
Synergy and Symmetry in Deep Learning:
Interactions between the Data, Model, and Inference Algorithm

Lechao Xiao 1 Jeffrey Pennington 1

Abstract
Although learning in high dimensions is com-
monly believed to suffer from the curse of dimen-
sionality, modern machine learning methods of-
ten exhibit an astonishing power to tackle a wide
range of challenging real-world learning problems
without using abundant amounts of data. How ex-
actly these methods break this curse remains a
fundamental open question in the theory of deep
learning. While previous efforts have investigated
this question by studying the data (D), model
(M), and inference algorithm (I) as independent
modules, in this paper we analyzes the triplet
(D,M, I) as an integrated system and identify
important synergies that help mitigate the curse of
dimensionality. We first study the basic symme-
tries associated with various learning algorithms
(M, I), focusing on four prototypical architec-
tures in deep learning: fully-connected networks
(FCN), locally-connected networks (LCN), and
convolutional networks with and without pooling
(GAP/VEC). We find that learning is most effi-
cient when these symmetries are compatible with
those of the data distribution and that performance
significantly deteriorates when any member of the
(D,M, I) triplet is inconsistent or suboptimal.

1. Introduction
Statistical problems with high-dimensional data are fre-
quently plagued by the curse of dimensionality, in which
the number of samples required to solve the problem grows
rapidly with the dimensionality of the input. Classical theory
explains this phenomenon as the consequence of basic geo-
metric and algebraic properties of high-dimensional spaces;
for example, the number of ε-cubes inside a unit cube in

1Google Research, Brain Team. Correspondence to:
Lechao Xiao <xlc@google.com>, Jeffrey Pennington <jpen-
nin@google.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Rd grows exponentially like ε−d, and the number of degree
r polynomials in Rd grows like a power-law dr. Since for
real-world problems d is typically in the hundreds or thou-
sands, classical wisdom suggests that learning is likely to
be infeasible. However, starting from the groundbreaking
work AlexNet (Krizhevsky et al., 2012), practitioners in
deep learning have tackled a wide range of difficult real-
world learning problems (Vaswani et al., 2017; Devlin et al.,
2018; Silver et al., 2016; Senior et al., 2020; Kaplan et al.,
2020) in high dimensions, once believed by many to be
out-of-scope of current techniques. The astonishing success
of modern machine learning methods clearly contradicts
the curse of dimensinonality and therefore poses the funda-
mental question: mathematically, how do modern machine
learning methods break the curse of dimensionality?

To answer this question, we examine the most fundamental
ingredients of machine learning methods. They are the data
(D), the model (M), and the inference algorithm (I).

Data (D) is of course central in machine learning. In the clas-
sical learning theory setting, the learning objective usually
has a power-law decay m−α as the function of the number
of training samplesm. The theoretical bound on α is usually
small (e.g. α = d−1 (von Luxburg & Bousquet, 2004; Bach,
2017; Bahri et al., 2021)) and is of limited practical utility
for high-dimensional data. On the other hand, empirical
measurements of α in state-of-the-art deep learning models
typically reveal values of α that are significantly larger (e.g.
α = 0.43 for ResNets trained on ImageNet in Fig.5) even
though d is quite large (e.g. d ∼ 105 for ImageNet). This
example suggests that the learning curve must have impor-
tant functional dependence onM and I . Indeed, as we will
observe later, many of the best performing methods exhibit
learning curves for which α = α(m) actually increases as
m becomes larger, i.e. data makes the usage of data more
efficient. We call this phenomenon DIDE, for data improves
data efficiency; see Fig.5.

Designing machine learning models (M) that maximize
data-efficiency is critical to the success of solving real-world
tasks. Indeed, breakthroughs in machine learning are of-
ten driven by novel architectures such as LeNet (LeCun
et al., 1998), AlexNet(Krizhevsky et al., 2012), Transformer
(Vaswani et al., 2017), etc. While some of the inductive

Synergy and Symmetry in Deep Learning

biases of these methods are clear (e.g. translation symme-
tries of CNNs), others tend to build off of prior empirical
success and are less well-understood (e.g. the implicit bias
of SGD). To build our understanding of these biases and
how they affect learning, we conduct a theoretical analy-
sis of them in the infinite-width setting (Neal, 1994; Poole
et al., 2016; Daniely et al., 2016; Jacot et al., 2018b; Lee
et al., 2019), which preserves most salient aspects of the
architecture while enabling tractable calculations.

The inference procedure (I) is what enables learning in ma-
chine learning methods. It is widely believed that modern
inference methods, specifically gradient descent and vari-
ants, “implicitly" bias the solutions of the networks towards
those that generalize well and away from those that gen-
eralize poorly (Neyshabur, 2017; Gunasekar et al., 2018;
Soudry et al., 2018). The effects of the inference algorithm
are intimately tied to the specifics of the model (e.g. weight-
sharing) and the data (e.g. augmentation), and might not
be fully understood with a fixed-data, fixed-model analy-
sis. Indeed, good performance may derive from interactions
between (M, I), or (D, I), or even (D,M, I). In Sec. 6,
we demonstrate the DIDE effect for a particular choice of
(D,M, I) and show that this effect disappears if any one of
D,M, or I is altered.

The above discussion highlights the insufficiency of treating
D, M, and I as separate non-interacting modules. They
must be considered as an integrated system. Throughout
this paper, we will refer to the triplet (D,M, I) as a (ma-
chine) learning system and the tuple (M, I) as the learning
algorithm of the system that operates on D.

We focus our study on four prototypical deep learning ar-
chitectures whose similarities and differences provide a
rich test bed for analysis: full-connected networks (FCN),
locally-connected networks (LCN), convolutional networks
with read-out vectorization (VEC), and convolutional net-
works with read-out global average pooling (GAP). We
consider both finite-width (FCNn, LCNn, VECn, GAPn)
and infinite-width variants of these architectures (FCN∞,
LCN∞, VEC∞, GAP∞). We examine the basic symmetries
of the (D,M, I) triplets associated to these architectures
and find that better architectures break spurious symmetries.
We also identify a symmetry breaking effect due to finite-
width and carefully examine the impact of this effect to the
performance of the system.

2. Related Work
The study of infinite networks dates back to the seminal
work of Neal (1994) who showed the convergence of single
hidden-layer networks to Gaussian Processes (GPs). Re-
cently, there has been renewed interest in studying random,
infinite, networks starting with concurrent work on “con-

jugate kernels” (Daniely et al., 2016; Daniely, 2017) and
“mean-field theory” (Poole et al., 2016; Schoenholz et al.,
2017), taking a statistical learning and statistical physics
view of points, respectively. Since then this analysis has
been extended to include a wide range for architectures (Lee
et al., 2018; Matthews et al., 2018; Xiao et al., 2018a; Novak
et al., 2019b; Yang, 2019; Hron et al., 2020b). The inducing
kernel is often referred to as the Neural Network Gaussian
Process (NNGP) kernel. The neural tangent kernel (NTK),
first introduced in Jacot et al. (2018a), along with followup
work (Lee et al., 2019; Chizat et al., 2019) showed that the
distribution of functions induced by gradient descent for
infinite-width networks is a Gaussian Process with NTK as
the kernel. Since then, NNGP and NTK have become ex-
tremely useful and popular tools to study various properties
of neural networks (Arora et al., 2019; Adlam & Penning-
ton, 2020; Bordelon et al., 2021; Mei et al., 2021; Bietti,
2021; Favero et al., 2021; Xiao, 2021) and many others.

The implicit bias of gradient descent has been the focus
of a number of recent works (Soudry et al., 2018; Lyu &
Li, 2020; Ji & Telgarsky, 2019a;b; Chizat & Bach, 2020),
leading to a variety of noteworthy conclusions, including
the convergence of GD to the maximal margin solution for
logistic-type losses during late-time training (Soudry et al.,
2018). Nakkiran et al. (2019); Hu et al. (2020); Rahaman
et al. (2019); Xu (2018); Xu et al. (2019); Su & Yang (2019);
Yang & Salman (2019) study the early-time dynamics and
spectral biases of neural networks, leading to the conclu-
sion that simpler functions are usually learned before more
complex functions.

Understanding and exploiting the structural information in
natural are central aspects of designing machine learning
systems. Li et al. (2018); Goldt et al. (2020); Pope et al.
(2021) study the low-dimensional structure of natural data
while Bruna & Mallat (2013); Petrini et al. (2021) investi-
gate the role of deformation stability of natural data. De-
signing networks that maximally respect the symmetries of
natural data (e.g. translational invariance/equivalence of im-
ages (Cohen & Welling, 2016; Zaheer et al., 2017)) is widely
considered a principled approach in practice. Several works
also demonstrate the possibility of learning such symme-
tries from scratch using natural or synthetic data (Neyshabur,
2020; Ingrosso & Goldt, 2022). Nevertheless, recent break-
through in applying attention-based models (Dosovitskiy
et al., 2020; Tolstikhin et al., 2021; He et al., 2021) to com-
puter vision has fundamentally challenged the significance
that symmetries play in model design. Attention-based mod-
els have weaker inductive biases (lacking even translation
equivariance) than those of convolutional networks, yet their
performance is comparable in the large data regime (Zhai
et al., 2022). Our analysis of DIDE (Fig. 5) sheds some light
on why such models are able to reach good performance
with the help of more data.

Synergy and Symmetry in Deep Learning

3. Preliminaries and Notation
We focus our presentation on the supervised learning set-
ting and more concretely, on image recognition. Let D ⊆
(Rd)3 × Rk ≡ R3d × Rk denote the data set (training and
test) and X = {x : (x, y) ∈ D} and Y = {y : (x, y) ∈ D}
denote the input space (images) and label space, respec-
tively. Here d is the spatial dimension (e.g. d = 32× 32 for
CIFAR-10) of the images and 3 is the total number of chan-
nels (i.e. RGB). We assume (x, y) ∈ D is obtained from
some data generating process with unknown distribution µD
and the learning task is to recover µD.

