points. Since the training complexity is
free of N and M , we are able to place inducing points at
every observed location and scale M to N . We enjoy sev-
eral benefits by doing so. First, we greatly boost the model
capacity, as opposed to a low-rank approximation where
several observations “share” one inducing point. Moreover,
we avoid optimizing inducing point locations as the standard
SVGP training procedure requires. This is a huge advantage
since it saves training cost and the optimization of induc-
ing locations is in general non-convex and more difficult.
Finally, we only need to compute the nearest neighbor struc-
ture once before training, or otherwise we need to recompute
it frequently since inducing locations are being updated.

3.4. Comparison to Related Methods

The method most related to VNNGP is the Sparse Within
Sparse Gaussian Process (SWSGP) method of Tran et al.

(2021). SWSGP also builds upon SVGP and further im-
poses sparsity over M inducing points u by defining a
hierarchical prior. Essentially, in each training iteration,
SWSGP randomly samples a minibatch of data point in-
dices I = {ik}Nb

k=1 and optimizes the following ELBO

LSWSGP =
N

Nb

∑
i∈I

E
q(fi)

[log p(yi|fi)]

− 1

Nb

∑
i∈I

KL
[
q(un(i)) ∥ p(un(i))

]
),

(20)

where n(i) are indices of inducing point locations from
{zj}Mj=1 that are top-K nearest to xi. Similar to VNNGP,
evaluating Eq. 20 requires O(NbK

3) computation.

There are two key differences between VNNGP and SWSGP.
First, the two methods introduce sparsity through a different
generative process. SWSGP applies a hiearchical prior;
Consequently, the marginal prior for either p(f) or p(u) is
no longer Gaussian. VNNGP, on the other hand, considers
a sparse approximation to the prior precision matrix. The
resulting process is still a GP but under an approximated
kernel. While it is not immediately clear how these differing
marginal distribution impact downstream performance, in
this sense the VNNGP generative process more faithfully
replicates the exact GP prior.

The second difference is the training objective. As can be
seen, the first term of Eq. 20 (data likelihood) is identical
to that of VNNGP (Eq. 19). However, the KL divergence
term is where two objectives differ. SWSGP optimizes
a “local” KL divergence that only involves inducing points
within a local neighborhood around current batch of training
data. In fact, we prove (see appendix C) that SWSGP’s KL
divergence always underestimates the SVGP KL divergence:

KL
[
q(un(i)) ∥ p(un(i))

]
) ≤ KL [q(u) ∥ p(u)] , (21)

for any subset n(i). Additionally, the amount of underesti-
mation depends on size of n(i) .

We hypothesize that SWSGP’s KL, due to its “local” char-
acteristic, may not sufficiently regularize the variational
distribution—especially when K ≪ M—which may make
the model more prone to overfitting. Conversely, though
VNNGP’s KL does not equal the exact KL, it does (in ex-
pectation) consider the joint distribution over all inducing
points. Optimizing this term will regularize the variational
distribution towards the GP prior at all input locations. We
investigate our hypotheses in the experiments section.

Another method that also combines nearest neighbor approx-
imations with variational inference is Amortized Inference
GP (Liu & Liu, 2019). However, their method avoids com-
puting certain terms of the KL divergence, and in doing
so makes it impossible to simulatenously optimize kernel
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Figure 2. Test set RMSE and NLL as a function of number of near-
est neighbors K for VNNGP (green) on Elevators (left column)
and UKHousing datasets (right column). Results for SVGP (blue
dashed) and exact GP (purple dotted) are included as baselines.

hyperparameters using the ELBO. By contrast, the VNNGP
objective enables gradient-based kernel learning.

4. Experiments
We first demonstrate how sensitive our model is to the num-
ber of nearest neighbors K. Recognizing that our method is
similar to SWSGP, our next task is to characterize the differ-
ences between two methods and investigate our hypotheses
in Sec 3.4. Finally, we evaluate VNNGP and other methods
on a wide range of real regression and classification datasets.
Unless stated otherwise, for all experiments, VNNGP ap-
plies a random ordering of inducing points, VNNGP and
SWSGP set inducing points at observed locations and use a
mean-field variational approximation, and SVGP uses 1024
inducing points and a full-rank variational approximation.

