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Abstract

We introduce a unified framework for group equiv-
ariant networks on homogeneous spaces derived
from a Fourier perspective. We consider tensor-
valued feature fields, before and after a convo-
lutional layer. We present a unified derivation
of kernels via the Fourier domain by leveraging
the sparsity of Fourier coefficients of the lifted
feature fields. The sparsity emerges when the
stabilizer subgroup of the homogeneous space
is a compact Lie group. We further introduce a
nonlinear activation, via an elementwise nonlin-
earity on the regular representation after lifting
and projecting back to the field through an equiv-
ariant convolution. We show that other methods
treating features as the Fourier coefficients in the
stabilizer subgroup are special cases of our acti-
vation. Experiments on SO(3) and SE(3) show
state-of-the-art performance in spherical vector
field regression, point cloud classification, and
molecular completion.

1 Introduction

Following the success of convolutional neural networks
(CNNs) (Fukushima, 1980; LeCun et al., 1989), researchers
made great strides in designing equivariant networks for
groups beyond the standard translation operation. Equivari-
ance preserves symmetries and drastically reduces sample
complexity, making data augmentation unnecessary and
consequently reducing training and testing time.
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The standard approach for equivariance by design is group-
convolutional networks (G-CNNs), specified by convolu-
tion kernels (Cohen & Welling, 2016). Kondor & Trivedi
(2018) prove that such group convolutions are both suffi-
cient and necessary for linear layers to be equivariant to
the action of compact groups. Existing group convolutional
nets construct equivariant kernels in a case by case fash-
ion; for example, Cohen et al. (2018a) present a general
constraint for the kernel of G-CNNs with features on a ho-
mogeneous space that is solved algebraically, while Finzi
et al. (2021) solve for kernels numerically based on a similar
finite-dimensional constraint.

We propose a unified recipe for kernel design. We lift the
feature fields from the initial homogeneous space to the
corresponding Mackey functions on the acting group, as in-
troduced in (Cohen et al., 2018a). Since a Mackey function
satisfies a well-known constraint, it has redundant informa-
tion. Specifically, when the irreducible representation of
the stabilizer subgroup is trivial, Kondor & Trivedi (2018)
proves that the Fourier Transform of the Mackey function
has a certain block sparsity pattern. This naturally leads to
the question whether the Fourier transform of Mackey func-
tions for nontrivial irreducible representations over more
general groups may have a similar property. We prove that
when the stabilizer subgroup is a compact Lie group, the
Fourier coefficients are sparse and nonzero for specific field
types, as stated in proposition 3.2. This spectral sparsity,
appearing in both the input and the output of the convolu-
tion, implies that the kernel itself can be taken as sparse.
This enables us to characterize the space of kernels with-
out using the classical equivariance constraints and lays the
foundation of our framework for linear layer design.

Regarding the nonlinearity, most existing group convolution
methods on homogeneous spaces (Cohen et al., 2018a) ap-
ply norms or gated nonlinearities. The exceptions are works
applying the Clebsch-Gordan decomposition of tensor prod-
ucts (Kondor et al., 2018) or interpreting the features as
Fourier coefficients (De Haan et al., 2020; Poulenard &
Guibas, 2021), since the feature vectors are in the vector
space under the irreducible representation of the stabilizer
subgroup. We propose a general formulation for nonlinear
layers that consists of lifting the fields to the Mackey func-
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tions on the group, applying an elementwise nonlinearity,
and finally projecting back to a field on the homogeneous
space through a convolution. We prove the equivariance of
this activation, and that the recently proposed equivariant
nonlinearity in Poulenard & Guibas (2021) is a special case.

In summary, our contributions are:

1. We provide a unifying Fourier view of group convolu-
tion on homogeneous spaces dealing with different field
types, and we prove that the input, output, and the kernel
of the convolution are block-sparse in the Fourier domain
when the stabilizer subgroup is a compact Lie group. Given
the irreducible representations of the group, this harmonic
view leads to an efficient method for designing linear group
convolution layers.

2. We present a novel approach to equivariant nonlinearities
by applying elementwise nonlinearities to the feature fields
lifted to Mackey functions on the group. We propose and
implement a general approach for projecting functions on
the group to fields on the homogeneous space in the final
step of the nonlinearity.

The main goal and novelty of the paper is to use the Fourier
coefficients for a unified derivation of kernels and nonlin-
earities. We reach state-of-the-art results in standard equiv-
ariance benchmarks in 3D shape classification, molecular
completion, and spherical vector field regression.

2 Related Work

Equivariant Networks The most common method to de-
sign equivariant networks is via group convolution, on the
group or on the homogeneous space where the features lie.

Existing work constructs group convolutional networks on
images (Cohen & Welling, 2016; Worrall et al., 2017),
point clouds (Thomas et al., 2018; Chen et al., 2021), voxel
grid (Weiler et al., 2018; Worrall & Brostow, 2018), graphs
(Maron et al., 2018; Keriven & Peyré, 2019), spherical im-
ages (Cohen et al., 2018b; Esteves et al., 2018; 2020; Cobb
et al., 2020) and sets (Maron et al., 2020; Esteves et al.,
2019). The above works that perform the group convolution
directly on the homogeneous space implicitly lift the func-
tion to the group before the convolution, and project back
to the homogeneous space after the convolution.

Another way to achieve equivariance is through averaging
over the group orbits (Puny et al., 2021; Atzmon et al.,
2021). Finzi et al. (2020) proposed a general method for
any Lie group with a surjective exponential map. For regular
groups, Bekkers (2019); Sosnovik et al. (2019) propose a
direct construction for group convolution. Recently, equiv-
ariance was introduced for attention networks (Fuchs et al.,
2020; Romero & Cordonnier, 2020; Hutchinson et al., 2021;
Satorras et al., 2021). Cohen et al. (2018a) and Kondor &

Trivedi (2018) showed for homogeneous spaces and com-
pact groups, respectively, that an equivariant map can always
be written as a convolution. Finzi et al. (2021) introduced
a numerical algorithm for equivariant linear layers based
on solving linear systems involving the generators of the
Lie algebra. We provide a general spectral approach for the
theoretical analysis, and efficient implementations of those
works.

Equivariance and Fourier Transform Several works use
the relationship between group convolutional networks and
the Fourier Transform. Kondor & Trivedi (2018) provide
a Fourier view of the group convolution for a scalar field
on the quotient space, or on the whole group. Cohen et al.
(2018b) and Esteves et al. (2018) apply group convolutions
on the Fourier transform of SO(3) and the spherical har-
monics, respectively, while Kondor et al. (2018) directly
convolve and apply a non-linear activation in the spectral do-
main through the Clebsch-Gordan decomposition, using the
compactness of SO(3). Finally, Esteves et al. (2020) deals
with both vector and scalar signals on the sphere through
the spectral domain, and is a special case of our general
framework.

Equivariant Nonlinearity It is nontrivial to design an ex-
pressive and equivariant nonlinear layer, since an equivariant
activation has to commute with the group action. Several
works (Cohen & Welling, 2016; Cohen et al., 2018b; Wor-
rall & Brostow, 2018) lift the signals from the homogeneous
space to the group, and apply an elementwise activation
to the group function. However, these methods deal with
scalar fields and obtain the invariant features through global
pooling without projecting back to the homogeneous space.
In (Thomas et al., 2018; Weiler et al., 2018; Worrall et al.,
2017; Esteves et al., 2020) a nonlinearity is applied over
invariant features such as norms. Because the direction
of the tensor field remains unchanged, such a nonlinearity
is not expressive enough, as explained in (Poulenard &
Guibas, 2021). Kondor et al. (2018) and Anderson et al.
(2019) apply a polynomial activation that can result in train-
ing instability, as mentioned in (Anderson et al., 2019).
Weiler & Cesa (2019) introduce nonlinearities with respect
to various representations of E(2), while Deng et al. (2021)
generalize the classical ReLU activation to vectors (i.e.,
order-one tensors) by truncating an equivariant projection
of the vector—a combination of a gated activation and a
linear layer. De Haan et al. (2020) and Poulenard & Guibas
(2021) treat the features as Fourier coefficients, applying
the Inverse Fourier Transform to functions on the stabilizer
subgroup, and projecting back to the features by the Fourier
Transform. We prove that such a nonlinearity is a special
case of our method.

