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Abstract

We study the problem of identifying cause and
effect over two univariate continuous variables
X and Y from a sample of their joint distri-
bution. Our focus lies on the setting when the
variance of the noise may be dependent on the
cause. We propose to partition the domain of the
cause into multiple segments where the noise in-
deed is dependent. To this end, we minimize a
scale-invariant, penalized regression score, find-
ing the optimal partitioning using dynamic pro-
gramming. We show under which conditions
this allows us to identify the causal direction for
the linear setting with heteroscedastic noise, for
the non-linear setting with homoscedastic noise,
as well as empirically confirm that these results
generalize to the non-linear and heteroscedas-
tic case. Altogether, the ability to model het-
eroscedasticity translates into an improved per-
formance in telling cause from effect on a wide
range of synthetic and real-world datasets.

1. Introduction
Causal discovery based on conditional independence tests
can identify causal graphs up to Markov equivalence. To
learn fully directed graphs, we need to disambiguate be-
tween Markov equivalent graphs, which entails inferring
the causal direction between pairs of statistically dependent
variables. This problem is known as bi-variate causal infer-
ence. Pearl (2000) showed that it is impossible to tell cause
from effect from observational data without making addi-
tional assumptions about the data generating process.

What assumptions to make is the central question in causal
inference. While these should be strong enough as to per-
mit formal guarantees on identifiability of the model, they
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Figure 1. Age vs. Weight from the Tübingen cause-effect bench-
mark dataset (Mooij et al., 2016). Different noise variances for
adolescents/young adults and adults overlap in the anti-causal di-
rection and create the asymmetry to distinguish cause from effect.

should at the same time be as likely as possible to hold
in practice. The perhaps most common assumption in bi-
variate causal inference is the additive noise model, where
the noise is independent of the cause (Bühlmann et al.,
2014; Peters et al., 2014; Shimizu et al., 2006; Hoyer et al.,
2009). As would be expected, methods based on this as-
sumption are successful when it holds, but as Tagasovska
et al. (2020) show, these indeed fail when the noise does
depend on the cause, as for example, with location-scaled
noise.

In this work, we focus on the bi-variate setting and propose
a causal model that includes heteroscedastic noise distribu-
tions. That is, rather than wishing it away, we explicitly
permit the variance of the noise to depend on the cause.

We provide conditions under which this causal model is
identifiable by explicitly modelling the scale of the noise
with a regularized likelihood model. In particular, we give
proofs for the linear setting with heteroscedastic noise, and
for the non-linear setting with homoscedastic noise. Fur-
ther, we empirically validate that our method can iden-
tify the causal direction for non-linear models with het-
eroscedastic noise, as well.

As an example, consider Fig. 1, in which we depict the Age
vs. Weight pair from the Tübingen cause-effect benchmark
dataset. In the causal direction (left) it is possible to find
two regions with different noise, while in the anti-causal
direction (right) it is not. Under our assumptions this trans-
lates into a higher negative log-likelihood for the causal di-
rection, even if we rescale the variables between zero and
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one (Reisach et al., 2021).

To perform causal inference in practice, we propose a
fitting process that automatically divides the domain of
the presumed cause into segments of different noise vari-
ances, guided by a Bayesian information criterion based
score. We introduce an efficient dynamic-programming-
based algorithm, HECI, that can determine the optimal
scoring model in quadratic time despite an exponential
search space. We can then determine cause from effect by
simply comparing the scores we so obtain for X to Y , and
vice versa.

We provide a thorough empirical evaluation on synthetic
and real world data, comparing to a wide range of methods
for bi-variate causal inference. These results show that our
method, HECI, performs as well as the strongest competi-
tor whenever noise is homoscedasctic, and is the strongest
whenever noise does depend on the cause.

The remainder of this paper is structured as usual. In Sec. 2
we formally specify our causal model, and show under
which conditions it is identifiable. We present HECI, an
effective algorithm for heteroscedastic-noise based causal
inference in Sec. 3. We discuss related work in Sec. 4 and
empirically evaluate HECI in Sec. 5. We wrap up with dis-
cussion and conclusions in Sec. 6. We postpone all proofs
to the Supplementary Material.

2. Theory
We consider causal inference from independent and identi-
cally distributed (iid) measurements of two continuous ran-
dom variables X and Y . Further, we assume that there is
no selection bias and that X and Y are not affected by an
unobserved common cause. Under those assumptions, our
task reduces to deciding between the two Markov equiva-
lent DAGs X → Y and X ← Y . To tackle this problem,
we need to impose assumptions on the underlying causal
model (Pearl, 2000; Peters et al., 2017), which we define
below.