4.1. Sensitivity to number of nearest neighbors K

Our first goal is to see how the number of nearest neighbors
K impact VNNGP’s performance. We choose two datasets,
Elevators with dimension D = 16 (Asuncion & Newman,
2007), and UKHousing (https://landregistry.data.gov.uk/),
a spatial dataset with D = 2, as we expect low-rank ap-
proximations to work better in high dimensional settings
while nearest neighbor methods are more suitable for spatial
problems that are sparse in nature. We fit VNNGP with
K ∈ [32, 64, 128, 256]. Since these two datasets are mod-
eled with Gaussian likelihood, we are able to fit exact GP
(Wang et al., 2019) as a baseline. We also include SVGP as a
low-rank variational alternative. We present their test set pre-
dictive performance, the root mean squared error (RMSE)
and negative log likelihood (NLL), in Figure 2. From the
figure, we see that as K increases, both test RMSE and NLL
for VNNGP decrease, suggesting a better performance. By
comparing the three methods, we note that exact GP does
not always yield the best RMSE or NLL. This result could

be due to model misspecification, as observed in previous
literature (Wang et al., 2019; Potapczynski et al., 2021).
Moreover, SVGP performs better on the high-dimensional
Elevators dataset, whereas VNNGP with K = 32 already
outperforms SVGP and is less sensitive to K on the spatial
UKHousing dataset.

4.2. Comparison to SWSGP

Building on the analysis in Section 3.4, we now aim to
compare VNNGP to the related SWSGP method. Recall
that the primary difference between these methods is the
training objective (the KL divergence term in particular).
We first empirically demonstrate how these two objectives
differ, and then study its surprisingly significant impact on
model fitting and selection.

KL divergence comparison. We first investigate the dif-
ference between the VNNGP and SWSGP KL divergence
terms. Specifically, we are interested in how their KL terms
change as we vary K. We initialize VNNGP and SWSGP
with the same configuration: the inducing points are placed
on a 1-dimensional grid with even spacing of 1, the varia-
tional means {mi} are obtained by sampling a GP under
a squared exponential kernel with lenghthscale 5 and out-
putscale 1, and the variational variances {si} are set to 1.
For both methods, we compute their KL terms by varying
the kernel lengthscale parameter and # of nearest neighbors
K. A special note is that when K = M , KL by either
method should be equal to the KL by SVGP in Eq. 8.

We plot the SWSGP and VNNGP KL terms as a function of
K under different kernel lengthscales in Figure 3. From this
figure, we first confirm that VNNGP and SWSGP recover
the SVGP KL divergence (dotted blue line) at K = M .
Morever, both methods tend to underestimate KL (recall
from Section 3.4 that SWSGP provably underestimates this
term). Notably, VNNGP converges rapidly to the true KL
divergence, especially for small lengthscale settings. For
example, when the lengthscale is 5, the VNNGP KL diver-
gence is indistinguishable from the true KL divergence for
all K ≥ 5. We include results under different settings in
appendix D.1 and observe similar patterns.

Fitting models in high observational noise setting. We
now study the impact of KL divergence on the inferred
posterior distribution. Recall that the KL term of the ELBO
regularizes the variational distribution towards the GP prior.
If the regularization is not sufficient, the ELBO will be
dominated by the data likelihood term, which could overfit
the predictive distribution to the observed data.

Hence, we conduct a simulation experiment in the presence
of high observational noise: We draw N = 50 observations
from a GP under a squared exponential kernel with length-
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Figure 3. KL divergence computed by VNNGP (green) and SWSGP (orange) as a function of K for different prior kernel lengthscales.
Both methods tend to underestimate the KL (SWSGP provably), and converges to the exact value computed by SVGP (blue dotted) as
K → M . Morever, VNNGP’s KL is closer to the exact one compared to SWSGP for the same K across all cases.
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Figure 4. Posterior by Exact GP (purple), SVGP (blue), VNNGP
(green) and SWSGP (orange), with 95% uncertainty interval. The
grey line is to the true data generating process, and scattering black
dots are highly noisy observations.

scale 5 and outputscale 5, and add iid noise from N (0, 5).
There are two dense clusters of observations around x = 0
and x = 50, and scarcely scattered observations in be-
tween. We fit four models—exact GP, SVGP, VNNGP and
SWSGP—to the observed data. We fix all hyperparameters
corresponding to the true data generating process, and only
optimize variational parameters. For the three variational
methods, inducing points are set to the locations of observed
data (M = N ). All variational models use mean-field vari-
ational approximations. Both VNNGP and SWSGP use
K = 5 nearest neighbors.

