
Understanding Policy Gradient Algorithms: A Sensitivity-Based Approach

Shuang Wu 1 Ling Shi 2 Jun Wang 3 Guangjian Tian 1

Abstract
The REINFORCE algorithm from Williams is
popular in policy gradient (PG) for solving rein-
forcement learning (RL) problems. Meanwhile,
the theoretical form of PG is from Sutton et al. Al-
though both formulae prescribe PG, their precise
connections are not yet illustrated. Recently, Nota
and Thomas (2020) have found that the ambigu-
ity causes implementation errors. Motivated by
the ambiguity and implementation incorrectness,
we study PG from a perturbation perspective. In
particular, we derive PG in a unified framework,
precisely clarify the relation between PG imple-
mentation and theory, and echo back the findings
by Nota and Thomas. Diving into factors con-
tributing to empirical successes of the existing
erroneous implementations, we find that small
approximation error and the experience replay
mechanism play critical roles.

1. Introduction
The policy gradient (PG) method refers to methods for rein-
forcement learning (RL) that directly search parameterized
decision-making policy using the gradient of a performance
metric with respect to the policy parameters. PG-based
algorithms (e.g., TRPO (Schulman et al., 2015), DDPG (Lil-
licrap et al., 2016), PPO (Schulman et al., 2017), TD3 (Fuji-
moto et al., 2018), SAC (Haarnoja et al., 2018)) have pre-
vailed in solving reinforcement learning (RL) problems for
their applicability for both continuous and discrete action
space and compatibility with value function approximations.

Despite its popularity, our understanding of PG is limited.
Recently, several researchers have found that while PG-
based algorithms succeeded in practice, PG implementa-
tions are hard to comprehend. Engstrom et al. (2019)
showed that code-level details significantly affect perfor-

1Huawei Noah’s Ark Lab 2Hong Kong University of Science
and Technology 3University College London. Correspondence to:
Shuang Wu <wushuang.noah@huawei.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

mances of TRPO and PPO. Ilyas et al. (2020) showed
through experiments that some claims regarding PG are not
consistent with those observed in experiments.

Our motivation is two-fold. The first is the ambiguity be-
tween empirically implemented PG rooted in (Williams,
1988; 1992) and the theoretical formula derived in (Sut-
ton et al., 1999). Williams (1988; 1992) developed REIN-
FORCE to approximate PG based on empirical trajectory.
A few years later, Sutton et al. (1999) derived the theoret-
ical form of PG. While the result in (Sutton et al., 1999)
lays down the theoretical foundation of PG, most PG im-
plementations (such as those mentioned at the beginning)
follow the recipe prescribed by Williams (1992). Although
Sutton et al. (1999) claimed that Williams’ REINFORCE
algorithm implies the theoretical formula, the precise deriva-
tion has not been revealed. The gap between theory and
implementation even leads to concerns regarding the cor-
rectness of current implementations. In particular, Nota
& Thomas (2020) found that most of the modern PG im-
plementations1 (such as those mentioned at the beginning)
followed Williams’ episodic PG recipe incorrectly. While
they adopted a discounted action-value function estimator,
they dropped the discounting factor imposed on the empir-
ical sample path. The asymmetry is inconsistent with the
theoretical PG formula prescribed by Sutton et al. (1999).

The other motivation is based on the lack of a unified treat-
ment of various PG formulae. Sutton et al. (1999) derived
a unified formula for different setups, but the derivation is
performed separately for different setups. Moreover, the re-
lated derivations are only performed for stochastic policies
and are not directly extendable for the deterministic PG in
(Silver et al., 2014). Since all these formulae are essentially
gradient of a policy, it is natural to expect that there is a
unified framework to derive and treat these equations.

Motivated by the ambiguities between theory and practice
and lack of unification, we revisit PG using the perturbation
approach originated from (Cao & Chen, 1997). Although

1This issue is so widely spread that even influential
platforms, such as OpenAI Spinning Up https://
spinningup.openai.com/en/latest/index.html
and MATLAB toolbox https://www.mathworks.com/
help/reinforcement-learning/agents.html,
inherit this issue.

https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html
https://www.mathworks.com/help/reinforcement-learning/agents.html
https://www.mathworks.com/help/reinforcement-learning/agents.html

Understanding Policy Gradient

the approach has not attracted much attention in the modern
RL community, we find it helpful in deriving and eluci-
dating PG formulas in a unified and conceptually straight-
forward way. In particular, we show that the theoretical
PG formula corresponds to a general state-based weighting
scheme rather than the previous assertion that PG is an ex-
pectation with respect to a probability distribution over the
state space. Furthermore, we prove that Williams’ PG be-
comes the unbiased PG estimator of the true PG in (Sutton
et al., 1999) in various setups by incorporating the weight-
ing scheme. Finally, we analyze why the existing erroneous
implementations achieve good empirical performance. Our
contributions are three-fold.

1. We introduce a unified perspective for PG in various
setups. Using the perturbation approach, we show
that one can derive various PG formulae in a unified
framework based on the definition of a gradient.

2. We bridge the theoretical PG formula from (Sut-
ton et al., 1999) and the practical implementa-
tions (Williams, 1988; 1992). While Williams’
episodic REINFORCE algorithm corresponds to the
exact PG in standard RL tasks under suitable assump-
tions, it needs an additional discounting adjustment
in a discounted reward setup, which echos back the
findings in (Nota & Thomas, 2020).

3. We analyze why existing PG-based algorithms work
well in practice. We show that the approximation er-
ror decreases to zero when the discounting factor ap-
proaches one. We also demonstrate that the experience
replay mechanism automatically fixes the implementa-
tion errors by breaking transition correlations.

Our refinements on PG may not seem critical from an algo-
rithmic advancement perspective since the existing PG im-
plementations often achieve high scores on RL benchmarks.
However, besides algorithmic advancement that achieves
better performance, it is equally important to understand
algorithms in a theoretically solid position. Our results elu-
cidate PG in a principled yet easy-to-follow perspective,
clarify the ambiguity between theory and implementation,
and shed light on why existing algorithms work well.

2. Problem Setup and Preliminaries
We clarify different setups of RL and show basic results of
PG in this section.

2.1. Markov Decision Process

Markov decision process A Markov decision process
(MDP) consists of a quadruple (S,A, P,R): state space
S of agent state s, action space A of accessible actions a,

state transition probability P (s′|s, a) under current state s
and selected action a, and the associated per-stage reward
function R(s, a).

Policy and Markov chain A stochastic policy π : S →
∆(A), where ∆(A) denotes the space of probability distri-
butions over A, is a stochastic assignment of actions given
a state. A deterministic policy µ : S → A reduces the
stochastic mapping to a Dirac measure. We can associate
a Markov chain and a per-stage reward with every fixed
policy, which are Pπ(s′|s) := Ea∼π(·|s)[P (s′|s, a)] and
Rπ(s) := Ea∼π(·|s)[R(s, a)].

Entropy regularization We also consider entropy-
regularized for stochastic policies. Formally, the entropy of
a policy conditioned on a state s is defined as H[π(·|s)] :=
−Ea∼π(·|s)[log π(a|s)]. We regularize the per-stage re-
ward under a policy by R̃π(s) := Rπ(s) + τH[π(·|s)],
where τ ≥ 0 is a constant reflecting preference to random-
ness. Since R̃π(s) = Ea∼π(·|s)[R(s, a − τ log π(a|s))],
we define the regularized reward function as R̃(s, a) :=
R(s, a) − τ log π(a|s). All results in this paper apply to
τ = 0, which corresponds to the standard MDP setup.

2.2. Objectives and Tasks

Discounted reward The most widely studied RL setup is
to maximize the discounted total reward with γ ∈ (0, 1),

Jγ(π; ρ0) := E
π,ρ0

[∞∑
k=0

γkR̃(sk, ak)
]
, (1)

where the expectation Eπ,ρ0
is evaluated with respect to an

initial state distribution s0 ∼ ρ0(·), a stochastic policy ak ∼
π(·|sk), and an underlying Markov transition probability
sk+1 ∼ P (·|sk, ak).