The works most closely related to ours are (Cohen et al.,
2018a) and (Kondor & Trivedi, 2018). The main differ-
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ence is that we provide a Fourier perspective for the group
convolution on the homogeneous space, enabling efficient
kernel design. Moreover, we provide a new nonlinearity
and—to our knowledge, for the first time—implement a
general equivariant linear map from the regular represen-
tation to the induced representation. Kondor & Trivedi
(2018) analyze G-CNNs through Fourier analysis, but only
focus on scalar fields. In contrast, we consider all field types
(scalars, vectors, tensors) and our conclusion is consistent
with (Kondor & Trivedi, 2018) for the special case of scalar
fields.

3 Method

We give in App. A.1 the basic definitions that we need for
a group acting on a homogeneous space, as well as the
definitions of cosets, bundles, fibers, and twist functions.
In App. A.2 we describe irreducible representations, and
leave here only the tools we need for modeling features as
tensor fields (Sec. 3.1) and the Fourier Transform (Sec. 3.2).
Our work proposes two components for equivariant neural
networks: the linear group convolution layer (Sec. 3.3) and
the nonlinear activation layer (Sec. 3.4).

3.1 Induced representation and Mackey Functions

For a feature (or field) f : G/H → V over the homoge-
neous space G/H taking values in the vector space V , its
type (scalar, vector or higher order tensor) is determined by
an irreducible representation of the stabilizer subgroup H .
We use ρ to denote the unitary irreducible representation of
H . Then g ∈ G acts on the field as

(Lgf)(x) = ρ(h(g−1, x)−1)f(g−1x) (1)

where h is the twist function introduced in App. A.1. For
example, for G = SE(2), where H = SO(2), the stabilizer
subgroup has irreducible representations ρm : SO(2) 7→ C
for m ∈ Z, given by ρm(θ) = eimθ, for θ ∈ SO(2). For
scalar fields, we have ρ(θ) = ρ0(θ) = 1; for vector fields,
we have ρ(θ) = ρ1(θ) = eiθ; and for a physical quantity
like momentum of inertia over R2, we have ρ(θ) = ρ2(θ) =
e2iθ. In general, equation (1) describes the action of G on
fields and L is called the induced representation, denoted as
L = IndGHρ.

The field f : G/H −→ V can be lifted to a function f↑G:
G −→ V on the group G through an isomorphism Λ, via

f↑G (g) = (Λf)(g) = ρ(h(g)−1)f(gH)

and projected back via Λ−1

f(x) = f(s(x)H) = (Λ−1(f↑G))(s(x)H) = f↑G (s(x)),

where h is the twist function and s is the section map
(App. A.1). For the lifting in Kondor & Trivedi (2018),

ρ is a trivial representation, since only the scalar field is
considered. The action L′ = ρGreg of G on f ↑G is a regu-
lar representation (L′

g(f↑G))(k) = f↑G (g−1k) ( Folland
(2016), Ch. 3).

The lifting operation commutes with the group action, so
ρGreg ◦ Λ = Λ ◦ IndGHρ, which justifies calling the lifting
an isomorphism. The function f↑G: G −→ V lifted from
the field f : G/H −→ V is called a Mackey function,
satisfying f↑G (gh) = ρ(h−1)f↑G (g).

3.2 Fourier Transform

It is known that the Fourier Transform exists for most groups
of interest for equivariance: finite groups, compact groups,
separable unimodular locally compact groups of Type I
(see Gross (1978), Folland (2016), Ch. 7, and App. A.3
for definitions), and certain semidirect product groups with
an Abelian normal subgroup, like SE(n) (Gauthier et al.,
1991). In these cases, there is a uniform (Haar) measure on
the group G that is both a left and a right Haar measure;
we will denote its differential by dg. Let U(·, p) be the
unitary irreducible representation for each element p ∈ Ĝ,
where Ĝ is the dual of the group G, the set of equivalence
classes of unitary irreducible representations of G (Folland
(2016), Ch. 7, Chirikjian et al. (2001), Ch. 8). In the cases
of interest, there is also a Haar measure ν on Ĝ. For any
function f : G → C that is square integrable with respect
to the measure, the Fourier Transform of f is defined as

f̂(p) = F(f)(p) =

∫
G

f(g)U(g, p)dg

while the inverse Fourier Transform reads

f(g) =

∫
Ĝ

tr(f̂(p)TU(g, p))dν(p)

and the convolution and Parseval theorems both hold for
f ∈ L2(G). For vector valued functions, we apply both
transforms component-wise.

3.3 Unified Kernel Derivation

As described in Cohen et al. (2018a), an equivariant linear
layer, consisting of a convolution with a kernel, can be
realized in three steps: 1) lifting the input field (feature map)
fin : G/H → V to the corresponding Mackey function
fin↑G: G → V on the group; 2) applying group convolution
to the lifted function fin↑G with the kernel κ to find the
output Mackey function fout↑G; 3) projecting fout↑G back
to the homogeneous space to obtain the output field (feature
map) fout. These three steps can be summarized as the
following linear map yielding

fout(x) = (Λ−1
2 (κ ∗ (Λ1fin)))(x)

=

∫
G

κ(g−1s(x))(Λ1fin)(g)dg,
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Figure 1. Convolution layer: (a). Lifting the input field fin : G/H → V to the Mackey function fin↑G: G → V . (b). Convolution with
designed kernel to find a new Mackey function fout↑G: G → V of order lout. (c). Projection to the homogeneous space to find fout. We
highlight the sparsity in the spectral domain of the input, kernel and output.

where Λ1 and Λ2 are the lifting isomorphisms for the input
and output fields, respectively, and κ : G → Hom(V1, V2).
When G is a semidirect product, convolution simplifies to

(Λ−1
2 (κ ∗ (Λ1f)))(x) =

∫
G/H

κ′(s(x)−1y)f(y)dy,

where κ′(x) = κ(s(x)). Previous work (Cohen et al.,
2018a) derives the constraints for the kernel κ when the
input and output are Mackey functions by working in the
spatial domain. In contrast, we analyze and design the linear
layer from the spectral perspective. In section 3.3.1, we will
prove that the Fourier coefficients of a Mackey function
obey certain sparsity patterns, which also imply the sparsity
of the kernel κ. Moreover, in certain cases our proposition
leads to a more efficient implementation of convolutions in
the spectral domain (compared to the spatial domain), as
shown in Figure 1.

3.3.1 Sparsity of Mackey functions in the Fourier do-
main

In this section we prove that the Fourier transform of a
Mackey function f↑G lifted from the field f has a certain
sparsity pattern. To prove this proposition, we first need to
introduce a lemma about unitary irreducible representations
of G.
Lemma 3.1. Let G be a unimodular group, and its stabi-
lizer subgroup H be a compact Lie group. For any p ∈ Ĝ,
the dual group, the restricted representation for the unitary
irreducible representation U(·, p), U(·, p)|H , can be decom-
posed as the direct sum ⊕i∈Q(p)ρ

i(h(g)), for an index set
Q(p) parametrized by p ∈ Ĝ, where ρi are the irreducible
representations of H .

See App. B.1 for the proof. Using Lemma 3.1 we can now
describe the sparsity of Mackey functions in the Fourier
domain.
Proposition 3.2. Assume G is a unimodular group and its
stabilizer subgroup is a compact Lie group. A Mackey func-
tion f↑G: G → V lifted via f↑G (g) = ρ(h(g)−1)f(gH)
from a field f : G/H → V has the following sparsity pat-

tern in the Fourier domain:
[
f̂↑G

]
(p)⋆,j is nonzero only if

the block at column j in the decomposition of U(·, p)|H is
equivalent to the dual representation of ρ.

See App. B.2 for the proof. Next, we show that this sparsity
carries on to the convolution, ensuring that the spectrum of
the kernel is also sparse.
Corollary 3.3. Let f1↑G and f2↑G be Mackey functions
lifted from the fields f1 and f2, and ρ1 and ρ2 be the
irreducible representations that determine the field type
of f1 and f2. For any group convolution f2 ↑G (g) =∫
G
κ(ν−1g)f1↑G (ν)dν, without loss of generality, the ker-

nel κ has the following sparsity pattern on its Fourier co-
efficients: [κ̂] (p)i,j is zero when the block at row i in the
decomposition of U(·, p)|H is not equivalent to the dual rep-
resentation of ρ1, or the block at column j in the decomposi-
tion of U(·, p)|H is not equivalent to the dual representation
of ρ2.