3.1. Neural Networks

We use FCNn to denote an L-hidden layer fully-connected
network with identical hidden widths nl = n ∈ N for
l = 1, ..., L and with readout width nL+1 = k (the number
of logits). For each x ∈ R3d, we use hl(x), xl(x) ∈ Rnl
to represent the pre- and post-activation functions at layer l
with input x. The recurrence relation FCNn is given by

{
hl+1 = xlW l+1

xl+1 = φ
(
hl+1

) and W l+1
i,j =

1
√
nl+1

ωl+1
ij (1)

where φ is a point-wise activation function, W l+1 ∈
Rnl×nl+1 are the weights and ωlij are the trainable param-
eters, drawn i.i.d. from a standard Gaussian N (0, 1) at
initialization. For simplicity of the presentation, the bias
terms and the hyperparameters (the variances of the weights)
are omitted; including them as hyperparameters will not sig-
nificantly change any of the main conclusions.

For convolutional networks, the inputs are treated as tensors
in (Rd)3. The recurrence relation of convolutional networks
can be written as

x
l+1
α,j = φ(hl+1

α,j)

hl+1
α,j = 1√

(2k+1)nl

∑nl

i=1

∑k
β=−k x

l
α+β,iω

l+1
ij,β .

(2)

Here α ∈ [d] denote the spatial location, i/j ∈ [n] denotes
the fan-in/fan-out channel indices. For notational conve-
nience, we assume circular padding and stride equal to 1
for all layers. The features of the penultimate layer are 2D
tensors and there are two commonly used approaches to
map them to the logit layer: (a) VECn, which vectorizes the
2D tensor to a 1D vector, yielding a translation-equivariant
inductive bias, or (b) GAPn, which applies a global aver-
age pooling layer to each channel, yielding a translation-
invariant inductive bias. The readout layers for these models

can be written as,

xL+1
j =

1√
dn

∑
i∈[n]

∑
α∈[d]

xLα,iw
L+1
α,ij (VECn) , (3)

xL+1
j =

1√
n

∑
i∈[n]

1

d

∑
α∈[d]

xLα,i

wL+1
ij (GAPn) . (4)

The key difference between the two architectures is that,
in VECn, each pixel in the penultimate layer has its own
readout variable, whereas in GAPn the pixels within the
same channel share the same readout variable. It is clear
that the function space of VECn contains that of GAPn.

Locally Connected Networks (LCNn) (Fukushima, 1975;
Lecun, 1989) are convolutional networks without weight
sharing between spatial locations. They share the connectiv-
ity pattern and topology of a standard convolutional network,
but the weights are not shared across spatial patches. Math-
ematically, the network is defined as in Equation 2, but
with all the shared parameters ωlij,β replaced by unshared
ωlij,α,β ∼ N (0, 1). In this work, we assume that the LCNn
are always associated with a vectorization readout layer and
it is therefore clear that the function space of LCNn is a
super set of VECn. Interestingly, LCNn is also a subset of
VECdn when the network is d times wider.

Theorem 3.1 (Sec. C). Let VECn/LCNn/GAPn/FCNn
denote the set of functions that can be represented by a
L-hidden layer VECn/LCNn/GAPn/FCNn network with
hidden-layer width n. Then

GAPn ⊆ VECn ⊆ LCNn ⊆ VECdn ⊆ FCNd2n . (5)

As remarked above, the random initialization of parame-
ters endows GAPn with a translation-invariant prior, which
may be well-suited to many image-classification tasks. This
observation, combined with the result from Theorem 3.1
that the function space of GAPn is smallest, suggests that
networks with this architecture may enjoy favorable general-
ization properties. Indeed, prior work (Novak et al., 2019b;
Lee et al., 2020; Neyshabur, 2020) has found that GAPn
can significantly outperform VECn, LCNn, and FCNn, a
conclusion we also find in Sec. 5.

We emphasize that the above observation relies on a no-
tion of the prior induced by initialization and says little
about the effect of optimization. It is possible that gradi-
ent descent could update the readout weights of a network
from the VECn class toward a configuration that approxi-
mately implements average pooling, thereby pushing the
model closer to a member of the GAPn class. Alternatively,
if the weights remain close to their initial random values,
the function might more closely resemble a member of the
LCNn class. This perspective gives some intuition for how
the inference algorithm I can interact with the modelM

Synergy and Symmetry in Deep Learning

Models

Symmetry Groups

Rotated Images

(iid Gaussian)

VEC∞/LCNn/∞
(iid Non-Gaussian)

FCNn
(iid Gaussian)
VECn/GAPn/∞

(iid Gaussian)
FCNn/∞

O(3d) P(3d) O(3)d O(3) ⊗ Id I3d

Figure 1: Models and associated symmetry groups. Top: architectures (initialization scheme). Middle: implied symmetry
groups. Bottom: rotated images, where the rotation is randomly drawn from the corresponding symmetry group. The largest
symmetry group for which a random transformation does not obfuscate the underlying image is evidently O(3)⊗ Id.

to produce predictive functions with significantly different
generalization properties. We return to this theme in Sec. 6.

3.2. Infinite Network: Gaussian Processes and the
Neural Tangent Kernels

In order to better disambiguate the effects of the modelM
from the inference algorithm I, it is useful to examine our
model families in the limit of infinite width. This limit
facilitates simpler theoretical analysis while simultaneously
preserving most of the salient ingredients of the finite-width
models. Below, we briefly review several useful aspects of
infinitely-wide networks and refer interested readers to the
references for a more comprehensive introduction.

Neural Networks as Gaussian Processes (NNGP). As
the width n→∞, at initialization the output f0(X) forms a
Gaussian Process f0(X) ∼ GP(0,K(X ,X)), known as the
NNGP (Neal, 1994; Lee et al., 2018; Matthews et al., 2018).
Here K is the GP kernel and can be computed in closed
form for a variety of architectures (Novak et al., 2019a).
By treating this infinite width network as a Bayesian model
(aka Bayesian Neural Networks) and marginalizing over
the training set (XT ,YT), the posterior is also a GP whose
mean is given by K(X∗,XT)K−1(XT ,XT)YT .

Neural Tangent Kernels (NTK). Recent advances in
global convergence theory of large width networks (Jacot
et al., 2018a; Du et al., 2018; Allen-Zhu et al., 2018; Zou
et al., 2020; Lee et al., 2019) have shown that under certain
assumptions, the gradient descent dynamics of a network
converge to that of kernel gradient descent as the widths
approach infinity, where the kernel is the NTK (Jacot et al.,
2018a), denoted by Θ. As such, in the infinite width limit,
when the loss is the mean squared error (MSE), the mean
prediction (marginarized over random initialization) can be
solved analytically. In particular, when the training time

t =∞, the prediction is given by

f(X∗) = Θ (X∗,XT) Θ−1(XT ,XT)YT , (6)

For convenience, we use FCN∞(x), LCN∞(x), VEC∞(x)
and GAP∞(x) to denote the infinite width solutions (either
via NNGP inference or NTK regression) for the correspond-
ing architectures.

4. Symmetries of Machine Learning Systems
In this section, we study the symmetry properties of various
machine learning systems (D,M, I) , focusing on how in-
variances implied by the learning algorithm (M, I) interact
with the data distribution µD.

To provide concrete context, let us consider solving image
classification using kernel regression with an inner-product
kernel K (i.e. K(x, x̄) = k(〈x, x̄〉) for some function k).
Since K is invariant to rotations of its inputs (i.e. for any
rotation operator τ , K(τx, τ x̄) = K(x, x̄)), if we rotate
all (both train and test) images by any fixed rotation τ , the
kernel is unchanged and so are the predictions. Because nat-
ural images surely exhibit spatial structure that is destroyed
by rotations (see Fig. 1), we might expect such kernels to
perform poorly on image classification tasks, and indeed
we find this to be the case (see Sec. 5). In this sense, the
symmetry properties implied the learning algorithm are in-
compatible with the data distribution µD, and we regard
them as spurious. Below we describe some notation and
results that will help us analyze this type of interaction more
systematically.

For a deterministic (stochastic) learning algorithm A =
(M, I), we use A(DT) to denote the learned function (dis-
tribution of the learned functions) using training setDT . We
use Aτ (DT) to denote the learned function(s) using τ(DT),
which make predictions on the transformed test point τ(X∗).
In other words, all inputs, including training and test inputs,
are pre-processed by a common transformation τ before

Synergy and Symmetry in Deep Learning

feeding to the learning algorithm A. For convenience, for
random variables A and B, we use A =d B to indicate that
they have the same distribution.

Definition 1. Let G be a group of transformations R3d →
R3d. A deterministic (stochastic) learning algorithm A =
(M, I) is g-invariant if A = Ag (A =d Ag). In this
case, we say the system (D,M, I) is g-invariant and use
the notation (D,M, I) = (gD,M, I). If this holds for
all g ∈ G, then we say the algorithm and the system are
G-invariant.