2.1. Heteroscedastic Noise Models

In the most general setting, we assume that cause and ef-
fect can be generated from the following structural equa-
tion model (SEM)

X := NX

Y := f(X) + sα(X) ·NY , (1)

where NX ⊥⊥NY , NX , NY have zero mean and variances
σ2
X , resp. σ2

Y , f is a smooth function, and sα(X) a function
controlling the amplitude of the variance of noise added to
Y . The function sα(X) : R 7→ R+ may be dependent on
X and a scale factor α. For now, we leave the above causal

model in its general form and first provide some intuition
about sα(X). Subsequently, we specify for which func-
tions f, sα, and noise distributions NX , NY we can iden-
tify the correct causal model.

As specified above, the causal model in Eq. (1) can express
various noise settings. In the simplest setting, in which we
define sα(X) = c as a constant function, Eq. (1) reduces
to the classical additive noise model (Peters et al., 2017).
More interesting to us, however, is if the noise scales with
respect to X . For example, there could be a threshold t
s.t. sα(x) for x < t is smaller than if x ≥ t (Fig. 1), or the
noise could just fan out scaled by location (see Fig. 2).

In the following, we first show that both such cases can be
identified in the linear case and then extend our analysis to
the non-linear setting.

2.2. Linear Functions

First, we discuss linear functions, for which f(X) = β0 +
β1X . It has been shown for sα(X) = 1 that the linear
SEM is identifiable from the L2-loss for Gaussian SEMs
with equal error variances (Peters & Bühlmann, 2014) and
for non-Gaussian SEMs (Loh & Bühlmann, 2014). These
results have encouraged a line of optimization-based ap-
proaches which minimize the global L2-loss to learn the
causal DAG (Zheng et al., 2018; 2020; Lachapelle et al.,
2020; Ng et al., 2020; Yu et al., 2019), an advancement that
recently became feasible by proposing a continous con-
straint to enforce a DAG structure (Zheng et al., 2018).
Another line of research even proved that cause and ef-
fect are identifiable for linear SEMs with heterogeneous
noise (Park, 2020), by showing that

E [Var(X | Y )] = σ2
X −

β2
1σ

4
X

σ2
Y + β2

1σ
2
X

is smaller than E [Var(Y | X)] = σ2
Y if σ2

Y

σ2
X

> (1− β2
1).

Despite the recent success of these approaches, Reisach
et al. (2021) note that these scores are not robust w.r.t. to
scaling. In particular, they showed that standardizing the
data significantly reduces the performance of approaches
based on the above principle.

In Lemma 1, we generalize this statement to linear models,
where X and Y might be rescaled arbitrarily, and for which
sα(X) = α.

Lemma 1 Let X be a random variable with variance σ2
X

and let Y = β0+β1X+αNY , where NY has variance σ2
Y

and α > 0 is a scaling parameter. Further, let X ′ = a+bX
and Y ′ = c+dY be the rescaled versions of X and Y , then

E[Var(X ′ | Y ′)]

E[Var(Y ′ | X ′)]
=

(
b

d

)2
σ2
X

α2σ2
Y + β2

1σ
2
X

,
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where σ2
X = Var(X) and α2σ2

Y + β2
1σ

2
X = Var(Y ).

The proof for Lemma 1 is provided in Supplementary Ma-
terial A.1. To see how scaling affects the identifiability re-
sult, consider that we standardize X and Y by subtracting
their means and dividing by the corresponding standard de-
viation. From Lemma 1, we can immediately see that the
expected variance for both directions will be equal, which
renders the problem non-identifiable. Even if we addition-
ally add both marginal variances to the score, i.e. compare
Var(X ′)+E [Var(Y ′ | X ′)] to Var(Y ′)+E [Var(X ′ | Y ′)]
we will arrive at an equality since Var(X ′) = Var(Y ′) = 1
after standartization. Further, if the support of X and NY

is bounded, we can derive the same result for normalization
(rescaling X and Y between zero and one) if α→ 0.

In the following, we show how we can break this symmetry.
Consider the age vs. weight example shown in Fig. 1 where
the variance in weight is lower in children and young adults
than in adults. Mathematically, this could be expressed as
the case where sα is a stepfunction, i.e.

sα(x) =

{
αc1, if x < a

αc2, otherwise

where 0 < a < 1 is some cut-off, at which the scale of
the variance changes. Our approach models the local noise
variance by its log-likelihood, which we will show in sec-
tion 2.6 to be the weighted mean of the logarithmic vari-
ance. In the causal direction we are able to separate the
variance into the step function sα(x) such that

P (X < a) · log((αc1)2) + P (X ≥ a) · log((αc2)2)

= log
(
(αc1)

2·P (X<a) · (αc2)2·P (X≥a)
)
.

Here the log-likelihood corresponds to the logarithm of the
geometric mean. In the anti-causal direction the noise over-
laps s.t. we cannot separate the two noise distributions and
instead need to model them with a single variance. Accord-
ing to Lemma 1, in the limit of α → 0 we obtain the same
expected variance in both directions (after normalization),
hence the variance over this single interval is the arithmetic
mean of both independent variance terms, i.e.

log (Var(X|Y ))

= log
(
P (X < a) · (αc1)2 + P (X ≥ a) · (αc2)2

)
.