See App. B.4 for the proof. In particular, when ρ is the
trivial representation, i.e., the field is scalar-valued, and G is
compact, proposition 3.2 recovers the conclusion of (Kondor
& Trivedi, 2018). In summary, we proved that the spectrum
of the Mackey function and the corresponding kernel are
sparse. This sparsity enables us to directly and analytically
design kernels and implement the group convolution.

Meanwhile, we state that our design gives a complete char-
acterization of the space of kernels for equivariant convolu-
tions. Given an appropriate unitary irreducible representa-
tion, the block sparsity stated in Prop. 3.2 can be simplified
to column sparsity. The Fourier coefficients of elements of
vector functions are related. The converse also holds, hence
the Fourier coefficients of a function f have such sparsity
and related values if and only if f is a Mackey function.
Further, with the convolution theorem, we find the sparsity
in the spectrum of the kernel κ, and the relation of Fourier
coefficients for every element in the matrix function. Finally,
we prove that there is a bijection between the kernel space
{κ : G → Hom(V1, V2)}, where κ(gh) = ρout(h

−1)κ(g)
and κ(hg) = κ(g)ρ(h−1) for any g ∈ G, h ∈ H , and the
kernel space with such a spectrum. See App. B.5 for de-
tails. To help the reader, now explain the sparsity pattern for
SO(3) and SE(2).



Unified Fourier Perspective on Equivariant Networks

Sparsity in the SO(3)-spectrum Consider the group
G = SO(3), with the stabilizer subgroup SO(2) and the
homogeneous space S2. A rotation matrix R ∈ SO(3) can
be parametrized by the Euler Z-Y-Z angles (α, β, γ). The
unitary irreducible representations of SO(3) are indexed by
integers l and have the form

Dl
mn(R) = Dl

mn(α, β, γ) = e−imαdlmn(β)e
−inγ ,

where m,n are row and column indices, and dlmn are the
elements of Wigner’s small d-matrices. The lifting process
and its inverse take the form

f↑G (R) = f↑G (α, β, γ) = e−ikγf(α, β),

f(α, β) = f↑G (α, β, 0),

where k is the corresponding order of the irreducible repre-

sentation of the field. The Fourier Transform f̂↑G
l

mn (see
App. C.2 for details) becomes:∫
(α,β)∈S2

f(α, β)eimαdlmn(β)dα sin(β)dβ ∗ 2πδ(k − n),

where δ(x) is the Kronecker delta function, which is
zero except at x = 0, where it equals unity. The
convolution on SO(3) takes the form (l1 ∗ l2)(g) =∫
k∈G

l1(ν
−1g)l2(ν)dν and the convolution theorem states

F(κ ∗ f)lmn =
∑

j f̂
l
mj κ̂

l
jn. When the output field corre-

sponds to an m2-th order irrep of SO(2) and the input field
to an m1-th order irrep, as shown in Figure 2(a), we find the
following sparsity structure of κ

κ̂l
mn = κ̂l

mnδ(m−m1)δ(n−m2).

By applying the inverse Fourier Transform, we find the
kernel κ(R) to be:

∞∑
l=0

clDl
m1m2

(R) = e−im1α
∞∑
l=0

cldlm1m2
(β) e−im2γ .

Projecting the output Mackey function to the output field
leads to (App. C.2)

fout(α, β) = C

∫
S2
e−im2h(R−1(α′,β′,0)R(α,β,0))

κ′(Ry(−β′)Rz(−α′)xα,β)fin(α
′, β′)dα′sin(β′)dβ′,

where κ′ is a function on the sphere and κ′(α, β) =
κ(α, β, 0), xα,β is point on the sphere and C is a constant.
When we apply the convolution on the homogeneous space
S2, the twist e−im2h(R−1(α′,β′,0)R(α,β,0)) appears, which is
consistent with the correlation on the homogeneous space
derived in (Cohen et al., 2018a) for non-semidirect product
groups. This shows the difficulty of implementing con-
volution on the homogeneous space directly in the spatial
domain. Therefore, it is more efficient to implement the
convolution in the spectral domain. When the input and
the output are scalar fields, the filter is isotropic, which is
consistent with the results in (Esteves et al., 2017).

Sparsity in the SE(2)-spectrum Consider the group
G = SE(2) = R2 ⋊ SO(2), where the homogeneous
space is R2 and stabilizer subgroup is SO(2). Any g ∈ G
can be parameterized as (x, θ) = (a, ϕ, θ), where we iden-
tify x ∈ R2 with its action tx, etc; and where a = |x|
is the modulus of x, and for nonzero a > 0, x/a = eiθ,
for θ ∈ [0, 2π). The unitary irreducible representations of
SE(2) are indexed by integers v and p ∈ R+, and with Jv
denoting the v-th order Bessel function of the first kind, they
have the form

Umn(g, p) = in−me−i(nθ+(m−n)ϕ)Jn−m(pa).

The lifting process and its inverse is:

f↑G (a, ϕ, θ) = e−imθf(a, ϕ)

f(a, ϕ) = f↑G (a, ϕ, 0),

where m is the corresponding order of the irreducible rep-
resentation of the field. Then the Fourier Transform of a
Mackey function f↑G∈ L2(G) is

f̂↑Gmn =

∫
g∈G

f↑G (g)Umn(g, p)dg

=

∫
g∈G

e−ikθf(a, ϕ)im−nei(nθ+(m−n)ϕ)Jn−m(pa)dg

=

∫
(a,ϕ)∈G/H

f(a, ϕ)im−nJn−m(pa)ei(m−n)ϕ

∫
H

e−ikθeinθdθ.

Further, f̂↑Gmn equals∫
(a,ϕ)∈G/H

f(a, ϕ)im−nJm−n(pa)e
i(m−n)ϕ ∗ 2πδ(n− k).

The convolution on SE(2) has the form (l1 ∗ l2)(g) =∫
k∈G

l1(k
−1g)l2(k)dk. The convolution theorem for

SE(2) states that F(l1 ∗ l2)(p) = l̂2(p)l̂1(p), which can
be viewed as the multiplication of two infinite dimensional
matrices.

As shown in figure 2(b), when the input and output of the
convolution are Mackey functions, the Fourier coefficients
are nonzero on the m1-th column and m2-th column There-
fore, we obtain the kernel

F(κ)(p)mn = κ̂(p)mnδ(m−m1)δ(n−m2).

By applying the inverse Fourier Transform, we find the
kernel to be:

κ(g) =

∫ ∞

0

cpi
m2−m1e−i(m2θ+(m1−m2)ϕ)Jm2−m1

(pa)pdp.
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(a) SO(3) (b) SE(2)

Figure 2. Convolution on SO(3) and SE(3) in the spectral domain. We illustrate the sparsity of the Fourier coefficients of the input,
output and kernel.

Mackey functions can be projected to R2 to find

κ′(x) =

∫ ∞

0

cpi
m2−m1e−i(m1−m2)ϕJm2−m1(pa)pdp

= ei(m2−m1)ϕR(a),

where cp is a constant, and R is a radial function. This
exactly recovers the form of the kernel in harmonic networks
(Worrall et al., 2017).

In App. C.3, we provide another example, SE(3); we have
a similar analysis and conclusion. The block sparsity stated
in Prop. 3.2 and Cor. 3.3 also exist in the SE(3)-spectrum
for Mackey functions and the corresponding kernels. The
derived kernels are consistent with the form of tensor field
networks in Thomas et al. (2018) and 3D steerable CNNS
in Weiler et al. (2018).

3.4 Equivariant nonlinearity

The whole feature map consists of fields of different types,
i.e., it can be written as f(x) =

⊕
i f

li(x) where li is
the type of the field. Therefore, the group action on a fea-
ture map is the direct sum of the associated induced rep-
resentations,

⊕
i IndGHρli . For an equivariant nonlinearity

σ : V in → V out, we need⊕
j

IndGHρloutj ◦ σ = σ ◦
⊕
i

IndG
Hρlini . (2)

The most common strategy to obtain equivariant nonlinear
maps in modern deep learning is to apply a fixed nonlinear
function ξ elementwise to each coordinate of the feature
f in some fixed basis. In general, this does not satisfy
equivariance. However, this nonlinearity is equivariant for
the regular representation, i.e., ρGreg(g) ◦ ξ = ξ ◦ ρGreg(g), as
mentioned in Cohen & Welling (2016):[

ρGreg(g) ◦ ξ(l)
]
(k) = [ξ(l)] (g−1k) = ξ(l(g−1k))

= ξ(
[
ρGreg(g)(l)

]
(k)) =

[
ξ ◦ ρGreg(g)(l)

]
(k),

where l : G → V . Therefore, we can leverage the lifting iso-
morphism Λ, which satisfies that ρGreg◦Λ = Λ◦IndGHρ, to lift
the features to the corresponding Mackey functions. When

there are multiple types of features
{
f li : G/H → V

}
, we

simply apply the sum of these Mackey functions. We de-
note the composition of the lifting isomorphism and sum
operation by Λ, so that

l(g) =
[
Λ(

⊕
f li)

]
(g) =

∑
i

[
Λi(f

li)
]
(g)

=
∑
i

f li↑G(g) =
∑
i

ρli(h(g)−1)f li(gH), (3)

where Λi is the lifting isomorphism for the field f li . Clearly,
ρGreg ◦ Λ = Λ ◦

⊕
i IndGHρli . In general, l is not a Mackey

function, only a sum of different Mackey functions. Its
spectral domain is shown in Figure 3.

