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Abstract

The communication bottleneck has been a critical
problem in large-scale distributed deep learning.
In this work, we study distributed SGD with ran-
dom block-wise sparsification as the gradient com-
pressor, which is ring-allreduce compatible and
highly computation-efficient but leads to inferior
performance. To tackle this important issue, we
improve the communication-efficient distributed
SGD from a novel aspect, that is, the trade-off
between the variance and second moment of the
gradient. With this motivation, we propose a new
detached error feedback (DEF) algorithm, which
shows better convergence bound than error feed-
back for non-convex problems. We also propose
DEF-A to accelerate the generalization of DEF at
the early stages of the training, which shows better
generalization bounds than DEF. Furthermore, we
establish the connection between communication-
efficient distributed SGD and SGD with iterate
averaging (SGD-IA) for the first time. Extensive
deep learning experiments show significant empir-
ical improvement of the proposed methods under
various settings.

1. Introduction
Deep learning models are hard to train due to the heavy com-
putation complexity and long training iterations. Therefore,
distributed deep learning with multiple workers (GPUs) has
become a prevalent practice to parallelize and accelerate the
training for large-scale tasks, where the model and dataset
sizes continue to grow nowadays (Simonyan & Zisserman,
2014; He et al., 2016; Deng et al., 2009).

Nevertheless, synchronous distributed training have diffi-
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culty in scaling up the number of workers for large deep
learning models, as the gradient in each worker to be com-
municated per iteration is of the same dimension as the
model size. It is also known as the communication bottle-
neck. Besides, it incurs imbalanced communication traffic
in the parameter-server (Li et al., 2014a;b; 2013) architec-
ture, where the server suffers from much larger communi-
cation burden than workers. To address the communication
bottleneck issue, there have been numerous lines of works
including asynchronous execution (Dean et al., 2012), gra-
dient compression (Bernstein et al., 2018a;b; Wen et al.,
2017; Alistarh et al., 2017; Aji & Heafield, 2017; Alistarh
et al., 2018; Strom, 2015; Lin et al., 2018; Gao et al., 2021),
communication scheduling (George & Gurram, 2020), in-
frequent communication (Stich, 2018), delayed gradient (Li
et al., 2018; Zhu et al., 2021), decentralized training (Lian
et al., 2017; Koloskova et al., 2019; Tang et al., 2018; Ass-
ran et al., 2019; Koloskova et al., 2019), model parallelism
(Huang et al., 2019; Xu et al., 2020), etc.

In this work, we focus on synchronous distributed SGD with
gradient compression, or more specifically, random block-
wise gradient sparsification (RBGS) (Vogels et al., 2019; Xie
et al., 2020). The most popular gradient sparsifier is proba-
bly the Top-K gradient sparsification (Alistarh et al., 2018;
Lin et al., 2018), where each worker selects the largest K
gradient components according to the absolute value as the
sparsified gradient. However, Top-K has several drawbacks:
1) it requires extra communication overheads to communi-
cate the gradient indices, 2) it is applied in parameter-server
architecture but not ring-allreduce compatible, and most
of all, 3) its computation overheads O(K log2 d) for model
θ ∈ Rd may even outweigh its communication benefits
(Song et al., 2021; Xie et al., 2020; Sahu et al., 2021) as
it is efficient only for a small K for optimized implemen-
tations on GPU (Shanbhag et al., 2018). While in RBGS,
we randomly sample a block of gradient as the sparsified
gradient for communication among workers. To ensure the
consistency of the sampling process, each worker will be
pre-assigned the same random seed. In comparison to Top-
K, RBGS is highly computation-efficient (O(1)) as we only
need to uniformly and randomly sample one starting index
of the gradient block. RBGS is also ring-allreduce compati-
ble. However, RBGS results in inferior model performance
in that its sparsified gradient usually does not include as
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many significant gradient components as Top-K, leading to
large compression error.

To address this important problem, we propose a novel de-
tached error feedback method (DEF), while the vanilla error
feedback (EF) method (Karimireddy et al., 2019; Zheng
et al., 2019) fails to address it. We summarize our major
contributions as follows.

• Our proposed DEF method is motivated by a novel insight
that a trade-off between the gradient variance and second
moment can improve the convergence bound related to
compression error.

• We propose DEF-A to accelerate the generalization during
the training with support from corresponding generaliza-
tion analysis. It potentially demystifies why compression
helps to improve the performance in some prior works
(Avdiukhin & Yaroslavtsev, 2021; Zhao et al., 2020; Bern-
stein et al., 2018a;b).

• We find that SGD with iterate averaging (SGD-IA)
(Polyak, 1990; Ruppert, 1988; Neu & Rosasco, 2018;
Wu et al., 2020) can be viewed as a special case of
communication-efficient distributed SGD for the first time.
Consequently, our generalization analysis of DEF-A ex-
tends to SGD-IA, providing potential theoretical explana-
tions for some other applications incorporating SGD-IA
(He et al., 2020; Izmailov et al., 2018; Huang et al., 2017).

• Extensive deep image classification experiments on
CIFAR-10/100 and ImageNet show significant improve-
ments of DEF(-A) over existing works with RBGS.

2. Related Works
To begin with, suppose the training dataset S = {ξn}Nn=1

and we have the training objective function

FS(θ) =
1

N

N∑
n=1

f(θ; ξn) = Eξ∈Sf(θ; ξ) (1)

to minimize, where θ ∈ Rd denotes the model and f is the
loss function. From now on, we will omit the subscript in
E if the context is clear. For distributed SGD at iteration t,
each worker k randomly selects one data sample ξk,t ∈ S
and computes the stochastic gradient gk,t = ∇f(θt; ξk,t).
Then all the workers communication to get the average
gradient gt = 1

K

∑K
k=1 gk,t, where K is the total number

of workers, and update the model via

θt+1 = θt − ηgt , (2)

where η is the learning rate.

Compression. Gradient compression includes quantization
(Bernstein et al., 2018a;b; Wen et al., 2017; Alistarh et al.,

2017), which reduces the 32-bit gradient component to as
low as 1 bit (compression ratio ≤ 32), and sparsification
(Aji & Heafield, 2017; Alistarh et al., 2018; Strom, 2015),
which reduces the number of gradient components for com-
munication. Let the compression function be C, then the
workers will communicate C(gk,t) instead of gk,t. In gen-
eral, sparsification achieves flexible and higher compression
ratio than quantization. Besides Top-K, random-K (Elibol
et al., 2019; Stich et al., 2018) randomly selects K gradient
components as the sparsified gradient. Dutta et al. (2020)
selects gradient components larger than a threshold and is
a variable-dimension compressor. Wangni et al. (2018);
Song et al. (2021) propose to select each gradient com-
ponent with a probability to keep the sparsified gradient
unbiased. In this work, we consider RBGS (Vogels et al.,
2019; Xie et al., 2020), which is most easy to implement,
highly computation-efficient, but challenging to retain the
model performance. Moreover, it is ring-allreduce compat-
ible for SOTA GPU communication backend library (e.g.,
NCCL), i.e.,

C(∆1) + C(∆2) = C(∆1 +∆2) . (3)

Error Feedback. Error feedback (EF) (Karimireddy et al.,
2019; Tang et al., 2019) method maintains local compres-
sion error ek,t at worker k, adds it to the current gra-
dient before compression, and communicates to average
C(ηgk,t + ek,t). The error is updated via

ek,t+1 = ηgk,t + ek,t − C(gk,t + ek,t) . (4)

Zheng et al. (2019) extends EF to momentum SGD (Polyak,
1964). EF works well for Top-K sparsifier but poorly for
RBGS. Xie et al. (2020) proposes PSync to immediately
apply local error to each worker’s model for RBGS. How-
ever, we will show that PSync works better for Wide ResNet
(Zagoruyko & Komodakis, 2016) but has scalability issue
for other common model architectures. SAEF (Xu et al.,
2021) proposes to apply the local error before computing
gradient in the next iteration to accelerate the generalization
during training. Other EF variants includes EF21 (Richtárik
et al., 2021; Fatkhullin et al., 2021) which compresses the
gradient difference (Mishchenko et al., 2019) but is eval-
uated only on logistic regression problems, acceleration
for EF (Qian et al., 2021; Li et al., 2020), EF for variance
reduction (Tang et al., 2021), etc.

Generalization Analysis. The generalization analysis of
this work incorporates the uniform stability (Bousquet &
Elisseeff, 2002; Hardt et al., 2016) approach, focusing on the
inherent stability property of the learning algorithm. Bous-
quet & Elisseeff (2002) analyzes bagging methods. It is later
used to analyze the generalization property of SGD (Hardt
et al., 2016) and its momentum variants (Yan et al., 2018).
Kuzborskij & Lampert (2018) establishes a data-dependent
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Algorithm 1 Detached Error Feedback (DEF(-A)).
1: Input: training dataset S , number of iterations T , num-

ber of workers K, learning rate η, ring-allreduce com-
pressor C, coefficient λ ∈ [0, 1].

2: Initialize: model x0 = y0, local compression error
ek,0 = 0, worker k ∈ [K].

3: for t = 0, 1, · · · , T − 1 do
4: for worker k ∈ [k] in parallel do
5: Randomly sample data ξk,t from S.
6: Compute gk,t = ∇f(xt − λek,t; ξk,t). // detach
7: pk,t = ηgk,t + ek,t. // error feedback
8: ek,t+1 = pk,t − C(pk,t).
9: Ring-allreduce: C(pt) = C( 1

K

∑K
k=1 pk,t) =

1
K

∑K
k=1 C(pk,t).

10: Update xt+1 = xt − C(pt).
11: end for
12: end for
13: Output: yT = xT − eT = xT − 1

K

∑K
k=1 ek,T for

DEF and xT for DEF-A.

notion of the stability to stress the distribution-dependent
risk of the initialization point and make the generalization
bounds more optimistic. Zhou et al. (2021) analyzes the
generalization of the Lookahead optimizer (Zhang et al.,
2019) with uniform stability.

As there are numerous works combining various techniques
(Basu et al., 2019), in this work, we focus on random block-
wise gradient sparsification (RBGS).

3. Detached Error Feedback
In this section, we described our proposed DEF method
(Algorithm 1) in detail. As RBGS is a very aggressive
compressor, the algorithm is crucial for better performance.