The discount factor γ requires a manual setting as it is not
usually available in real-world problems. Mahadevan (1996)
illustrated that the optimal policy varies for different γ. We
also consider two other objectives.

Total reward for episodic task 2 One common task in
RL is to achieve some goal within a finite number of steps.
This corresponds to an episodic task. The corresponding
objective is then the eventually accumulated total reward

Jtot(π; ρ0) := E
π,ρ0

[∞∑
k=0

R̃(sk, ak)
]
. (2)

To ensure that Jtot(π) is bounded, we assume that under all
policies, the state finally transits to a zero-reward terminal

2This setup is distinct from the finite horizon setup in the MDP
literature. The optimal policy is a time-varying mapping from the
state to the action (distributions) in the finite horizon case, which
is not attainable by a time-invariant policy.

Understanding Policy Gradient

Table 1. Formulae for state visitation counts dπ,ρ0
• (s), state-value function V π

• (s), action-value function Qπ
• (s, a), and Bellman equations.

discounted (total w/ γ = 1) reward average reward

V π
• V π

γ (s) = E
sk+1∼Pπ(·|sk)

[∞∑
k=0

γkR̃π(sk)
∣∣∣s0 = s

]
V π
av(s) = E

sk+1∼Pπ(·|sk)

[∞∑
k=0

R̃π(sk)− Jav(π)
∣∣∣s0 = s

]
Qπ

• Qπ
γ (s, a) = R(s, a) + γ E

s′∼P (·|s,a)

[
V π
γ (s′)

]
Qπ

av(s, a) = R(s, a)− Jav(π) + E
s′∼P (·|s,a)

[
V π
av(s

′)
]

Bellman V π
γ (s) = R̃π(s) + γ E

s′∼Pπ(·|s)

[
V π
γ (s′)

]
V π
av(s, a) = R̃π(s)− Jav(π) + E

s′∼P (·|s,a)

[
V π
av(s

′)
]

dπ,ρ0
• dπ,ρ0

γ (s) =

∞∑
k=0

γk E
s0∼ρ0(·)

[
Pπ(sk = s|s0)

]
dπ,ρ0
av (s) = lim

k→∞
E

s0∼ρ0(·)

[
Pπ(sk = s|s0)

]

state (corresponding to task completion) and stays in the
terminal state forever.

Assumption 2.1 (Terminal state). There exists a terminal
state z that is accessible from all states. Moreover, for all
actions a, P (z|z, a) = 1 and R(z, a) = τ log π(a|z) (i.e.,
R̃(z, a) = 0).

Average reward for continuing task Another common
task in decision-making is to achieve good average perfor-
mance while applying actions without stopping. Accord-
ingly, the natural performance criterion is the time-averaged
reward over the infinite horizon given by

Jav(π; ρ0) := lim
T→∞

E
π,ρ0

[1

T + 1

T∑
k=0

R̃(sk, ak)
]
. (3)

To ensure that Jav(π) is meaningful, we make the following
assumptions for continuing tasks.

Assumption 2.2 (Ergodicity). The MDP admits ergodic
chains under all policies.

Because of ergodicity, Jav(π; ρ0) is independent of ρ0. In
the sequel, we write Jav(π; ρ0) as Jav(π) for convenience.

2.3. PG Theory and Implementation

Theory Given a parameterized policy πθ and an objective
J•(πθ), Sutton et al. (1999) showed that the PG (without
the entropy regularization, i.e., τ = 0) is

∇θJ•(πθ) =
∑
s

dπ,ρ0
• (s)

∑
a

∇θπ(a|s)Qπ
• (s, a). (4)

where dπ,ρ0
• and Qπ,ρ0

• are from Table 13. The formulae
in the discounted reward setup reduce to those in the total
reward setup by setting γ = 1.

3The quantity dπ,ρ0
tot (z) = ∞ since the Markov chain stays in

the terminal state z after a finite number of steps. Nevertheless, as
Qπ

tot(z, ·) ≡ 0, we can either omit z or set dπ,ρ0
tot (z) as any finite

number while computing ∇θJtot(πθ).

Implementation The key aspect of (4) is that PG does not
involve ∇θd

π,ρ0
• , which enables PG approximation by sam-

pling. However, dπ,ρ0
• is not directly accessible. Instead, one

can only access the conditional distribution s′ ∼ P (·|s, a)
and thus collect sampled trajectories {s0, a0, s1, a1, . . . }4.
Williams (1988; 1992) proposed the episodic REINFORCE
algorithm to approximate PG

∇̂θJtot(πθ) =

T∑
k=0

∇θ log π(ak|sk)Q̂π
tot(sk, ak), (5)

where Q̂π
tot(sk, ak) :=

∑T
t=k R(st, at).

3. Perturbation Approach for PG
We use the perturbation approach from (Cao & Chen, 1997)
to study PG. We show PG formulae can be derived in a uni-
fied manner and clarify how to produce unbiased estimates
of PG using empirical trajectory. For conciseness, we will
drop the notation θ in policies parameterized by θ when its
meaning is clear from the context.

3.1. Unified Derivation of PG

The optimization problems in (1), (2), and (3) with a param-
eterized policy πθ become parametric optimizations. We
apply the fundamental definition of a derivative to derive
the PG. Let θ and θ′ = θ + δθ stand for parameters of two
policies. The corresponding policies are π and π′ = π+ δπ,
respectively. We will use the definition of a gradient to
derive PG

∇θJ(θ) = lim
δθ→0

J(θ + δθ)− J(θ)

δθ
. (6)

Eqn. (6) formulates PG in a unified perspective. However,
it requires one to derive J(θ + δθ) − J(θ) as a function
of δθ or δπ in a closed-form expression. We will show
a unified formula to express the performance difference
J(θ + δθ)− J(θ) for the three objectives, which allows us
to derive PG for both stochastic and deterministic policies.

4Assuming that R(s, a) is known in advance.

Understanding Policy Gradient

Performance difference To simplify notations in a gen-
eral setup, we define

(π′ ◦Qπ
•)(s) := E

a∼π′(·|s)

[
Qπ

• (s, a)− τ log π′(a|s)
]

to represent the contribution to long-term returns at state s
for applying π′ instead of π. From Table 1, we can derive
(π ◦Qπ

•)(s) = V π
• (s). The performance difference can be

expressed as an accumulative difference between applying
π′ and π.
Proposition 3.1 (Performance difference). The difference
of performances between two policies is

J•(π
′; ρ0)− J•(π; ρ0)

=
∑
s

dπ
′,ρ0

• (s)
[
(π′ ◦Qπ

•)(s)− (π ◦Qπ
•)(s)

]
.

The proof relies on manipulating the Bellman equations of
the two policies. We present the proof for the discounted
reward case as an example. The proofs for the other two
objectives are in the appendix.

Proof. We let ρ0 and dπ,ρ0
• be row vector representations for

ρ0(s) and dπ,ρ0
• (s), Pπ be the transition matrix for the cor-

responding Markov chain under policy π, and V π
• (respec-

tively, Rπ
•) be the column vector representation of V π

• (s)
(respectively, Rπ

• (s)).

Based on the Bellman equation, we obtain

V π′

γ − V π
γ =R̃π′

+ γPπ′
V π′

γ − R̃π − γPπV π
γ

=R̃π′
+ γPπ′

V π
γ − R̃π − γPπV π

γ

+ γPπ′
V π′

γ − γPπ′
V π
γ︸ ︷︷ ︸

T

.

Subtracting T on both sides, we obtain

(I − γPπ′
)(V π′

γ − V π
γ)

= R̃π′
+ γPπ′

V π
γ − R̃π − γPπV π

γ . (7)

Since (I − γPπ′
) is invertible, we can derive

ρ0(I − γPπ′
)−1 = ρ0

∞∑
k=0

γk(Pπ′
)k = dπ

′,ρ0
γ .

We multiply ρ0(I−γPπ′
)−1 on both sides of (7) and obtain

Jγ(π
′; ρ0)− Jγ(π; ρ0) = ρ0V

π′
− ρ0V

π

=dπ
′,ρ0

γ [R̃π′
+ γPπ′

V π
γ − R̃π − γPπV π

γ]

=
∑
s

dπ
′

γ (s)
[
(π′ ◦Qπ

γ)(s)− (π ◦Qπ
γ)(s)

]
.