After applying an elementwise nonlinearity to the group
function, we need to project the group function to the homo-
geneous space. The signal may be any function on the group
and its Fourier coefficients may be nonsparse, as shown in
Figure 3. To maintain equivariance, we propose to convolve
with a designed kernel as shown in Figure 3 to find a Mackey
function, and then project to the homogeneous space via

f(x) =

∫
κ(g−1s(x))l(g)dg.

In Figure 3, we know that the kernel κ is also a Mackey
function, satisfying κ(gh) = ρ(h−1)κ(g). Therefore
κ(g) can be expressed as κ(g) = ρ(h(g)−1)κ(s(gH)) =
ρ(h(g)−1)κ′(gH), for κ′ = κ ◦ s. Then the convolution
becomes:

f(x) =

∫
ρ(h(g−1s(x))−1)κ′(g−1x)l(g)dg,

where ρ is the irreducible representation corresponding to
the field f . Let us denote this projection by Pκ. The convo-
lution is equivariant, i.e., IndGHρ ◦ Pκ = Pκ ◦ ρGreg .

Therefore, the nonlinearity σ is the composition of lifting,
elementwise nonlinearity and projection. We prove the
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Figure 3. Activation layer: (a). Lifting inputs
{
f lini : G/H → Vlini

}
of different orders to the Mackey functions{

f lini↑G: G → Vlini

}
and summing them up to find l : G → V . (b). Element-wise activation on l. (c). Convolution with the

designed kernel to find Mackey functions
{
f louti↑G: G → Vlouti

}
of different orders. (d). Projection to the homogeneous space to find

fields
{
f louti : G/H → Vlouti

}
of different orders.

equivariance of σ:

σ ◦
⊕
i

IndGHρlini = (
⊕
j

Pκoutj ) ◦ ξ ◦ Λ ◦
⊕
i

IndGHρlini

= (
⊕
j

Pκoutj ) ◦ ξ ◦ ρGreg ◦ Λ = (
⊕
j

Pκoutj ) ◦ ρGreg ◦ ξ ◦ Λ

=
⊕
j

IndGHρloutj ◦ (
⊕
j

Pκoutj ) ◦ ξ ◦ Λ

=
⊕
j

IndGHρloutj ◦ σ,

where κoutj is the constrained kernel corresponding to
IndGHρloutj .

This is exactly the general form of non-linearity which treats
the tensor fields on the homogeneous space as the Fourier
coefficients. Taking SE(3) as an example, suppose G =
SE(3) and H = SO(3). We use the real form of the
Wigner D-matrix. Lifting multiple fields

{
f l : R3 → V

}
to the function on the group has the form

ln(x,R) =

lmax∑
l=0

l∑
m=−l

Dl
nm(R−1)f l

m(x),

where Dl is the Wigner D-matrix, the irreducible represen-
tation for the field f l.

When we take the 0-th element of l : SE(3) → V , we find

l0(x,R) =

lmax∑
l=0

l∑
m=−l

Dl
0m(R−1)f l

m(x)

=

lmax∑
l=0

l∑
m=−l

Dl
m0(R)f l

m(x) =

lmax∑
l=0

l∑
m=−l

Dl
m0(r)f

l
m(x)

=

lmax∑
l=0

l∑
m=−l

Y l
m(r)f l

m(x) = F+(f(x))(r),

where R = (α, β, γ) ∈ G and r = (α, β) ∈ S2. This is
exactly the form of the signals on the sphere obtained in
(Poulenard & Guibas, 2021) through the inverse Spherical
Harmonics Transform (iSHT).

On the other hand, when we take κ(x)ij = δ(i)δ(j)δ(x),
the projection is equivalent to the Spherical Harmonics
Transform (SHT) in (Poulenard & Guibas, 2021), as

f li
m(x) =

∑
n,j

∫
Dl

mn(h(g
−1s(x))−1)κnj(g

−1x)ξ(lj(g))dg

=C1

∫
Dl

m0(R)ξ(l0(x,R))dR

=C2

∫
Y l
m(r)ξ(F+(f(x))(r))dr,

where C1 and C2 are constants. The second equality holds
because κnj can be nonzero only when gH = x, n = 0 and
j = 0.

To keep the network simple, we do not use trainable weights
for the kernel. Instead, we take κ(x)ij = δ(x)δ(i − j),
where the first δ is the Dirac delta function and the second
is the Kronecker delta function as used previously. Then
the projection becomes fi(x) =

∫
H

∑
j ρij(h)lj(s(x)h)dh.

Weiler & Cesa (2019) describe such a nonlinearity when
the stabilizer subgroup H is O(2). In the spectral domain,
we can extract the corresponding column from the Fourier
matrix of l(g) for simplicity.

4 Implementation and Results

4.1 SO(3): Vector field prediction on the sphere

We experimentally study equivariant vector field prediction
on the spherical vector field MNIST (SVMNIST), a dataset
proposed in (Esteves et al., 2020). We build a U-Net struc-
ture which takes the grayscale spherical image as input, and
outputs a vector field on the sphere. The prediction target
corresponds to the image gradients of the MNIST characters
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when they are mapped to a sphere as shown in Figure 4.
We now explain the key components (convolution layer and
activation layer) of our U-Net.

Figure 4. The input, output, and ground truth of the vector field
prediction task.

Figure 5. Direction change of nonzero-order features in the activa-
tion layer. The intensity in the figure reflects the angle difference
before and after the activation.

Convolution Layer: We implement convolution in the spec-
tral domain and parameterize the kernel via its Fourier co-
efficients. As illustrated in Section 3.3.1, we implement
a fast Fourier Transform that integrates over S2. For any
hidden layers in the U-Net, we use features of 0th and 1st
order, both with the same number of channels, to increase
expressivity. This is different from spherical convolution
methods that only process features of order 0 (Cohen et al.,
2018b), and computationally more efficient than convolu-
tion directly on SO(3) (Cohen et al., 2018b). Esteves et al.
(2020) define and implement convolution in the spectral
domain through spin-weighted spherical harmonics, which
is equivalent to the linear part in our method. In our paper,
this method is a natural implication of the spectral sparsity,
shown for all groups where a Fourier transform exists, and
not just for SO(3).

Activation Layer: We first lift the fields to the Mackey
function through f↑G (α, β, γ) = e−imγf(α, β). Then, we
sum up the Mackey functions corresponding to different
fields. These two steps reduce the computation compared
to (Cohen et al., 2018b) due to the sparsity in the Fourier
coefficients. The element-wise nonlinearity on features is
implemented over SO(3). The activated group function can
then be projected back to the homogeneous space by con-
volution over the Fourier domain, as shown in the spectral
part of figure 3, bringing expressivity. Alternatively, we can
pick a specific column to output for the Fourier transform,

which reduces computation. In the U-Net, we always take
the latter approach for better efficiency.

We report the vector prediction mean-squared errors (Es-
teves et al., 2020) weighted by the spherical map sampling
area. Our U-Net uses a number of parameters similar to the
baselines. The comparison is shown in Table 1. Our net-
work outperforms the state-of-the-art equivariant networks,
especially when the input has no rotation augmentation and
the testing data is rotated (NR/R). In addition to being equiv-
ariant for different feature types, our model also has a more
expressive nonlinearity layer. The novel nonlinearity en-
tangles different fields and directional information, and can
change the direction of the nonzero-order tensor in the ac-
tivated output, making it more expressive than performing
nonlinearity over the invariant norm (Esteves et al., 2020).
Figure 5 shows the angle difference of the vector (order-
one) feature maps before and after activation in a hidden
layer. Please see App. D.1 for more details.