Comparing with Functional Invariance. The flavor of
invariance studied this paper is algorithmic invariance, as
it concerns a system or a learning algorithm, and is qual-
itatively different from the functional invariance studied
elsewhere (Cohen & Welling, 2016). Recall that a function
f is (functionally) invariant to a group G if f(τx) = f(x)
for all τ ∈ G. Natural images are often considered to be
translationally invariant, which is a key motivation for the
usage of convolutional networks in computer vision. These
symmetries are hard-coded into the architectures1 as a kind
of inductive bias and the (post-pooling) representations are
invariant to this group by design. As a consequence, the
corresponding hypothesis class, defined by these networks,
is more restricted, which could lead to better generalization
performance if the symmetry were exact (Shalev-Shwartz
& Ben-David, 2014). Algorithmic invariance is weaker
than functional invariance. For example, in the discussion
above, the learning system defined by kernel regression
with an inner product kernel is algorithmically invariant
to the rotational group G since K(τx, τ x̄) = K(x, x̄) for
all τ ∈ G, but the learned function itself is not function-
ally invariant, which would require the kernel to be G-
invariant K(τx, x̄) 6= K(x, x̄). Nevertheless, we could
augment2 this learning system to be functionally invariant
by hard-coding the symmetries into the system by defin-
ing an invariant kernel K inv(x, x̄) =

´
τ∈G K(x, τ x̄)dτ .

The regressor is invariant to G as the kernel itself is G-
invariant: K inv(τx, x̄) = K inv(x, x̄), which is stronger than
K(τx, τ x̄) = K(x, x̄).

To present the implied symmetry properties of the main ar-
chitectures under study, we need to introduce some notation.
Let O(3d) denote the orthogonal group on the flattened in-
put space R3d. The subgroup O(3)d ≤ O(3d) operates on
the un-flattened input (R3)d, whose elements rotate each
pixel xα ∈ R3 by an independent element τα ∈ O(3). The
smaller subgroup O(3) ⊗ Id ≤ O(3)d applies the shared
rotation, i.e. τα = τ to all xα for α ∈ [d]. Similarly, we use
P(3d) to denote the permutation group on R3d and P(3)d

1In the idealized setting when circular padding is applied and
the readout layer is a global average pooling.

2This is similar to augment the training set by group actions
(Chen et al., 2020).

and P(3) ⊗ Id are defined similarly. Note that rotating X
by τ is equivalent to transforming the underlining coordi-
nate systems of the input by the adjoint τ∗ = τ−1. Fig 1
displays an image from CIFAR-10 under five families of
rotations. We use FCNn,VECn, etc. to denote the output
function (distribution) of a finite-width network obtained by
SGD, in which the random initialization is the only source
of randomness.

Theorem 4.1 (Sec.D). If the initial parameters of the net-
works defined in Sec. 3.1 are iid samples fromN (0, 1), then
the predictions from finite-width networks trained by SGD
or infinite-width networks trained by kernel regression enjoy
the following symmetries:

• FCNn/∞ are O(3d)-invariant

• LCNn/∞ and VEC∞ are O(3)d-invariant

• VECn and GAPn/∞ are O(3)⊗ Id-invariant.

The O(3d)-invariance of FCNn/∞ follows from the rota-
tional invariance of the Gaussian measure, and has been
observed in many prior works, including (Wadia et al., 2020;
Li et al., 2020). Rotating the input by τ ∈ O(3d) is equiva-
lent to rotating the weight matrix ω of the first layer by τ∗,
and since τ∗ω =d ω for ω ∼ N (0, 1)3d, the distribution of
the output functions at step 0 (aka initialization) is invariant.
This observation implies that the first gradient is also O(3d)-
invariant, which further implies the O(3d)-invariance of the
output function after the first gradient update. By induction,
this invariance property holds throughout the course of gra-
dient descent training, even with L2-regularization as the
L2-norm is rotationally invariant. Such invariant property
also holds for (finite-width) Bayesian posterior inference
thanks to the Bayes theorem: P (τX ∗|τXT) = P (X ∗|XT)
because P (τX ∗, τXT)/P (τXT) = P (X ∗,XT)/P (XT).

For the same reason, LCNn is O(3)d-invariant because each
patch of the image uses independent Gaussian random vari-
ables. In addition, weight-sharing in VECn and GAPn
breaks the O(3)d symmetry, reducing it to O(3)⊗ Id.

For infinite networks, LCN∞ = VEC∞ (Xiao et al., 2018b;
Novak et al., 2019b; Garriga-Alonso et al., 2019). The
kernels of VEC∞ and GAP∞ are of the forms

ΘVEC(x, x′) = k({〈xα, x′α〉}α∈[d]) (7)
ΘGAP(x, x′) = k({〈xα, x′α′〉}α,α′∈[d]). (8)

The former depends only on the inner product between
pixels in the same spatial location, breaking the O(3d) sym-
metry of FCN∞ and reducing it to O(3)d. In addition, the
latter depends also on the inner products of pixels across
different spatial locations due to pooling, which breaks the
O(3)d symmetry and reduces it to O(3) ⊗ Id. Noting that

Synergy and Symmetry in Deep Learning

dim(O(3d)) = 3d(3d − 1)/2 > dim(O(3)d) = 3d >
dim(O(3) ⊗ Id) = 3, we see that LCNn/VEC∞ dramati-
cally reduces the dimensionality of the symmetry group. As
we will observe in Secs. 5 and 6, if a symmetry group is
inconsistent with the data distribution, the performance of
the associated learning algorithm tends to diminish in pro-
portion to the dimension of the spurious symmetry group;
see Fig. 2.

The results of the paper are presented in the most vanilla
setting. Our methods can easily extend to more compli-
cated architectures like ResNet(He et al., 2016), MLP-
Mixer(Tolstikhin et al., 2021), etc. The symmetry groups
of such systems need to be computed in a case-by-case
manner by identifying the invariant group of the random
initialization and training procedures. For example, the or-
thogonal group type of symmetries needed to be replaced
by the permutation-type of symmetries if non-Gaussian i.i.d.
initialization or/and Lp (p 6= 2) regularization. However,
we empirically observe that swapping the Guaussian initial-
ization by the uniform initialization in the first layer does
not essentially change the performance of the network; see
Sec. F.2. This observation indicates that the permutation
group may exhibit a similar degree of spuriousness as the
rotation group; however, more rigorous and thorough exper-
iments are needed to confidently confirm this claim, which
is left for future work. Moreover, the invariance property
studied here is mainly coming from the first layer and it is
possible that later layers could contribute new invariances
to the system. For example, owing to the non-overlapping
between patches in ViT (Dosovitskiy et al., 2020), there
could be permutation symmetries between the patches in
the subsequent self-attention layer (assuming no positional
encoding). Finally, for the sake of simplicity, we use NTK-
parameterization (Jacot et al., 2018a) but our results apply to
other network parameterizations, including standard- (Sohl-
Dickstein et al., 2020), meanfield- (Mei et al., 2018), µ-
parameterizations (Yang & Hu, 2020). In particular, both
finite- and infinite-width FCNs still suffer from the most
spurious symmetries O(3d) for all such parameterization
scheme, which may explain the poor performance of FCN
in the “feature learning" regime (e.g. 61.5% accuracy on
CIFAR-10, Table 1. in Yang et al. (2022).)

5. Empirical Analysis
This section focuses on empirical analysis. Details regarding
the experimental setup of this and next section can be found
in Sec. B. The goal is to (1) verify Theorem 4.1, (2) study
the consistency between D and A = (M, I) via the lens of
symmetries, and (3) study the effect of symmetry breaking
by comparing VECn to VEC∞. In light of the visualization
of the images in Fig. 1, as well as the numerical performance
of the various methods mentioned below, O(3)⊗ Id is the

largest symmetry group that is compatible with µD. In what
follows, we regard all larger symmetries (O(3)d, P(3d) and
O(3d)) as spurious.

5.1. Experimental Setup.

We conduct experiments on D = CIFAR-10 (Krizhevsky
et al., 2009), which is a standard image dataset that consists
of 50, 000/10, 000 training/test images. We vary each mem-
ber of (D,M, I) as follows. Five Datasets. We create 5
families of new datasets τD by rotating all input images in
D by τ , a fixed random element of one of the five groups:
identity operator I3d, pixel-wise shared-rotations, O(3)⊗Id,
pixel-wise (unshared-)rotations O(3)d, permutations P(3d)
and global rotations O(3d). Six Models. In addition to FCN,
LCN, VEC and GAP, we add LAP4/8 which are the same
as GAP except the readout layer is replaced by the Local
Average Pooling with window size 4 × 4/8 × 8. All net-
works have 8 hidden layers. Three Inference Algorithms.
(1) NTK regression3 (aka infinite-width networks), (2) NN,
our baseline for finite-width networks which is trained with
momemtum using a small learning rate without L2 regular-
ization; (3) NN+:= NN+LR+L2, i.e. using a larger learning
rate (+LR) and adding L2 regularization (+L2). We plot the
test accuracy for each (D,M, I) (a total of 90 = 3× 6× 5)
in Fig. 2. The accuracy for finite-width networks is aver-
aged over 5 runs4 for each (D,M, I) , and in each run the
rotation τ is resampled. Note that the total variance across
runs is small, indicating that the particular choice of τ has
negligble effect on the results.

5.2. Verifying Theorem 4.1

As expected from Theorem 4.1, Fig. 2 shows that across
NTK/NN/NN+, the performance of FCNn/∞ is invariant to
all symmetry transformations, the performance of LCNn and
VEC∞ = LCN∞ are invariant to O(3)d (and its subgroups),
and the performance of VECn, LAP4/8 and GAPn/∞ are
invariant to O(3)⊗ Id.

5.3. Effect of spurious symmetries

In order to analyze the consistency of the data D and al-
gorithm A, we examine performance in the presence of
various spurious symmetries, which we introduce through
the five rotated datasets and through the six different model
families. We focus on two main findings: (1) the strength of

3 When investigating the impact of inference algorithms, it
would be preferable to compare finite-width Bayesian inference
to SGD. Unfortunately, Bayesian inference is too expensive to
perform exactly and approximations may induce unwanted biases.
As such, we instead use infinite-width Bayesian inference (i.e.
NNGP regression (Hron et al., 2020a)), whose performance is
usually very similar to NTK regression.