This completes the proof for the discounted reward.

Remark 3.2. Proposition 3.1 unifies the performance dif-
ference formulae in various setups in one single equa-
tion. It reduces to the result in (Kakade & Langford,
2002; Mei et al., 2020) since (π′ ◦ Qπ

•)(s) − (π ◦
Qπ

•)(s) = Ea∼π′(a|s)[A
π
• (s, a)] − τDKL

(
π′(·|s)∥π(·|s)

)
,

where Aπ
• (s, a) := Qπ

• (s, a)− τ log π(a|s)− V π
• (s).

Derivation of Stochastic PG Consider stochastic policies
π : S → ∆(A). Let θ and θ′ = θ+ δθ stand for parameters
of two policies. The corresponding policies are π and π′ =
π + δπ, respectively. From the performance difference
formula, we can obtain,

J•(θ + δθ)− J•(θ)

=
∑
s

dπ
′,ρ0

• (s)
∑
a

δπ(a|s)
(
Qπ

• (s, a)− τ log π(a|s)
)

− τ
∑
s

dπ
′,ρ0

• (s)
∑
a

π′(a|s) log π′(a|s)
π(a|s)

.

Plugging this into the definition eqn. (6), we obtain

∇J•(θ) = lim
δθ→0

∑
s

dπ
′,ρ0

• (s)
∑
a

δπ(a|s)
δθ

·
(
Qπ

• (s, a)− τ log π(a|s)
)

− lim
δθ→0

τ
∑
s

dπ
′,ρ0

• (s)
∑
a

π′(a|s)
δθ

log
π′(a|s)
π(a|s)︸ ︷︷ ︸

=0

.

The second part equals 0 because, for every s,

lim
δθ→0

∑
a

π′(a|s)
δθ

log
π′(a|s)
π(a|s)

= lim
δθ→0

∑
a

δπ(a|s)
δθ

π′(a|s)
δπ(a|s)

log
π′(a|s)
π(a|s)

=
∑
a

∇θπ(a|s) · 1 = ∇θ

∑
a

π(a|s) = ∇θ1 = 0.

The stochastic PG derivation is complete as

∇J•(θ) =
∑
s

dπ,ρ0
• (s)

∑
a

∇θπ(a|s)Q̃π
• (s, a),

where Q̃π
• (s, a) := Qπ

• (s, a)− τ log π(a|s).

Derivation of deterministic PG Apart from the standard
stochastic PG, we can derive the deterministic PG (Silver
et al., 2014) using the same idea. For deterministic policies
a = µθ(s), we temporally use µ to represent π. Accord-
ingly, (π′ ◦Qπ

•)(s) becomes Qπ
• (s, µ(s)). Since the entropy

of µ is ill-defined, we set τ ≡ 0 and obtain

J•(θ + δθ)− J•(θ)

δθ

=
∑
s

dµ
′,ρ0

• (s)
[Qµ

• (s, µ
′(s))−Qµ

• (s, µ(s))

δθ

]
,

Understanding Policy Gradient

which yields the deterministic PG in (Silver et al., 2014),

∇J•(µθ) =
∑
s

dµ
′,ρ0

• (s)
[
∇θQ

µ
• (s, a)|a=µ(s)

]
=
∑
s

dµ
′,ρ0

• (s)
[
∇θµ(s)∇aQ

µ
• (s, a)|a=µ(s)

]
.

We used the perturbation approach to compute the PG by
following the definition. The derivations of stochastic PG
in (Sutton et al., 1999) are separated for different setups,
and are distinct from the deterministic PG in (Silver et al.,
2014). We use a unified perspective to derive various PGs.

3.2. PG Approximation from Episodic Trajectory

The theoretical PG is a spatial formula since it is a sum-
mation over s and a. We can derive equivalent temporal
forms (summation over time index k) by unrolling dπ,ρ0

•
5.

The corresponding temporal stochastic PGs are6

∇Jγ(π; ρ0) = E
π,ρ0

[∞∑
k=0

γk∇ log π(ak|sk)Q̃π
γ (sk, ak)

]
,

∇Jtot(π; ρ0) = E
π,ρ0

[∞∑
k=0

∇ log π(ak|sk)Q̃π
tot(sk, ak)

]
,

∇Jav(π; ρ0) = lim
T→∞

E
π,ρ0

[1

T + 1

T∑
k=0

{∇ log π(ak|sk)

· Q̃π
av(sk, ak)}

]
.

The deterministic PGs follow similarly. The derivation de-
tails are presented in the appendix.

These temporal equations inspire us to estimate PGs from
trajectories {s0, a0, s1, a1, . . . } obtained by querying s′ ∼
P (·|s, a). We use stochastic policies for illustration. Deter-
ministic policies follow similarly. We define

Gπ
• (s, a) = ∇θ log π(a|s)

(
Qπ

• (s, a)− τ log π(a|s)
)
,

Ĝπ
• (s, a) = ∇θ log π(a|s)

(
Q̂π

• (s, a)− τ log π(a|s)
)
.

The theoretical PG in eqn. (4) and the REINFORCE algo-
rithm in eqn. (5) becomes

∇J•(π; ρ0) :=
∑
s

dπ• (s)
∑
a

π(a|s)Gπ
• (s, a), (8)

∇̂J•(π; ρ0) :=

T∑
k=0

Ĝπ
• (sk, ak). (9)

5Apart from unrolling, one can also derive the temporal PGs by
using the temporal performance difference shown in the appendix.

6We leverage the log-likelihood trick shown in the appendix.

Assuming that Eπ,ρ0
[Q̂π

• (sk, ak)] is an unbiased estimate of
Qπ

• (s, a), we show that eqn. (9) is an unbiased estimate of
eqn. (8). Details are in the appendix.

Episodic task with total reward. No adjustment is required
in this case since Williams’ formula is designed to solve this
task. In particular, we obtain

E
π,ρ0

[
T∑

k=0

Ĝπ
tot(sk, ak)

]
= ∇Jtot(π; ρ0). (10)

Continuing task with average reward. In continuing tasks,
there is no terminal state. Asymptotically, we have

lim
T→∞

E
π,ρ0

[
1

T + 1

T∑
k=0

Ĝπ
av(sk, ak)

]
= ∇Jav(π). (11)

Furthermore, since the MDP is ergodic, any finite T yields
an unbiased estimate. Therefore, Williams’ PG is still unbi-
ased (modulo a 1/T factor).

Discounted reward. For the discounted reward, the dis-
counted scaling is required, which echos back the claim
made in Nota & Thomas (2020). In particular,

lim
T→∞

E
π,ρ0

[
T∑

k=0

γkĜπ
γ (sk, ak)

]
= ∇Jγ(π; ρ0). (12)

In episodic tasks, the discounted REINFORCE variant is an
unbiased PG estimate for a finite T . However, in continuing
tasks, the variant is asymptotically unbiased. Nevertheless,
without discounting, the vanilla episodic REINFORCE is
always biased.

In summary, Williams’ REINFORCE algorithm yields an
unbiased PG estimate for both episodic and continuing tasks
under their corresponding natural objectives. To adapt the
formula to the discounted reward criterion, discounted fac-
tor should be multiplied. In continuing tasks, an unbiased
discounted PG estimate is attainable only when T → ∞.

4. Analysis of Current Implementations
Current implementations mostly maximize Jγ and approxi-
mate ∇Jγ by sampling. However, these algorithms essen-
tially sample from the conditional distribution s′ ∼ P (·|s, a)
instead of dπ,ρ0

γ since the latter is not directly accessible.
In general, dπ,ρ0

• should be understood as the weights of a
weighted sum instead of a state distribution. To approx-
imate ∇Jγ as prescribed in eqn. (4), one should follow
eqn. (12) by applying additional discount factors to ac-
count for dπ,ρ0

γ based on the trajectory data. Mistaking
the weighted sum as a probability distribution leads to the
incorrect implementations observed in (Nota & Thomas,
2020).