Method NR/NR R/R NR/R

Planar (Esteves et al., 2020) 0.3 5.0 9.3
SphCNN (Esteves et al., 2018) 9.7 31.0 45.6
SWSCNN (Esteves et al., 2020) 2.9 3.4 4.3
Ours 2.9 3.2 3.8

Table 1. Results of spherical scalar to vector prediction. We report
the mean-squared error ×103 (lower is better). The baseline meth-
ods are planar (convolutional 2D CNNs), SphCNN (Esteves et al.,
2018) and SWSCNN (Esteves et al., 2020). NR/NR is nonrotated
train and test set; NR/R is nonrotated train set and rotated test set;
R/R is rotated train and test set.

4.2 SE(3) Prediction

Designing SE(3) equivariant networks for point sets is an
important problem in many application areas, like chemistry
and computer vision The standard method in the current
literature is Tensor Field Networks (TFN) (Thomas et al.,
2018). Following our theory, we enhance TFN with a novel
non-linearity that can capture the directional information
of higher order features. We verify its effectiveness on two
tasks: (i) QM9 (Ramakrishnan et al., 2014) missing atom
prediction and (ii) ModelNet40 (Wu et al., 2015) point cloud
shape classification.

Convolution Layer: For SE(3), the homogeneous space
is R3. Since SE(3) has a semidirect product structure, and
the Fourier Transform is computationally expansive, we an-
alytically derive the kernel for the convolution in the spatial
domain, and implement convolution on the homogeneous
space R3. As proved in the sparsity of the SE(3)-spectrum,
the derived kernel is equivalent to that from (Thomas et al.,
2018) and (Weiler et al., 2018); thus, we use the convolution
in TFN as implemented in (Geiger et al., 2020)).

Activation Layer: The main difference between our ex-
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tended model and the original TFN (Thomas et al., 2018)
is the nonlinearity. After lifting the field from R3 to SE(3),
we project it to S2 attached to every point (using band-
width 8) to save memory, while keeping equivariance (see
App. D.2 for details). To obtain more expressivity, we ap-
ply a small per-point MLP to the group function following
(Poulenard & Guibas, 2021), which also maintains equiv-
ariance. Finally, our implementation of the projection from
SE(3) to R3 is equivalent to that in (Poulenard & Guibas,
2021), as shown in Sec. 3.4.

4.2.1 SE(3): Molecular Structure Completion

To show advantages beyond scalar field prediction, we con-
duct experiments to predict missing atoms in molecules.
Here, positional prediction requires equivariant vector pre-
diction. The setup of the experiment follows (Thomas et al.,
2018). During training, we randomly remove an atom from
the molecule, and use our model to predict the atom type
(order-0) and position (order-1) of the atom. During test-
ing, we iteratively remove all atoms one at a time for every
molecule. We use two metrics for evaluation. The distance
error is the average error of the predicted position from the
ground truth atom position; the accuracy is the proportion
of the instances correctly predicted and with a distance error
less than 0.5Å. More details are in App. D.3.

We report the accuracy and distance MAE in Table 2. Since
rotations exist naturally in molecule structures, the result
illustrates the equivariance of our model. Our model gen-
eralizes well to test datasets of molecules with different
numbers of atoms, and outperforms tensor field networks
on every test dataset, which shows the effectiveness of our
activation compared to the norm activation in the TFN.

Accuracy↑(%) Distance↓(Å)
Atoms TFN Ours TFN Ours

19 93.9 98.0 0.14 0.06
23 96.5 97.1 0.13 0.10

25-29 97.3 98.3 0.16 0.10

Table 2. Results for missing atom prediction. We have three test
datasets with 5-18, 23 and 25-29 atoms in one molecule, respec-
tively. Every dataset has 1000 molecules.

4.2.2 SE(3): ModelNet40 classification

Using our novel activation, we build a point cloud classi-
fication network based on the approaches in (Poulenard &
Guibas, 2021; Thomas et al., 2018). We report the classifi-
cation accuracy in Table 3. The dataset we use for the 3D
object shape recognition is Modelnet40 (Wu et al., 2015),
and it consists of 12311 3D shapes (9843 for training and
2468 for test) over 40 categories. Please see App. D.4 for
more details. Our method has performance similarly to
state-of-the-art methods.

Methods z/z z/SO(3) SO(3)/SO(3)

Spherical-CNN 88.9 76.7 86.9
a3S-CNN 89.6 87.9 88.7
SFCNN 91.4 84.8 90.1

TFN 88.5 85.3 87.6
RI-Conv 86.5 86.4 86.4
SPHNet 87.7 86.6 87.6

ClusterNet 87.1 87.1 87.1
GC-Conv 89.0 89.1 89.2

RI-Framework 89.4 89.4 89.3
VN-PointNet 77.5 77.5 77.2
VN-DGCNN 89.5 89.5 90.2
TFN[mlp]-P 89.7 89.7 89.7

Ours 89.7 89.7 89.3

Table 3. Classification accuracy in three train/test setups. Here z
stands for aligned data augmented by random rotations around the
vertical axis and SO(3) indicates augmentation by random rota-
tions. The quantitative results of previous methods are from (Deng
et al., 2021). Please see Table 4 for the source of each method.

5 Limitation and Discussion

This paper provides a unified perspective and practical tech-
niques for designing the linear and activation layers for
equivariant networks. Several interesting directions remain
for future exploration. Although our theory covers many
groups of interest for a wide range of applications, groups
with trivial stabilizers, among others, and groups without
Fourier transforms, remain unexplored. The input and out-
put homogeneous spaces of each layer in this paper are the
same, and the setting with different homogeneous spaces
(different stabilizer groups) needs further study. Another
future direction is to use our unified architecture for other
groups, for example, the Lorentz group and finite permuta-
tion groups.

6 Conclusions

This paper provides a Fourier perspective for group con-
volutional neural networks on homogeneous spaces. We
discovered a form of spectral sparsity and used it in design-
ing the kernel and the nonlinearity in a unified way. Our
networks showed their effectiveness in several tasks.
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A Preliminary

A.1 Group actions and homogeneous spaces

Consider a group G acting on the homogeneous space X , and let x0 be the origin of X inducing the set of group elements
H = {h ∈ G|hx0 = x0} that leaves x0 unchanged, i.e., the stabilizer subgroup H of x0 in G. The set of left cosets
gH := {gh|h ∈ H} is called the left quotient space G/H , and is isomorphic to the homogeneous space X . Take G = SE(2)
as the acting group and X = R2 as its homogeneous space. Any element in g ∈ SE(2) can be denoted as g = (tx, rθ),
where tx is the translation by the vector x ∈ R2, and rθ is the rotation by the angle θ ∈ [0, 2π). Any rotation rθ leaves
the point x0 = (0, 0) ∈ X unchanged, and these rotations compose the stabilizer subgroup H = SO(2). For any element
g = (tx, rθ) ∈ SE(2), gH = {(tx, rθrθ′))|rθ′ ∈ SO(2)} = {(tx, ⋆)} and all elements in the left coset gH map x0 to x.
The left quotient space G/H =

{
x ∈ R2 : (tx, ⋆)

}
is isomorphic to the homogeneous space R2.

The group G can be viewed as a principal bundle through the partition of the group into cosets. The base space is G/H ,
and the canonical fiber is H , with the projection map p : G → G/H , p(g) = gH = x and the section s : G/H → G
such that p ◦ s = idG/H , the identity map on G/H . The action of G induces a twist of the fibers as gs(x) = s(gx)h(g, x)
where h : G × G/H → H is the twist function. For simplicity, we denote h(g, eH) as h(g). When the group G is a
semidirect product group G/H ⋊H , h does not depend on the choice of x in the homogeneous space and can be simplified
to h(g, x) = h(g). We use SE(2) as an example to illustrate the bundle structure where the base space is R2 and the fiber is
SO(2). Then the projection map p : SE(2) → R2 is p((tx, rθ)) = x and the section s : R2 → SE(2) is s(x) = (tx, r0).
For any g = (tx, rθ) ∈ SE(2) and any x′ ∈ R2, we have (tx, rθ)(tx′ , r0) = (tx+rθx′ , r0)(0, rθ), therefore the twist
function h : SE(2)× R2 → SO(2) is h((tx, rθ), x′) = h((tx, rθ)) = rθ.