In Fig 4, we display the true data generating process, noisy
observations and posteriors of all four models. The SVGP
and VNNGP posteriors are qualitatively close to that of
exact GP, whereas SWSGP’s posterior deviates from the
underlying GP function in the data-sparse region. We sus-
pect SWSGP’s behavior to be due to its underestimating
local KL divergence. As we discuss in Section 3.4, the
“local” KL divergence of SWSGP will not regularize the
variational distribution towards a globally smooth distribu-
tion. In particular, the SWSGP KL divergence concentrates
on the data-dense regions, leading to a lack of regularization
in the data-sparse region. By contrast, the VNNGP model
is effectively regularized towards the GP prior throughout
the input space.

Model selection. Finally, we turn to model selection by
maximizing the ELBO. Our goal is to see whether VNNGP
or SWSGP is sensitive to different settings of hyperparame-
ters, in particular, the likelihood noise.

We first fit exact GP to the UKHousing dataset under a
Matern 5/2 kernel and a Gaussian likelihood. We copy and
fix the exact GP kernel hyperparameters to SVGP, VNNGP,
and SWSGP models. However, we vary the value of like-
lihood noise from 0.001 to 1.0. We then optimize only
the variational parameters of these three methods for 300
epochs. In Figure 5, we plot the negative training ELBO
and test NLL as a function of likelihood noise for each
method. We denote the noise parameters that maximize
each method’s training objective, as well as the noise param-
eter selected by the exact GP. In agreement with prior work
(Bauer et al., 2016), we find that SVGP tends to overestimate
the noise parameter. Both nearest neighbor methods tend
to underestimate the likelihood noise. However, the ELBO
of SWSGP monotonically decreases as likelihood noise de-
creases, whereas the VNNGP ELBO achieves an optimum
as a noise of 0.1. If we use the ELBO as a model selection
criterion (as is often the case for variational methods), the
resulting SWSGP model will have very low likelihood noise
which results in poor test NLL. Conversely, the VNNGP
training ELBO is highly predictive of the test NLL, as both
are roughly optimized as the same likelihood noise value.
We note that SWSGP’s behavior in this setting is likely due
to having M = N . We repeat this experiment for SWSGP
models that use M ≪ N inducing points in Appendix D.2,
and find that these models favor more reasonable likelihood
noise values. These observations suggest that the ELBO
is a good model selection criteria for VNNGP; however,
ELBO optimization may result in extreme hyperparameters
for SWSGP with large M .

4.3. Predictive performance on real datasets

We conduct an extensive evaluation of our method on real
datasets. We consider a wide range of high dimensional and
spatiotemporal datasets from the UCI repository (Asuncion
& Newman, 2007). In addition we include three spatial
datasdets, UKHousing as mentioned in Section 4.1, Precipi-
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NLL
ExactGP sgGP SVGP SWSGP-M SWSGP-N VNNGP

Dataset N D

PoleTele 9.6K 26 −.509± .005 −.558± .016 −.708± .003 −.898± .029 −.962± .023 −1.160± .014
Elevators 10.6K 16 .464± .011 .432± .013 .417± .017 .691± .049 .767± .026 .463± .020

Bike 11.1K 17 −.744± .007 53.364± 27.690 −1.849± .016 −1.684± .024 −1.405± .096 −1.690± .057
Kin40K 25.6K 8 −.149± .001 .701± .139 −.399± .003 −.747± .016 −1.010± .005 −1.016± .004
Protein 25.6K 9 1.044± .003 .914± .004 .967± .005 .909± .006 1.505± .080 .671± .009
KEGG 31.2K 20 −.713± .004 −1.013± .035 −1.000± .011 −1.039± .010 14.925± .838 −1.039± .018

KEGGU 40.7K 26 −.471± .003 −.673± .005 −.680± .002 −.719± .004 41.675± .427 −.715± .004
Precipitation 64.8K 3 — — .818± .004 .396± .001 1.809± .224 .145± .002
UKHousing 116K 2 .703± .003 .598± .001 .879± .004 .455± .003 1.050± .013 .367± .003

3DRoad 278K 3 .993± .000 .712± .001 .325± .005 .584± .003 −1.476± .079 −.048± .406
Covtype 372K 54 — — .234± .001 .172± .001 .069± .000 .132± .000