Understanding Policy Gradient

The existing PG implementations perform well in practice
although they do not strictly follow the unbiased PG esti-
mate. The good empirical results suggest that these imple-
mentations are valid algorithm options. We dig into the
issue further by showing why they work well. In particular,
we quantify the approximation error bound due to the dis-
count factor and find that the experience replay mechanism
automatically fixes the implementation error.

4.1. Small Approximation Error

Most PG implementations claim to solve the discounted ob-
jective in eqn. (1). In episodic tasks, the discounted total re-
ward reduces to the total reward for episodic tasks when γ ↑
1. In continuing tasks, as γ ↑ 1, the discounted objective ap-
proaches the average reward objective due to Abelian theo-
rem [Lemma 5.3.1 in (Hernández-Lerma & Lasserre, 1996)]
as limγ↑1(1 − γ)

∑∞
k=0 γ

kRk = limT→∞
1

T+1

∑T
k=0 Rk.

Both cases suggest that if γ is close to one, the discounted
objective is a valid surrogate objective of the actual objec-
tive. The following theorems quantify the approximation
error due to the discounted objective.

Assumption 4.1. There exist an integer m > 0 and a posi-
tive real number α < 1 such that

Pr(sm ̸= z|s0, π) ≤ α, ∀ s0 ∈ S, π.

Theorem 4.2 (episodic tasks). Under Assumption 4.1, both
∥d̃π,ρ0

tot − d̃π,ρ0
γ ∥∞ and ∥V π

tot − V π
γ ∥∞ are upper bounded

by O
(

mα(1−γm)
(1−α)(1−αγm)

)
, where d̃π,ρ0

• is dπ,ρ0
• over transient

states.

Assumption 4.3 (geometric ergodicity). There exist posi-
tive constants C and β < 1 such that

max
s∈S

∥ρ0(Pπ)k − dπ,ρ0
av ∥TV ≤ Cβk,

where ∥ · ∥TV is the total variation norm in Definition C.1
in the Appendix.

Theorem 4.4 (continuing tasks). Under Assumption 4.3,
both ∥(1− γ)dπ,ρ0

γ − dπ,ρ0
av ∥TV ≤ O(1−γ

1−βγ) and sp(V π
av −

V π
γ) ≤ O

(
β(1−γ)

(1−β)(1−βγ)

)
, where sp(·) is the span semi-

norm in Definition C.2 in the Appendix.

Both Theorem 4.2 and 4.4 show that the structure of the
MDP and the discount factor γ affect the approximation
error. In particular, the vanishing approximation errors due
to γ ↑ 1 shows that our bound is asymptotically tight for
γ. Moreover, smaller m, α, and β are roughly equivalent
to faster convergence of MDP and thus a shorter “effective
horizon”. Therefore, a shorter “effective horizon” also leads
to a smaller approximation error. By contrast, for a fixed
desired approximation error, if the MDP has a long “effec-
tive horizon”, the discount factor γ should be set as a large

one. Since γ is typically chosen to be large values like 0.99,
0.995, and 0.999, the approximation errors are small despite
that they might solve a “slow” MDP.

4.2. Benefits of Experience Replay

Experience replay in reinforcement learning (Lin, 1993)
refers to using random samples from previous transitions,
which breaks the transition correlations. While it first gained
popularity for learning value functions (e.g., DQN (Mnih
et al., 2013)), the modern of PG-based algorithms (e.g., (Sil-
ver et al., 2014; Lillicrap et al., 2016; Fujimoto et al., 2018))
apply the idea to estimating PG. We show that applying
experience replay also helps improve the performance of
PG-based algorithms.

Unbiased PG estimate. When the transition correlation is
erased, we obtain the following equality,

E
sk∼ρreplay(·)
ak∼π(·|sk)

[
1

T

T∑
k=0

Ĝγ(sk, ak)

]
= E

s∼ρreplay(·)
a∼π(·|s)

[
Gπ

γ (s, a)
]
,

where ρreplay is determined by the sampling mechanism of
the replay buffer. As ∆(S) is compact, there exists some ρ′0
such that

ρreplay(s) = (1− γ)

∞∑
k=0

γk E
s0∼ρ′

0(·)
[Pπ(sk = s|s0)].

Therefore, the “incorrect” empirical PG with experience
replay is an unbiased estimate of ∇Jγ(π; ρ

′
0) (modulo a

T
1−γ factor).

Maximizer invariance. Let π⋆ = argmaxπ Jγ(π; ρ0).
The theory of MDP shows that

π⋆(a|s) = argmax
π

E
a∼π(·|s)

[
Q⋆

γ(s, a)− τ log π(a|s)
]
,

where Q⋆
γ(s, a) := R(s, a) + γ Es′∼P (·|s,a)[V

⋆(s′)] and
V ⋆(s) satisfies the Bellman optimality equation

V ⋆
γ (s) = max

π
E

a∼π(·|s)

{
R̃(s, a) + γ E

s′∼Pπ(·|s,a)

[
V ⋆(s′)

]}
.

Since V ⋆
γ is independent of ρ0, so is Q⋆

γ . Therefore, π⋆

is invariant with respect to ρ0. Consequently, π⋆ is the
maximizer of Jγ(π; ρ

′
0) for any ρ′0 ∈ ∆(S) despite that

Jγ(π
⋆; ρ′0) generally does not equal Jγ(π⋆; ρ0).

In summary, by utilizing a replay buffer, the “incorrect”
PG implementation corresponds to the gradient of another
objective Jγ(π; ρ

′
0) while the maximizer of Jγ(π; ρ

′
0) is

the same as Jγ(π; ρ0). Consequently, the “incorrect” PG
implementation indirectly improves Jγ(π; ρ0).

Understanding Policy Gradient

0 200 400
epochs

10 1

100

op
tim

al
ity

 g
ap

pg-true
pg-discount
pg-hybrid

(a) Continuing task w/ Jav.

0 200 400
epochs

10 2

10 1

100

101

op
tim

al
ity

 g
ap

pg-true
pg-discount
pg-hybrid

(b) Episodic task w/ Jtot.

0 200 400
epochs

10 3

10 2

10 1

100

101

op
tim

al
ity

 g
ap

pg-discount
pg-hybrid
pg-replay

(c) Continuing task w/ Jγ .

0 2000 4000
epochs

10 2

10 1

100

101

102

op
tim

al
ity

 g
ap

pg-discount
pg-hybrid
pg-replay

(d) Episodic task w/ Jγ .

Figure 1. Convergence trajectories of optimality gap under PG algorithms in different settings.

Remark 4.5 (Scope of applicability). The maximizer invari-
ance result applies to general MDPs. However, the invari-
ance property does not necessarily hold in the presence of a
general function approximator. If the approximator cannot
represent the true maximizer, the invariance property can
fail. Nevertheless, the invariance property is not limited to
the tabular MDP. For example, the invariance property holds
for a linear quadratic control problem although this MDP
has continuous states and actions.

5. Numerical Examples
We perform numerical simulations to verify our theoretic re-
sults. In particular, we evaluate variants of PG algorithms on
different settings and compare the performance optimality
gap of every policy in each epoch during optimization. The
optimal performance is obtained through the policy iteration
algorithm for each setup.

Common setup. The stepsize for policy gradient algorithms
are set to be 0.1 for all cases. The temperature τ for entropy
regularization is 10. We did not directly implement a replay
buffer but used the pg-hybrid gradient (to be introduced
next) to illustrate our results.

5.1. Continuing Task with the Average Reward

MDP and objective. We adopt the controlled restart pro-
cess (Akbarzadeh & Mahajan, 2019). The transition proba-
bility is

P (s′|s, a) =

1, s′ = s+ 1, a = 0,

p, s′ = 0, a = 1,

1− p, s′ = s+ 1, a = 1.

The reward function is R(s, a) = −s2 − λ · 1(a = 1).
We use a truncated state space and let P (s′ = s|s, a) =
P (s′ = s+ 1|s, a) if s = |S| − 1. We measure the policy
performances with Jav(π; ρ0).