A.2 Irreducible Representations

Let V be a vector space over a field K. A representation of a group G on V is a homomorphism ρ : G → GL(V ), i.e., for
any g1, g2 ∈ G, ρ(g1g2) = ρ(g1)ρ(g2), where GL(V ) is the general linear group over V .

If the subspace W of V is invariant under the action of all group elements, that is, for any g ∈ G and any w ∈ W , we have
ρ(g)w ∈ W , we call it a sub-representation of ρ. If ρ has only two sub-representations, the whole space V and {0} ⊂ V ,
then ρ is called an irreducible representation. If for any g ∈ G, ρ(g−1) = ρ(g)⊤, the representation ρ is called a unitary
representation. Every locally compact group has a unitary representation.

Let us denote by U a unitary irreducible representation. In any particular basis, we can view this as a matrix, and denote
by Uij its entry in row i and column j. Irreducible representations satisfy the group orthogonality theorem; any two
unitary irreducible representations U l1 and U l2 satisfy

〈
U l1
m1n1

, U l2
m2n2

〉
= δ(l1 − l2)δ(m1 − m2)δ(n1 − n2), where〈

U l1
m1n1

, U l2
m2n2

〉
is the inner product:

∫
G
U l1
m1n1(g)U

l2
m2n2

(g)dg.

Two representations ρ1 and ρ2 are equivalent when there exists an invertible matrix Q such that for any g ∈ G, Q−1ρ1(g)Q =
ρ2(g). For a compact group or a semisimple Lie group, any representation U on a Hilbert space (thus any finite-dimensional
representation) is equivalent to the direct sum of unitary irreducible representations, that is, there exists an invertible matrix Q
such that U = Q−1

⊕
i U

iQ, where (U i)i∈I are irreducible representations of G (indexed by some set I that is suppressed
for brevity) and

⊕
i U

i is a block diagonal matrix with blocks U i, i ∈ I . For details, we refer to (Folland (2016), Ch. 3).

For a group G and a subgroup H , and for any representation ρ : G → GL(V ) of G, a restricted representation ρ|H : H →
GL(V ) is the restriction of ρ to H , namely ρ|H(h) = ρ(h). Even when ρ is irreducible, ρ|H may still be reducible.

Given a representation ρ of the group G, the dual representation ρ is defined by ρ(g) = (ρ(g−1))⊤. When ρ is a unitary
representation, ρ is the complex conjugate of ρ. The dual representation ρ may not be equivalent to the the representation
ρ. For example, for SO(2) the representation θ 7→ eimθ is not equivalent to θ 7→ e−imθ unless m = 0. However, the
irreducible representations are self-dual for some groups, including SO(3) and the special unitary group of order two, SU(2)
(consisting of two-by-two complex-valued unitary matrices having unit determinant, with the multiplication operation)
(Fulton & Harris (2013), Ch. 8).
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A.3 Unimodular Separable Locally Compact Groups of Type I

A group G is a unimodular group if its left Haar measure is also a right Haar measure (Folland (2016) Ch. 2). A topological
group is separable (second countable) if its topology has a countable base (Halmos (2013), Ch. 0). If the underlying topology
of the group is locally compact and Hausdorff, we call the group locally compact (Stroppel (2006), Ch. 2). A group is said
to be of Type I if each of its primary representations (factor representations) is a direct sum of copies of some irreducible
representation (Folland (2016), Ch. 7). Following (Gross (1978), Folland (2016), Ch. 7), the Fourier Transform is well
defined for any unimodular separable locally compact group of Type I.

A.4 Clebsch-Gordan Decomposition

The dual group Ĝ is finite or countable for finite or compact G, respectively. For such groups, since
Um1n1

(g, p1)Um2n2
(g, p2) ∈ L2(G) for any p1, p2 ∈ Ĝ, we can apply the Inverse Fourier Transform to express

Um1n1(g, p1)Um2n2(g, p2) =
∑

p∈Ĝ,m,n

Cp,m,n
p1,p2,m1,m2,n1,n2

Umn(g, p)

where m1,m2, n1, n2,m, n are the appropriate row and column indices. The Clebsch-Gordan coefficients
Cp,m,n
p1,p2,m1,m2,n1,n2

are the Fourier coefficients F (Um1n1(·, p1)Um2n2(·, p2))mn (p). This so-called Clebsch-Gordan decom-
position describes the decomposition of the tensor product of two irreducible representations. For SO(3) and SU(2), it
can be shown (Chirikjian et al. (2001), Ch. 10). that Cp,m,n

p1,p2,m1,m2,n1,n2
= Cp,m

p1,m1,p2,m2
Cp,n
p1,n1,p2,n2

,where Cp,m
p1,m1,p2,m2

and
Cp,m
p1,m1,p2,m2

are the Clebsch-Gordan coefficients as they appear in (Kondor et al., 2018).

B Details and Proofs

B.1 Proof of Lemma 3.1

Since H is the subgroup of G, U(·, p)|H is a representation of H , but not necessarily an irreducible one. Because H
is a compact Lie group, there is an invertible Q such that Q−1U(h, p)Q = ⊕i∈Q(p)ρ

i(h), where {ρi(h)}i∈Q(p)are the
irreducible representations of H . Since Q−1U(·, p)Q is a unitary irreducible representation of G, for simplicity, we will use
U(·, p) to denote Q−1U(·, p)Q. A unitary irreducible representation of G can be expressed as U(g, p) = U(s(gH)h(g), p)
where s is the section map and h is the twist function defined in App. A.1. Since U(·, p) is a representation, based on
the previous properties, U(g, p) = U(s(gH), p) · U(h(g), p). Thus, the unitary irreducible representation U(·, p) can be
decomposed as:

U(g, p) = U(s(gH), p) · ⊕i∈Q(p)ρ
i(h(g)). (4)

B.2 Proof of Proposition 3.2

We know that ρ is an unitary irreducible representation of the stabilizer subgroup H . Denote its type as i, writing ρ = ρi.
Writing the definition of a Mackey function in a block form, we have (f↑G)k(g) =

∑
t ρ

i
kt(h(g)

−1)ft(gH). Using also
(4), and decomposing the integral over G into integrals over G/H and H , the Fourier Transform of the k-th element of the
vector function f↑G can be calculated as follows:

((̂f↑G)k)mn(p) =

∫
G

(f↑G)k(g)Umn(g, p)dg =
∑
t,j

∫
ρikt(h(g)

−1)ft(gH)Umj(s(gH), p)Ujn(h(g), p)dg

=
∑
t,j

∫
G/H

ft(x)Umj(s(x), p)dx

∫
H

ρikt(h
−1)Ujn(h, p)dh.

We refer Theorem 2.49 in (Folland, 2016) for the measures used in the above equation. Since U(h, p) = ⊕o∈Q(p)ρ
o(h(g)),

we known that Ujn is either zero or belongs to a nonzero block of U(h, p). When Ujn is zero, then ρikt(h
−1)Ujn(h, p)dh is

zero. Else, suppose that Ujn is an element of the irreducible representation ρf
p
1 (j,n), where fp

1 is a function parametrized by
p—i.e., the block Ujn belongs to can depend on j, n and p. For the same reason, we have Ujn(h, p) = ρ

fp
1 (j,n)

fp
2 (j)f

p
3 (n)

(h).

The second integral thus becomes
∫
H
ρitk(h)ρ

fp
1 (j,n)

fp
2 (j)f

p
3 (n)

(h)dh.



Unified Fourier Perspective on Equivariant Networks

As mentioned in App. A.4, the compact group H has the Clebsch-Gordan decomposition

ρl1m1n1
ρl2m2n2

=
∑
l,m,n

Cl,m,n
l1,m1,n1,l2,m2,n2

ρlmn.

Since
〈
ρlmn, ρ

0
00

〉
= δ(l)δ(m)δ(n), the integral

∫
H
ρltk(h)ρ

fp
1 (j,n)

fp
2 (j)f

p
3 (n)

(h)dh can only be nonzero when the decomposition

of ρltk(h)ρ
fp
1 (j,n)

fp
2 (j)f

p
3 (n)

includes the trivial representation ρ000.

Since H is a compact Lie group, by calculating the character of the tensor product of the two irreducible representations ρi

and ρf
p
1 (j,n) (see App. B.3), C00

l1,m1,n1,l2,m2,n2
is nonzero only when ρf

p
1 (j,n) is equivalent to the dual representation of ρi.

This finishes the proof.