3.1. Motivation

In EF variants (Karimireddy et al., 2019; Zheng et al., 2019;
Xie et al., 2020) for practical large-scale distributed train-
ing of deep learning models, Assumptions 3.1 and 3.2 are
needed to bound the norm of the stochastic gradient

∥∇f(θ; ξ)∥2 ≤ G =
√
σ2 +M2 . (5)

Then G bounds the compression error

1

K

K∑
k=1

∥ek,t∥22 = O(σ2 +M2) (6)

at iteration t. Though Assumption 3.2 often appears in re-
lated literature, it is usually regarded as a strong assumption
(Richtárik et al., 2021) because M2 could be much larger
than σ2. Hereby, we propose a novel insight that if some

trade-off coefficient α can be introduced to transform the
compression error bound to a similar interpolation form as

(ασ)2+((1−α)M)2
α= M2

σ2+M2

≥ σ2M2

σ2 +M2

M≫σ
= σ2 , (7)

then the bound O(σ2+M2) can be reduced to O(σ2) when
M → ∞, i.e., Assumption 3.2 does not hold.

Assumption 3.1. (Bounded Variance) ∀θ ∈ Rd, the vari-
ance of the stochastic gradient satisfies Eξ∈S∥∇f(θ; ξ) −
∇FS(θ)∥22 ≤ σ2.

Assumption 3.2. (Bounded Second Moment) ∀θ ∈ Rd, the
second moment of the full gradient satisfies ∥∇FS(θ)∥22 ≤
M2.

3.2. Algorithm

Assumption 3.3. (Ring-allreduce Compressor) ∀∆1,∆2 ∈
Rd, the compressor C satisfies C(∆1) + C(∆2) = C(∆1 +
∆2).

Firstly, the ring-allreduce communication architecture re-
quires that the compressor should satisfy Assumption 3.3
such that Algorithm 1 line 9 holds. RBGS satisfies this
assumption.

Secondly, DEF returns yT = xT − eT by default because
we have

yt+1 = yt − ηgt = yt −
1

K

K∑
k=1

gk,t . (8)

In particular, when K = 1 (single worker) and λ = 1, {yt}
is identical to the SGD solution path. We note that averaging
eT = 1

K

∑K
k=1 ek,T only incurs a one-time communication

cost after the training concludes.

Then, a major difference of DEF and EF is that we evaluate
gradient at xt − λek,t, a point detached from the point
xt to evaluate gradient as in EF. This step does not in-
cur any communication cost. From Eq. (8), our goal is
to make sure that the point to evaluate gradient gk,t is as
close to yt = xt − et as possible. For EF, the distance is
∥xt − yt∥22 = ∥et∥22 ≤ 1

K

∑K
k=1 ∥ek,t∥22, while for DEF,

the average distance to minimize regarding λ becomes

1

K

K∑
k=1

∥xt − λek,t − yt∥22 =
1

K

K∑
k=1

∥et − λek,t∥22 . (9)

(1) When λ = λ(k, t), it is obvious that λ∗(k, t) =
⟨et,ek,t⟩
∥ek,t∥2

2
,

which is determined by the projection of et onto ek,t. How-
ever, it is impractical to decide λ∗(k, t) for worker k at
iteration t as et is unknown (et = 1

K

∑K
k=1 ek,t needs extra

communication cost).
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(2) When λ = λ(t), we can derive λ∗(t) =
∥et∥2

2
1
K

∑K
k=1 ∥ek,t∥2

2

,
which is still impractical due to unkown et.

(3) Therefore, we will regard λ as a tuned hyper-parameter,
invariant regarding k and t. Then it becomes minimizing
the sum of the errors 1

KT

∑T−1
t=0

∑K
k=1 ∥et−λek,t∥22 which

will appear in the convergence bound of DEF, similar to the
suggestion in Sahu et al. (2021). Previously when λ is
a function of t, it reduces to minimizing Eq. (9). In our
CIFAR-10 VGG-16 experiments with λ = 0.3, we find that
the new distance is ×1.7 smaller than the distance in EF.

Relation to Motivation. Minimizing Eq. (9) is closely
related to the motivation since

∥et − λek,t∥22 = ∥(ηgt−1 − ληgk,t−1︸ ︷︷ ︸+et−1 − λek,t−1)

− C(ηgt−1 − ληgk,t−1︸ ︷︷ ︸+et−1 − λek,t−1)∥22 , (10)

where gt−1 − λgk,t−1 is affected by the gradient variance
and second moment trade-off via the choice of λ. For ex-
ample, in extreme circumstances where σ = 0, in expec-
tation, local errors on different workers are the same and
gt−1 − λgk,t−1 is zero with λ = 1.

Momentum Variant. It is easy to extend DEF to momen-
tum SGD variant. Let the momentum buffer on worker k be
mk,0 = 0 and the momentum constant be µ. We only need
to substitute Algorithm 1 line 7 with

mk,t+1 = µmk,t + gk,t, pk,t = ηmk,t+1 + ek,t . (11)

DEF-A. Simply returning xT can accelerate the general-
ization performance of DEF during training in that when
K = 1, λ = 1 and C(∆) = δ∆ (0 < δ < 1), {yt} reduces
to SGD and {xt} reduces to a special case of SGD-IA (Iter-
ate Averaging, a combination of models in each iteration)
(Wu et al., 2020):

xt = (1− δ)t︸ ︷︷ ︸
P0

y0 +

t∑
t′=1

δ(1− δ)t−t′︸ ︷︷ ︸
Pt′

yt′ , (12)

where P0+P1+ · · ·+Pt = 1. Note that for Polyak-Ruppert
IA (Polyak, 1990), P0 = P1 = · · · = Pt = 1

t+1 . While
for geomeric Polyak-Ruppert IA (Neu & Rosasco, 2018),

Pt′ =
βt′

1+β+···+βt where 0 < β < 1 is some constant and
0 ≤ t′ ≤ t. However, this part is based on generalization
analysis instead of convergence analysis as for DEF. Hence
we leave the details of the general case in the next section.

4. Theoretical Analysis
In this section, we consider non-convex objective functions
as our target is the deep learning model. All detailed proof
can be found in the Appendix. Suppose that each ξn in the

training dataset S is i.i.d drawn from an unknown data dis-
tribution D and FD(θ) = Eξ∈Df(θ; ξ). For generalization,
we are interested in how the model θA,S , which is trained
on S with a randomized algorithm A, generalizes on D by
measuring the well-known excess risk error ϵ.

ϵ = EA,S [FD(θA,S)]− EA,S [FS(θ
∗
S)]

= EA,S [FS(θA,S)− FS(θ
∗
S)]︸ ︷︷ ︸

optimization error ϵopt

+ EA,S [FD(θA,S)− FS(θA,S)]︸ ︷︷ ︸
generalization error ϵgen

(13)

Assumption 4.1. (L-Lipschitz Smooth) ∀θ1, θ2 ∈ Rd, the
loss function satisfies

∥∇f(θ1; ξ)−∇f(θ2; ξ)∥2 ≤ L∥θ1 − θ2∥2 . (14)

It also implies that

∥∇F (θ1)−∇F (θ2)∥2 ≤ L∥θ1 − θ2∥2 . (15)

Assumption 4.2. (δ-approximate Compressor) ∀∆ ∈ Rd,
the compressor C satisfies

∥C(∆)−∆∥22 ≤ (1− δ)∥∆∥22 , (16)

where 0 < δ < 1 is related to the compression ratio.

This assumption is widely used in communication-efficient
distributed SGD (Karimireddy et al., 2019; Zheng et al.,
2019; Xie et al., 2020). For RBGS, we can take an expecta-
tion over the random compression and δ will be identical to
the compression ratio.

4.1. Convergence Rate

In this section, we bound the gradient norm ∥∇F (θA,S)∥22
for convergence rate analysis of the proposed DEF method.

Theorem 4.3. (Convergence Rate of DEF, Appendix A) Let
Assumptions 3.1, 3.2, 3.3, 4.1 and 4.2 hold. If η ≤ 1

4L , we
have

1

T

T−1∑
t=0

E∥∇FS(yt)∥22 ≤ 4E[FS(y0)− FS(y
∗)]

ηT
+

2ηLσ2

K

+
4η2L2[K−1

K2 σ2 + ( 1
K − λ)2σ2 + 2(1− λ)2M2]

(
√

(1− δ/2)/(1− δ)− 1)2
.

(17)

Remark 4.4. Suppose θA,S is randomly chosen from the se-

quence {yt}T−1
t=0 , η = O(

√
K
T ) ≤ 1

4L , and K = O(T 1/3)

(i.e., T is large enough), we have E∥∇FS(θA,S)]∥22 =
O( 1√

KT
+ K

T ) = O( 1√
KT

). It matches the rate of SGD
with linear speedup regarding the number of workers K.
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Remark 4.5. The last term in Eq. (17) is determined by the
compression error. When δ, σ, M are of interest, we have
E∥∇FS(θA,S)]∥22 =

O(
K−1
K2 σ2 + ( 1

K − λ)2σ2 + 2(1− λ)2M2

(
√
(1− δ/2)/(1− δ)− 1)2

) . (18)

(1) When K = 1 (single worker) and λ = 1, it vanishes,
which is better than EF (Karimireddy et al., 2019; Zheng
et al., 2019).

(2) When σ and M are of interest, following the motivation
in the previous section and ignoring other constant factors,
Eq. (18) becomes

O(
K − 1

K2
σ2 +

2(1− 1
K )2σ2M2

σ2 + 2M2
) . (19)

when λ =
1
K σ2+2M2

σ2+2M2 . It further reduces to O(K−1
K σ2)

when M → ∞ (i.e. Assumption 3.2 does not hold). There-
fore, DEF is the first EF variant compressing gradient with-
out relying on the bound of the gradient second moment.

(3) When K is large and σ and M are of interest, our bound
improves O(σ2 + M2) (Karimireddy et al., 2019; Zheng
et al., 2019; Xie et al., 2020) to

O(
2σ2M2

σ2 + 2M2
) . (20)

Our empirical deep learning experiments suggest that σ2 ≈
0.3M2, which means that our bound is about ×5 smaller
ignoring other constant factors.