Algorithms. We compare the following PG variants,
pg-true∇Jav(π; ρ0), pg-discount∇Jγ(π; ρ0), and

𝑠0

𝑠1

𝑠𝐿+1

𝑠2

𝑠𝐿+2

𝑠𝐿

𝑠2𝐿

…

…𝑎1

𝑎0
+1

-1

+2

−2

𝑡

Figure 2. The binary chain example adapted from (Nota & Thomas,
2020). Taking a = a0 receives +1 and moves into the upper
chain. Taking a = a1 receives −1 reward and moves into the
lower chain. The final reward for the two chains are +2 and −2
respectively. Other states and actions incur no reward. A large
γ ensures acquiring the optimal policy regarding the true total
reward while a small γ yields a “short effective horizon” and thus
a suboptimal policy. We set the chain length as L = 3.

pg-hybrid
∑

s,a d
π,ρ0
av (s)π(a|s)Gπ

γ (s, a)
7. The discount

factor is 0.7.

Result. Figure 1a shows the trajectory of optimality gaps for
each algorithm. Since pg-discount and pg-hybrid
are tracking the incorrect objective, they fail to converge to
the optimal policy and converge to a suboptimal policy in-
stead. Moreover, pg-discount and pg-hybrid yield
the same asymptotic behavior, which echos back our claim
that pg-hybrid is equivalent to ∇Jγ(π; ρ

′
0) for some ρ′0.

5.2. Episodic Task with the Total Reward

MDP and objective. We adapt the binary chain example in
(Nota & Thomas, 2020) as shown in Figure 2.

Algorithms. We compare the following PG variants,
pg-true∇Jtot(π; ρ0), pg-discount∇Jγ(π; ρ0), and
pg-hybrid

∑
s,a d

π,ρ0

tot (s)π(a|s)Gπ
γ (s, a). The discount

factor is γ = 0.7.

Result. Figure 1b shows the trajectory of optimality gaps
for each algorithm. Similar to the average reward case, only

7We use the pg-hybrid to simulate the effect of using a replay
buffer for all the three case studies.

Understanding Policy Gradient

pg-true converges to the optimal policy, while the other
two fail. This example straightforwardly illustrates that
the discount factor on value functions suffers from a shorter
“effective horizon” than the whole trajectory and leads to sub-
optimal policies. Moreover, in this case, pg-discount
and pg-hybrid yield the same transient behavior, which
again echos back the equivalence of the two algorithms.

5.3. Continuing Task with the Discounted Reward

MDP and objective. We use the controlled restart process
while measuring policy performances with the discounted
total reward Jγ(π; ρ0) for γ = 0.7.

Algorithms. We compare the following PG vari-
ants, pg-discount ∇Jγ(π; ρ0), pg-hybrid∑

s,a d
π,ρ0
av (s)π(a|s)Gπ

γ (s, a), and pg-replay∑
s,a ρreplay(s)π(a|s)Gπ

γ (s, a). We let ρreplay be a
uniform distribution over the state space.

Result. Figure 1c shows the trajectory of optimality gaps
for each algorithm. All algorithms converge to the optimal
policy. pg-hybrid is much slower than the others, while
pg-replay yields almost similar performances as the true
PG pg-discount. Note that pg-discount keeps the
optimization objective fixed while pg-replay keeps the
weighting factor of s fixed, which shows the advantage of
keeping a reference point unchanged during optimization.

5.4. Episodic Task with the Discounted Reward

MDP and objective. We randomly generate a 10-by-10
grid world [Example 3.5 (Sutton & Barto, 2018)] with eight
obstacle grids. Two ending grids are randomly placed. One
corresponds to a +1 reward, and the other a -1 reward.

Algorithms. We again compare pg-discount,
pg-hybrid, and pg-replay. pg-hybrid is changed
into

∑
s,a d

π,ρ0

tot (s)π(a|s)Gπ
γ (s, a) while the other two re-

mains unchanged.

Result. Figure 1d shows the trajectory of optimality gaps
for each algorithm. Similar to the previous discounted re-
ward setup, pg-replay and pg-discount yield very
similar performance while the trajectory of pg-hybrid is
unstable. In particular, pg-hybrid seems trapped in a flat
region while the other algorithms converge smoothly. This
again demonstrates the advantage of experience replay for
policy optimization.

6. Related Works
Policy gradient PG was derived simultaneously by re-
searchers from various communities (Cao & Chen, 1997;
Sutton et al., 1999; Baxter & Bartlett, 2000; Konda & Tsit-
siklis, 2000; Marbach & Tsitsiklis, 2001). While they are
equivalent under certain circumstances, the modern form

follows from (Sutton et al., 1999). Our perturbation ap-
proach is inspired by the idea in (Cao & Chen, 1997), which
addressed performance sensitivity of general Markov sys-
tems operated for continuing tasks. See (Cao, 2007) for a
comprehensive overview. We extend the discussion in (Cao,
2007) to episodic task and concretize the general theory in
the context of modern RL.

Theoretical analysis of PG Theoretical analysis of PG
has been active recently. Agarwal et al. (2020; 2021) studied
general convergence properties and sample efficiency of PG
methods with function approximations. Despite that there
are plentiful results on convergence rates (Mei et al., 2020;
Bhandari & Russo, 2021; Li et al., 2021; Zhan et al., 2021)
and sample efficiency of PG (Yuan et al., 2021; Cassel &
Koren, 2021; Zhang et al., 2021a;b), connections between
theory and implementations have not been addressed.

Policy regularization Williams & Peng (1991) pioneered
the use of entropy to enhance performance on hierarchi-
cal tasks. Incorporating entropy of a policy as a part of
the received reward has been popular recently (Haarnoja
et al., 2017; 2018) as entropy regularization can 1) help
with exploration as more stochastic policies are encour-
aged (Mnih et al., 2016) and 2) make optimization land-
scape smoother (Ahmed et al., 2019). Geist et al. (2019)
developed the general theory for regularization in MDP.

Concerns for PG implementation A number of stud-
ies (Thomas, 2014; Engstrom et al., 2019; Liu et al., 2019;
Wang et al., 2019; Nota & Thomas, 2020; Ilyas et al., 2020;
Hu et al., 2020) pointed out that our understanding of PG is
limited as there are mismatches between theoretical results
and implementation. Ilyas et al. (2020) showed that a num-
ber commonly-accepted beliefs about PG is flawed. Wang
et al. (2019) and Engstrom et al. (2019) discussed code-
level caveats in implementing the famous TRPO and PPO
algorithms. Thomas (2014) and Nota & Thomas (2020)
showed that a number of PG implementations are inconsis-
tent with the theoretical formulae. Wen et al. (2021) found
that a class of PG variants corresponds a to optimizing an ob-
jective different from the original MDP objective. Motivated
by the findings in (Nota & Thomas, 2020), our work builds
a solid foundation for various PG algorithms and bridges
the cognitive gap between PG theory and implementations.

7. Conclusion
We used a perturbation approach to study PG, which helped
us derive PG in a conceptually straightforward manner. The
alternative approach also enables us to bridge Williams’
empirical PG formula to the theoretical formula in (Sutton
et al., 1999), which echos back recent findings in (Nota
& Thomas, 2020). Additionally, we showed that small

Understanding Policy Gradient

approximation errors under large discount factors and the
experience replay mechanism contribute to the empirical
success of PG-based algorithms.

References
Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.

Optimality and approximation with policy gradient meth-
ods in Markov decision processes. In Conference on
Learning Theory, pp. 64–66, 2020.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. Journal of Machine
Learning Research, 22(98):1–76, 2021.

Ahmed, Z., Le Roux, N., Norouzi, M., and Schuurmans, D.
Understanding the impact of entropy on policy optimiza-
tion. In International Conference on Machine Learning,
pp. 151–160, 2019.

Akbarzadeh, N. and Mahajan, A. Restless bandits with con-
trolled restarts: Indexability and computation of Whittle
index. In IEEE Conference on Decision and Control, pp.
7294–7300, 2019.

Baxter, J. and Bartlett, P. L. Direct gradient-based rein-
forcement learning. In IEEE International Symposium
on Circuits and Systems (ISCAS), volume 3, pp. 271–274,
2000.

Bhandari, J. and Russo, D. On the linear convergence of
policy gradient methods for finite mdps. In International
Conference on Artificial Intelligence and Statistics, pp.
2386–2394, 2021.

Cao, X.-R. Stochastic Learning and Optimization: A
Sensitivity-Based Approach. Springer Science & Business
Media, 2007.