Since the geometric mean is smaller or equal than the arith-
metic mean, with equality if and only if c1 = c2, the nega-
tive log-likelihood we calculated for the causal direction is
smaller than that for the anti-causal direction.

Based on this intuition, we generalize this scheme onto the
continuous case, where we compare the integral of loga-
rithmic noise variances in both directions. We define NY

to have unit variance, such that the variance of the scaled
noise term is fully determined by the square of the ampli-
tude function sα(x)

2. We let the noise be arbitrarily scaled
as sα(x) = α · s(x), with the additional constraint that the
scaling function s is strictly positive.

Theorem 1 Given a causal model as specified in Eq. (1),
assume that

(1) NX , NY have finite support, and X and Y are nor-
malized to obtain values within [0, 1]

(2) f is a linear function with f(X) = β0 + β1X and g
is its inverse

(3) NY is unbiased with unit variance and strictly positive
scale function sα(x) = αs(x), with sα(x) → 0 if
α→ 0.

In that case it holds that in the limit of α→ 0,∫ 1

0

pY (y) · log (Var(X|Y = y))) dy

≥
∫ 1

0

pX(x) · log (Var(Y |X = x)) dx ,

with equality, if and only if the conditional variance of the
noise scaling Var (s(X)|Y ) = 0, i.e. there is no overlap of
noise with different amplitude s(x) in the domain Y .

The proof to Theorem 1 is provided in Supplementary
Material A.2. In the following, we sketch out the main
idea of the proof. For the causal direction we know that
Var(Y |X = x) = sα(x) according to our causal model.
In the anti-causal direction, however, the noise variance
in the linear case is obtained by the weighted integral of
noise amplitudes sα(x) over all x which are mapped to
y = f(x) + sα(x)N . Consequently we may express the
first term of the Theorem 1 as∫ 1

0

pY (y) · log
(∫ 1

0

pX|Y=y(x) · sα(x)2dx
)
dy .

Through Jensens inequality it follows that

≥
∫ 1

0

pY (y) ·
(∫ 1

0

pX|Y=y(x) · log
(
sα(x)

2
)
dx

)
dy .

This relationship holds with equality if and only if s(X|y)
is constant for all y ∈ Y . Formally, this condition is
met if the conditional variance of the noise scaling is zero,
i.e. Var(s(X)|Y ) = 0. For example this is fulfilled in the
homoscedastic setting, where s(x) = c. Now, if we inte-
grate over y we get∫ 1

0

pX(x) · log
(
sα(x)

2
)
dx

=

∫ 1

0

pX(x) · log (Var(Y |X = x)) dx ,
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which resembles the second term in Theorem 1.

Theorem 1 shows that we can identify the causal direc-
tion under heteroscedastic noise for linear SEMs, even af-
ter normalizing the data. The limit of α → 0 is necessary
to make a definite statement over the regression error in the
linear case. Empirically we observe that we can distinguish
cause and effect even for high noise levels.

2.3. Non-Linear Functions

Next, we consider the case in which f can be a non-
linear function and start again with the homoscedastic noise
setting in which sα(X) = α. In this setting, we can
build upon well known identifiability results. In particu-
lar, Blöbaum et al. (2018) prove that cause and effect can
be identified from the expected variances, i.e.

lim
α→0

E [Var(X | Y )]

E [Var(Y | X)]
> 1

under similar assumptions as above. That is, X has com-
pact support in [0, 1], Y is rescaled to [0, 1] with compact
support, f is an invertible non-linear function and the noise
variable NY is unbiased with variance equal to one. In ad-
dition, Blöbaum et al. (2018) note that for non-invertible
functions, the statement trivially holds due to the informa-
tion loss in the anti-causal direction. Similar statemets also
exist for additive noise models (Zhang & Hyvärinen, 2009).

Thus the only case we did not cover, yet are non-linear
invertible functions with heteroscedastic noise. Based on
Theorem 1 and the identifiability results for non-linear ad-
ditive noise functions Blöbaum et al. (2018) (when α→ 0),
we conjecture that the inequality also holds for cases where
f is non-linear, invertible and the noise is heteroscedastic
as in Theorem 1, with sα(X) · NY → 0 when α → 0.
In our empirical evaluation, we can validate this conjec-
ture and show that our method perfoms well, even in cases
where there is a lot of difference in the noise amplitude, i.e.
heteroscedasticity.

2.4. Multivariate Causal Models

To use HECI beyond the bi-variate setting, we recommend
to first apply a causal discovery algorithm that identifies
the Markov equivalence class of the true DAG, e.g. the PC
algorithm (Spirtes et al., 2000), the GES algorithm (Chick-
ering, 2002) or their extensions. After that, one can use
HECI to infer the remaining undirected edges.

2.5. Inference

To infer the causal direction between X and Y , we instan-
tiate the discrete counterpart of the integrals in Theorem 1.
The score below is used to infer the causal direction. For
a sample {xi, yi}ni=1 each point has the weight 1

n , conse-

quently the score of the causal direction is

ScoreX→Y =

n∑
i=1

1

n
log(sα(xi)

2) .