4.2. Generalization Rate

In this section, we consider non-convex objective functions
under PL condition, which establishes the relation between
the gradient norm and the optimization error ϵopt (Zhou et al.,
2021). We bound the excess risk error ϵ = ϵopt+ϵgen for the
generalization analysis of the proposed DEF(-A) method.

Polyak-Łojasiewicz (PL) Condition (Karimi et al., 2016).
Let θ∗ ∈ minθ∈Rd FS(θ). The objective function FS(θ)
satisfies µ-PL condition if ∀θ ∈ Rd, we have

2µ[FS(θ)− FS(θ
∗)] ≤ ∥∇FS(θ)∥22 . (21)

Theorem 4.6. (Excess Risk Error of DEF(-A), Appendix B)
Let Assumptions 3.1, 3.2, 3.3, 4.1 and 4.2 hold. Suppose
η = c

t+1 , where c > 0 is some constant.

(1) The generalization error of DEF

ϵgen = O(T (1−K
N )Lc/((1−K

N )Lc+1)) . (22)

(2) Suppose η ≤ 1
4L . The optimization error of DEF

ϵopt = Õ(T−µc
2 + T−1) . (23)

(3) For RBGS, the generalization error of DEF-A

ϵgen = O(T (1−K
N )δ

1
2 Lc/((1−K

N )δ
1
2 Lc+1)) . (24)

(4) Suppose η ≤ 1
8L . The optimization error of DEF-A

ϵopt = Õ(T−µδc
2 + T−1 + (1/

√
1− δ − 1)−2) . (25)

Remark 4.7. When K = 1, Eq. (22) matches the result of
SGD in Hardt et al. (2016).
Remark 4.8. DEF-A has a better ϵgen but a worse ϵopt than
DEF. Since ϵ = ϵgen + ϵopt, DEF-A can achieve better
generalization rate than DEF via a trade-off between ϵgen
and ϵopt with a proper δ.
Remark 4.9. Theorem 4.6 provides a potential new theo-
retical insight for applications incorporating compression,
though some of them were not related to communication-
efficient distributed training. E.g., escaping saddle point
with compressed gradient (Avdiukhin & Yaroslavtsev,
2021), feature quantization to improve GAN training (Zhao
et al., 2020), SignSGD that empirically accelerates training
(Bernstein et al., 2018a;b), etc.

4.3. Extension to Iterate Averaging (IA)

As SGD and SGD-IA is a special case of DEF and DEF-A
respectively when K = 1, λ = 1, and C(∆) = δ∆, we
immediately have the following Theorem 4.10.
Theorem 4.10. (Excess Risk Error of SGD(-IA), Appendix
C) Let Assumptions 3.1, 3.2, 3.3, 4.1 and 4.2 hold. Suppose
η = c

t+1 , where c > 0 is some constant.

(1) The generalization error of SGD

ϵgen = O(T (1− 1
N )Lc/((1− 1

N )Lc+1)) . (26)

(2) Suppose η ≤ 1
4L . The optimization error of SGD

ϵopt = Õ(T−µc
2 + T−1) . (27)

(3) The generalization error of SGD-IA

ϵgen = O(T (1− 1
N )δLc/((1− 1

N )δLc+1)) . (28)

(4) Suppose η ≤ 1
8δL . The optimization error of SGD-IA

ϵopt = Õ(T−µδc
2 + T−1 + (1/

√
1− δ − 1)−2) . (29)

Remark 4.11. We have δ
1
2 in Eq. (24) but δ in Eq. (28)

because EC [C(∆)] = δ∆ for RBGS but C(∆) = δ∆ for
SGD-IA.
Remark 4.12. SGD-IA can achieve better generalization
rate than SGD with a proper δ. Neu & Rosasco (2018); Wu
et al. (2020) theoretically only show that SGD-IA achieves
adjustable regularization for strongly-convex objective func-
tions, while SGD-IA applications such as averaging weights
(Izmailov et al., 2018) and ensemble of models during train-
ing with cyclic learning rate (Huang et al., 2017) only em-
pirically show better generalization than SGD.
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Figure 1. CIFAR-10 training curves of VGG-16. The compression ratio is 64 for the top row and 256 for the bottom row. EF is not plotted
when the compression ratio is 256 due to divergence. From the left to right column, we plot the test accuracy (%) v.s. the wall-clock time,
the test accuracy (%) v.s. training epochs, and the training loss v.s. training epochs respectively.

Table 1. The CIFAR-10 test accuracy (%) comparison of under various compression ratio settings with VGG-16.
Ratio SGD EF SAEF PSync DEF DEF-A

1 93.76 ± 0.14 — — — — —

16 — 93.04 ± 0.13 93.15 ± 0.04 93.31 ± 0.21 93.61 ± 0.04 93.66 ± 0.10

64 — 92.16 ± 0.06 91.88 ± 0.14 91.79 ± 0.17 93.75 ± 0.12 93.61 ± 0.07

256 — diverge 89.59 ± 0.04 88.70 ± 0.61 93.45 ± 0.11 93.33 ± 0.26

512 — diverge 87.83 ± 0.36 86.47 ± 0.14 93.24 ± 0.08 93.25 ± 0.18

1024 — diverge 85.46 ± 0.80 84.27 ± 0.33 93.03 ± 0.15 93.06 ± 0.09

Remark 4.13. Compare with Theorem 4.6, we can see that
DEF-A generalizes better than SGD with a proper δ.
Remark 4.14. Theorem 4.10 provides a new theoretical
explanation for an important line of works in unsupervised
learning - momentum contrast (He et al., 2020). In He et al.
(2020), two sets of weights are maintained with a contrastive
loss. One is the “query” yt which is updated via SGD, and
the other is the “key” xt (x0 = y0) which is updated via

xt+1 = (1− δ)xt + δyt . (30)

The success of momentum contrast is explained as a “slowly
progressing” key xt (He et al., 2020) without theoretical
guarantee. Interestingly, the above equation is identical to
Eq. (12), i.e. SGD-IA. Therefore, our results suggests that
the slowly progressing key xt may actually have stabler and
better generalization than the query yt depending on δ.

5. Experiments
In this section, we conduct empirical experiments on bench-
mark deep learning tasks following settings in (Karimireddy
et al., 2019; Zheng et al., 2019; Xie et al., 2020) to validate
the performance of the proposed detached error feedback
(DEF) method. We compare the following methods with
RBGS as the gradient compressor: (1) SGD, which is the
upper bound without gradient compression, (2) EF (Karim-
ireddy et al., 2019; Zheng et al., 2019), (3) SAEF (Xu et al.,
2021), (4) PSync (Xie et al., 2020), and (5) the proposed
DEF(-A), where λ = 0.3 by default. We have also tested
EF21 (Richtárik et al., 2021; Fatkhullin et al., 2021) on our
deep learning tasks with RBGS, but it does not converge.

Settings. All experiments are implemented using PyTorch
and conducted on a cluster of machines connected by. Each
machine is equipped with 4 NVIDIA P40 GPUs and there
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Figure 2. ImageNet training curves of ResNet-50. The compression ratio is 64 for the top row and 256 for the bottom row. From the left
to right column, we plot the test accuracy (%) v.s. the wall-clock time, the test accuracy (%) v.s. training epochs, and the training loss v.s.
training epochs respectively.

Table 2. The ImageNet test accuracy (%) comparison under various compression ratio settings with ResNet-50.
Ratio SGD EF SAEF PSync DEF DEF-A

1 76.04 — — — — —

16 — 75.29 (↓ 0.75) 75.83 (↓ 0.21) 75.63 (↓ 0.41) 75.98 (↓ 0.06) 76.10 (↑ 0.06)

64 — 73.05 (↓ 2.99) 74.65 (↓ 1.39) 74.84 (↓ 1.20) 76.16 (↑ 0.12) 76.37 (↑ 0.33)

128 — 63.80 (↓ 12.2) 74.26 (↓ 1.78) 74.12 (↓ 1.92) 76.17 (↑ 0.13) 76.14 (↑ 0.10)

256 — diverge 73.83 (↓ 2.21) 73.02 (↓ 3.02) 75.71 (↓ 0.33) 76.00 (↓ 0.04)

512 — diverge 73.00 (↓ 3.04) 72.60 (↓ 3.44) 75.52 (↓ 0.52) 75.77 (↓ 0.27)

1024 — diverge 71.89 (↓ 4.15) 71.82 (↓ 4.22) 75.64 (↓ 0.40) 75.57 (↓ 0.47)

are 16 workers (GPUs) in total. We use NCCL as the back-
end of the PyTorch distributed package. The task-specific
settings are as follows.

CIFAR. We train VGG-16 (Simonyan & Zisserman, 2014),
ResNet-110 (He et al., 2016) and Wide ResNet (WRN-
28-10) (Zagoruyko & Komodakis, 2016) models CIFAR-
10/100 (Krizhevsky et al., 2009) image classification
task. We report the mean and standard deviation met-
rics over 3 runs. The base learning rate is tuned from
{· · · , 0.1, 0.05, 0.01, · · · } and the batch size is 128. The
momentum constant is 0.9 and the weight decay is 5×10−4.
The model is trained for 200 epochs with a learning rate
decay of 0.1 at epoch 100 and 150. Random cropping,
random flipping, and standardization are applied as data
augmentation techniques.

ImageNet. We train the ResNet-50 model on ImageNet
(Deng et al., 2009) image classification tasks. The model
is trained for 100 epochs with a learning rate decay of 0.1
at epoch 30, 60, and 90. The base learning rate is tuned
from {· · · , 0.1, 0.05, 0.01, · · · } and the batch size is 256.
The momentum constant is 0.9 and the weight decay is
1×10−4. Similar data augmentation techniques as in CIFAR
experiments are applied.