Cao, X.-R. and Chen, H.-F. Perturbation realization, poten-
tials, and sensitivity analysis of markov processes. IEEE
Transactions on Automatic Control, 42(10):1382–1393,
1997.

Cassel, A. and Koren, T. Online policy gradient for model
free learning of linear quadratic regulators with

√
T re-

gret. In International Conference on Machine Learning,
pp. 1304–1313, 2021.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. Implementation mat-
ters in deep RL: A case study on PPO and TRPO. In
International Conference on Learning Representations,
2019.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional Conference on Machine Learning, pp. 1587–1596,
2018.

Geist, M., Scherrer, B., and Pietquin, O. A theory of reg-
ularized markov decision processes. In International
Conference on Machine Learning, pp. 2160–2169, 2019.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Re-
inforcement learning with deep energy-based policies.
In International Conference on Machine Learning, pp.
1352–1361, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870, 2018.

Hernández-Lerma, O. and Lasserre, J. B. Discrete-Time
Markov Control Processes: Basic Optimality Criteria.
Springer Science & Business Media, 1996.

Hu, K.-C., Hsieh, P.-C., Wei, T. H., and Wu, I.-C. Rethink-
ing deep policy gradients via state-wise policy improve-
ment. In “I Can’t Believe It’s Not Better!” NeurIPS 2020
workshop, 2020.

Ilyas, A., Engstrom, L., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. A closer look at deep pol-
icy gradients. In International Conference on Learning
Representations, 2020.

Kakade, S. and Langford, J. Approximately optimal approxi-
mate reinforcement learning. In International Conference
on Machine Learning, 2002.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms.
In Advances in Neural Information Processing Systems,
pp. 1008–1014, 2000.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Softmax policy
gradient methods can take exponential time to converge.
In Conference on Learning Theory, 2021.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous con-
trol with deep reinforcement learning. In International
Conference on Learning Representations, 2016.

Lin, L.-J. Reinforcement Learning for Robots Using Neu-
ral Networks. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1993.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E.
Off-policy policy gradient with state distribution correc-
tion. In Conference on Uncertainty in Artificial Intelli-
gence, pp. 1180–1190, 2019.

Understanding Policy Gradient

Mahadevan, S. Optimality criteria in reinforcement learning.
In Proceedings of the AAAI Fall Symposium on Learning
Complex Behaviors in Adaptive Intelligent Systems, 1996.

Marbach, P. and Tsitsiklis, J. N. Simulation-based optimiza-
tion of markov reward processes. IEEE Transactions on
Automatic Control, 46(2):191–209, 2001.

Mei, J., Xiao, C., Szepesvari, C., and Schuurmans, D. On
the global convergence rates of softmax policy gradient
methods. In International Conference on Machine Learn-
ing, pp. 6820–6829, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
Atari with deep reinforcement learning. In NIPS Deep
Learning Workshop, 2013.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pp. 1928–
1937, 2016.

Nota, C. and Thomas, P. S. Is the policy gradient a gradient?
In International Conference on Autonomous Agents and
Multiagent Systems, pp. 939–947, 2020.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International Conference on Machine learning, pp.
387–395, 2014.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT press, 2018.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural
Information Processing Systems, pp. 1057–1063, 1999.

Thomas, P. Bias in natural actor-critic algorithms. In Inter-
national Conference on Machine Learning, pp. 441–448,
2014.

Wang, Y., He, H., and Tan, X. Truly proximal policy op-
timization. In Conference on Uncertainty in Artificial
Intelligence, pp. 113–122, 2019.

Wen, J., Kumar, S., Gummadi, R., and Schuurmans, D.
Characterizing the gap between actor-critic and policy
gradient. In International Conference on Machine Learn-
ing, pp. 11101–11111, 2021.

Williams, R. J. Toward a theory of reinforcement-learning
connectionist systems. Technical Report Technical Re-
port NU-CCS-88-3, Northeastern University, 1988.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3):229–256, 1992.

Williams, R. J. and Peng, J. Function optimization using
connectionist reinforcement learning algorithms. Con-
nection Science, 3(3):241–268, 1991.

Yuan, R., Gower, R. M., and Lazaric, A. A general sample
complexity analysis of vanilla policy gradient. In ICML
Workshop on Reinforcement Learning Theory, 2021.

Zhan, W., Cen, S., Huang, B., Chen, Y., Lee, J. D., and Chi,
Y. Policy mirror descent for regularized RL: A general-
ized framework with linear convergence. In International
OPT Workshop on Optimization for Machine Learning,
2021.

Zhang, J., Kim, J., O’Donoghue, B., and Boyd, S. Sample
efficient reinforcement learning with REINFORCE. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 10887–10895, 2021a.

Zhang, J., Ni, C., Yu, Z., Szepesvari, C., and Wang, M.
On the convergence and sample efficiency of variance-
reduced policy gradient method. In Advances in Neural
Information Processing Systems, 2021b.

Understanding Policy Gradient

Outline of the Appendix

• Section A Proof of performance difference formula

– Section A.1 spatial version (Proposition 3.1)
– Section A.2 temporal version

• Section B Bridge between PG Implementation and Theory

– Section B.1 derivation of temporal policy gradient
– Section B.2 unbiased estimates of policy gradient

• Section C Proof of Theorem 4.2 and 4.4 (Approximation error bounds)

Notations We let ρ0 and dπ,ρ0
• be row vector representations for ρ0(s) and dπ,ρ0

• (s), Pπ be the transition matrix for the
corresponding Markov chain under policy π, and V π

• (respectively, Rπ
•) be the column vector representation of V π

• (s)
(respectively, Rπ

• (s)).

Understanding Policy Gradient

A. Proof of Proposition 3.1 (performance difference formula)
We will prove both the spatio version and the temporal version, i.e.,

J•(π
′; ρ0)− J•(π; ρ0) =

∑
s

dπ
′,ρ0

• (s)
[
(π′ ◦Qπ

•)(s)− (π ◦Qπ
•)(s)

]
.

or equivalently

Jγ(π
′; ρ0)− Jγ(π; ρ0) =

∞∑
k=0

γk E
π′,ρ0

[
Aπ

γ (sk, ak)
]
,

Jtot(π
′; ρ0)− Jtot(π; ρ0) =

∞∑
k=0

E
π′,ρ0

[
Aπ

tot(sk, ak)
]
,

Jav(π
′)− Jav(π) = lim

T→∞

1

T + 1

T∑
k=0

E
π′,ρ0

[
Aπ

av(sk, ak)
]
,

where Aπ
• (s, a) = Qπ

• (s, a)− τ log π(a|s)− V π
• (s).

A.1. Spatial Version

We have proven the case for the discounted reward. We now prove for the total reward and the average reward.

Total reward Regarding the Bellman equation, the total reward setup is the special case of the discounted reward setup.
Algebraically, the results follow directly. However, (I − Pπ′

) has a zero eigenvalue and is thus not invertible. As state z
contributes no reward for any action, we consider instead the transient part of the state space and the corresponding transition
P̃π . Now, (I − P̃π′

) is invertible and we can obtain

Jtot(π
′; ρ0)− Jtot(π; ρ0) =

∑
s∈S\{z}

dπ
′;ρ0

tot (s)
{

E
a∼π′(·|s)

[Qπ
tot(s, a)− τ log π′(a|s)]− E

a∼π(·|s)
[Qπ

tot(s, a)− τ log π(a|s)]
}
.

Since Ea∼π′(·|s)[Q
π
tot(z, a)− τ log π′(a|z)]− Ea∼π(·|s)[Q

π
tot(z, a)− τ log π(a|z)] ≡ 0, the summation can be extended to

all s ∈ S.