4A few (D,M, I) have only 1 or 2 successful runs.

Synergy and Symmetry in Deep Learning

O(3d) P(3d) O(3)d O(3) Id I

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

NTK

FCN

VEC

LAP4

LAP8

GAP

O(3d) P(3d) O(3)d O(3) Id I

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

NN

FCNn
VECn
LAP4

n

LAP8
n

GAPn
LCNn

O(3d) P(3d) O(3)d O(3) Id I

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

NN+

FCNn
VECn
LAP4

n

LAP8
n

GAPn
LCNn

Figure 2: Performance of various architectures under different data transformations. Left: network trained using
NTK. Middle: finite-width network trained with a small learning rate and no L2-regularization. Right: larger learning rate
and L2-regularization. We transform all images in CIFAR-10 by a random element from one of the five groups (x-axis) and
plot the accuracy (y-axis) for 6 architectures. Performance degrades in the presence of spurious symmetry, and the decrease
is similar regardless of whether that symmetry arises from the data or from the model (see Thm. 4.1).

the spurious symmetry controls performance, regardless of
how it is introduced; and (2) SGD confers its main benefits
in the absence of spurious symmetries.

Performance dictated by spurious symmetries. For
each fixed I, we choose the highest-performing triplet
(D,GAP, I) as a baseline that exhibits the strongest consis-
tency between A and µD. We then progressively break this
consistency by injecting spurious symmetries in two ways:
(1) fixing (GAP, I) and changing the dataset to τD; and (2)
fixing (D, I) and changing GAP toMτ , whereMτ repre-
sents an architecture that is τ -invariant (c.f.Theorem 4.1).

From Fig. 2, we see that for each fixed I ∈
{NTK,NN,NN+}, test performance monotonically de-
creases as the symmetries become more “spurious”. We
also observe that performance is to a good approximation
determined by the spurious symmetry itself, independent
of the way it was introduced. In particular, across all set-
tings we observe that the performance of (τD,M, I) is
close to that of (D,Mτ , I) which is itself nearly the same
as (τD,Mτ , I). As a concrete example of this relation-
ship, in Fig. 2 for I = NTK, the performance of GAP∞
under an O(3)d data transformation equals the performance
of VEC∞ with no data transformation, which is expected
since Theorem 4.1 implies VEC∞ is O(3)d-invariant.

Spurious symmetries eliminate the benefit of SGD. We
examine the benefits of SGD by varying I from NTK (no
SGD-impact, left panel of Fig. 2) to NN (weak SGD-impact,
middle panel) to NN+ (strong SGD-impact, right panel).
We find that the behavior depends strongly on whether or
not (D,M) has spurious symmetries. In the presence of
spurious symmetries, i.e. when eitherM is invariant to a
symmetry group larger than O(3)⊗ Id or when D is rotated
by an element from such a group, there is no benefit from
SGD, as we observe that NTK outperforms both NN and
NN+. In the absence of spurious symmetries, i.e. when
M ∈ {GAP,VEC, LAP4/8} and when the transformation

applied to D is from a group no lagrer than O(3)⊗ Id, we
observe a significant boost in performance when chang-
ing the inference algorithm from I = NTK to I = NN+,
e.g. 77% → 84% when GAP∞ → GAPn. The perfor-
mance gain of VEC is most significant (67%→ 78% when
VEC∞ → VECn), which will be discussed in detail in the
following section. Overall, our empirical results suggest
that SGD does not improve the performance when (D,M)
has spurious symmetries, at least for CIFAR-10 without
data-augmentation. We argue that, when studying the ben-
efits of feature learning, it is essential to take into account
both the data distribution and the architecture choices.

5.4. Symmetry breaking at finite width in VECn.

Weight-sharing implies that VECn is O(3) ⊗ Id-invariant;
however, when n → ∞, this symmetry group is enlarged
to O(3)d (see Theorem 4.1). This observation highlights
a novel and previously underappreciated aspect of convo-
lutional models with vectorization: symmetry breaking at
finite width. As we will see, this broken symmetry can have
a significant impact on performance.

In Fig.3, we plot the performance on CIFAR-10 of VECn as
a function of width under the interventions: (1) rotating the
data by O(3)⊗ Id (which is actually a null operation with
no impact) or by O(3)d, and (2) training under NN or NN+
(i.e. +LR+L2). We summarize our findings below.

Strong benefits of finite width (Blue Lines). Both with
and without the intervention of +LR+L2, the performance
decreases monotonically and dramatically5 towards or
across the NTK performance (Faded Orange Lines) when
n passes a threshold (n ≈ 26/27 for NN/NN+).

Spurious symmetry eliminates benefits of finite width.
When changing D → τD where τ ∈ O(3)d, a spurious
symmetry incompatible with weight-sharing convolution,
modern wisdom in machine learning is restored: perfor-

5This phenomenon was first observed in (Lee et al., 2020).

Synergy and Symmetry in Deep Learning

26 28 210

Width

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

VECn:Base
+O(3) Id
+O(3)d

GAP

VEC

26 28 210

Width

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

VECn:+LR+L2
+O(3) Id
+O(3)d

GAP

VEC

Figure 3: Finite width Effect for VECn. Left: networks
trained with a small learning rate and no L2-regularization.
Right: with a larger learning rate and L2-regularization.
With O(3)d imposed on the data, performance of VECn is
far below the performance of VEC∞ (67%, orange hori-
zontal line), but improves monotonically as a function of
n. However, with smaller rotation group O(3)⊗ Id (has no
impact on VECn), performance degrades substantially after
the peak (blue lines). This suggests a strong finite-width
effect of VECn due to symmetry breaking.

mance improves with overparameterization, gradually ap-
proaching NTK performance (Orange Lines).

Large fluctuations at small n (Blue shaded area in Fig.3.)
The intervention +LR+L2 not only improves the perfor-
mance of VECn but also increases the variance of the per-
formance substantially 6 for small width (n = 25, 26). For
example, when n = 26 the validation accuracy are 68%,
78%, 78%, 79%, 79%. Such variability does not occur in
the presence of spurious symmetries (O(3)d).

One interpretation of Thm. 3.1 and the above observations
is that strong algorithmic forces are needed to help VECn
escape from the undesirable function class LCN and move
towards the more desirable properties of GAP. As discussed
earlier, one mechanism behind such movement could be
learning an approximation of pooling in the readout layer.

6. Data Improves Data Efficiency
In the previous section, we investigated the consistency of
various machine learning systems through the lens of sym-
metries. In this section, we further investigate the interplay
of the components of the (D,M, I) triplet by conducting
a fine-grained analysis of learning curves on various SoTA
vision models.

Recently, Kaplan et al. (2020); Bahri et al. (2021) and other
authors suggest that for real-worlds problems the learning
objective often has a power-law ∼ m−α dependence of
training set size m, where the exponent α is a constant
that usually independent from m. A surprising finding here

6For each configuration, the standard deviation is computed
over 5 different random initialization. Some of the runs fail and
we only plot the configurations with at least 4 successful runs (best
training accuracy is at least 95%.)

is that, for certain triplets (D,M, I) , α can grow as m
becomes larger, i.e. data improves data efficiency (DIDE);
see Fig. 4. In what follows, we first examine the learning
curve of VECn to better understand the huge performance
gap between VECn and VEC∞. We then move to SoTA
models, in which we observe a “cusp” in the learning curve.
Finally, we provide possible explanations about the observed
phenomena.

6.1. DIDE for VECn

We vary the training set size of CIFAR-10 from 320 to
45k (the whole un-augmented training set) and then to
90k (adding left-right flip augmentation) and plot the learn-
ing curves in Fig. 4 for various (D,M, I). We observe
a dramatic speedup of learning in our baseline setting
(D,M, I) = (CIFAR-10,VECn,SGD) (Blue Lines). Pic-
torially, the slope of the learning curve is steepened substan-
tially in the log-log plot. We then did an ablation study by
changing one member in (D,M, I) at a time: (1) Inference
Algorithm I (Orange Lines): SGD to NTK7 (2)Model
M (Red Lines): VECn → LCNn, and (3) Data D (Green
Lines): D → τD, where τ ∈ O(3)d randomly selected. In
all cases above, this phenomenon disappeared.

Possible Explanation. Recall from Theorem that 3.1, the
function class of VECn is sandwiched in-between GAPn
and LCNdn. In the small dataset regime, the algorithm
is unable to move VECn far away from the LCNdn-like
regime (O(3)d-invariance). This behavior is reflected from
Fig. 4: for m < 104) the Blue Lines (VECn) is very close
to the Green Lines (VECn with O(3)d spurious symmetry
applied to the data), and the slopes of all learning curves
are comparable. With more data, VECn is able to break
the O(3)d symmetry and being to perform feature learning,
which moves the model away from LCN-like regime and
towards GAPn. We provide further empirical support of
this hypothesis in Sec. E by showing that better performing
VECn-learners are closer to GAPn-learners and further from
the VEC∞-learners, and vice versa.

6.2. DIDE for ImageNet

Larger deep learning systems can be exhibit qualitative dif-
ferences from smaller ones. As such, we examine the DIDE
phenomenon for SoTA models on ImageNet (Deng et al.,
2009), which has mImageNet ∼ 106 training samples with
size 224× 224× 3 (= 3d).