5.1. General Results

We plot the CIFAR-10 training curves of VGG-16 in Fig-
ure 1 and summarize the test numbers under various com-
pression ratio settings in Table 1. From the curves, DEF
achieves the best test acc and training loss among all the
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Figure 3. Accelerate the generalization with DEF-A. DEF-A sig-
nificantly improves the test accuracy before the second learning
rate decay compared with DEF.

communication-efficient methods. Compared with SGD,
DEF achieves ×3.6 and ×4.0 speedup when the compres-
sion ratio is 64 and 256 respectively. For the test numbers in
the table, DEF and DEF-A achieve the best results, which
can be comparable to SGD for compression up to 256. When
the compression ratio is high, DEF(-A) can significantly im-
prove over the best counterpart by 8%. Overall, DEF and
DEF-A have similar final test performances. A significant
improvement of the training loss over the existing EF vari-
ants can be observed, validating our lower bound in the
convergence analysis of DEF.

The ImageNet training curves of ResNet-50 is shown in Fig-
ure 2 and the test numbers under various compression ratio
settings are summarized in Table 2. We can reach similar
conclusions as in CIFAR-10 experiments. Specifically, DEF
achieves ×2.5 and ×2.9 speedup compared with SGD when
the compression ratio is 64 and 256 respectively. For the test
numbers in the table, DEF and DEF-A can be comparable
to SGD for the compression ratio of 1024. For some smaller
compression ratios, we may even see a slight improvement
over SGD. When the compression ratio is high, DEF(-A)
can significantly improve the best counterpart by 4%.

For the concern of scalability, we also summarize the test
numbers of VGG-16, ResNet-110, and WRN-28-10 on
CIFAR-10/100 in Table 3 with 64 as the compression ratio.
DEF-A achieves lossless performance compared with SGD
and largely improves all the counterparts. We find that for
VGG-16 on CIFAR-100 and ResNet-110 on CIFAR-10/100,
DEF-A has a noticeable improvement over DEF. In particu-
lar, we find that PSync achieves closer performance to SGD
on WRN as reported in Xie et al. (2020), but is much worse

Table 3. The CIFAR-10/100 test accuracy (%) comparison for var-
ious model architectures. The compression ratio is 1 for SGD and
64 for the other methods.

Method VGG-16 ResNet-110 WRN-28-10

SGD 93.76 ± 0.14
/ 72.50 ± 0.33

94.73 ± 0.06
/ 76.78 ± 0.29

96.21 ± 0.07
/ 80.81 ± 0.12

EF 92.16 ± 0.06
/ 68.87 ± 0.21 diverge diverge

SAEF 91.88 ± 0.14
/ 67.00 ± 0.07

92.95 ± 0.17
/ 71.19 ± 0.31

95.33 ± 0.01
/ 79.04 ± 0.01

PSync 91.79 ± 0.17
/ 65.68 ± 0.16

92.26 ± 0.04
/ 69.21 ± 0.04

95.44 ± 0.13
/ 79.60 ± 0.12

DEF 93.75 ± 0.12
/ 72.02 ± 0.10

94.34 ± 0.06
/ 76.43 ± 0.12

96.26 ± 0.05
/ 80.88 ± 0.16

DEF-A 93.61 ± 0.07
/ 72.38 ± 0.07

94.66 ± 0.07
/ 76.98 ± 0.21

96.24 ± 0.12
/ 80.95 ± 0.16

Table 4. The CIFAR-10 test accuracy (%) of DEF/DEF-A for vari-
ous λ with VGG-16. The compression ratio is 64.

λ 0.1 0.2 0.3

DEF 92.83 ± 0.19 93.45 ± 0.06 93.75 ± 0.12
DEF-A 92.78 ± 0.13 93.20 ± 0.14 93.61 ± 0.07

λ 0.4 0.6 0.8

DEF 93.41 ± 0.12 93.26 ± 0.10 92.60 ± 0.19
DEF-A 93.41 ± 0.20 93.11 ± 0.20 92.59 ± 0.15

on VGG-16 and ResNet-110. Therefore, both the superior
performance and scalability of DEF(-A) are validated.

5.2. Accelerate Generalization

Here we empirically validate the theoretical generalization
analysis that DEF-A has a better generalization rate than
DEF. We plot the training curves for VGG-16 on CIFAR-10
and ResNet-50 on ImageNet with compression ratio as 64
in Figure 3. We can see that DEF-A does have a much
faster generalization rate than DEF. Specifically, the test ac-
curacy improvement is about 15% on CIFAR-10 and 25%
on ImageNet before the first learning rate decay, which vali-
dates the theoretical benefits in our generalization analysis.
DEF-A can be even faster than full-precision SGD.

A significant improvement can still be observed before the
second learning rate decay, but it becomes smaller when the
learning rate is smaller. This matches our generalization
analysis well. Let c be smaller such that the learning rate
η = c

t+1 is smaller, then Eq. (22) is closer to Eq. (24), that
is, the DEF-A’s generalization error improvement over DEF
becomes smaller. Then it is obvious that the excess risk
error improvement will also become smaller.
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5.3. Hyper-parameter λ

Here we explore DEF(-A) with various choices of the hyper-
parameter λ with results summarized in Table 4. We can
just set λ = 0.3 by default for the best performance. In
comparison, an inappropriate choice of λ (e.g., 0.1 and 0.8)
can lead to the performance degradation of about 1%. We
also observe that a wide range of λ such as 0.2 ∼ 0.6 can
result in fairly good performance compared with λ = 0.3,
which means that the proposed DEF(-A) is not too sensitive
to the hyper-parameter λ.

6. Conclusion
In this work, to address the performance loss issue for
communication-efficient distributed SGD with the gradi-
ent sparsifier RBGS, we proposed a new DEF(-A) algorithm
motivated by the trade-off between gradient variance and
second moment. Our convergence analysis shows better
bounds without relying on the bound of gradient second
moment. We conduct the first generalization analysis for
communication-efficient distributed training to show that
DEF-A can generalize faster than DEF and SGD, which
sheds light on other applications incorporating compression
such as escaping saddle point, GAN training, and SignSGD
training. We establish the connection to SGD-IA for the
first time, thus our analysis provides potential theoretical
explanations for SGD-IA applications such as averaging
weights, ensemble, and momentum contrast in unsupervised
learning. Last but not least, deep learning experiments vali-
date the significant improvement of DEF(-A) over existing
EF variants.
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A. Proof of Convergence of DEF (Theorem 4.3)
In this section, we consider general non-convex objective functions with δ-approximate and ring-allreduce compatible
compressor. We want the following term to be as close to zero as possible.

1

K

K∑
k=1

∥ 1

K

K∑
k′=1

ek′,t − λtek,t∥22 . (31)

For ease of notation, let et := 1
K

∑K
k=1 ek,t, Var(et) := 1

K

∑K
k=1 ∥ek,t−et∥22. We have 1

K

∑K
k=1 ∥ek,t∥22 = ∥et∥22+Var(et).

Then

1

K

K∑
k=1

∥ 1

K

K∑
k′=1

ek,t − λtek,t∥22 =
1

K

K∑
k=1

∥et − λtek,t∥2 =
1

K

K∑
k=1

(∥et∥22 − 2λt⟨et, ek,t⟩+ λ2
t∥ek,t∥22)

=
1

K

K∑
k=1

∥ek,t∥22λ2
t − 2∥et∥22λt + ∥et∥22

= (∥et∥22 + Var(et))λ2
t − 2∥et∥22λt + ∥et∥22 .

(32)

When λ∗
t =

∥et∥2
2

∥et∥2
2+Var(et)

, it has the minimum ∥et∥2
2·Var(et)

∥et∥2
2+Var(et)

.

If we allow individual coefficient λk,t for each worker k ∈ [K], then λ∗
k,t =

⟨et,ek,t⟩
∥ek,t∥2

2
by minimizing ∥et − λk,tek,t∥22.

However, it is impractical due to the additional K hyper-parameters to tune when K is large.

For simplicity, let λt → λ because it is hard to manually tune λt during the training.

A.1. Lemmas

For ease of notation, let gk,t denotes the stochastic gradient computed at iteration t for worker k and gt :=
1
K

∑K
k=1 gk,t.

Lemma A.1. Let Assumptions 3.1, 3.2, and 4.1 hold. Let B1 = ( 1
K − λ)2 + K−1

K2 and B2 = | 1K − λ|+ K−1
K . We have

1

K

K∑
k=1

E∥gt − λgk,t∥22 ≤ B1σ
2 + 2(1− λ)2M2 + 2B2

2L
2 · 1

K

K∑
k=1

E∥et − λek,t∥22 , (33)

Proof. We know that gk,t = ∇f(xt − λek,t; ξk,t). Then

1

K

K∑
k=1

E∥gt − λgk,t∥22

=
1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

[∇f(xt − λek′,t; ξk′,t)−∇FS(xt − λek′,t)]− λ[∇f(xt − λek,t; ξk,t)−∇FS(xt − λek,t)]

+
1

K

K∑
k′=1

[∇FS(xt − λek′,t)−∇FS(yt)]− λ[∇FS(xt − λek,t)−∇FS(yt)] + (1− λ)∇FS(yt)∥22

(a)
=

1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

[∇f(xt − λek′,t; ξk′,t)−∇FS(xt − λek′,t)]− λ[∇f(xt − λek,t; ξk,t)−∇FS(xt − λek,t)]∥22︸ ︷︷ ︸
1⃝

+
1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

[∇FS(xt − λek′,t)−∇FS(yt)]− λ[∇FS(xt − λek,t)−∇FS(yt)] + (1− λ)∇FS(yt)∥22

(b)

≤ 1⃝+
2

K

K∑
k=1

E∥ 1

K

K∑
k′=1

[∇FS(xt − λek′,t)−∇FS(yt)]− λ[∇FS(xt − λek,t)−∇FS(yt)]∥22︸ ︷︷ ︸
2⃝

+2(1− λ)2M2 ,

(34)
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where (a) is due to ∇FS(xt −λek,t) = Egk,t = E∇f(xt −λek,t; ξk,t), (b) follows Assumption 3.2. Now we consider term
1⃝. For simplicity, let ak = ∇f(xt − λek,t; ξk,t)−∇FS(xt − λek,t) and we will have E⟨ak, ak′⟩ = 0 when k ̸= k′. Then

1⃝ =
1

K

K∑
k=1

E∥( 1
K

− λ)ak +
1

K

K∑
k′=1,k′ ̸=k

ak′∥22 =
1

K

K∑
k=1

[(
1

K
− λ)2 +

K − 1

K2
]︸ ︷︷ ︸

B1

∥ak∥22
(a)

≤ B1σ
2 , (35)

where (a) follows Assumption 3.1. B1 = 0 if and only if K = 1 and λ = 1. Now we consider term 2⃝. For simplicity, let
bk = ∇FS(xt − λek,t)−∇FS(yt) and B2 = | 1K − λ|+ K−1

K . B2 = 0 if and only if K = 1 and λ = 1. Then

2⃝ =
2

K

K∑
k=1

E∥ 1

K

K∑
k′=1

bk′ − λbk∥22 =
2

K

K∑
k=1

E∥( 1
K

− λ)bk +
1

K

K∑
k′=1,k′ ̸=k

bk′∥22

=
2

K

K∑
k=1

B2
2E∥

1
K − λ

B2
bk +

1

KB2

K∑
k′=1,k′ ̸=k

bk′∥22

≤ 2

K

K∑
k=1

B2
2E(

| 1K − λ|
B2

∥bk∥22 +
1

KB2

K∑
k′=1,k′ ̸=k

∥bk′∥22)

=
2

K

K∑
k=1

B2
2(

| 1K − λ|
B2

+
K − 1

KB2
)E∥bk∥22 =

2B2
2

K

K∑
k=1

E∥bk∥22

(a)

≤ 2B2
2L

2 · 1

K

K∑
k=1

E∥et − λek,t∥22 ,

(36)

where (a) follows Assumption 4.1. Substitute terms 1⃝ and 2⃝ with their bounds and we can complete the proof.