Table 1. Test set NLL (mean ± 1 standard error over 3 random seeds) on high-dimensional datasets (top 7 ones) and spatial datasets
(bottom 4 ones). VNNGP achieves lowest NLL for most datasets. The result for RMSE is included in Table 2 in appendix.
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Figure 5. Negative training ELBO (solid line) and test NLL (dotted
line) as a function of the likelihood noise by SVGP (blue), VNNGP
(green) and SWSGP (orange) on UKHousing dataset. All ELBO
and NLL values are scaled to [0, 1]. The x-axis is in log-scale.
The noise value picked by maximizing ELBO for each method is
indicated by the vertical dashed line with corresponding color. The
vertical purple line indicates the value (0.28) learned by exact GP.

tation (a monthly precipitation dataset with D = 3) (Lyon,
2004; Lyon & Barnston, 2005) and Covtype (a tree cover
dataset with D = 54) 2 (Blackard & Dean, 1999). Our goal
is primarily to compare VNNGP to other variational meth-
ods; however, we include the additional baselines of Exact
GP—utilizing the methodology of Wang et al. (2019))—
and sgGP (Chen et al., 2020)—which is a non-variational
nearest neighbor benchmark. We do not compare to the
Amortized Inference GP since it is not amenable to kernel
learning. For VNNGP and SWSGP, we tune the number of
nearest neighbors K in {32, 256}. Additionally, we include
two variants of the SWSGP method: with SWSGP-N we set
all inducing points at observed locations, and with SWSGP-
M we allow using M < N inducing points – the latter is
what Tran et al. (2021) originally experimented with. In
particular for SWSGP-M , we recompute nearest neighbors
every epoch and we tune M in {1024, 2048, 4096, 8192}.
For sgGP, the subsampled datasets are constructed by select-
ing a random point x, y and its 15 nearest neighbors as in

2The task for Covtype is predicting whether the primary tree
cover at a given location is pine trees or other types of trees. De-
spite this dataset is not 2 or 3-dimensional, its features essentially
codify location information. Therefore we categorize Covtype as a
spatial dataset.

Chen et al. (2020). Each dataset is randomly split to 64%
training, 16% validation and 20% testing sets. Precipitation
dataset uses a student-t likelihood and Covtype dataset uses
a bernoulli likelihood, otherwise a Gaussian likelihood is
used. All kernels are Matern 5/2 with a separate lengthscale
per dimension. We run each model with three random seeds.
For each random seed, VNNGP applies different random
ordering of inducing points. See appendix D.3.1 for more
details.

We report test NLL in Table 1, and the result for test RMSE
is included in Table 2 of appendix. From the tables, we make
three key comparisons. (i) Exact GP and sgGP cannot run
on problems with non-Gaussian likelihoods (Precipitation
and Covtype) while variational methods are still viable. (ii)
VNNGP substaintially outperforms other nearest neighbor
methods. Specifically, we note that sgGP and SWSGP-N
somtimes obtain a very high NLL, while SWSGP-M does
not suffer from this issue. We suspect this result is attributed
to that sgGP and SWSGP-N tend to learn a very small likeli-
hood noise on certain datasets (we report the learned noise in
Table 3 of appendix); Also recall from Section 4.2 that max-
imizing the ELBO of SWSGP-N leads to extremely small
noise values. (iii) While there are a few datasets (Elevators
and Bike) where SVGP excels, VNNGP outperforms SVGP
especially on large-scale, spatial datasets. SVGP’s perfor-
mance is limited by using M = 1024 ≪ N inducing points,
which is detrimental on these problems, while VNNGP has
the ability to scale M to N with a sparse approximation.

Finally, we note that both VNNGP and SWSGP-N use
much more parameters than SVGP. It is natural to ask
whether this fact will impede their convergence speeds.
In Figure 6, we plot the training loss versus number of
training iterations for SVGP, VNNGP and SWSGP-N on
Bike and UKHousing. We observe that all three methods
reach convergence by the end of training. Moreover, VN-
NGP’s convergence speed is comparable to SVGP. This
result demonstrates that the larger number of model param-
eters does not hurt VNNGP’s optimization process, making
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Figure 6. Training loss versus iterations on Bike and UKhousing.
The training loss is averaged over every 100 iterations and all loss
values are standardized. Despite VNNGP has more parameters, its
convergence speed is comparable to SVGP.

it a practical model to use.