We say that X causes Y if ScoreX→Y < ScoreY→X , that
Y causes X if ScoreX→Y > ScoreY→X and do not de-
cide if both quantities are equal. In practice, we instantiate
the above score using a penalized negative log-likelihood,
such as the Bayesian Information Criterion, which allows
to regularize the model fitting process for f, sα and avoid
overfitting. Next, we link the above score to the empirical
negative log-likelihood of the regression errors.

2.6. Empirical Log-Likelihood

Given a sample {xi.yi}ni=1 drawn iid from the joint distri-
bution of X and Y , the residuals ri = yi − f(xi) have
zero mean and variance determined by sα(xi)

2 from our
causal model. The empirical negative log-likelihood of the
residuals, assuming a normal distribution, is

− log
[
LX→Y (s

2
α, f)

]
= − log

[
n∏

i=1

p
(
ri|xi; s

2
α

)]

=
1

2

n∑
i=1

log
[
sα(xi)

2
]
+

1

2

n∑
i=1

r2i
sα(xi)2

+
n

2
log(2π) .

Since f and s2α are not known in advance, they have to be
estimated (f̂ and ŝ2). We will show that − log(LX→Y ) ∝
2
n ·ScoreX→Y , which means that we can identify cause and
effect by minimizing the negative log-likelihood.

The local variance could be estimated pointwise through
the residuals ŝ(x)2 = mean({r̂2i |xi = x}), which is
asymptotically consistent. Practically, there is limited data,
thus we model the variance as locally constant inside an
interval with a step function. If the domain of X can be
partitioned in m non-overlapping bins s.t. within each binj

the empirical variance has the constant value σ̂2
j , we can

write the empirical negative log-likelihood w.r.t. this parti-
tioning P̂ as

− log
[
LX→Y (σ̂

2, f̂ , P̂)
]
=

m∑
j=1

nj

2
· log(σ̂2

j ) , (2)

where nj relates to the number of data points falling within
binj . The full derivation is provided in Supplementary Ma-
terial B. Since σ̂2

j is the local estimate for the noise vari-
ance sα(xi), we get that the negative log-likelihood ap-
proximates our score above as

ScoreX→Y ∝ −
2

n
· log

[
LX→Y (σ̂

2, f̂ , P̂)
]
.

For the inverse direction, we can derive the corresponding
negative log-likelihood similarly. Thus, if we optimize this
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Figure 2. Fitted causal model with heteroscedastic noise. The
dashed blue lines show the initial binning. The green, blue and
yellow segments indicate the optimal noise partitioning.

log-likelihood, the identifiability guarantees of Theorem 1
and the results for non-linear functions by Blöbaum et al.
(2018) hold asymptotically. In the next section, we explain
how we compute P̂ and f̂ to minimize the corresponding
negative log-likelihood via dynamic programming.

3. Algorithm
In the previous section, we established the heteroscedas-
tic noise model and the identifiability conditions based on
the expected value of the noise variance logarithm. It uses
the residuals of the fitted function f̂ under a partition P̂ .
However, ordinary least squares and other methods esti-
mate f̂(x) assuming homoscedastic noise.

In view of this, we present the HECI algorithm for
Heteroscedastic-noise based Causal Inference. The regres-
sor domain is divided up into segments, where least squares
based regression models are fitted. This way we implicitly
estimate s2(x) as a step function with which we can com-
pute the negative log-likelihood from Eq. (2).

To find the optimal partition and function, three compo-
nents are required: the binning scheme, that defines the
feasible partitions, the regularizing scoring function and the
optimization algorithm itself.

3.1. Binning

We initiate the binning algorithm with b equal-width bins
that partition the domain of X . A local function is fit-
ted inside a single bin or over multiple, neighboring bins.
Each bin is defined as the interval binj : [minj ,max j). In
Fig. 2, these are marked by the blue dashed lines. The bins
are adjacent with max j = minj+1 for j ∈ [1, b − 1] and
have min1 = 0 and maxb = 1.

The initial equal-width bins are defined such that max j =
minj + ∆. The initial bin width ∆ must be chosen care-
fully, especially in cases with limited data. We therefore
require a min support of 10 unique data points per bin. In
our experiments, we set ∆ = 0.05, with which the best

performance was achieved. An analysis of the impact of
the ∆ parameter on performance is provided in the Supple-
mentary Material C. From the set of initial bins {binj}bi=1,
the task is to find a partition P̂ of neighboring bins and the
underlying function f̂ , which minimizes the negative log-
likelihood, as described below.

3.2. Scoring Models

The combined model of partition P̂ and function f̂ is
scored based on the empirical log-likelihood and a param-
eter penalty. The cardinality of the partition is denoted as
|P̂|. We use the Bayesian Information Criterion (BIC ) to
regularize the size of the partition and the complexity of the
fitted functions, i.e.