Lemma A.2. Let Assumptions 3.1, 3.2, 4.1, 4.2 and 3.3 hold. Let B1 = ( 1
K − λ)2 + K−1

K2 and η < 1
2L , we have

1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

ek′,t − λek,t∥22 ≤ 1

(
√

1−δ/2
1−δ − 1)2

η2[B1σ
2 + 2(1− λ)2M2] . (37)

Proof. We have

1

K

K∑
k=1

E∥ 1

K

K∑
k′=1

ek′,t − λek,t∥22 =
1

K

K∑
k=1

E∥et − λek,t∥22

(a)
=

1

K

K∑
k=1

E∥(ηgt−1 + et−1)− C(ηgt−1 + et−1)− λ(ηgk,t−1 + ek,t−1) + λC(ηgk,t−1 + ek,t−1)∥22

(a)
=

1

K

K∑
k=1

E∥(ηgt−1 − ληgk,t−1 + et−1 − λek,t−1)− C(ηgt−1 − ληgk,t−1 + et−1 − λek,t−1)∥22

(b)
= (1− δ) · 1

K

K∑
k=1

E∥ηgt−1 − ληgk,t−1 + et−1 − λek,t−1∥22

≤ (1− δ)(1 + β) · 1

K

K∑
k=1

E∥et−1 − λek,t−1∥22 + (1− δ)(1 +
1

β
)η2 · 1

K

K∑
k=1

E∥gt−1 − λgk,t−1∥22

(c)
= (1− δ)(1 + β) · 1

K

K∑
k=1

E∥et−1 − λek,t−1∥22 + (1− δ)(1 +
1

β
)η2[B1σ

2 + 2(1− λ)2M2]

+ (1− δ)(1 +
1

β
)2B2

2η
2L2 · 1

K

K∑
k=1

E∥et−1 − λek,t−1∥22 ,

(38)
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where (a) follows Assumption 3.3, (b) follows Assumption 4.2, and (c) follows Lemma A.1. β is a constant such that
0 < β < δ

1−δ , i.e., (1−δ)(1+β) < 1. Let B3 = (1−δ)(1+ 1
β )2B

2
2η

2L2 < 1−(1−δ)(1+β), i.e., B3+(1−δ)(1+β) < 1,
then

1

K

K∑
k=1

E∥et − λek,t∥22

≤ [B3 + (1− δ)(1 + β)]
1

K

K∑
k=1

E∥et−1 − λek,t−1∥22 + (1− δ)(1 +
1

β
)η2[B1σ

2 + 2(1− λ)2M2]

= (1− δ)(1 +
1

β
)[B1σ

2 + 2(1− λ)2M2]

t−1∑
t′=0

[B3 + (1− δ)(1 + β)]t−1−t′η2

<
(1− δ)(1 + 1

β )

1−B3 − (1− δ)(1 + β)︸ ︷︷ ︸
h(β)

η2[B1σ
2 + 2(1− λ)2M2] .

(39)

Now we consider the minimum value of h(β). Its gradient regarding β is

∂h(β)

∂β
=

1− δ

β2[1−B3 − (1− δ)(1 + β)]2
[(1− δ)β2 + 2(1− δ)β +B3 − δ] . (40)

Therefore,

β∗ = −1 +

√
1−B3

1− δ
→ B3 = 1− (1− δ)(1 + β∗)2 < 1− (1− δ)(1 + β∗), valid,

h(β∗) =
1− δ

(
√
1−B3 −

√
1− δ)2

=
1

(
√

1−B3

1−δ − 1)2
,

1

K

K∑
k=1

E∥et − λek,t∥22 ≤ 1

(
√

1−B3

1−δ − 1)2
η2[B1σ

2 + 2(1− λ)2M2] ,

(41)

which completes the proof. For simplicity we can just set B3 ≤ δ/2 (we can choose a constant > 1 other than 2), which is

valid as it leads to β∗ ≤ −1+
√

1−δ/2
1−δ and −1+

√
1−δ/2
1−δ < δ

1−δ holds. Based on the definition of B3, it also requires that

2B2
2η

2L2 <
δ/2

(1− δ)(−1 +
√

1−δ/2
1−δ )

=
δ/2

−(1− δ) +
√
(1− δ)(1− δ/2)

, (42)

where the R.H.S. is monotonically increasing for 0 < δ < 1. Therefore, for all conditions above to hold, we only need to
assume that

2B2
2η

2L2 ≤ 4(1 + (1− λ)2)η2L2 < lim
δ→0

δ/2

−(1− δ) +
√

(1− δ)(1− δ/2)
= 2 . (43)

As 0 < λ < 1, we can simply assume η < 1
2L .

Lemma A.3. Let Assumptions 3.1, 3.2, 4.2, and 3.3 hold. We have 1
K

∑K
k=1 E∥ek,t∥22 ≤ η2(σ2+M2)

(
√

1/(1−δ)−1)2
.
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Proof. We have

1

K

K∑
k=1

E∥ek,t∥22
(a)
=

1

K

K∑
k=1

E∥ηgk,t−1 + ek,t−1 − C(ηgk,t−1 + ek,t−1)∥22

(b)

≤ 1− δ

K

K∑
k=1

E∥ηgk,t−1 + ek,t−1∥22

≤ (1− δ)(1 + β) · 1

K

K∑
k=1

E∥ek,t−1∥22 + (1− δ)(1 +
1

β
)η2(σ2 +M2)

≤ (1− δ)(1 +
1

β
)(σ2 +M2)

t−1∑
t′=0

[(1− δ)(1 + β)]t−1−t′η2

≤
(1− δ)(1 + 1

β )

1− (1− δ)(1 + β)
η2(σ2 +M2)

=
1

(
√

1/(1− δ)− 1)2
η2(σ2 +M2) ,

(44)

where β = −1 + 1√
1−δ

, (a) follows Assumption 3.3, and (b) follows Assumption 4.2.

A.2. Main Proof

In this section, we need Assumptions 3.1, 3.2, 4.1, 4.2, 3.3, and η ≤ 1
4L .

Firstly, we have the update rule of yt

yt+1 = xt+1 − et+1 = xt+1 −
1

K

K∑
k=1

ek,t+1

= xt −
1

K

K∑
k=1

C(ηgk,t + ek,t)−
1

K

K∑
k=1

(ηgk,t + ek,t − C(ηgk,t + ek,t))

= xt −
1

K

K∑
k=1

(ηgk,t + ek,t) = yt −
1

K

K∑
k=1

ηgk,t = yt − ηgt .

(45)

According to the Liptschitz gradient assumption,

E[FS(yt+1)− FS(yt)] ≤ E⟨∇FS(yt), yt+1 − yt⟩+
L

2
E∥yt+1 − yt∥22

= E⟨∇FS(yt),−
η

K

K∑
k=1

gk,t)⟩+
η2L

2
E∥ 1

K

K∑
k=1

gk,t∥22

= − η

K

K∑
k=1

E⟨∇FS(yt),∇FS(xt − λek,t)⟩︸ ︷︷ ︸
1⃝

+
η2L

2

1

K

K∑
k=1

E∥∇FS(xt − λek,t)∥22︸ ︷︷ ︸
2⃝

+
η2Lσ2

2K
.

(46)

For term 1⃝, we have

1⃝ = −ηE∥∇FS(yt)∥22 −
η

K

K∑
k=1

E⟨∇FS(yt),∇FS(xt − λek,t)−∇FS(yt)⟩

≤ −η

2
E∥∇FS(yt)∥22 +

η

2K

K∑
k=1

E∥∇FS(xt − λek,t)−∇FS(yt)∥22

≤ −η

2
E∥∇FS(yt)∥22 +

ηL2

2K

K∑
k=1

E∥et − λek,t∥22 .

(47)
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For term 2⃝, we have

2⃝ ≤ 1

K

K∑
k=1

E[2∥∇FS(xt − λek,t)−∇FS(yt)∥22 + 2∥∇FS(yt)∥22]

≤ 2E∥∇FS(yt)∥22 +
2L2

K

K∑
k=1

E∥et − λek,t∥22 .