We subsample mi = 2−i/2mImageNet images as our training
set, where i ∈ [12]. In Fig. 5, we plot the learning curves
for four (D,M, I) triplets. We set M to be ResNet101
or a (small MLP-)Mixer (Tolstikhin et al., 2021), D to be

7This requires changing VECn to VEC∞

Synergy and Symmetry in Deep Learning

103 104 105

Training Set Size

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

+FlipUnaugmented

103 104 105

Training Set Size

0.02

0.03

0.04

0.05

M
SE

+FlipUnaugmented

Baseline: (D, VECn, SGD)
I: (D, VEC , NTK)
M: (D, LCNn, SGD)
D: (D, VECn, SGD)

Figure 4: More Data Improves Learning Curve of VECn.
high Left: test accuracy. Right: MSE loss. The slope
of the learning curve of the optimal baseline (D,M, I)
configuration (blue) increases significantly in the large-data
regime. This data-improved efficiency disappears under
interventions that suboptimally deform the data D (green),
the modelM (red), or the inference algorithm I (orange).

the original (unrotated) ImageNet DIN or a rotated version
τDIN, for some τ ∈ O(3)d. We keep I (SGD, see Sec. B.2)
fixed. For each configuration, we interpolate the first/last six
points (i.e. i ≥ 6/i < 6) with straight lines (in the log-log
plot) and compute the slope α (see legends in Fig. 5). We
treat ResNet101 trained on clean images as our baseline,
which is the most efficient and consistent (D,M, I) system
among the four. We observe the following. (1) Almost
perfect power-law scaling for the baseline (Blue Dashed
Line). (2) A cusp around mi=6 for the remaining learning
curves, which have two phases: relatively flat in the first
phase and steepened in the second one. (3) Surprisingly,
the slopes (α = 0.49, 0.38) of (ResNet101, τDIN, I) and
(Mixer,DIN, I) in the second phase essentially catch up
with that (α = 0.41) of the best one (ResNet101,DIN, I).
These observations suggest that with more data the system
can overcome the spurious symmetries O(3)d.

Finally, to test the limit of deep learning systems in over-
coming spurious O(3)d symmetries, we further scale upM
in the ResNet family (He et al., 2016) and in the Efficient-
Net family (Tan & Le, 2019). In the right panel of Fig. 4,
we make a scatter plot showing the accuracy of the O(3)d-
rotated vs original datasets. Each datapoint corresponds to
one model. For the ResNet family, the top-1 accuracy gap
between the rotated and the unrotated dataset drops from
about 10% (ResNet-18) to about 6% (ResNet-200) and for
the EfficientNet family, this gap drops from about 4% (Effi-
cientNet B0) to only about 1.% (EfficientNet B7 8), which
is quite remarkable.

Discussion of DIDE. The change of the slopes of the
learning curves suggests that the function classes on the
left/right of the cusp might be qualitatively quite differ-
ent. The cusp happens around mi=6 ∼ 2 × 105, which
is of the same order of dim(O(3)d) = 3d = 150528 and

8Trained by about 180 epochs.

105 106

Training Set Size

1

2

3

4

5
6

Cr
os

s E
nt

ro
py

= 0.45, 0.41
= 0.36, 0.49
= 0.17, 0.38
= 0.08, 0.26

ResNet101 + Clean Images
ResNet101 + O(3)d-Images
MixerSmall + Clean Images
MixerSmall + O(3)d-Images

0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84
ImageNet Top-1 Accuracy(%)

0.60

0.64

0.68

0.72

0.76

0.80

0.84

O
(3

)d -I
m

ag
eN

et
 T

op
-1

 A
cc

ur
ac

y(
%

)

B0

B1

B3

B5
B7

ResNet18

ResNet34

ResNet50

ResNet101
ResNet200

O(3)d Images

Clean Images

f(x) = x

Figure 5: SoTA models overcome O(3)d spurious sym-
metries. Left: learning curves for four (D,M, I) triplets.
There is a cusp in all learning curves except the optimal con-
figuration (Blue curve.) Learning efficiency significantly
improves for those curves after the cusp. Right: Top-1 ac-
curacy for the ResNet and the EfficientNet families when
the dataset is O(3)d-rotated (x-axis) and unrotated (y-axis.)
SoTA models can overcome the O(3)d spurious symmetries.

dim(O(162 × 3)) = 294528 (the size of the patches in the
Mixer is (16, 16, 3)). This agreement suggests that to over-
come spurious symmetry G (either from the models or data),
at least ∼ dim(G) extra training points are needed. We
also test the capability of the ResNet family in overcoming
the P(3d) (< O(3d)) symmetry (Sec.F.2), but the test and
training accuracy remain below 35% for all ResNet mod-
els. If we extrapolate the dimension counting argument,
dim(O(3d)) ∼ 1010 many training points may be needed
to overcome the O(3d) symmetries.

7. Conclusion
We consider machine learning methods as an integrated
system of data, models and inference algorithms and study
the basic symmetries of various machine learning systems
(D,M, I) . We examine the relation between the perfor-
mance and the consistency of the triplet (D,M, I) through
the lens of symmetries. We find that learning is most ef-
ficient when the learning algorithm is consistent with the
data distribution. Finally, we observe that, for many triplets
(D,M, I) , the slopes of the scaling law curves can improve
with more data, suggesting the function class is transitioning
to a new one that is dramatically more data-efficient than the
one obtained from initialization. Theoretical characteriza-
tion of how does this transition occur might be a crucial step
to the understanding of feature learning in neural networks.

Acknowledgetment.
We thank Jascha Sohl-dickstein, Sam Schoenholz, Jaehoon
Lee, Roman Novak, and Yasaman Bahri for insightful dis-
cussion, and Sam Schoenholz, Jaehoon Lee, Roman Novak,
and Mingxing Tang for engineering support. We are also
grateful to Roman Novak and the anonymous reviewers for
feedback and suggestions on an earlier draft of this work.

Synergy and Symmetry in Deep Learning

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning. In
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 2016.

Adlam, B. and Pennington, J. The neural tangent kernel in
high dimensions: Triple descent and a multi-scale theory
of generalization, 2020.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. In International
Conference on Machine Learning, 2018.

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. Fine-
grained analysis of optimization and generalization for
overparameterized two-layer neural networks, 2019.

Bach, F. Breaking the curse of dimensionality with con-
vex neural networks. The Journal of Machine Learning
Research, 18(1):629–681, 2017.

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., and Sharma,
U. Explaining neural scaling laws. arXiv preprint
arXiv:2102.06701, 2021.

Bietti, A. Approximation and learning with deep convolu-
tional models: a kernel perspective, 2021.

Bordelon, B., Canatar, A., and Pehlevan, C. Spectrum
dependent learning curves in kernel regression and wide
neural networks, 2021.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., and Wanderman-Milne, S. JAX: com-
posable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

Bruna, J. and Mallat, S. Invariant scattering convolution
networks. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1872–1886, 2013.

Chen, S., Dobriban, E., and Lee, J. A group-theoretic
framework for data augmentation. Advances in Neural
Information Processing Systems, 33:21321–21333, 2020.

Chizat, L. and Bach, F. Implicit bias of gradient descent
for wide two-layer neural networks trained with the lo-
gistic loss. In Abernethy, J. and Agarwal, S. (eds.),
Proceedings of Thirty Third Conference on Learning
Theory, volume 125 of Proceedings of Machine Learn-
ing Research, pp. 1305–1338. PMLR, 09–12 Jul 2020.
URL http://proceedings.mlr.press/v125/
chizat20a.html.

Chizat, L., Oyallon, E., and Bach, F. On lazy training in
differentiable programming. Advances in Neural Infor-
mation Processing Systems, 32:2937–2947, 2019.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999. PMLR, 2016.

Daniely, A. SGD learns the conjugate kernel class of the
network. In Advances in Neural Information Processing
Systems, pp. 2422–2430, 2017.

Daniely, A., Frostig, R., and Singer, Y. Toward deeper under-
standing of neural networks: The power of initialization
and a dual view on expressivity. In Advances In Neural
Information Processing Systems, pp. 2253–2261, 2016.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Du, S. S., Lee, J. D., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks.
arXiv preprint arXiv:1811.03804, 2018.

Favero, A., Cagnetta, F., and Wyart, M. Locality defeats the
curse of dimensionality in convolutional teacher-student
scenarios, 2021.

Fukushima, K. Cognitron: A self-organizing multilayered
neural network. Biological cybernetics, 20(3-4):121–136,
1975.

Garriga-Alonso, A., Aitchison, L., and Rasmussen, C. E.
Deep convolutional networks as shallow gaussian pro-
cesses. In International Conference on Learning Repre-
sentations, 2019.

Goldt, S., Mézard, M., Krzakala, F., and Zdeborová, L.
Modeling the influence of data structure on learning in
neural networks: The hidden manifold model. Physical
Review X, 10(4):041044, 2020.

Gunasekar, S., Woodworth, B., Bhojanapalli, S., Neyshabur,
B., and Srebro, N. Implicit regularization in matrix fac-
torization. In 2018 Information Theory and Applications
Workshop (ITA), pp. 1–10. IEEE, 2018.

http://github.com/google/jax
http://proceedings.mlr.press/v125/chizat20a.html
http://proceedings.mlr.press/v125/chizat20a.html

Synergy and Symmetry in Deep Learning

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R.
Masked autoencoders are scalable vision learners. arXiv
preprint arXiv:2111.06377, 2021.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2020. URL http://
github.com/google/flax.

Hron, J., Bahri, Y., Novak, R., Pennington, J., and
Sohl-Dickstein, J. Exact posterior distributions of
wide bayesian neural networks. arXiv preprint
arXiv:2006.10541, 2020a.

Hron, J., Bahri, Y., Sohl-Dickstein, J., and Novak, R. Infi-
nite attention: Nngp and ntk for deep attention networks,
2020b.

Hu, W., Xiao, L., Adlam, B., and Pennington, J. The sur-
prising simplicity of the early-time learning dynamics of
neural networks. arXiv preprint arXiv:2006.14599, 2020.