B.3 Character of the Tensor Product of Two Irreducible Representations

Suppose ρ′ and ρ′′ are two unitary irreducible representations (irreps) of a compact group G. The character of the tensor
product of these two irreps is Xρ′ ⊗ ρ′′ = tr(ρ′

⊗
ρ′′) = tr(ρ′)tr(ρ) = Xρ′Xρ′′ .

From the Inverse Fourier Transform and the properties of compact groups, we have ρ′
⊗

ρ′′ = Q−1(
⊕

ρ)Q, where Q is an
invertible matrix. Then Xρ′Xρ′′ =

∑
ρ c

ρ
ρ′,ρ′′Xρ, where cρρ′,ρ′′ are positive integers.

The trivial representation is contained in ρ
⊗

ρ′′ only when ρ and ρ′′ are dual representations. This is because cρ
0

ρ′,ρ′′ =∫
Xρ′Xρ′′ =

∫
Xρ′Xρ′′ =

〈
Xρ′ ,Xρ′′

〉
. The integral can be nonzero only when ρ′′ and ρ are equivalent, where ρ′′ is the

dual representation of the unitary irreducible representaion ρ′′.

B.4 Proof of Corollary 3.3

Due to the convolution theorem (Chirikjian et al. (2001), Ch.8), we have f̂2↑G(p) = f̂1↑G(p)κ̂(p). The sparsity pattern
exists in f̂1↑G(p) and f̂2↑G(p) due to Proposition 3.2. Suppose f̂1↑G(p) has zeroes in columns A1, and f2↑G(p) has zeroes
columns columns A2. Then the equation f̂2↑G(p) = f̂1↑G(p)κ̂(p) can be reduced by taking the subsets of rows in the
complement of A1 and columns in the complement of A2. It is easy to see that the entries of κ̂ outside of these indices do
not enter the calculation. Thus, they can be taken to be anything, and in particular as zeroes. This proves the desired claim.

B.5 Discussion of completeness

Revisiting
∫
H
ρl1m1n1

(h)ρl2m2n2
(h)dh, if the integral is nonzero, then ρl2 is equivalent to ρl1 . Supposing ρl2 = Qρl1Q−1,

we have ∫
H

ρl1m1n1
(h)ρl2m2n2

(h)dh =

∫ ∑
a,b

ρl1m1n1
Qm2aρ

l1
abQ

−1
bn2

dh

=
∑
a,b

Qm2aQn2b

∫
H

ρl1m1n1
ρl1abdh = Qm2m1

Qn2n1
.

Therefore, the value of the integral is related to Q. We can choose a unitary representation of G, and a basis of the underlying
vector space, such that ρl2 is the dual representation of ρl1 . This holds because the representation of compact Lie groups can
split into an orthogonal direct sum of irreducible finite-dimensional unitary representations (according to the Peter-Weyl
Theorem) and the dual representation of a finite-dimensional representation is irreducible.

In this case, when (̂f↑G) is a Mackey function lifted via f↑G (g) = ρ(h(g)−1)f(gH) from a field f , (̂f↑G)k is nonzero
only on the k-th column in the corresponding block and (̂f↑G)kmn = ̂(f↑G)k+1m(n+1) for any k,m, n. The converse also
stands.

For the convolution (fout ↑G)a(g) =
∫
G

∑
b κ(ν

−1g)ab(fin ↑G)b(ν), in the Fourier domain we have ̂(fout↑G)amn =∑
b,t

̂(fin↑G)bmtκ̂abtn. Now, fout obeys the above property and fin is arbitrary, therefore, we have κ̂abmn = κ̂(a+1)bm(n+1)
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for any a, b,m, n. Meanwhile, the nonzero columns in κ̂ab and ̂(fout↑G)a have the same indices, which implies that
κ(gh) = ρout(h

−1)κ(g).

On the other hand, ̂(fin↑G) is also a Mackey function, and the relation between its Fourier coefficients can help us simplify
κ̂. For any κ with the above constraint, we can design a kernel κ∗ that satisfies the following constraints:

1. κ̂∗
abmn

= κ̂∗
a(b+1)(m+1)n

for any a, b,m, n;

2. the nonzero rows in κ̂∗
ab and the nonzero columns in ̂(fin↑G)b have the same indices;

3. the nonzero columns in κ̂∗
ab and ̂(fout↑G)a have the same indices, and κ̂∗

abmn
= κ̂∗

(a+1)bm(n+1)
for any a, b,m, n.

such that
∫
G
κ(ν−1g)(fin↑G)(ν) =

∫
G
κ∗(ν−1g)(fin↑G)(ν). Meanwhile, from the Fourier domain, we know that when

κ∗
1 ̸= κ∗

2, then
∫
G
κ∗
1(ν

−1g)(fin↑G)(ν) ̸=
∫
G
κ∗
2(ν

−1g)(fin↑G)(ν). Therefore we find a complete characterization of the
equivariant linear map {κ∗}.

In spatial domain, since
∫
κst(g)Umn(g)dg =

∫
κ⊤
ts(g

−1)Unm(g)dg, we know that f(g) = κ⊤(g−1) is also a Mackey
function, satisfying f(gh) = ρin(h

−1)f(g). Therefore, we have κ∗(hg) = κ∗(g)ρin(h
−1). This is equivalent to the space

of kernels such that κ∗(h1gh2) = ρ(h−1
2 )κ∗ρ(h−1

1 ), from (Weiler & Cesa, 2019). (Weiler & Cesa, 2019) proves that these
are all equivariant kernels, which finishes our proof

C Details and Proofs for the Examples

C.1 SE(3)

Consider the group SE(3), with the stabilizer subgroup SO(3) and the homogeneous space R3. For any element (x,R) ∈
SE(3), where x ∈ R3 and R ∈ SO(3), the unitary irreducible representations of SE(3) have the form, for p ∈ R+ and an
integer s,

Us
l′,m′;l,m(x,R; p) =

l∑
j=−l

[l′,m′|p, s|l, j](x)Ũ l
jm(R), (5)

where

[l′,m′|p, s|l, j](x) = (4π)
1
2

l′+l∑
k=|l′−l|

ik

√
(2l′ + 1)(2k + 1)

(2l + 1)
Jk(pa),

C(k, 0; l′, s|l, s)C(k.m−m′; l′,m′|l,m)Y m−m′

k (θ, ϕ),

and Ũ l
mn = (−1)n−mDl

mn, where Dl
mn is the l-th order Wigner D-matrix—an unitary irreducible representation of

SO(3), C is a Clebsch-Gordan coefficient, Yk is a k-th order spherical harmonic, Jk is the k-th order spherical Bessel
function, a is the length of x, and θ, ϕ are the spherical coordinates of the unit vector x̂.

The lifting process takes the form

f↑G (g) = f↑G (x,R) = Dl(R⊤)f(x).

The Fourier Transform ( ̂f↑G (x,R)k)
s
l,m;l′,m′(p) (see App. C.3 for details) is∑

j

∫
R3

(−1)−k−jf−j(x, I)Us
l,m;l′,j(x, I; p)dxδ(l

′ − t)δ(k +m′),

where I is the identity matrix, the identity element in SO(3).

The convolution on SE(3) takes the form

(κ ∗ l)i(g) =
∑
j

∫
ν∈G

κij(ν
−1g)lj(ν)dν.
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The Fourier transform F((κ ∗ l)i)sl′,m′;l,m(p) becomes

∑
j

∞∑
a=|s|

a∑
b=−a

(l̂j)
s
l′,m′;a,b(p)(κ̂ij)

s
a,b;l,m(p).

Assume that the order of the input field is l1, and the order of the output field is l2. Then κij only has nonzero Fourier
coefficients at κ̂ij

s
l1,−j;l2,−i(p). Meanwhile, we can prove that κ̂ij

s
l1,−j;l2,−i(p) has the form (−1)j−ic, where c is a constant

over i, j, for direct convolution on R3 (see AppC.4). Then we can project κ to the homogeneous space R3, obtaining
κ′
ij(x) = κij(x, I) as

1

2π2

min(l1,l2)∑
s=−min(l1,l2)

∫ ∞

0

(−1)j−ics(p)Us
l1,−j;l2,−i(x, I; p)p

2dp =

⊤∑
m=−t

l1+l2∑
t=|l1−l2|

Ct(∥x∥)Cl2,i
t,m,l1,j

Y m
t .

We see that κ is in the span of a fixed basis, and the weight function Ct of ∥x∥ is arbitrary and thus learnable. This result is
consistent with the form of tensor field networks in Thomas et al. (2018) and 3D steerable CNNS in Weiler et al. (2018).