(48)

Replace 1⃝ and 2⃝ with their bounds and we have

E[f(yt+1)− f(yt)] ≤ (−η

2
+ η2L)E∥∇FS(yt)∥22 + (

ηL2

2
+ η2L3)

1

K

K∑
k=1

E∥et − λek,t∥22 +
η2Lσ2

2K

(a)

≤ −η

4
E∥∇FS(yt)∥22 + ηL2 · 1

K

K∑
k=1

E∥et − λek,t∥22 +
η2Lσ2

2K
,

(49)

where (a) is due to the assumption η ≤ 1
4L for simplicity. Rearrange and sum from t = 0 to T − 1, we will have

1

T

T−1∑
t=0

E∥∇FS(yt)∥22 ≤ 4E[FS(y0)− FS(yT )]

ηT
+

2ηLσ2

K
+ 4L2 · 1

KT

T−1∑
t=0

K∑
k=1

E∥et − λek,t∥22

(a)

≤ 4E[FS(y0)− FS(y
∗)]

ηT
+

2ηLσ2

K
+

4

(
√

1−δ/2
1−δ − 1)2

η2L2[B1σ
2 + 2(1− λ)2M2]

=
4E[FS(y0)− FS(y

∗)]

ηT
+

2ηLσ2

K
+

4

(
√

1−δ/2
1−δ − 1)2

η2L2[
K − 1

K2
σ2 + (

1

K
− λ)2σ2 + 2(1− λ)2M2] ,

(50)

where (a) follows Lemma A.2. Let η = O(
√

K
T ), we have the convergence rate

1

T

T−1∑
t=0

E∥∇FS(yt)∥22 = O(
1√
KT

+
K

T
)
K=O(T 1/3)

= O(
1√
KT

) . (51)

If we are only interested in δ, σ2 and M2, let λ =
1
K σ2+2M2

σ2+2M2 and we have

1

T

T−1∑
t=0

E∥∇FS(yt)∥22 = O(
1

(
√
(1− δ/2)/(1− δ)− 1)2

· (K − 1

K2
σ2 +

2(1− 1
K )2σ2M2

σ2 + 2M2
)) . (52)

B. Proof of Generalization of DEF(-A) (Theorem 4.6)
We use uniform stability to bound the generalization error. Let S = {ξ1, ξ2, · · · , ξN} be the training dataset of size N ,
where each data ξn is sampled from distribution D. Let S(n) = {ξ′1, ξ′2, · · · , ξ′N} = {ξ1, ξ2, · · · , ξn−1, ξ

′
n, ξn+1, · · · , ξN}

be another training datasets of size N . We can see that S and S(n) only differs in the nth data. Let the models trained on S
and S(i) be xt and x̃t respectively for DEF-A. For DEF, they will be yt and ỹt correspondingly.

In each iteration t and under the same random sampling procedure, all workers select the same data from S and S(n)

with probability
(
N−1
K

)
/
(
N
K

)
= N−K

N , while one of the workers selects different data from S and S(n) with probability
1−

(
N−1
K

)
/
(
N
K

)
= K

N . For simplicity, let G =
√
σ2 +M2, B2 = | 1K − λ|+ K−1

K . Following Hardt et al. (2016) (Theorem
3.8), we only need to bound (xt for DEF-A and yt for DEF)

E[f(yt; ξ)− f(ỹT ; ξ)] ≤
Kt0
N

+GE[∥yT − ỹT ∥2|yt0 − ỹt0 = 0] . (53)
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B.1. Generalization Error of DEF

In this section, we consider non-convex objective functions. We need Assumptions 3.1, 3.2, 4.1, 4.2, 3.3 and ηt ≤ c
t+1 . We

first consider yt selecting the same data at iteration t.

∥yt+1 − ỹt+1∥2 = ∥yt − ηtgt − ỹt + ηtg̃t∥2 ≤ ∥yt − ỹt∥2 + ηt∥gt − g̃t∥2

= ∥yt − ỹt∥2 + ηt∥
1

K

K∑
k=1

[∇f(xt − λek,t; ξk,t)−∇f(x̃t − λẽk,t; ξk,t)]∥2

≤ ∥yt − ỹt∥2 +
ηt
K

K∑
k=1

∥∇f(yt + et − λek,t; ξk,t)−∇f(ỹt + ẽt − λẽk,t; ξk,t)∥2

≤ (1 + ηtL)∥yt − ỹt∥2 +
ηtL

K

K∑
k=1

∥(et − λek,t)− (ẽt − λẽk,t)∥2

= (1 + ηtL)∥yt − ỹt∥2 +
ηtL

K

K∑
k=1

∥( 1
K

− λ)(ek,t − ẽk,t) +
1

K

K∑
k′=1,k′ ̸=k

(ek′,t − ẽk′,t)∥2

≤ (1 + ηtL)∥yt − ỹt∥2 +
ηtLB2

K

K∑
k=1

∥ek,t − ẽk,t∥2︸ ︷︷ ︸
1⃝

.

(54)

Now we consider term 1⃝. Following the same procedures in Lemma A.3, but let ηt ≤ c
t+1 and β = δ

2(1−δ) , we have

E∥ek,t − ẽk,t∥22 ≤ (1− δ)(1 +
1

β
) · 2(σ2 +M2)

t−1∑
t′=0

[(1− δ)(1 + β)]t−1−t′η2t′

≤ 2(1− δ)(1 +
1

β
)(σ2 +M2)c2

t−1∑
t′=0

1

(t′ + 1)2

≤ 2(1− δ)(1 +
1

β
)(σ2 +M2)c2[1 + (− 1

t′ + 1
)|t−1
0 ]

≤ 4(1− δ)(1 +
1

β
)(σ2 +M2)c2

=
4(1− δ)(2− δ)

δ
G2c2 .

(55)

Because (E∥ek,t − ẽk,t∥2)2 ≤ E∥ek,t − ẽk,t∥22, we have

E 1⃝ ≤
√
E∥ek,t − ẽk,t∥22 ≤ 2Gc

√
(1− δ)(2− δ)

δ︸ ︷︷ ︸
B4

= 2B4Gc . (56)

At iteration t, if a worker k′ ∈ [K] selects different data from S and S(n), we have

∥yt+1 − ỹt+1∥2 ≤ ∥yt − ỹt∥2 + ηt∥gt − g̃t∥2 ≤ ∥yt − ỹt∥2 + 2Gηt . (57)

When we consider both circumstances, we have

E∥yt+1 − ỹt+1∥2 ≤ (1− K

N
)[(1 + ηtL)E∥yt − ỹt∥2 + ηtLB2 · 2B4Gc] +

K

N
[E∥yt − ỹt∥2 + 2Gηt]

= [1 + (1− K

N
)ηtL]E∥yt − ỹt∥2 + [

2K

N
G+ 2(1− K

N
)LB2B4Gc]︸ ︷︷ ︸

B5

ηt

(a)

≤ exp((1− K

N
)ηtL)E∥yt − ỹt∥2 +B5ηt .

(58)
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Unwind the recurrence with t = 0, 1, · · · , T − 1, we have

E∥yT − ỹT ∥2 ≤
T−1∑
t=t0

B5
c

t+ 1

T−1∏
t′=t+1

exp((1− K

N
)

c

t+ 1
L)

= B5c

T−1∑
t=t0

1

t+ 1
exp((1− K

N
)Lc

T−1∑
t′=t+1

1

t+ 1
)

(a)

≤ B5c

T−1∑
t=t0

1

t+ 1
exp((1− K

N
)Lc log

T

t+ 1
)

= B5cT
(1−K

N )Lc
T−1∑
t=t0

(t+ 1)−(1−K
N )Lc−1

= B5cT
(1−K

N )Lc t
−(1−K

N )Lc
0 − T−(1−K

N )Lc

(1− K
N )Lc

≤ B5

(1− K
N )L

(
T

t0
)(1−

K
N )Lc

(59)

where (a) is due to
∑T−1

t′=t+1
1

t′+1 ≤
∫ T−1

t
log(t′ + 1)dt′. Following Eq. (53),

E[f(yt; ξ)− f(ỹT ; ξ)] ≤
Kt0
N

+
B5G

(1− K
N )L︸ ︷︷ ︸

B6

(
T

t0
)(1−

K
N )Lc . (60)

The R.H.S is minimized when

t0 = [(
N

K
− 1)LcB6]

1/((1−K
N )Lc+1)T (1−K

N )Lc/((1−K
N )Lc+1) , (61)

which gives us

E[f(yT ; ξ)− f(ỹT ; ξ)] ≤ [
K

N
+

1

(NK − 1)Lc
][(

N

K
− 1)LcB6]

1/((1−K
N )Lc+1)T (1−K

N )Lc/((1−K
N )Lc+1) . (62)

Note that when K = 1, λ = 1, we will have B2 = 0, B5 = 2K
N G, and B6 = 2G2

(N−1)L . Then the R.H.S. equals

[
1

N
+

1

(N − 1)Lc
](2cG2)1/((1−

1
N )Lc+1)T (1− 1

N )Lc/((1− 1
N )Lc+1)

=
1 + 1/(Lc)

N − 1
T (

2cG2

T
)1/((1−

1
N )Lc+1)

(a)

≤ 1 + 1/(Lc)

N − 1
T (

2cG2

T
)1/(Lc+1)

=
1 + 1/(Lc)

N − 1
(2cG2)1/(Lc+1)TLc/(Lc+1) ,

(63)

which matches the result in Hardt et al. (2016) for SGD. (a) is due to 2cG2

T ≤ 1 when t0 ≤ T .

B.2. Generalization Error of DEF-A

In this section, we consider non-convex objective functions and random sparsification which satisfies Assumptions 4.2 and
3.3. We need Assumptions 3.1, 3.2, 4.1, and ηt ≤ c

t+1 .
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Now we consider xt.

E∥xt+1 − x̃t+1∥2
(a)
= E∥xt − C(ηtgt + et)− x̃t + C(ηtg̃t + ẽt)∥2

(a)

≤ E∥xt − x̃t∥2 + E∥C(ηtgt − ηtg̃t)∥2 + E∥C(et − ẽt)∥2

≤ E∥xt − x̃t∥2 + E
√

EC∥C(ηtgt − ηtg̃t)∥22 + E
√
EC∥C(et − ẽt)∥22

(a)
= E∥xt − x̃t∥2 + E

√
δη2t ∥gt − g̃t∥22 + E

√
δ∥et − ẽt∥22

= E∥xt − x̃t∥2 + δ
1
2 ηtE∥gt − g̃t∥2 + δ

1
2E∥et − ẽt∥2

≤ E∥xt − x̃t∥2 + δ
1
2 ηtE∥gt − g̃t∥2 + δ

1
2
1

K

K∑
k=1

E∥ek,t − ẽk,t∥2 .