5. Discussion
In this work, we propose VNNGP, a scalable GP method
that combines a sparse precision approximation with varia-
tional inference. This sparse approximation allows VNNGP
to use orders of magnitude more inducing points than other
variational methods. We perform an extensive empirical
evaluation and show that VNNGP obtains strong perfor-
mance compared to other baselines.

We consider two extensions for future works. Similar to
Liu & Liu (2019) and Jafrasteh et al. (2021), we can apply
amortized learning to variational parameters. This could
greatly reduce the number of parameters and potentially ac-
celerate optimization. Another extension is to select nearest
neighbors using metrics other than Euclidean distance. For
example, Kang & Katzfuss (2021) suggest that the prior
covariance function can be a metric to select the nearest
neighbor set. This could enhance VNNGP’s accuracy on
problems with anisotropic or periodic covariance structure.
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A. Computing the ELBO for VNNGP
In this section, we derive the exact computation of the ELBO for VNNGP and analyze the computational complexity.

Following Eq 12, and using the derivations from Eq 13 and Eq 16, we have

LVNNGP =

N∑
i=1

Eq(f ,u)[log p(yi|fi)]︸ ︷︷ ︸
data likehood

−KL [q(u) ∥ p(u)]︸ ︷︷ ︸
KL divergence

, (22)

=

N∑
i=1

∫
q(fi) log p(yi|fi)dfi︸ ︷︷ ︸

data likelihood

−
M∑
j=1

Eq(un(j))

[
KL

[
q(uj) ∥ p(uj |un(j))

]]
︸ ︷︷ ︸

kl divergence

. (23)

where

q(fi) = Eq(u)

[
p(fi|un(i))

]
(24)

= N (fi|k⊤
n(i),iK

−1
n(i),n(i)mn(i), ki,i − k⊤

n(i),iK
−1
n(i),n(i)kn(i),i + k⊤

n(i),iSn(i)kn(i),i), (25)

and Sn(i) is a diagonal matrix with diagonal elements being sn(i).

• The data likelihood term is tractable for Gaussian likelihood; otherwise, techniques such as MCMC sampling are
required. The major complexity in evaluating each expected likelihood term comes from computing q(fi), which
essentially resides at inverting the K ×K matrix Kn(i),n(i) which takes O(K3) time.

• To compute the KL divergence term, we first compute each conditional KL term. Given fixed un(j),

KL [q(uj) ∥ p(uj |uj)] = KL
[
N (uj |mj , sj) ∥ N (uj |b⊤

j un(j), fj)
]

(26)

=
1

2

[
log fj − log sj − 1 + f−1

j sj + f−1
j (mj − b⊤

j un(j))
2
]
, (27)

where fj = kj,j − k⊤
n(j),jK

−1
n(j),n(j)kn(j),j and bj = K−1

n(j),n(j)kn(j),j . Integrating over q(un(j)) and summing over
inducing points we obtain,

kl divergence =
1

2

M∑
j=1

log fj − log sj − 1 + f−1
j

[
sj + (b2

j )
⊤sn(j) + (mj − b⊤

j mn(j))
2
]
, (28)

where b2
j denotes the element-wise squared of vector bj . Computing each summation term in the KL divergence

requires inverting an K ×K matrix, i.e. Kn(j),n(j), which is O(K3) complexity.

Therefore, the overall complexity of estimating the ELBO using a mini-batch of Nb data points and a mini-batch of Mb

inducing points is O(NbK
3 +MbK

3).

B. Extension to more expressive variational family
We now consider more expressive variational approximations and discuss how to mini-batch the VNNGP’s ELBO computa-
tion. We assume the following variational family:

q(u) = N (u|m, L̃L̃⊤) (29)

q(f |u) =
N∏
i=1

p(fi|un(i)) (30)

where L̃ is the lower-triangular Cholesky factor for variational posterior covariance (potentially full-rank). The mean-field
case discussed in appendix A is a special case where we make L̃ diagonal.
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Similarly, the ELBO under this variational family decomposes into the data likelihood term and the KL divergence term as
in Eq 23 with the modification that

q(fi) = Eq(u)

[
p(fi|un(i))

]
(31)

= N (fi|k⊤
n(i),iK

−1
n(i),n(i)mn(i), ki,i − k⊤

n(i),iK
−1
n(i),n(i)kn(i),i + k⊤

n(i),iL̃n(i)L̃
⊤
n(i)kn(i),i). (32)

• The likelihood computation is similar to the mean-field case in appendix A, except that we are now integrating over
q(fi) in Eq 32 instead of q(fi) in Eq 25. The former involves a potentially full-rank K ×K variational covariance
L̃n(i)L̃

⊤
n(i) while the latter involves a diagonal one.