BIC
(
σ̂2, f̂ , P̂

)
:= − 2 · log

[
L
(
σ̂2, f̂ , P̂

)]
+ log(n) ·

(
||βf̂ ||0 + |P̂|

)
.

With BIC , we may now approach the task of finding the
combination of local functions which minimize it. To im-
prove readability we omit σ̂2 as it is constant per element
of the partition P̂ . As we saw in the previous section, the
data likelihood is decomposable into independent, additive
components. In particular, the BIC score of a given model
partitioned at bina−1 is additive, i.e.

BIC (f,

b⋃
j=1

binj)=BIC (f1,

a−1⋃
j=1

binj)+BIC (f2,

b⋃
k=a

bink) .

We make use of this fact for our proposed algorithm to find
the optimal model within our binned search space.

3.3. HECI: Dynamic Programming Optimization

The binning provides b possible points, where the domain
may be partitioned, and thus 2b possible partitions in total.
The problem is structured however, and allows to find the
optimal model in b2 fits via dynamic programming.

For a single binj , the best model f̃j,j is determined by the
best scored polynomial fj,j (linear to cubic). For groups of
neighboring bins, which we will call segments from now
on, there are two possibilities for the optimal model f̃p,q:

• Fitting a local function fp,q for the segment from binp

to binq , or

• Combining two optimal functions f̃p,a and f̃a+1,q for
smaller segments, where p ≤ a < q.

Note, that the optimal functions f̃p,a and f̃a+1,q for the
smaller segments may in turn be a combination as well.
The algorithm to compute the optimal model f̃1,b over the
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entire domain is as follows. First, for all segments from
binp to binq (p, q ∈ [1, b], p ≤ q), the local polynomial
functions fp,q are fitted. To choose the polynomial degree,
we use BIC and minimize

fp,q = argmin
f

BIC

f,

q⋃
j=p

binj

 .

The optimal model for the entire domain is attained in a
bottom-up approach. The single bin optimal models f̃j,j
are initialized with the local functions fj,j . To compute
the optimal models f̃p,q for segments consisting of m =
q−p+1 bins, all combinations of functions with splitpoint
a ∈ [p, q−1] are checked. This requires to have the optimal
models for all segments of size m−1 and smaller available.
The best of the combined functions or the local function is
chosen based on the BIC.

f̃p,q =


fp,q, ifBIC (fp,q,

⋃q
j=p binj) ≤

BIC (f̃p,a,
⋃a

j=p binj) +

BIC (f̃a+1,q,
⋃a

k=a+1 bink)

f̃p,a ∪ f̃a,q otherwise

Once all optimal models of size m have been determined,
the segment size is incremented by one and the process is
repeated, until m = b. At this point, we have attained the
optimal model for the entire domain according to the BIC
score. The model defines a partition P̂ , determined by the
selected split-points aj and the function f̂ defined by the
the locally fitted polynomials in the partition.

One such fitted model can be seen in Fig. 2. From the ini-
tial b bins, we find the optimal partition and local functions,
which are marked as blue, orange and green, using the de-
scribed bottom-up approach. Like our causal model, the
variance is modelled as locally constant, but different be-
tween each segment.

3.4. Complexity

The complexity of our algorithm is as follows. There are
b2+b
2 permutations of p, q ∈ [1, b], p ≤ q. A local poly-

nomial function fp,q is fitted with ordinary least squares in
linear timeO(n). The process to find an optimal model f̃p,q
needs to compare at most b scores and is inO(b). Since the
number of bins b is smaller than the number of samples n,
the overall computational complexity of HECI isO(b2 ·n).

4. Related Work
To infer cause and effect from observational data, we need
to impose assumptions about the generating mechanism,

Algorithm 1: HECI(X,Y,∆)

1 Normalize X and Y to [0, 1];
2 b← 1

∆ ;
3 for j = 1 : b do
4 binj ← {xi, yi | xi ∈ [(j − 1) ·∆, j ·∆)}
5 for j = 1 : b, k = j : b do
6 binj−k ←

⋃
l=j,...,k bin l;

7 score[j, k]← minBIC (f,
⋃k

l=j bin l);

8 for size = 2 : b, start = 1 : b− size do
9 end ← start + size;

10 for split = start + 1 : end − 1 do
11 left ← score[start , split ];
12 right ← score[split , end ];
13 if left + right < score[start , end ] then
14 score[start , end ]← left + right ;

15 ScoreX→Y ← score[1, b];
16 Compute ScoreY→X in the same way;
17 Predict causal direction by lowest score, undecided

when ScoreX→Y = ScoreY→X ;

since the to possible DAGs X → Y and X ← Y are
Markov equivalent (Verma & Pearl, 1990; Pearl, 2000).