(64)

where (a) is due to the random sparsification. When selecting the same data at iteration t, we have

E∥xt+1 − x̃t+1∥2

≤ E∥xt − x̃t∥2 +
δ

1
2

K

K∑
k=1

E∥ek,t − ẽk,t∥2 + δ
1
2 ηtE∥

1

K

K∑
k=1

[∇f(xt − λek,t; ξk,t)−∇f(x̃t − λẽk,t; ξk,t)]∥2

≤ E∥xt − x̃t∥2 +
δ

1
2

K

K∑
k=1

E∥ek,t − ẽk,t∥2 +
δ

1
2 ηtL

K

K∑
k=1

∥xt − λek,t − x̃t + λẽk,t∥2

≤ (1 + δ
1
2 ηtL)E∥xt − x̃t∥2 +

δ
1
2 (1 + ηtLλ)

K

K∑
k=1

E∥ek,t − ẽk,t∥2 .

(65)

When selecting different data at iteration t, we have

E∥xt+1 − x̃t+1∥2 ≤ E∥xt − x̃t∥2 + δ
1
2 ηt · 2G+

δ
1
2

K

K∑
k=1

E∥ek,t − ẽk,t∥2 . (66)

When we consider both circumstances, we have

E∥xt+1 − x̃t+1∥2 ≤ (1− K

N
)[(1 + δ

1
2 ηtL)E∥xt − x̃t∥2 +

δ
1
2 (1 + ηtLλ)

K

K∑
k=1

E∥ek,t − ẽk,t∥2]

+
K

N
[E∥xt − x̃t∥2 + δ

1
2 ηt · 2G+

δ
1
2

K

K∑
k=1

E∥ek,t − ẽk,t∥2]

= [1 + (1− K

N
)δ

1
2 ηtL]E∥xt − x̃t∥2 +

K

N
2δ

1
2 ηtG+ δ

1
2 [1 + (1− K

N
)ηtLλ]

1

K

K∑
k=1

E∥ek,t − ẽk,t∥2

(a)

≤ [1 + (1− K

N
)δ

1
2 ηtL]E∥xt − x̃t∥2 +

K

N
2δ

1
2 ηtG+ δ

1
2 [1 + (1− K

N
)ηtLλ] · 2B4Gc

(b)

≤ exp((1− K

N
)δ

1
2 ηtL)E∥xt − x̃t∥2 +

K

N
2δ

1
2 ηtG+ δ

1
2 [1 + (1− K

N
)ηtLλ] · 2B4Gc ,

(67)
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where (a) follows the Eq. (56). Let ηt ≤ c
t+1 , we have

E∥xT − x̃T ∥2 ≤
T−1∑
t=t0

[
K

N
2δ

1
2 ηtG+ δ

1
2 (1 + (1− K

N
)ηtLλ) · 2B4Gc]

T−1∏
t′=t+1

exp((1− K

N
)δ

1
2 ηt′L)

≤ 2δ
1
2G

T−1∑
t=t0

[
K

N

c

t+ 1
+ (1 + (1− K

N
)

c

t+ 1
Lλ)B4c] exp((1−

K

N
)δ

1
2Lc

T−1∑
t′′=t+1

1

t′′ + 1
)

≤ 2δ
1
2G

T−1∑
t=t0

[
K

N

c

t+ 1
+ (1 + (1− K

N
)

c

t+ 1
Lλ)B4c] exp((1−

K

N
)δ

1
2Lc log(

T

t+ 1
))

= 2δ
1
2G

T−1∑
t=t0

[
K

N

c

t+ 1
+ (1 + (1− K

N
)

c

t+ 1
Lλ)B4c](

T

t+ 1
)(1−

K
N )δ

1
2 Lc

≤ 2δ
1
2Gc[

K

N
+ 1 + (1− K

N
)LcλB4]T

(1−K
N )δ

1
2 Lc

T−1∑
t=t0

(t+ 1)−(1−K
N )δ

1
2 Lc

≤ 2δ
1
2Gc[

K

N
+ 1 + (1− K

N
)LcλB4]T

(1−K
N )δ

1
2 Lc t

−1−(1−K
N )δ

1
2 Lc

0 − T−1−(1−K
N )δ

1
2 Lc

1 + (1− K
N )δ

1
2Lc

≤
2δ

1
2G[KN + 1 + (1− K

N )LcλB4]

1 + (1− K
N )δ

1
2L

(
T

t0
)(1−

K
N )δ

1
2 Lc .

(68)

Following Eq. (53),

E[f(xT ; ξ)− f(x̃T ; ξ)] ≤
Kt0
N

+
2δ

1
2G[KN + 1 + (1− K

N )LcλB4]

1 + (1− K
N )δ

1
2L︸ ︷︷ ︸

B7

(
T

t0
)(1−

K
N )δ

1
2 Lc .

(69)

The R.H.S is minimized when

t0 = [(
N

K
− 1)LcB7]

1/((1−K
N )δ

1
2 Lc+1)T (1−K

N )δ
1
2 Lc/((1−K

N )δ
1
2 Lc+1) , (70)

which gives us

E[f(xT ; ξ)− f(x̃T ; ξ)] ≤ [
K

N
+

1

(NK − 1)Lc
][(

N

K
− 1)LcB7]

1/((1−K
N )δ

1
2 Lc+1)T (1−K

N )δ
1
2 Lc/((1−K

N )δ
1
2 Lc+1) . (71)

B.3. Optimization Error of DEF

In this section, we consider non-convex objective functions satisfying the Polyak-Łojasiewicz (PL) condition, which
establishes the relation between the objective function and the gradient norm. We consider δ-approximate and ring-allreduce
compatible compressor. We need Assumptions 3.1, 3.2, 4.1, 4.2, 3.3, and ηt = c

t+1 ≤ 1
4L . From Eq. (49) and the PL

condition, we have

E[FS(yt+1)− FS(yt)] ≤ −ηt
4
E∥∇FS(yt)∥22 + ηtL

2 · 1

K

K∑
k=1

E∥et − λek,t∥22 +
η2tLσ

2

2K

≤ −µηt
2

E[FS(yt)− FS(y
∗)] + ηtL

2 · 1

K

K∑
k=1

E∥et − λek,t∥22 +
η2tLσ

2

2K
,

(72)

where we need ηt ≤ 1
4L following Section A. Rearrange,

E[FS(yt+1)− FS(y
∗)] ≤ (1− µηt

2
)E[FS(yt)− FS(y

∗)] + ηtL
2 · 1

K

K∑
k=1

E∥et − λek,t∥22 +
η2tLσ

2

2K

(a)

≤ (1− µηt
2

)E[FS(yt)− FS(y
∗)] +

B1σ
2 + 2(1− λ)2M2

(
√

1−δ/2
1−δ − 1)2

η3tL
2 +

η2tLσ
2

2K
,

(73)
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where (a) follows Lemma A.2. Let ηt = c
t+1 , we have

E[FS(yT )− FS(y
∗)]

≤ E[FS(yt)− FS(y
∗)]

T−1∏
t=0

(1− µc

2(t+ 1)
)︸ ︷︷ ︸

1⃝

+[
B1σ

2 + 2(1− λ)2M2

(
√

1−δ/2
1−δ − 1)2

+
σ2

2K
]L

T−1∑
t=0

c2

(t+ 1)2

T−1∏
t′=t+1

(1− µc

2(t+ 1)
)︸ ︷︷ ︸

2⃝

,

(74)

where

1⃝ ≤
T−1∏
t=0

exp(− µc

2(t+ 1)
) = exp(−µc

2
) exp(−µc

2

T−1∑
t=1

1

t+ 1
) ≤ exp(−µc

2
) exp(−µc

2
log T ) = exp(−µc

2
)T−µc

2 ,

(75)

2⃝ ≤
T−1∑
t=0

c2

(t+ 1)2
exp(−µc

2

T−1∑
t′=t+1

1

t′ + 1
) ≤

T−1∑
t=0

c2

(t+ 1)2
exp(−µc

2
log

T

t+ 1
) = c2T−µc

2

T−1∑
t=0

(t+ 1)
µc
2 −2 . (76)

When µc
2 − 2 ≥ 0,

2⃝ ≤ c2T−µc
2

µc
2 − 1

((T + 1)
µc
2 −1 − 1) ≤ c2

µc
2 − 1

(
T + 1

T
)

µc
2 −1T−1 . (77)

When µc
2 − 2 ≤ 0 and µc

2 − 2 ̸= −1,

2⃝ ≤ c2T−µc
2

µc
2 − 1

(1 + T
µc
2 −1 − 1) =

c2

µc
2 − 1

T−1 . (78)

When µc
2 − 2 = −1,

2⃝ ≤ c2T−1(1 + log T ) . (79)

Hence,

E[FS(yT )− FS(y
∗)] = Õ(T−µc

2 + T−1) . (80)

B.4. Optimization Error of DEF-A

In this section, we consider non-convex objective functions satisfying the Polyak-Łojasiewicz (PL) condition, which
establishes the relation between the objective function and the gradient norm. The compressor we consider here is random
sparsification which satisfies Assumptions 4.2 and 3.3. We need Assumptions 3.1, 3.2, 4.1, and ηt =

c
t+1 ≤ 1

8L .