Average Reward By directly applying the Bellman equation, we obtain

Jav(π
′)− Jav(π) =R̃π′

+ Pπ′
V π′

av − R̃π − PπV π
av + V π

av − V π′

av

=R̃π′
+ Pπ′

V π
av − R̃π − PπV π

av + V π
av − V π′

av + Pπ′
V π′

av − Pπ′
V π
av︸ ︷︷ ︸

T

,

Multiplying both sides by the row vector dπ
′

av, we obtain dπavT = 0 because dπ
′

av = dπ
′

avP
π′

. Finally, we derive

Jav(π
′)− Jav(π) =dπ

′

av[R̃
π′

+ Pπ′
V π
av − R̃π − PπV π

av]

=dπ
′

av

{
[R̃π′

− Jav(π) + Pπ′
V π
av]− [R̃π − Jav(π) + PπV π

av]
}

=
∑
s

dπ
′

av(s)
{

E
a∼π′(·|s)

[Qπ
av(s, a)− τ log π′(a|s)]− E

a∼π(·|s)
[Qπ

av(s, a)− τ log π(a|s)]
}
.

A.2. Temporal Version

According to the definition of dπ,ρ0
• , the temporal version can be directly obtained by expanding dπ,ρ0

• and vice versa.
Nevertheless, we provide another method to prove the temporal version from scratch.

Understanding Policy Gradient

Discounted reward The proof resembles Kakade & Langford, 2002, Lemma 6.1. We present it here for completeness.

Jγ(π
′; ρ0)− Jγ(π

′; ρ0) = E
s0∼ρ0(·)

[V π′

γ (s0)− V π
γ (s0)]

= E
s0∼ρ0(·)

[∞∑
k=0

γk E
π′,s0

[R̃(sk, ak)]− V π
γ (s0)

]

= E
s0∼ρ0(·)

[∞∑
k=0

γk E
π′,s0

[
R̃(sk, ak) + γV π(sk+1)− γV π(sk+1)

]
− V π

γ (s0)

]
(telescoping sum & rearranging terms)

= E
s0∼ρ0(·)

[∞∑
k=0

γk E
π′,s0

[
R̃(sk, ak) + γV π(sk+1)− V π(sk)

]]

=

∞∑
k=0

γk E
π′,ρ0

[
Aπ

γ (sk, ak)
]

Total reward The derivation is the same as the discounted case by letting γ = 1.

Average reward Recall the Abelian theorem from Hernández-Lerma & Lasserre, 1996, Lemma 5.3.1

lim
T→∞

1

T + 1

T∑
k=0

xk = lim
γ↑1

(1− γ)

∞∑
k=0

γkxk.

Therefore,

Jav(π
′)− Jav(π) = lim

γ↑1
(1− γ)

(
Jγ(π

′; ρ0)− Jγ(π
′; ρ0)

)
= lim

γ↑1
(1− γ)

∞∑
k=0

γk E
π′,ρ0

[
Aπ

γ (sk, ak)
]

= lim
T→∞

1

T + 1

T∑
k=0

E
π′,ρ0

[
lim
γ↑1

Aπ
γ (sk, ak)

]
.

Note that for any fixed state sfixed, we can obtain

lim
γ↑1

Aπ
γ (s, a) = lim

γ↑1
Qπ

γ (s, a)− τ log π(a|s)− lim
γ↑1

V π
γ (s)

= lim
γ↑1

(
Qπ

γ (s, a)− V π
γ (sfixed)

)
− τ log π(a|s)− lim

γ↑1

(
V π
γ (s)− V π

γ (sfixed)
)

=Qπ
av(s, a)− τ log π(a|s)− V π(s).

The proof is thus complete.

Understanding Policy Gradient

B. Bridge between PG Implementation and Theory
We first derive the temporal PG and then show unbiased empirical PG estimates.

B.1. Derivation of Temporal PG

We can derive the temporal PG by either unrolling dπ,ρ0
• or leveraging the temporal performance difference formula.

B.1.1. UNROLLING APPROACH

Discounted reward The result follows directly through unrolling as

∇Jγ(π; ρ0) =
∑
s

dπ,ρ0
γ

∑
a

∇π(a|s)Q̃π
γ (s, a)

[from ∇π(a|s) = π(a|s)∇ log π(a|s)]

=
∑
s

dπ,ρ0
γ

∑
a

π(a|s)∇ log π(a|s)Q̃π
γ (s, a)

=
∑
s

∞∑
k=0

γk E
s0∼ρ0(·)

[
Pπ(sk = s|s0)

]∑
a

π(a|s)∇ log π(a|s)Q̃π
γ (s, a)

= E
π,ρ0

[∞∑
k=0

γk∇ log π(ak|sk)Q̃π
γ (sk, ak)

]
.

Total reward The derivation is the same as the discounted case by letting γ = 1.

Average reward The result follows by using the ergodic theory as

∇Jav(π; ρ0) =
∑
s

dπ,ρ0
av

∑
a

∇π(a|s)Q̃π
av(s, a)

[from ∇π(a|s) = π(a|s)∇ log π(a|s)]

=
∑
s

dπ,ρ0
av

∑
a

π(a|s)∇ log π(a|s)Q̃π
av(s, a)

=
∑
s

lim
k→∞

E
s0∼ρ0(·)

[
Pπ(sk = s|s0)

]∑
a

π(a|s)∇ log π(a|s)Q̃π
av(s, a)

[from ergodicity]

=
∑
s

lim
T→∞

1

T + 1

T∑
k=0

E
s0∼ρ0(·)

[
Pπ(sk = s|s0)

]∑
a

π(a|s)∇ log π(a|s)Q̃π
av(s, a)

= lim
T→∞

E
π,ρ0

[1

T + 1

T∑
k=0

∇ log π(ak|sk)Q̃π
av(sk, ak)

]
.

B.1.2. FROM TEMPORAL PERFORMANCE DIFFERENCE

Alternatively, we can leverage the temporal performance difference formula to derive the result. Recall that Q̃π
• (s, a) :=

Qπ
• (s, a)− τ log π(a|s), V π

• (s) = Ea∼π and Aπ
γ (s, a) := Q̃π

• (s, a)− V π
• (s).

Understanding Policy Gradient

Discounted reward The result follows through direct computation

∇Jγ(π; ρ0) = lim
δθ→0

∞∑
k=0

γk E
π′,ρ0

1

δθ

[
Aπ

γ (sk, ak)
]

= lim
δθ→0

∞∑
k=0

γk E
π′,ρ0

1

δθ

[
Q̃π

γ (sk, ak)− E
a∼π(·|sk)

[Q̃π
γ (sk, a)]

]
= lim

δθ→0

∞∑
k=0

γk E
π′,ρ0

1

δθ

[
E

ak∼π′(·|sk)
[Q̃π

γ (sk, ak)]− E
a∼π(·|sk)

[Q̃π
γ (sk, a)]

]
= lim

δθ→0

∞∑
k=0

γk E
π′,ρ0

1

δθ

[
E

a∼π′(·|sk)
[Q̃π

γ (sk, a)]− E
a∼π(·|sk)

[Q̃π
γ (sk, a)]

]
= lim

δθ→0

∞∑
k=0

γk E
π′,ρ0

[∑
a

π′(a|sk)− π(a|sk)
δθ

Q̃π
γ (sk, a)

]
= lim

δθ→0

∞∑
k=0

γk E
π′,ρ0

[∑
a

π(a|sk)
1

δθ

(π′(a|sk)
π(a|sk)

− 1
)
Q̃π

γ (sk, a)
]

= lim
δθ→0

∞∑
k=0

γk E
π′,ρ0

[∑
a

π(a|sk)
1

δθ
log

(π′(a|sk)
π(a|sk)

)
Q̃π

γ (sk, a)
]

[
lim
x→1

log x

x− 1
= 1

]
=

∞∑
k=0

γk E
π,ρ0

[∑
a

π(a|sk)∇θ log π(a|sk)Q̃π
γ (sk, a)

]
=

∞∑
k=0

γk E
π,ρ0

[
∇θ log π(ak|sk)Q̃π

γ (sk, ak)
]
.

Total reward and average reward Follows similarly as the discounted case.

B.2. Unbiased Temporal PG Estimates

Recall that

Gπ
• (s, a) := ∇θ log π(a|s)

(
Qπ

• (s, a)− τ log π(a|s)
)
,

Ĝπ
• (s, a) := ∇θ log π(a|s)

(
Q̂π

• (s, a)− τ log π(a|s)
)
.