Most well known are additive noise models (ANMs) (Pe-
ters et al., 2017). In essence, ANMs assume that the ef-
fect is generated as a deterministic function of the cause X
and an additive noise term NY . For a broad range of func-
tion classes and distributions (Shimizu et al., 2006; Hoyer
et al., 2009; Peters et al., 2011; Hu et al., 2018; Zhang &
Hyvärinen, 2009), it has been shown that such an ANM
does not exist in the inverse direction–i.e. the noise NX

will not be independent of Y . One of the most prominent
examples is the linear non-Gaussian additive noise model,
LiNGAM (Shimizu et al., 2006). A recent proposal based
on ANMs is NNCL (Wang & Zhou, 2021). It partitions
the domain of the cause into two bins, fits a linear models
for each bin, and then checks whether the ANM holds for
the partitioned model. Similarly, CDCI (Duong & Nguyen,
2021) discretizes the cause domain via rounding and com-
pares the conditional divergence for both directions. CDCI
does, however, not come with strong identifiability guaran-
tees. Different to those methods, we consider a more gen-
eral class of partitions, non-linear functions, heterosedastic
noise and we base our score on the L2-loss.

Another large class of approaches is based on the prin-
ciple of independent mechanisms (Janzing et al., 2012;
Sgouritsa et al., 2015), or its information-theoretic variant:
the algorithmic independence of conditionals (Budhathoki
& Vreeken, 2016; Marx & Vreeken, 2017; Stegle et al.,
2010; Tagasovska et al., 2020; Mian et al., 2021). Both pos-
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Figure 3. Generated linear cause-effect pairs. The variance of the
Gaussian noise changes at a random cutoff near the mean. The
noise variance increases from left to right. Pairs of 100 datapoints
(top row) up to 1000 datapoints (bottom row) are sampled.

tulates base their inference on the assumption that P (X)
is (algorithmically) independent of P (Y | X), while the
same does not hold for the factorization of the anti-causal
direction, i.e. P (Y ) is not (algorithmically) independent of
P (X | Y ) (Peters et al., 2017; Janzing & Schölkopf, 2010).
Janzing et al. (2012) define the approach IGCI which re-
lies on the principle of independent mechanisms and con-
siders the setting where the effect is a deterministic func-
tion of the cause. In practice, they derive a score based on
differential entropy. SLOPE (Marx & Vreeken, 2017) and
QCCD (Tagasovska et al., 2020) are two recent proposals
that aim to approximate the algorithmic Markov condition.
Although they empirically perform well, both do not have
identifiability guarantees. A more detailed overview is pro-
vided by Marx & Vreeken (2022).

Closely related methods to our work are the ones that base
their inference rules on regression error. Two such ap-
proaches for purely bi-variate pairs are RECI (Blöbaum
et al., 2018), which compares the expected regression er-
ror, and SLOPPY (Marx & Vreeken, 2019), which consid-
ers L0-penalized regression errors. CAM (Bühlmann et al.,
2014) is designed to find a general causal graph, but can de-
cide causal direction for the bivariate case using regularized
log-likelihood by building upon identifiability results for
additive noise models. Further, identifiability results based
on the L2 have been proven for linear SEMs with equal
error variances (Peters & Bühlmann, 2014), non-Gaussian
SEMs (Loh & Bühlmann, 2014) and linear SEMs with het-
erogeneous noise (Park, 2020). Building upon these iden-
tifiability results, Zheng et al. (2018) introduced a continu-
ous DAG constraint to speed up the DAG search via contin-
uous optimization based on the L2-loss. This idea has been

Figure 4. Generated non-linear cause effect pairs. The noise vari-
ance changes in a stepwise manner. The step parameter increases
from left to right. On the left data with constant noise variance
(homoscedastic) is found, while on the right side the most het-
eroscedastic data is located.

extended in various ways, by allowing for non-linear func-
tions (Zheng et al., 2020; Lachapelle et al., 2020), employ-
ing different constraints to enforce a DAG structure (Ng
et al., 2020) or using different architectures to minimize
the objective, e.g. graph neural networks (Yu et al., 2019).
For a broader overview, we refer to Vowels et al. (2021).

In this paper, we focus purely on the bi-variate setting, in
which the above approaches are comparable to CAM. Dif-
ferent to CAM and RECI, we additionally provide identifi-
ability results for linear SEMs with heteroscedastic noise.

5. Experiments
In this section, we empirically evaluate HECI on both syn-
thetic data and the real-world Tübingen cause and effect
pairs (Mooij et al., 2016) benchmark. We will compare
it to a wide range of state-of-the-art bivariate causal in-
ference methods. As identifiable approaches that assume
an additive noise model, we compare to CAM (Bühlmann
et al., 2014) as a representative for regression-based log-
likelihood approaches and to RESIT (Peters et al., 2014)
a state-of-the-art ANM-based method. Further, we com-
pare to QCCD (Tagasovska et al., 2020) as an approach that
explicitly models heteroscedastic noise, SLOPPY (Marx
& Vreeken, 2019) and IGCI (Janzing et al., 2012) as the
state-of-the-art information theoretic approaches. Finally,
we also compare to NNCL (Wang & Zhou, 2021) and
CDCI (Duong & Nguyen, 2021) as the bivariate causal in-
ference approaches that discretize the domain of the cause,
where NNCL uses piecewise/non-invertible functions and
CDCI utilizes conditional divergence. HECI is imple-
mented in Python and we provide the source code as well as
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Figure 5. [Higher is better] Accuracy in determining cause from
effect for linear functions with 2 noise variances under increasing
noise levels.
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Figure 6. [Higher is better] Accuracy in determining cause from
effect for increasing heteroscedasticity, measured by the step
height of the variance step function.

the synthetic data for research purposes.1 All experiments
were executed on a 4-core Intel i7 machine with 16 GB
RAM, running Windows 10. For each instance, HECI was
able to decide the causal direction in less than 5 seconds.