E[FS(xt+1)− FS(xt)] ≤ E⟨∇FS(xt), xt+1 − xt⟩+
L

2
E∥xt+1 − xt∥22

(a)
= E⟨∇FS(xt),−C(ηtgt + et)⟩︸ ︷︷ ︸

1⃝
+
L

2
E∥C(ηtgt + et)∥22︸ ︷︷ ︸

2⃝
,

(81)
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where (a) follows Assumption 3.3. For term 1⃝,

1⃝
(a)
= −E⟨∇FS(xt), δ(ηtgt + et)⟩ = −δηtE⟨∇FS(xt),

1

K

K∑
k=1

∇FS(xt − λek,t) +
et
ηt
⟩

= −δηtE∥∇FS(xt)∥22 − δηtE⟨∇FS(xt),
1

K

K∑
k=1

∇FS(xt − λek,t) +
et
ηt

−∇FS(xt)⟩

≤ −δηt
2

E∥∇FS(xt)∥22 +
δηt
2

E∥ 1

K

K∑
k=1

∇FS(xt − λek,t)−∇FS(xt) +
et
ηt
∥22

≤ −δηt
2

E∥∇FS(xt)∥22 +
δηtL

2

2K

K∑
k=1

E∥λek,t∥22 +
δ

2ηt
E∥et∥22

≤ −δηt
2

E∥∇FS(xt)∥22 +
δ(η2tL

2λ2 + 1)

2ηtK

K∑
k=1

E∥ek,t∥22 ,

(82)

where (a) is due to the random sparsification compressor. For term 2⃝,

2⃝
(a)
= δE∥ηtgt + et∥22 ≤ 2δη2tE∥gt∥22 + 2δE∥et∥22

= 2δη2tE∥
1

K

K∑
k=1

∇FS(xt − λek,t)∥22 +
2δη2t σ

2

K
+ 2δE∥et∥22

≤ 2δη2t
K

K∑
k=1

E∥∇FS(xt − λek,t)−∇FS(xt) +∇FS(xt)∥22 + 2δE∥et∥22 +
2δη2t σ

2

K

≤ 4δη2tE∥∇FS(xt)∥22 +
4δη2tL

2

K

K∑
k=1

E∥λek,t∥22 + 2δE∥et∥22 +
2δη2t σ

2

K

= 4δη2tE∥∇FS(xt)∥22 +
2δ(2η2tL

2λ2 + 1)

K

K∑
k=1

E∥ek,t∥22 +
2δη2t σ

2

K
,

(83)

where (a) is due to the random sparsification compressor. Put them together, let ηt ≤ 1
8L , and we have

E[FS(xt+1)− FS(xt)]

≤ −δηt
2

(1− 4ηtL)E∥∇FS(xt)∥22 +
δ(1 + 2ηtL)(1 + 2η2tL

2λ2)

2ηtK

K∑
k=1

E∥ek,t∥22 +
δη2tLσ

2

K

≤ −δηt
4

E∥∇FS(xt)∥22 +
δ(1 + λ2)

ηt
· 1

K

K∑
k=1

E∥ek,t∥22 +
δη2tLσ

2

K

(a)

≤ −µδηt
2

E[FS(xt)− FS(x
∗)] +

δ(1 + λ2)ηt(σ
2 +M2)

(1/
√
1− δ − 1)2

+
δη2tLσ

2

K
,

(84)

where (a) is due to ∥∇FS(xt)∥22 ≥ 2µ(FS(xt)− FS(x
∗)) according to the PL condition and Lemma A.3. Rearrange,

E[FS(xt+1)− FS(x
∗)] ≤ (1− µδηt

2
)E[FS(xt)− FS(x

∗)] +
δ(1 + λ2)ηt(σ

2 +M2)

(1/
√
1− δ − 1)2

+
δη2tLσ

2

K
. (85)
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Let ηt = c
t+1 and G =

√
σ2 +M2. Take this recurrence from t = 0 to T − 1 and we have

E[FS(xT )− FS(x
∗)] ≤ E[FS(x0)− FS(x

∗)]

T−1∏
t=0

(1− µδc

2(t+ 1)
)︸ ︷︷ ︸

3⃝

+
δ(1 + λ2)G2

(1/
√
1− δ − 1)2

T−1∑
t′=0

c

t′ + 1

T−1∏
t=t′+1

(1− µδc

2(t+ 1)
)︸ ︷︷ ︸

4⃝︸ ︷︷ ︸
5⃝

+
δLσ2

K

T−1∑
t′=0

c2

(t′ + 1)2

T−1∏
t=t′+1

(1− µδc

2(t+ 1)
)︸ ︷︷ ︸

4⃝︸ ︷︷ ︸
6⃝

,
(86)

where

3⃝ ≤
T−1∏
t=0

exp(− µδc

2(t+ 1)
) = exp(−µδc

2

T−1∑
t=0

1

t+ 1
) ≤ exp(−µδc

2
) exp(−µδc

2

T−1∑
t=1

1

t+ 1
)

≤ exp(−µδc

2
) exp(−µδc

2
log(T )) = exp(−µδc

2
)T−µδc

2 .

(87)

4⃝ ≤
T−1∏

t=t′+1

exp(− µδc

2(t+ 1)
) = exp(−µδc

2

T−1∑
t=t′+1

1

t+ 1
) ≤ exp(−µδc

2
log(

T

t′ + 1
)) = (

T

t′ + 1
)−

µδc
2 , (88)

When µδc
2 ≥ 1,

5⃝ ≤ cT−µδc
2

T−1∑
t′=0

(t′ + 1)
µδc
2 −1 ≤ cT−µδc

2 · 2

µδc
[(T + 1)

µδc
2 − 1] ≤ 2

µδ
(
T + 1

T
)

µδc
2 . (89)

When 0 < µδc
2 ≤ 1,

5⃝ ≤ cT−µδc
2

T−1∑
t′=0

(t′ + 1)
µδc
2 −1 ≤ cT−µδc

2 · [1 + 2

µδc
(T

µδc
2 − 1)] ≤ 2

µδ
. (90)

When µδc
2 ≥ 2,

6⃝ ≤ c2T−µδc
2

T−1∑
t′=0

(t′ + 1)
µδc
2 −2 ≤ c2T−µδc

2 · 1

µδc/2− 1
[(T + 1)

µδc
2 −1 − 1] ≤ c2

µδc/2− 1
(
T + 1

T
)

µδc
2 −1T−1 . (91)

When µδc
2 ≤ 2, µδc

2 ̸= 1,

6⃝ ≤ c2T−µδc
2

T−1∑
t′=0

(t′ + 1)
µδc
2 −2 ≤ c2T−µδc

2 · [1 + 1

µδc/2− 1
(T

µδc
2 −1 − 1)] ≤ c2

µδc/2− 1
T−1 . (92)

When µδc
2 = 1,

6⃝ ≤ c2T−1
T−1∑
t′=0

(t′ + 1)−1 ≤ c2T−1 · (1 + log T ) . (93)

Hence,

E[FS(xT )− FS(x
∗)] = Õ(T−µδc

2 + T−1 + (1/
√
1− δ − 1)−2) . (94)
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C. Proof of Generalization of SGD-(IA) (Theorem 4.10)
For consistency, let {yt} be the SGD solution path, i.e.,

yt+1 = yt − ηt∇f(yt; ξt) = yt − ηtgt . (95)

Let {xt} be the SGD-IA solution path with x0 = y0, where IA denotes momentum iterative averaging, i.e.,

xt+1 = (1− δ)xt + δyt+1 = xt + δ(yt+1 − xt) and x0 = y0 , (96)

where 0 < 1− δ < 1 is the momentum constant. Then,

xt = (1− δ)tx0 +

t∑
t′=1

δ(1− δ)t−t′yt′ = (1− δ)ty0 +

t∑
t′=1

δ(1− δ)t−t′yt′ . (97)

Let K = 1 and λ = 1, then DEF is identical to SGD. Following Lemma C.1, SGD-IA is a special case of DEF-A with
C(∆) = δ∆. Note that this compressor does not compress the message volume.

Lemma C.1. Let gt = ∇f(yt; ξt), x0 = y0, and C(−∆) = C(∆). If yt+1 = yt − ηtgt and xt+1 = xt + C(yt+1 − xt),
then the update rule of xt is identical to DEF-A when K = 1, λ = 1 with compressor C, i.e.,

xt+1 = xt − C(ηtgt + et) ,

et+1 = ηtgt + et − C(ηtgt + et), e0 = 0

yt+1 = yt − ηtgt .

(98)

Proof. We just need to verify xt+1 = xt + C(yt+1 − xt) with the 3 equations above. We have

xt+1 = x0 −
t∑

t′=0

C(ηt′gt′ + et′), yt+1 = y0 −
t∑

t′=0

ηtgt′ . (99)

Then

xt+1 − et+1 = x0 − et+1 −
t∑

t′=0

C(ηt′gt′ + et′)

= x0 − et+1 − C(ηtgt + et)−
t−1∑
t′=0

C(ηt′gt′ + et′)

= x0 − ηtgt − et −
t−1∑
t′=0

C(ηt′gt′ + et′)

= · · · = x0 −
t∑

t′=0

ηtgt = yt+1 ,

(100)

xt + C(yt+1 − xt) = xt + C(xt+1 − et+1 − xt)

= xt + C(−C(ηtgt + et)− et+1)

= xt + C(−ηtgt − et) = xt+1 ,

(101)

which completes the proof.

C.1. Generalization Error of SGD

In this section, we need Assumptions 3.1, 3.2, 4.1, and ηt ≤ c
t+1 . Following Sec. B.1 with K = 1 and λ = 1, we have

E[f(yT ; ξ)− f(ỹT ; ξ)] = O(T (1− 1
N )Lc/((1− 1

N )Lc+1)) . (102)
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C.2. Generalization Error of SGD-IA

In this section, we need Assumptions 3.1, 3.2, 4.1, and ηt ≤ c
t+1 . Following Sec. B.2 with K = 1, λ = 1 and the compressor

replaced with C(∆) = δ∆ which satisfies Assumptions 4.2 and 3.3, we have δ
1
2 → δ in Eq. (64). All the other procedures

are the same, thus
E[f(xT ; ξ)− f(x̃t; ξ)] = O(T (1− 1

N )δLc/((1− 1
N )δLc+1)) . (103)

C.3. Optimization Error of SGD

In this section, we need Assumptions 3.1, 3.2, 4.1, and ηt =
c

t+1 ≤ 1
4L . Following Sec. B.3 with K = 1 and λ = 1, we

have
E[FS(yT )− FS(y

∗)] = Õ(T−µc
2 + T−1) . (104)

C.4. Optimization Error of SGD-IA

In this section, we need Assumptions 3.1, 3.2, 4.1, and ηt =
c

t+1 ≤ 1
8δL . Following Sec. B.4 with K = 1, λ = 1 and the

compressor replaced with C(∆) = δ∆ which satisfies Assumptions 4.2 and 3.3, we have the same bound as Eq. (82), but
2⃝ = δ2E∥ηtgt + et∥22 in Eq. (83), which leads to the need for ηt ≤ 1

8δL . All the other procedures are the same, therefore

E[FS(xT )− FS(x
∗)] = Õ(T−µδc

2 + T−1 + (1/
√
1− δ − 1)−2) . (105)