Ingrosso, A. and Goldt, S. Data-driven emergence of con-
volutional structure in neural networks. arXiv preprint
arXiv:2202.00565, 2022.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
In Advances in Neural Information Processing Systems,
2018a.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. arXiv
preprint arXiv:1806.07572, 2018b.

Ji, Z. and Telgarsky, M. The implicit bias of gradient descent
on nonseparable data. In Conference on Learning Theory,
pp. 1772–1798, 2019a.

Ji, Z. and Telgarsky, M. J. Gradient descent aligns the layers
of deep linear networks. In 7th International Conference
on Learning Representations, ICLR 2019, 2019b.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
pp. 1097–1105, 2012.

Lecun, Y. Generalization and network design strategies. In
Connectionism in perspective. Elsevier, 1989.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, J., Sohl-dickstein, J., Pennington, J., Novak, R.,
Schoenholz, S., and Bahri, Y. Deep neural networks
as gaussian processes. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=B1EA-M-0Z.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J., and Pennington, J. Wide neural net-
works of any depth evolve as linear models under gradient
descent. In Advances in Neural Information Processing
Systems, 2019.

Lee, J., Schoenholz, S. S., Pennington, J., Adlam, B., Xiao,
L., Novak, R., and Sohl-Dickstein, J. Finite versus infi-
nite neural networks: an empirical study. arXiv preprint
arXiv:2007.15801, 2020.

Li, C., Farkhoor, H., Liu, R., and Yosinski, J. Measuring
the intrinsic dimension of objective landscapes. arXiv
preprint arXiv:1804.08838, 2018.

Li, Z., Zhang, Y., and Arora, S. Why are convolutional nets
more sample-efficient than fully-connected nets? arXiv
preprint arXiv:2010.08515, 2020.

Lyu, K. and Li, J. Gradient descent maximizes the margin of
homogeneous neural networks. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=SJeLIgBKPS.

Matthews, A., Hron, J., Rowland, M., Turner, R. E., and
Ghahramani, Z. Gaussian process behaviour in wide
deep neural networks. In International Conference on
Learning Representations, 2018.

Mei, S., Montanari, A., and Nguyen, P.-M. A mean field
view of the landscape of two-layer neural networks. Pro-
ceedings of the National Academy of Sciences, 115(33):
E7665–E7671, 2018.

Mei, S., Misiakiewicz, T., and Montanari, A. Learning with
invariances in random features and kernel models, 2021.

Nakkiran, P., Kaplun, G., Kalimeris, D., Yang, T., Edelman,
B. L., Zhang, F., and Barak, B. Sgd on neural networks
learns functions of increasing complexity. arXiv preprint
arXiv:1905.11604, 2019.

Neal, R. M. Priors for infinite networks (tech. rep. no. crg-
tr-94-1). University of Toronto, 1994.

http://github.com/google/flax
http://github.com/google/flax
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=SJeLIgBKPS
https://openreview.net/forum?id=SJeLIgBKPS

Synergy and Symmetry in Deep Learning

Neyshabur, B. Implicit regularization in deep learning.
arXiv preprint arXiv:1709.01953, 2017.

Neyshabur, B. Towards learning convolutions from scratch.
arXiv preprint arXiv:2007.13657, 2020.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-
Dickstein, J., and Schoenholz, S. S. Neural tangents:
Fast and easy infinite neural networks in python. arXiv
preprint arXiv:1912.02803, 2019a.

Novak, R., Xiao, L., Lee, J., Bahri, Y., Yang, G., Hron, J.,
Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J.
Bayesian deep convolutional networks with many chan-
nels are gaussian processes. In International Conference
on Learning Representations, 2019b.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A.,
Sohl-Dickstein, J., and Schoenholz, S. S. Neural tan-
gents: Fast and easy infinite neural networks in python.
In International Conference on Learning Representa-
tions, 2020. URL https://github.com/google/
neural-tangents.

Petrini, L., Favero, A., Geiger, M., and Wyart, M. Relative
stability toward diffeomorphisms indicates performance
in deep nets. Advances in Neural Information Processing
Systems, 34, 2021.

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and
Ganguli, S. Exponential expressivity in deep neural net-
works through transient chaos. In Advances In Neural
Information Processing Systems, 2016.

Pope, P., Zhu, C., Abdelkader, A., Goldblum, M., and Gold-
stein, T. The intrinsic dimension of images and its impact
on learning. arXiv preprint arXiv:2104.08894, 2021.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F., Bengio, Y., and Courville, A. On the spec-
tral bias of neural networks. In International Conference
on Machine Learning, pp. 5301–5310. PMLR, 2019.

Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-
Dickstein, J. Deep information propagation. International
Conference on Learning Representations, 2017.

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre,
L., Green, T., Qin, C., Žídek, A., Nelson, A. W., Bridg-
land, A., et al. Improved protein structure prediction
using potentials from deep learning. Nature, 577(7792):
706–710, 2020.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Sohl-Dickstein, J., Novak, R., Schoenholz, S. S., and Lee, J.
On the infinite width limit of neural networks with a stan-
dard parameterization. arXiv preprint arXiv:2001.07301,
2020.

Song, M., Montanari, A., and Nguyen, P. A mean field view
of the landscape of two-layers neural networks. Proceed-
ings of the National Academy of Sciences, 115:E7665–
E7671, 2018.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The implicit bias of gradient descent on sep-
arable data. Journal of Machine Learning Research, 19
(70), 2018.

Su, L. and Yang, P. On learning over-parameterized neural
networks: A functional approximation perspective. arXiv
preprint arXiv:1905.10826, 2019.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International Con-
ference on Machine Learning, pp. 6105–6114. PMLR,
2019.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J.,
Lucic, M., et al. Mlp-mixer: An all-mlp architecture for
vision. arXiv preprint arXiv:2105.01601, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. arXiv preprint arXiv:1706.03762, 2017.

von Luxburg, U. and Bousquet, O. Distance-based classifi-
cation with lipschitz functions. J. Mach. Learn. Res., 5:
669–695, 2004.

Wadia, N. S., Duckworth, D., Schoenholz, S. S., Dyer, E.,
and Sohl-Dickstein, J. Whitening and second order op-
timization both destroy information about the dataset,
and can make generalization impossible. arxiv preprint
arXiv:2008.07545, 2020.

Xiao, L. Eigenspace restructuring: a principle of space and
frequency in neural networks, 2021.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., and
Pennington, J. Dynamical isometry and a mean field
theory of CNNs: How to train 10,000-layer vanilla con-
volutional neural networks. In International Conference
on Machine Learning, 2018a.

https://github.com/google/neural-tangents
https://github.com/google/neural-tangents

Synergy and Symmetry in Deep Learning

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., and
Pennington, J. Dynamical isometry and a mean field
theory of cnns: How to train 10,000-layer vanilla convo-
lutional neural networks. In International Conference on
Machine Learning, pp. 5393–5402, 2018b.

Xu, Z. J. Understanding training and generalization
in deep learning by fourier analysis. arXiv preprint
arXiv:1808.04295, 2018.

Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., and Ma, Z. Fre-
quency principle: Fourier analysis sheds light on deep
neural networks. arXiv preprint arXiv:1901.06523, 2019.

Yang, G. Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient in-
dependence, and neural tangent kernel derivation. arXiv
preprint arXiv:1902.04760, 2019.

Yang, G. and Hu, E. J. Feature learning in infinite-width
neural networks. arXiv preprint arXiv:2011.14522, 2020.

Yang, G. and Salman, H. A fine-grained spectral perspective
on neural networks. arXiv preprint arXiv:1907.10599,
2019.

Yang, G., Santacroce, M., and Hu, E. J. Efficient computa-
tion of deep nonlinear infinite-width neural networks that
learn features. In International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=tUMr0Iox8XW.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in neural information processing systems, 30,
2017.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling
vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 12104–12113, 2022.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. Gradient descent op-
timizes over-parameterized deep relu networks. Machine
Learning, 109(3):467–492, 2020.

https://openreview.net/forum?id=tUMr0Iox8XW
https://openreview.net/forum?id=tUMr0Iox8XW

Synergy and Symmetry in Deep Learning

Supplementary Material

A. Glossary
We use the following abbreviations in this work:

• +L2: Adding L2 regularization.

• +LR: Using a large learning rate.

• FCNn:Fully-connected networks with width n.

• FCN∞: Infinite width FCNn.

• VECn: Convnet with width n and a flattening readout layer.

• VEC∞:Infinite width VECn.

• LCNn: Locally-connected network with width n.

• LCN∞: Infinite width LCNn, which is the samme as VEC∞.

• GAPn: Convnet with width n and a global average readout layer.

• GAP∞:Infinite width GAPn.

• LAPkn: Similar to GAPn, except the readout layer is a (k, k) average pooling.

• LAPk∞: Infinite width LAPkn.

B. Experimental details
We use Neural Tangents (NT) library (Novak et al., 2020) built on top of JAX (Bradbury et al., 2018) for all Cifar10
experiments, and the ImageNet codebase from FLAX9(Heek et al., 2020) for ResNets and Mixer experiments on ImageNets.

B.1. Cifar10 Experiments

The experimental setup is almost the same as in (Lee et al., 2020).

Architectures. For FCNn, LCNn, VECn and GAPn, the number of hidden layers are 8 and the widths (number of channels)
are n = 1024, 32, 128 and 128, resp. For all CIFAR10 experiments, we only use Relu as the activation function. We use
NTK parameterization and the variances of initialization are chosen to be σ2

ω = 2 and σ2
b = 0.01 for the weights and biases,

resp.