The theoretical PG in eqn. (4) becomes

∇J•(π, ρ0) :=
∑
s

dπ• (s)
∑
a

π(a|s)Gπ
• (s, a). (13)

The PG implementation in eqn. (5) becomes

∇̂J•(π, ρ0) :=

T∑
k=0

Ĝπ
• (sk, ak). (14)

We now show the connection between empirical PG implementation (Williams, 1988; 1992) and the theoretical formula (Sut-
ton et al., 1999).

Understanding Policy Gradient

Episodic task If we solve episodic task under the total reward criteria, eqn. (5) is an unbiased estimator of the exact PG
because

E
π,ρ0

[
T∑

k=0

Ĝπ
tot(sk, ak)

]
= E

π,ρ0

[
T∑

k=0

∑
s,a

1(sk = s)1(ak = a)Ĝπ
tot(sk, ak)

]

=
∑
s,a

E
π,ρ0

[
T∑

k=0

1(sk = s)1(ak = a)Ĝπ
tot(sk, ak)

]
=
∑
s,a

dπ,ρ0

tot (s)π(a|s)Gπ
tot(s, a)

=∇θJtot(θ).

Continuing task We consider the asymptotic average behavior of
∑

k Ĝav(sk, ak), that is
limT→∞

1
T+1

∑T
k=0 Ĝav(sk, ak), which is proportional to

∑
k Ĝav(sk, ak) for every finite horizon T . Similar to

the episodic task, we can derive

lim
T→∞

E
π,ρ0

[
1

T + 1

T∑
k=0

Ĝπ
av(sk, ak)

]
= lim

T→∞
E

π,ρ0

[
T∑

k=0

∑
s,a

1(sk = s)1(ak = a)

T + 1
Ĝπ

av(sk, ak)

]

=
∑
s,a

lim
T→∞

E
π,ρ0

[∑T
k=0 1(sk = s)1(ak = a)

T + 1
Ĝπ

av(sk, ak)

]
=
∑
s,a

dπ,ρ0
av (s)π(a|s)Gπ

av(s, a)

=∇θJav(θ).

Discounted total reward For the discounted reward, the discounted scaling is required, which echos back the claim made
in Nota & Thomas (2020. In particular,

lim
T→∞

E
π,ρ0

[
T∑

k=0

γkĜπ
γ (sk, ak)

]
=
∑
s,a

lim
T→∞

E
π,ρ0

[
T∑

k=0

γk
1(sk = s)1(ak = a)Ĝπ

γ (sk, ak)

]
=
∑
s,a

dπ,ρ0
γ (s)π(a|s)Gπ

γ (s, a)

=∇θJγ(θ).

Understanding Policy Gradient

C. Proof of Theorem 4.2 and 4.4 (Approximation Error Bounds)
The discounted value function is often used together with the undiscounted visitation counts (episodic tasks) or frequency
(continuing tasks). While this yields problems as Nota & Thomas (2020) pointed out, we can attain equivalence when γ ↑ 1.
In episodic tasks, the discounted sum reduces to the total sum,

lim
γ↑1

dπ,ρ0
γ (s) = dπ,ρ0

tot (s), lim
γ↑1

V π
γ (s) = Vtot(s).

In continuing tasks, by the Abelian theorem (Hernández-Lerma & Lasserre, 1996)[Lemma 5.3.1], the discounted sum
approaches the average value

lim
γ↑1

(1− γ)dπ,ρ0
γ (s) = lim

T→∞

1

T

T∑
k=0

Pr(sk = s|ρ0, π)
(i)
= dπ,ρ0

av (s),

lim
γ↑1

(1− γ)Vγ(s) = lim
T→∞

E
π,ρ0

[
1

T + 1

T∑
k=0

R̃(sk, ak)

]
= Jav(π),

where (i) follows from the ergodicity assumption. Nevertheless, only γ < 1 can be used for real problems. In this section,
we show that the errors of dπ,ρ0

• and V π
• depend on γ and the structure of the Markov transition probabilities.

C.1. Episodic Task (Theorem 4.2)

We assume that there exists an upper bound of time epochs such that the probability of entering the terminal state is nonzero.
Assumption. There exist an integer m > 0 and a positive real number α < 1 such that,

Pr(sm ̸= z|s0, π) ≤ α, ∀s0 ∈ S, π.

Distribution error Let ρ̃0 stand for a distribution over transient states, and P̃π be the corresponding transition matrix. By
Assumption 4.1, the accumulated visitation counts between tm and (t+ 1)m− 1 is bounded by

(t+1)m−1∑
k=tm

∥ρ̃0(P̃π)k∥∞ ≤ mαt.

Let d̃π,ρ0
• be the corresponding expected visitation counts on transient states, we can obtain

∥d̃π,ρ0

tot − d̃π,ρ0
γ ∥∞ =

∥∥∥ ∞∑
k=0

(1− γk)ρ0(P̃
π)k

∥∥∥
∞

≤
∞∑
k=0

∥(1− γk)ρ0(P̃
π)k∥∞

≤
∞∑
t=0

m(1− γtm)αt

=
mα(1− γm)

(1− α)(1− αγm)
.

Value error According to Assumption 4.1, the accumulated reward between stage tm and (t+ 1)m− 1 is bounded by

E
ρ0,π

[
(t+1)m−1∑

k=tm

Rπ(sk)

]
≤ mαt∥Rπ∥∞.

Note that the we can equivalently write V π
γ and V π

tot as

V π
γ =

∞∑
k=0

γk(Pπ)kRπ,

V π
tot =

∞∑
k=0

(Pπ)kRπ.

Understanding Policy Gradient

The value function gap between the total reward and the discounted reward setup can be bounded by

∥V π
tot − V π

γ ∥∞ =
∥∥∥ ∞∑

k=0

(1− γk)(Pπ)kRπ
∥∥∥
∞

≤
∞∑
k=0

∥(1− γk)(Pπ)kRπ∥∞

≤
∞∑
t=0

m(1− γtm)αt∥Rπ∥∞

=
mα(1− γm)

(1− α)(1− αγm)
∥Rπ∥∞.

C.2. Continuing Task (Theorem 4.4)

Definition C.1. The total variation norm of a signed measure δ(·) is

∥δ∥TV := max
X⊂S

∑
s∈X

δ(s)− min
X⊂S

∑
s∈X

δ(s).

We assume that, under all policies, the Markov chain under policy π is geometrically ergodic.
Assumption. There exist positive constants C and β < 1 such that

max
s∈S

∥ρ0(Pπ)k − dπ,ρ0
av ∥TV ≤ Cβk.

Distribution error The distribution between the discounted frequency and average frequency is bounded by

∥(1− γ)dπ,ρ0
γ − dπ,ρ0

av ∥TV =
∥∥∥(1− γ)

∞∑
k=0

γk
(
ρ0(P

π)k − dπ,ρ0
av

)∥∥∥
TV

≤(1− γ)

∞∑
k=0

γkCβk =
1− γ

1− γβ
C.

Value error To study the error bound for the average reward, we need the following additional definition regarding the
gap between the maximum and the minimum of a vector.

Definition C.2. The span semi-norm of a vector V is

sp(V) = max
s

V (s)−min
s

V (s).

The value function for the average reward is equivalent to

V π
av =[(I − Pπ + edπ,ρ0

av)−1 − edπ,ρ0
av]Rπ

=

∞∑
k=0

[
I + (Pπ − edπ,ρ0

av)k
]
Rπ − edπ,ρ0

av Rπ

(i)
=

∞∑
k=0

[(Pπ)k − edπ,ρ0
av]Rπ,

where (i) follows from (Pπ − edπ,ρ0
av)k = (Pπ)k − edπ,ρ0

av for k ≥ 1, which can be proven through induction. As
edπ,ρ0

av Rπ = Jav(π) is a constant, we can bound the value function gap between the average reward and the discounted

Understanding Policy Gradient

reward by

sp(V π
av − V π

γ) =sp
(∞∑

k=0

{
(1− γk)(Pπ)kRπ − Jav(π)

})
≤

∞∑
k=0

sp
(
(1− γk)(Pπ)kRπ

)
≤

∞∑
k=0

(1− γk)βksp(Rπ)

=
β(1− γ)

(1− β)(1− βγ)
sp(Rπ).