• KL divergence.

For mathematical convenicence, we consider the Cholesky composition of prior precision for inducing points K−1
z,z =

L⊤L where L is a lower triangular matrix. Each row of L could be separately computed at O(K3) cost (see Datta
(2021a) for details). The KL divergence can be computed as follows:

KL [q(u) ∥ p(u)] = KL
[
N (m, L̃L̃⊤) ∥ N (0, (L⊤L)−1)

]
(33)

=
1

2
[−2 log |L| − 2 log |L̃| −M + tr(L⊤LL̃L̃⊤) +m⊤L⊤Lm] (34)

Here we take a special treatment of the trace term:

tr(L⊤LL̃L̃⊤) = tr(LL̃(LL̃)⊤) (by cyclic property of trace) (35)

=

M∑
i=1

M∑
j=1

(LL̃)2ij (by definition of trace) (36)

=

M∑
i=1

M∑
j=1

M∑
k=1

L2
ijL̃

2
jk (expanding the (LL̃ij) terms) (37)

=

M∑
i=1

M∑
j=1

∑
k∈n(i)∪{i}

L2
ikL̃

2
kj (using row-sparsity of L) (38)

Now we re-write the KL by decomposing each term:

KL [q(u) ∥ p(u)] = 1

2
[−2

M∑
i=1

logLii − 2

M∑
i=1

L̃ii −M +

M∑
i=1

M∑
j=1

∑
k∈n(i)∪{i}

L2
ikL̃

2
kj +

M∑
i=1

(
∑

k∈n(i)∪{i}

Likmk)
2]

(39)

=
1

2

M∑
i=1

[−2 logLii − 2L̃ii − 1 +
∑

k∈n(i)∪{i}

L2
ik

M∑
j=1

L̃2
kj + (

∑
k∈n(i)∪{i}

Likmk)
2], (40)

which again factorizes over inducing points i = 1 : M . However, one should note that computing each KL term now
scales O(MK3) due to the complexity in trace term

∑
k∈n(i)∪{i}

∑M
j=1 L

2
ikL̃

2
kj . One can alleviate this issue by (i)

obtaining a stochastic estimate for the trace term (i.e. sub-sample j) (ii) introduce sparsity structure in L̃ / variational
posterior.

In summary, we explore the possibility of extending VNNGP to more expressive variational family. We show that under the
full-rank variational family, the VNNGP’s ELBO still factorizes over data points and inducing points. Computing each term
now takes more computations and but techniques can be applied to improve the scalability.

C. KL divergence for SWSGP
Here we re-state and prove the two claims about KL divergence for SWSGP in Section 3.4.

Consider a fixed prior p(u) and a fixed variational posterior q(u) over M inducing points u. Then we claim that
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1. SWSGP’s KL divergence is always underestimating, if not equal to, SVGP’s KL divergence. That is, for any subset
S ∈ {1, 2, · · · ,M}.

KL [q(uS) ∥ p(uS)] ≤ KL [q(u) ∥ p(u)] , (41)

2. The amount of underestimation depends on the size of the nearest neighbor set. More precisely, for any two subsets S1

and S2 such that S1 ⊂ S2 ⊂ {1, · · · ,M},

KL [q(uS1
) ∥ p(uS1

)] ≤ KL [q(uS1
) ∥ p(uS2

)] . (42)

The proof for the above claims will immediately follow once we prove the following proposition.
Proposition C.1. Let p(u) and q(u) be two distributions for an M -dimensional random variable u, and let u1 be any
sub-vector of u, then

KL [q(u1) ∥ p(u1)] ≤ KL [q(u) ∥ p(u)] . (43)

Proof. The proof relies on the chain rule of probability distribution, and the fact that the KL divergence is non-negative.