Figure 6. Fourier matrix multiplication for SE(3)

C.2 Details for SO(3)

The Fourier Transform becomes:

f̂↑G
l

mn =

∫
R∈SO(3)

f↑G (R)Dl
mn(R)dR =

∫
(α,β,γ)∈SO(3)

e−ikγf(α, β)eimαdlmn(β)e
inγdα sin(β)dβdγ

=

∫
(α,β)∈S2

f(α, β)eimαdlmn(β)dα sin(β)dβ

∫
γ∈SO(2)

e−ikγeinγdγ.

This further equals ∫
(α,β)∈S2

f(α, β)eimαdlmn(β)dα sin(β)dβ · 2πδ(k − n).

Projecting fout↑G to fout takes the form

fout(α, β) = fout↑G (α, β, 0) =

∫
G

κ(R−1
g Rα,β,0)fin↑G (g)dg

=

∫
G

κ(R−1
α′,β′,γ′Rα,β,0)fin↑G (α′, β′, γ′)dα′ sin(β′)dβ′dγ′

=

∫
G

κ(Rz(−γ′)Ry(−β′)Rz(−α′)Rz(α)Ry(β))e
−imγ′

fin(α
′, β′)dα′ sin(β′)dβ′dγ′

=

∫
G

eim1γ
′
κ(Ry(−β′)Rz(−α′)Rz(α)Ry(β))e

−im1γ
′
fin(α

′, β′)dα′ sin(β′)dβ′dγ′

= C

∫
S2
κ(Ry(−β′)Rz(−α′)Rz(α)Ry(β))fin(α

′, β′)dα′ sin(β′)dβ′

= C

∫
S2
e−im2h(R−1(α′,β′,0)R(α,β,0))κ′(Ry(−β′)Rz(−α′)xα,β)fin(α

′, β′)dα′ sin(β′)dβ′.

This completes the details for SO(3).
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C.3 Fourier Transform over SE(3)

The Fourier Transform has the form

( ̂f↑G (x,R)k)
s
l,m;l′,m′(p) =

∫
SE(3)

f↑G (x,R)k(x,R)Us
l,m;l′,m′(x,R; p)dRdx

=
∑
g,l′,j

∫
SE(3)

D⊤
kg(R

⊤)fg(x, I)Us
l,m;l′,j(x, I, p)Ũ

l′
jm′(R)dRdx

=
∑
g,l′,j

∫
R3

fg(x, I)Us
l,m;l′,j(x, I; p)dx

∫
SO(3)

(−1)m
′−jD⊤

gk(R)Dl′
jm′(R)dR.

Due to the fact that Clebsch–Gordan coefficients C00
l1,m1,l2,m2

= δ(l1 − l2)δ(m1 + m2), the decomposition of
D⊤

gk(R)Dl′

jm′(R) includes the trivial representation only when t = l′, g = −j and k = −m′. Therefore, the Fourier matrix
has sparsity pattern

( ̂f↑G (x,R)k)
s
l,m;l′,m′(p) =

∑
j

∫
R3

(−1)−k−jf−j(x, I)Us
l,m;l′,j(x, I; p)dx δ(l′ − t)δ(k +m′).

C.4 Kernel Property for SE(3)

From the Fourier transform, we know that f̂out↑Gi
s

l′,m′;l1,−i(p) has the form (−1)−iC, where C does not depend on i,

and f̂in↑Gj
s

l′,m′;l1,−j
(p) has the form (−1)−jC ′, where C ′ does not depend on j. Thus,

∑
j κ̂ij

s
l1,−j;l2,−i(p) has the form

(−1)−iCj , where Cj does not depend on i. Therefore, we find the kernel κij whose Fourier matrix is shown in Figure 6,
and κij(g) is

1

2π2

min(l1,l2)∑
s=−min(l1,l2)

∫ ∞

0

(−1)−icsl1,−j;l2,−i(p)U
s
l1,−j;l2,−i(x,R; p)

where
∑

j c
s
l1,−j;l2,−i does not depend on i.

To directly apply the convolution on a homogeneous space acted on by a semidirect product, csl1,−j;l2,−i(p) should have the
form (−1)j−ic, where c is does not depend on i or j. This is because κ and the function p : G → V , where p(g−1) = κ⊤(g)
for any g ∈ G, should both be Mackey functions.

D Experiment Details

D.1 Details of Spherical U-Net in Sec. 4.1

The input field to the U-Net has one order-0 feature and the output of the U-Net is one order-1 feature. The overall network
has six layers of widths [32, 16, 16, 16, 16, 32]. The hidden features have [8, 12, 16, 12, 8] channels, respectively, for each
type of field. The types in hidden features are order-0 and order-1. The loss is the same as (Esteves et al., 2020), the
mean-squared error weighted by the spherical map sampling area. The whole network is trained end-to-end from scratch
using the Adam optimizer with an initial learning rate of 1× 10−3. The learning rate decays by a factor of 0.2 at epochs 10
and 15.

D.2 Nonlinearity in the SE(3) experiment (Sec. 4.2)

When we only take the −1-st, 0-th and 1-st element of the vector-valued function l on SE(3), the 0-th element l0(∗, x), of l

is a Mackey function on SO(3) at every point x. This is shown in the section 3.4. We observe that x 7→
(
l−1(∗, x)
l1(∗, x)

)
is

a Mackey function on SO(3) corresponding to the irreducible representation θ 7→
(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
of SO(2), using
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the real form of the Wigner-D matrix. Therefore we can project x 7→
(
l−1(R, x)
l1(R, x)

)
to the sphere by taking

(
l−1(r, x)
l1(r, x)

)
and using its norm. For l0(R, x), we only need to take l0(r, x). Through the above method, we can project the signal from
SO(3) to the sphere and keep the equivariance.

D.3 Details of Molecular Completion in Sec. 4.2.1

Our network contains five convolution activation layers using 0, 1, 2-order fields as hidden features with corresponding
hidden channel dimensions [32, 32, 32, 32]. In the last layer, we output six scalars for every existing atom (one for probability
and five for one-hot atom type prediction for the missing atom) and one vector (relative position to the missing atom). The
losses are the same as described in (Thomas et al., 2018) and the network is trained using the Adam optimizer with the
initial learning rate 1× 10−3. The learning rate is decreased by a factor 0.3 at epoch 2500.

D.4 Details of Shape Classification in Sec. 4.2.2

Our network follows (Poulenard & Guibas, 2021; Poulenard et al., 2019) to perform PCA aligned KD-Tree pooling. It
contains six convolution activation layers before global pooling, with KD-Tree pooling depth factors of [0, 2, 0, 2, 0, 2],
leading to [1024, 1024, 256, 256, 64, 64, 16] points starting from the input point cloud. Global pooling is applied to the
function lifted to the group as in (Poulenard & Guibas, 2021). Since in this task the translation equivariance can be trivially
addressed via subtracting the center of mass, following (Poulenard & Guibas, 2021; Dym & Maron, 2020) we concatenate
the global xyz coordinates as an order-1 feature to each layer’s input. We use the standard cross entropy loss. The network
is trained via the Adam optimizer with a starting learning rate of 1× 10−3. The learning rate is decayed by a factor of 0.3 at
epochs [100, 150, 200, 250, 300].

D.5 Table 3 with references

Methods z/z z/SO(3) SO(3)/SO(3)

Spherical-CNN (Esteves et al., 2018) 88.9 76.7 86.9
a3S-CNN (Liu et al., 2018) 89.6 87.9 88.7
SFCNN (Rao et al., 2019) 91.4 84.8 90.1
TFN (Thomas et al., 2018) 88.5 85.3 87.6
RI-Conv (Zhang et al., 2019) 86.5 86.4 86.4
SPHNet (Poulenard et al., 2019) 87.7 86.6 87.6
ClusterNet (Chen et al., 2019) 87.1 87.1 87.1
GC-Conv (Zhang et al., 2020) 89.0 89.1 89.2
RI-Framework (Li et al., 2020) 89.4 89.4 89.3
VN-PointNet (Deng et al., 2021) 77.5 77.5 77.2
VN-DGCNN (Deng et al., 2021) 89.5 89.5 90.2
TFN[mlp]-P (Poulenard & Guibas, 2021) 89.7 89.7 89.7

Ours 89.7 89.7 89.3

Table 4. Due to the page limit, we provide the references for the methods in Table 3 here.