Training Details. We use MSE as our loss function, which is defined to be

L(θ;Dmini) =
1

2×K|Dmini|
∑

(xi,yi)∈Dmini

|fθ(xi)− yi|2 +
λ

2
‖θ‖22 (S1)

whereDmini is a mini-batch with |Dmini| = 40 andK = 10 is the number of classes. The regularization is set to be λ = 10−7

if L2 regularization (+L2) is applied otherwise 0. SGD + Momentum (mass = 0.9) is used for all experiments. The learning
rate is set to be η = cη0, where c = 8 if using a larger learning rate (+LR) and 1 otherwise. Here η010 is estimated by 2

λmax
,

where λmax is the largest eigenvalue of the finite-width NTK (estimated by MC sampling). With c = 8, we are about a
factor of 2 ∼ 4 smaller than the maximal feasible learning rate observed empirically.

We use 45k images as training set and reserve the remaining 5k as validation set. All finite width experiments are initially set
to be trained for at least 106 steps (about 900 epochs), but will be early-stopped if the training accuracy reaches 100% with
fewer steps. Among the successful runs (with training accuracy ≥ 95%), we pick the highest test accuracy along training
and average them over 5 random runs (if all runs succeed.)

9https://github.com/google/flax/blob/main/examples/imagenet/README.md
10We use max_learning_rate function from Neural Tangents Library to estimate η0.

https://github.com/google/flax/blob/main/examples/imagenet/README.md
https://github.com/google/neural-tangents/blob/main/neural_tangents/predict.py

Synergy and Symmetry in Deep Learning

B.2. ImageNet Experiments

We use the ImageNet codebase from FLAX11(Heek et al., 2020) for our ResNets experiments. We adopt most of the training
configurations except change the number of epochs to 150. Note that we also rotate (see Sec. B.3) and/or subset the dataset
when needed.

The model for the Mixer experiments on ImageNets is adopted from Sec.E in (Tolstikhin et al., 2021). The training
configurations are identical to that of the ResNets above. The EfficientNet family models are trained using Tensorflow
(Abadi et al., 2016), which are adopted from https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet.

B.3. Data Transformation.

Let D = {(xi, yi), i ∈ [mtrain +mtest]} be the data set (e.g. ImageNet, Cifar10.) Here xi ∈ R3d is a flattened input image,
and mtrain and mtest are the numbers of images in the training set (including data-augmentation) and in the test set, resp.

O(3d) Transformation. Randomly sample Q ∈ O(3d), a 3d× 3d orthogonal matrix. The transformed dataset τD is

τD := {(Qxi, yi) : i ∈ [mtrain +mtest]}. (S2)

The P (3d) (permutation) transformation is defined similarly.

O(3)d Transformation. We reshape each xi ∈ R3d into xi ∈ RH×W×3 where H and W are the height and width of the
images (e.g. H = W = 32, d = 322 for Cifar10 and H = W = 224, d = 2242 for ImageNet). Independently sample HW
many 3× 3 random orthogonal matrix (Qh,w)h∈[H],w∈[W]. The transformed dataset τD is

τD :=
{(

(Qh,wxi;h,w)h∈[H],w∈[W] , yi

)
: i ∈ [mtrain +mtest]

}
. (S3)

O(3) ⊗ Id Transformation. In this case, we sample only one 3 × 3 orthogonal matrix and the transformed dataset is
defined to be

τD :=
{(

(Qxi;h,w)h∈[H],w∈[W] , yi

)
: i ∈ [mtrain +mtest]

}
. (S4)

Note that the same rotation matrix Q is applied to all pixels regardless of their spatial locations.

C. Proof of Theorem 3.1
We use FCNn to denote the class of functions that can be expressed by L-hidden layer fully-connected networks whose
widths are equal to n. Similar notation applies to other architectures.
Corollary 1. We have the following

GAPn ⊆ VECn ⊆ LCNn ⊆ VECdn, LCNn ⊆ FCNdn (S5)

Proof. We only need to prove LCNn ⊆ VECdn because the others are obvious. Let LCNn(x)lα,i denote the post-activation
at layer l, spatial location α and channel index i of a LCNn with input x and VECn(x)lα,i is defined similarly. It suffices to
prove that for any LCN with width n there is a VEC with width dn such that for any l ≥ 1 (i.e. not the input layer)

VECdn(x)lα,αn+i = LCNn(x)lα,i (S6)

since we could choose the readout weights of VECdn at locations (α, αn+ i) to match the one of LCNn at locaton (α, i)
and zero out the remaining entries. We prove this by induction and assume it holds for l (the base case l = 1 is obvious).
Then the LCNn and VECn at layer l + 1 can be written as

LCNn(x)l+1
α,j = φ

 1√
n(2k + 1)

∑
i∈[n],β∈[−k,k]

LCNn(x)lα+β,iω
l+1
β,ij(α)

11https://github.com/google/flax/blob/main/examples/imagenet/README.md

https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/google/flax/blob/main/examples/imagenet/README.md

Synergy and Symmetry in Deep Learning

and

VECdn(x)l+1
α,j = φ

 1√
dn(2k + 1)

∑
i∈[dn],β∈[−k,k]

VECdn(x)lα+β,iω̃
l+1
β,ij

One can show that Equation S6 holds for (l + 1) by choosing the parameters of VECdn as follows

ω̃l+1
β,ij =

√
dωl+1

β,i−(α+β)n,j−αn if αn ≤ j < α(n+ 1) and (α+ β)n ≤ i < (α+ β)(n+ 1)

and 0 otherwise.

D. Proof of Symmetries
Proof. For simplicity, we present the proof for full-batch training. The proof can be applied to mini-batch training as long
as order of the mini-batch is fixed. Let τ be a rotation in O(3d) or O(3)d or O(3) ⊗ Id, depending on the architectures
(FCNn, LCNn,VECn,GAPn) and the tuple θ and γ denote the parameters of the first and remaining layers of the network,
respectively. Let h(τx, θ) = 〈τx, θ〉 denote the pre-activations of the first-hidden layer in the rotated coordinate. Here 〈·, ·〉
is the bilinear map (a dense layer or a convolutional layer with or without weight-sharing, etc.), not the inner product. The
loss with L2-regularization is

Rλ(θ, γ) = L(h(τX , θ), γ) +
1

2
λ(
∥∥θ‖22 + ‖γ‖22

)
(S7)

where L(h(τX , θ), γ) is the raw loss of the network. For each random instantiation θ = θ0 with θ0 drawn from standard
Gaussian iid, we instantiate a coupled network from the un-rotated coordinates but with a different instantiation in the first
layer θτ = τ∗θ0 and keep the remaining layers unchanged, i.e. γτ = γ0. Here τ∗ is the adjoint of τ and note that τ∗θ0 and
θ0 have the same distribution by the Gaussian initialization of θ0 and the definition of τ . The regularized loss associated to
this instantiation is

Rλ(θτ , γτ) = L(h(X , θτ), γτ) +
1

2
λ(
∥∥θτ‖22 + ‖γτ‖22

)
(S8)

It suffices to prove that for each instantiation θ = θ0 drawn from Gaussian, the following holds for all gradient steps t

(θτt , γ
τ
t) = (τ∗θt, γt). (S9)

We prove this by induction on t and t = 0 is true by definition. Assume it holds when t = t. Now the update in γ and γτ

with learning rate η are

γt+1 = γt − η

(
∂L

∂γ

∣∣∣∣
(h(τX ,θt),γt)

)T
− ηλγt (S10)

γτt+1 = γτt − η

(
∂L

∂γ

∣∣∣∣
(h(X ,θτt),γτt)

)T
− ηλγτt (S11)

It is clear γt+1 = γτt+1 by induction since h(τX , θt) = h(X , θτt). Similarly,

θt+1 = θt − η

(
∂L

∂h

∂h

∂θ

∣∣∣∣
(τX ,θt))

)T
− λθt (S12)

θτt+1 = θτt − η

(
∂L

∂h

∂h

∂θτ

∣∣∣∣
(X ,θτt)

)T
− λθτ (S13)

Note that by the chain rule and induction assumption

∂h

∂θτ

∣∣∣∣
(X ,θτt)

=
∂h

∂θ

∣∣∣∣
(X ,θτt)

∂θτ

∂θ
=
∂h

∂θ

∣∣∣∣
(X ,θτt)

τ (S14)

This implies θτt+1 = τ∗θt+1.

Synergy and Symmetry in Deep Learning

Remark S1. It is not difficult to see the apply proof apply to Non-Gaussian i.i.d. initialization (e.g. uniform distribution)
and/or adding Lp-regularization when the rotation groups are replaced by the corresponding permutation groups. Empirically,
we observe that replacing the first layer Gaussian initialization by uniform distribution does not change the performance of
the network much. See Fig.S5.

Remark S2. The proof works for other parameterization methods, including NTK-parameterization(Jacot et al., 2018b),
standard parameterization (Sohl-Dickstein et al., 2020), mean-field parameterization(Song et al., 2018) and ABC-
parameterization (Yang & Hu, 2020)

E. Measuring the Effect of Symmetry Breaking of VECn.
The discussion in the main text suggests that breaking the O(3)d symmetry, making the network to exploit the smaller
symmetry group O(3)⊗ Id might be important to good performance of VECn. To measure the effect of symmetry breaking
and the reliance of VECn on the O(3)⊗ Id symmetry, we compare the distance of VECn to VEC∞ (O(3)d invariant) and to
GAPn (O(3)⊗ Id invariant). More precisely, for two learning algorithm A1 and A2 trained on DT , we defined the square
distance between them to be

S-Dist(A1,A2) = Ex∼X |A1(DT)(x)−A2(DT)(x)|2 . (S15)

If the learning algorithm Ai is stochastic, then we use the mean prediction in the above definition. E.g, if A1 depends on the
initialization θ0 which is a random variable and A2 is deterministic, then we define the squared distance to be

S-Dist(A1,A2) = Ex∼X |Eθ0A1(DT ; θ0)(x)−A2(DT)(x)|2 . (S16)

Using this definition, we can measure the discrepancy between two rotated systems (τ1D,M, I) and (τ2D,M, I) by
computing S-Dist(Aτ1 ,Aτ2), where A = (M, I) and τ1/2 are coordinate transformations. Note that if the system is strictly
G invariant, then S-Dist(Aτ1 ,Aτ2) = 0 for all τ1/2 ∈ G.