5.1. Synthetic Data

We test HECI on two different settings. First, we generate
synthetic data according to our assumed causal model in
Eq. (1). Next, we use the synthetic data of Gaussian pro-
cesses provided by Tagasovska et al. (2020) over different
noise settings.

Linear Functions We start by generating cause effect
pairs with linear functions and known ground truth, dis-
played in Fig. 3. The cause X is sampled from a nor-
mal distribution and is linked to the effect with Y =
β0 + β1X + s(X)NY . We sample 100 pairs of 100, 200,
500 and 1000 datapoints for all noise settings, which will
be explained now. The noise is heteroscedastic Gaussian,
where the variance function is a step function scaled in re-
lation to the support SY of Y .

s(x) =

{
[0.05, 0.4] · SY if x < [0.3, 0.7]

[1.5, 2.5] · [0.05, 0.4] · SY otherwise

We run all methods, and plot their average accuracies in
Fig. 5. The results show that we can identify cause and
effect for linear functions with overlapping noise, and give

1https://eda.mmci.uni-saarland.de/heci/
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Figure 7. [Higher is better] Accuracy over benchmark synthetic
data with Additive Noise (AN), Location Scaling (LS) and Multi-
plicative Noise (MN-U).
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Figure 8. [Higher is better] Accuracy over benchmark synthetic
data of sigmoidal functions with Additive Noise (AN-s) and Lo-
cation Scaling Noise (LS-s).

empirical backing for Theorem 1. High noise levels beyond
the guarantees are solved especially well. We attribute this
to the increased overlap of noise distributions that comes
with larger noise variances. Overall, our method is ahead
of its competition on all noise levels. The performance
of RESIT and CAM also highlights the advantage of our
causal model over plain ANMs. Because the independence
of noise and cause is violated, the inference criterion of
RESIT identifies the anti-causal direction. QCCD models
heteroscedastic noise as well, but does not provide explicit
guarantees for the linear case and cannot handle it. In con-
trast, our causal model accomodates both homoscedastic
and heteroscedastic noise.

Non-Linear Functions Next, we consider non-linear
functions. We do so by relating cause to effect via a non-
linear cubic spline function. For each causal pair, we first
randomly choose the noise to be either Gaussian or uni-
form. In accordance with the premise of this paper, we
also vary the noise variance for each segment of the spline.
This level of heteroscedasticity is controlled through a step
parameter which determines how much the noise variance
changes between the segments. An example for low and
high heteroscedasticity is shown in Fig. 4. The step pa-
rameter is sampled uniformly from five different settings
which we show in Fig. 6. Setting the step to 0 implies con-
stant noise variance i.e. homoscedasticity. We generate a
total of 100 pairs for each setting with a starting noise level
of 20− 30% and 3 segments of 25-50 points.
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We show the results of this experiments in Fig. 6. We see
that HECI is able to robustly infer cause from effect under
homogeneous noise and increasingly heteroscedastic noise
conditions. The other approaches either only work well for
homoscedastic noise, degrading rapidly as the noise vari-
ance increases across the dataset (RESIT and CAM), have a
high variance in accuracy (QCCD and SLOPPY), or obtain
lower accuracy than HECI throughout all settings (IGCI and
CDCI). These results support our conjecture that the iden-
tifiability of the linear heteroscedastic and homoscedastic
non-linear case extends to the heteroscedastic non-linear
case.

Location Scaled and Multiplicative Noise After con-
firming that HECI is able to identify the correct causal di-
rections on data that follows, or comes close to our as-
sumptions, we next evaluate HECI on five synthetic bench-
mark datasets where our assumptions do not necessarily
hold. For this we consider the data proposed by Tagasovska
et al. (2020). These datasets consist of three different noise
models, namely additive (AN), location scaled (LS) and
multiplicative (MN-U), where the underlying data gener-
ating process is either a Gaussian process or an invertible
sigmoidal function (AN-s, LS-s). We report the accuracy
over the first three in Fig. 7. We see that HECI is robust
to each of the three different noise settings. HECI is also
robust when the underlying process consists of invertible
sigmoidal functions, as shown in Fig. 8. In contrast, all
other methods except for CDCI deteriorate significantly in
at least one of these two settings. The experiments sup-
port the conclusion that our method is able to discover and
model heteroscedasticity, and consequently tell cause from
effect, even when the generating mechanisms are outside
of our causal model.