Denote u2 as the remaining sub-vector by taking u1 out of u. It follows that

KL [q(u) ∥ p(u)] (44)

=

∫
q(u) log

q(u)

p(u)
du (45)

=

∫ ∫
q(u1)q(u2|u1) log

q(u1)q(u2|u1)

p(u1)p(u2|u1)
du1du2 (46)

= I + II, (47)

where

I ≡
∫

q(u1) log
q(u1)

p(u1)

(∫
q(u2|u1)du2

)
du1 = KL [q(u1) ∥ p(u1)] , (48)

II ≡
∫

q(u1)

(∫
q(u2|u1) log

q(u2|u1)

p(u2|u1)

)
du1 =

∫
q(u1)KL [q(u2|u1) ∥ p(u2|u1)] du1. (49)

Note that for each u1 fixed, KL [q(u2|u1) ∥ p(u2|u1)] defines a (conditional) KL divergence and is non-negative. Therefore,
KL [q(u) ∥ p(u)] = I + II ≥ I , i.e. Eq 43 holds.

D. Experiment details and additional results
D.1. KL divergence comparison

In Figure 7, we vary the setting in Section 4.2: different orderings of inducing points, different kernel functions, and real
data v.s. synthetic data. From this figure, we observe similar patterns as from Figure 3.

D.2. Model selection

We include additional results for the model selection experiment in Section 4.2. We refer the models in Section 4.2 by
VNNGP-N and SWSGP-N that set inducing points on observed locations. Here, we consider the alternative versions,
VNNGP-M and SWSGP-M , which use M ≪ N inducing points for M ∈ {1024, 8192}, and the inducing point locations
are learned during optimization. Correspondingly, the nearest neighbors are updated every training epoch for VNNGP and
SWSGP. The other configurations are the same as Section 4.2 (especially, SVGP uses 1024 inducing points for all times).
All inducing point locations are initialized by k-means clustering of observed locations.

Comparing Figure 8 to Figure 5, we can see that (1) VNNGP-M and VNNGP-N have consistent behaviors in model
selection. (2) While maximizing the ELBO of SWSGP-N tends to favor a model with small likelihood noise, this is not
the case for SWSGP-M . As the noise parameter becomes extremely small, the training ELBO of SWSGP-M decreases.
As a result, optimizing SWSGP-M leads to a model that has a “medium” likelihood noise and a low test NLL. These
observations suggest that maximizing the ELBO for SWSGP-N (and potentially for SWSGP-M with M close to N ) can
lead to undesired model selection outcome, while this does not hold for SWSGP-M with a medium size of inducing points.
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Figure 7. KL comparison under different settings than the setting of Figure 3. Row 1: A different random ordering of induing points. Row
2: Coordinate ordering of inducing points. Row 3: Matern (2.5) kernel. Row 4: Real dataset (3DRoad).
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Figure 8. Negative ELBO in the last training iteration (solid line) and test set NLL (dotted line) as a function of the likelihood noise
parameter by SVGP (blue), VNNGP (green) and SWSGP (orange) on UKHousing dataset. All ELBO and NLL values are scaled to [0, 1].
The x-axis (Noise) is in log-scale. The best noise parameter picked by maximizing ELBO for each method is indicated by the vertical
dashed line with corresponding color. The vertical purple line indicates the noise parameter (= 0.28) learned by exact GP. Left: both
VNNGP and SWSGP use M = 1024 inducing points. Right: both VNNGP and SWSGP use M = 8192 inducing point. For all cases,
SVGP use 1024 inducing points.

D.3. Predictive performance on real dataset

Here we provide training details and additional results for Section 4.3.

D.3.1. TRAINING DETAILS

For all methods, we use an Adam optimizer and a MultiStepLR scheduler dropping the learning rate by a factor of 10 at the
75% and 90% of the optimization iterations; all kernels are Matern 5/2 kernel with separate lengthscale per dimension; the
kernel lengthscales, outputscale and likelihood noise parameter (if any) are all initialized as 0.6931, except that exact GP is
initiliazed with lengthscale = 0.01 on 3DRoad dataset. All hyperparameters are picked by the best validation NLL.

All methods are trained with {300, 500} iterations and learning rate of {0.005, 0.01} for datasets of size below 50K, and
with {100, 300} iterations and learning rate of {0.005, 0.001} for above 50K.

For sgGP, we train using minibatches of 16 data points. As suggested by Chen et al. (2020), the minibatches are constructed
by sampling one training data point and selecting its 15 nearest neighbors. To accelerate optimization, we accumulate the
gradients of 1,024 minibatches before per- forming an optimization step (these 1,024 minibatch updates can be performed in
parallel, enabling GPU acceleration).