We use the exponential map to construct a continuous path12 from the identity operator Id to a random element in O(3)d.
More precisely, we randomly sample d 3 × 3 skew-symmetric matrices A = (A0, . . . , Ad−1) ⊆ (R3×3)d and define
τ = exp(−A) and τt = exp(−tA) for t ∈ [0, 1]. Then (τt)t∈[0,1] ⊆ O(3)d is a continuous path from Id to τ . We then
construct new datasets τtD (see Fig. S2 for a sample of the continuously rotated images) and study the behavior of the
corresponding systems

{(τtD,M, I) : t ∈ [0, 1]} (S17)

We vary the width n = 64 to n = 512 dyadically and t from [0, 1] with equal distance and train the networks on CIFAR10
as in the NN+ setting (+LR+L2). Finally, we average the predictions of the learned network over 10 random initialization
as an approximation of EVECτtn (x) and etc. We summarize the observation below.

• As n and/or t increases, the (ensemble) test performance decays monotonically (left panel in Fig.S1). This is because
increasing n and/or t discourages VECn to utilize the smaller symmetry group O(3)⊗ Id.

• As a function of n or t, S-Dist(VECτtn ,GAPn) increases monotonically (middle panel) while S-Dist(VECτtn ,VEC∞)
decreases monotonically (right panel). Thus, small n moves the VECn learner towards the GAPn learner while
increasing n and/or the strength of rotation moves it away from the GAPn learner and towards the VEC∞ learner.

12More precisely, the path lies in SO(3)d ⊆ O(3)d.

Synergy and Symmetry in Deep Learning

0.0 0.2 0.4 0.6 0.8 1.0
Strength of O(3)d-Rotation

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Accuracy vs Strength of Rotation

n=64
n=128
n=256
n=512

0.0 0.2 0.4 0.6 0.8 1.0
Strength of O(3)d-Rotation

0.005

0.010

0.015

||V
E
C

t n
-G

A
P

Id n
||2 2

Distance between VEC tn and GAPn

0.0 0.2 0.4 0.6 0.8 1.0
Strength of O(3)d-Rotation

0.005

0.010

0.015

||V
E
C

t n
-V

E
C

||2 2

Distance between VEC tn and VEC

Figure S1: High performing VECn-learner is closer to GAPn-learner and far away from VEC∞-learner, and vice
versa. Even in the NN+ setting, VECn is closer to GAPn for small n and moves towards VEC∞ with stronger symmetry
and/or larger n and accuracy drops.

Figure S2: Continuous deformation from a clean image to the O(3)d-rotated image.

F. Plots Dump
F.1. Scaling Plots for ResNet34 and ResNet101

F.2. Learning dynamics of ImageNet for various Rotations

F.3. Gaussian vs Uniform Initialization

We compare initializing the first layer of the networks using iid Gaussian vs iid Uniform distribution. We observe that the
difference is very small; see Fig. S5

F.4. Scaling Law for Infinite Networks

F.5. ImageNet Samples

Synergy and Symmetry in Deep Learning

105 106

Training Set Size

1

2

3

4

5
6

Cr
os

s E
nt

ro
py

= 0.43
= 0.32
= 0.46

ResNet34 + Clean Images
ResNet34 + O(3)d-Images

105 106

Training Set Size

1

2

3

4
5
6

Cr
os

s E
nt

ro
py

= 0.43
= 0.32
= 0.49

ResNet50 + Clean Images
ResNet50 + O(3)d-Images

105 106

Training Set Size

1

2

3

4

5
6

Cr
os

s E
nt

ro
py

= 0.43
= 0.36
= 0.49

ResNet101 + Clean Images
ResNet101 + O(3)d-Images

Figure S3: Scaling vs Rotation

0 20 40 60 80
Epochs

0.2

0.4

0.6

0.8

To
p

1
Ac

c

I

ResNet18
ResNet34
ResNet50
ResNet101
ResNet152

0 20 40 60 80
Epochs

0.2

0.4

0.6

0.8

To
p

1
Ac

c

O(3)d

ResNet18
ResNet34
ResNet50
ResNet101
ResNet152

0 20 40 60 80
Epochs

0.2

0.4

0.6

0.8

To
p

1
Ac

c

P(3d)
ResNet18
ResNet34
ResNet50
ResNet101
ResNet152

Figure S4: ResNet can overcome the spurious symmetries O(3)d (middle) but not P(3d) symmetries (right) Learning
dynamics (test accuracy vs epochs) of rotated ImageNets. Averaged over 3 runs. Left: no rotation. Middle: O(3)d rotation.
Right: P(3d) rotation. When the dataset is O(3)d-rotated, the models are still able to obtain decent performance, which
monotonically improves as the model becomes lager. However, when the dataset is P(3d)-rotated, test accuracy is below
35%.

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

Base
GAPn+Gaussian
VECn+Gaussian
FCNn+Gaussian
FCNn+Uniform

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

+L2
GAPn+Gaussian
VECn+Gaussian
FCNn+Gaussian
FCNn+Uniform

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

+LR
GAPn+Gaussian
VECn+Gaussian
FCNn+Gaussian
FCNn+Uniform

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

+LR+L2
GAPn+Gaussian
VECn+Gaussian
FCNn+Gaussian
FCNn+Uniform

Figure S5: Replacing the Gaussian initialization by uniform distribution does not change the performance much.

Synergy and Symmetry in Deep Learning

26 29 212 215 218

Training Set Size

2-6

2-5

2-4

M
SE

NTK: O(3d)
= 0.066
= 0.066
= 0.067
= 0.067
= 0.064
= 0.066

26 29 212 215 218

NTK: P(3d)
= 0.066
= 0.068
= 0.069
= 0.07
= 0.068
= 0.069

26 29 212 215 218

NTK: P(d) I3
= 0.066
= 0.07
= 0.073
= 0.076
= 0.084
= 0.076

26 29 212 215 218

NTK: O(3)d

= 0.066
= 0.088
= 0.093
= 0.091
= 0.086
= 0.09

26 29 212 215 218

NTK: O(3) Id
= 0.066
= 0.088
= 0.133
= 0.151
= 0.161
= 0.144

FCN VEC LAP4 LAP8 GAP Myrtle10+ZCA

26 29 212 215 218

Training Set Size

2-6

2-5

2-4

M
SE

NNGP: O(3d)
= 0.074
= 0.074
= 0.079
= 0.077
= 0.073
= 0.076

26 29 212 215 218

NNGP: P(3d)
= 0.074
= 0.077
= 0.082
= 0.081
= 0.077
= 0.079

26 29 212 215 218

NNGP: P(d) I3
= 0.074
= 0.078
= 0.087
= 0.088
= 0.099
= 0.088

26 29 212 215 218

NNGP: O(3)d

= 0.074
= 0.099
= 0.104
= 0.101
= 0.096
= 0.1

26 29 212 215 218

NNGP: O(3) Id
= 0.074
= 0.099
= 0.142
= 0.161
= 0.175
= 0.154

FCN VEC LAP4 LAP8 GAP Myrtle10+ZCA

26 29 212 215 218

Training Set Size

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

NTK: O(3d)
= 0.051
= 0.05
= 0.051
= 0.052
= 0.053
= 0.051

26 29 212 215 218

NTK: P(3d)
= 0.051
= 0.052
= 0.053
= 0.054
= 0.056
= 0.054

26 29 212 215 218

NTK: P(d) I3
= 0.051
= 0.052
= 0.053
= 0.055
= 0.058
= 0.055

26 29 212 215 218

NTK: O(3)d

= 0.051
= 0.069
= 0.071
= 0.069
= 0.068
= 0.069

26 29 212 215 218

NTK: O(3) Id

= 0.051
= 0.069
= 0.079
= 0.08
= 0.079
= 0.062

FCN VEC LAP4 LAP8 GAP Myrtle10+ZCA

26 29 212 215 218

Training Set Size

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NNGP: O(3d)
= 0.054
= 0.054
= 0.056
= 0.056
= 0.057
= 0.056

26 29 212 215 218

NNGP: P(3d)
= 0.054
= 0.055
= 0.057
= 0.057
= 0.06
= 0.057

26 29 212 215 218

NNGP: P(d) I3
= 0.054
= 0.056
= 0.059
= 0.059
= 0.061
= 0.059

26 29 212 215 218

NNGP: O(3)d

= 0.054
= 0.074
= 0.074
= 0.072
= 0.071
= 0.073

26 29 212 215 218

NNGP: O(3) Id

= 0.054
= 0.074
= 0.082
= 0.082
= 0.081
= 0.064

FCN VEC LAP4 LAP8 GAP Myrtle10+ZCA

Figure S6: Scaling Law of Infinite Network vs Different Symmetries vs Architectures. We see clean power-law lines
for most of the learning curves in the MSE plots.

Synergy and Symmetry in Deep Learning

Figure S7: O(3)d−Rotated ImageNet Samples. Seed=1

Synergy and Symmetry in Deep Learning

Figure S8: O(3)d−Rotated ImageNet Samples. Seed=2

Synergy and Symmetry in Deep Learning

Figure S9: Clean ImageNet Samples