For SVGP, we use M = 1024 inducing points and a full-rank variational approximation. The inducing point locations are
initilaized by k-means clustering of observed locations

VNNGP, SWSGP-M and SWSGP-N use a mean-field variational approximation. SWSGP-M chooses M ∈
{1024, 2048, 4096, 8192}, and the inducing point locations are initilaized by k-means clustering of observed locations. All
three methods tune K in {32, 256}.

D.3.2. PREDICTIVE RMSE TABLE

The test set RMSE results for reported in Table 2. From the table, we observe that VNNGP obtains comparable RMSE
values to other state-of-the-arts and excels at some datasets.
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RMSE
ExactGP sgGP SVGP SWSGP-M SWSGP-N VNNGP

Dataset N D

PoleTele 9.6K 26 .095± .000 .092± .002 .113± .000 .101± .002 .098± .003 .091± .002
Elevators 10.6K 16 .360± .006 .358± .006 .366± .006 .399± .008 .456± .001 .373± .004

Bike 11.1K 17 .054± .003 .400± .153 .028± .001 .037± .002 .042± .006 .043± .003
Kin40K 25.6K 8 .099± .001 .458± .076 .145± .001 .118± .002 .097± .001 .096± .001
Protein 25.6K 9 .533± .002 .534± .006 .633± .003 .600± .004 .592± .005 .565± .003
KEGG 31.2K 20 .085± .002 .087± .003 .089± .001 .086± .001 .085± .002 .085± .001

KEGGU 40.7K 26 .117± .000 .122± .001 .122± .000 .118± .001 .116± .001 .118± .000
Precipitation 64.8K 3 — — .635± .004 .485± .001 .506± .001 .432± .002
UKHousing 116K 2 .402± .001 .359± .001 .582± .003 .382± .001 .498± .000 .346± .002

3DRoad 278K 3 .165± .000 .187± .001 .329± .001 .432± .001 .097± .017 .298± .064
Covtype 372K 54 — — .671± .001 .657± .001 .670± .001 .671± .001

Table 2. Test set RMSE (mean ± 1 standard error over 3 random seeds) on high-dimensional datasets (top 8 ones) and spatial datasets
(bottom 4 ones).

D.3.3. LEARNED LIKELIHOOD NOISE TABLE

We report the learned value of likelihood noise for all models in Table 3. Note that Covtype dataset uses Bernoulli likelihood
which does not have noise parameter, therefore it is not included.

We observe in Table 1 that sgGP and SWSGP-N can sometimes obtain a very high NLL values. We suspect that is due to
they learn a particularly small likelihood noise on corresponding datasets. For example, sgGP’s NLL is approximately 53 on
Bike, and its learned noise is around 0; SWSGP-N ’s NLL is approximately 41 on KEGGU, and its learned noise is around 0.

noise
ExactGP sgGP SVGP SWSGP-M SWSGP-N VNNGP

Dataset N D

PoleTele 9.6K 26 .020± .000 .002± .000 .015± .000 .005± .000 .000± .000 .002± .000
Elevators 10.6K 16 .166± .001 .102± .001 .132± .001 .062± .000 .000± .000 .067± .000

Bike 11.1K 17 .016± .000 .000± .000 .002± .000 .002± .000 .000± .000 .001± .000
Kin40K 25.6K 8 .020± .000 .000± .000 .031± .000 .009± .000 .000± .000 .001± .000
Protein 25.6K 9 .182± .003 .022± .002 .417± .001 .339± .001 .000± .000 .018± .000
KEGG 31.2K 20 .019± .000 .006± .000 .008± .000 .007± .000 .000± .000 .005± .000

KEGGU 40.7K 26 .023± .000 .013± .000 .015± .000 .014± .000 .000± .000 .013± .000
Precipitation 64.8K 3 — — .182± .001 .030± .000 .000± .000 .005± .000
UKHousing 116K 2 .280± .001 .112± .000 .345± .002 .144± .000 .015± .000 .070± .003

3DRoad 278K 3 .584± .000 .001± .000 .126± .000 .203± .001 .000± .000 .001± .000
Covtype 372K 54 — — .000± .000 .000± .000 .000± .000 .000± .000

Table 3. The learned likelihood noise (mean ± 1 standard error over 3 random seeds) on high-dimensional datasets (top 8 ones) and spatial
datasets (bottom 3 ones).