5.2. Tübingen Cause-Effect pairs

Last, we benchmark on the real-world Tübingen Cause-
Effect pairs dataset. Since the main proposal of this paper
is the inclusion of heteroscedasticity into the causal model,
we are particularly concerned with how well methods do

for those pairs that exhibit non-stationary noise. To this end
we sort the cause–effect pairs by heteroscedasticity, mea-
sured by the proportion σ2

max/σ
2
min (maximum/minimum

variance fitted by HECI in the causal direction), and report
accuracy over the top-k pairs.

We show these results in Fig. 9. We see that among its com-
petitors, HECI obtains the overall highest accuracy when
we force it to decide over the most heteroscedastic half
of the dataset. Overall, it achieves an average accuracy
of 0.71, which is on par with the next closest competi-
tors QCCD and SLOPPY. These results corroborate that
our causal model and the HECI algorithm are effective in
dealing with non-constant noise encountered in real-world
data.

6. Conclusion
In this paper we propose a causal model that sets itself apart
from existing work by explicitly modelling local noise;
by which it is particularly well-suited for a wide range of
real-world applications. We show that we can identify the
true causal model for linear functions with heteroscedas-
tic noise, and non-linear functions homoscedastic noise.
Through empirical evaluation, we verify that our method
can even identify the correct causal direction for non-linear
funcions with heteroscedastic noise. On an observational
sample we can compute our solution efficiently via dy-
namic programming and regularized with BIC. Through
extensive experiments, we show that our method, HECI,
indeed performs well on a wide range of benchmarks—
especially in the target scenarios with high heteroscedac-
ity. This advantage also shows on the real world Tübingen
Cause-Effect pairs, in particular for those with a wide dif-
ference in variance of noise, and points towards the regu-
larity and importance of heteroscedastic noise conditions.

As a continuation of this work, we aim to adapt the causal
model and algorithm to introduce smoothness and outlier
resistance to the fitted functions. Furthermore, we would
like to expand local functions from polynomials to include
more powerful models such as splines.

References
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A. Identifiability
A.1. Error Scaling

Lemma 1 Let X be a random variable with variance σ2
X and let Y = β0+β1X +αNY , where NY has variance σ2

Y and
α > 0 is a scaling parameter. Further, let X ′ = a+ bX and Y ′ = c+ dY be the rescaled versions of X and Y , then

E[Var(X ′ | Y ′)]

E[Var(Y ′ | X ′)]
=

(
b

d

)2
σ2
X

α2σ2
Y + β2

1σ
2
X

,

where σ2
X = Var(X) and α2σ2

Y + β2
1σ

2
X = Var(Y ).

Proof: By the law of total variation, we can derive that

Var(Y ) = E [Var(Y | X)] + Var(E [Y | X]) = α2σ2
Y + β2

1σ
2
X

and similarly that

E [Var(X | Y )] = Var(X)−Var(E [X | Y ]) = σ2
X −

β2
1σ

4
X

α2σ2
Y + β2

1σ
2
X

.

Thus, we can write

E[Var(X ′ | Y ′)]

E[Var(Y ′ | X ′)]
=

(
b

d

)2
E[Var(X | Y )]

E[Var(Y | X)]

=

(
b

d

)2 σ2
X −

β2
1σ

4
X

α2σ2
Y +β2

1σ
2
X

α2σ2
Y

=

(
b

d

)2
σ2
X

α2σ2
Y + β2

1σ
2
X

=

(
b

d

)2
Var(X)

Var(Y )
.

□

A.2. Linear Functions

Theorem 1 Given a causal model as specified in Eq. (1), assume that

(1) NX , NY have finite support, and X and Y are normalized to obtain values within [0, 1]

(2) f is a linear function with f(X) = β0 + β1X and g is its inverse

(3) NY is unbiased with unit variance and strictly positive scale function sα(x) = αs(x), with sα(x)→ 0 if α→ 0.

In that case it holds that in the limit of α→ 0,∫ 1

0

pY (y) · log (Var(X|Y = y))) dy

≥
∫ 1

0

pX(x) · log (Var(Y |X = x)) dx ,

with equality, if and only if the conditional variance of the noise scaling Var (s(X)|Y ) = 0, i.e. there is no overlap of
noise with different amplitude s(x) in the domain Y .

Proof: Let the cause X have support SX (before rescaling it to [0, 1]) and the minimum value of 0, which can be
achieved by shifting X and adjusting β0. By assumption, NY ⊥⊥NX and NY has unit variance. Then, the support of Y
before rescaling is β1SX + ϵα,σY

, where ϵα,σY
amounts for the increased support of Y by adding the scaled noise term
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αNY , which by Assumption (1) has finite support. Thus, ϵα,σY
is bounded and ϵα,σY

→ 0 if α → 0. We normalize X , Y
and sα(X) as

X̃ =
X

SX
, Ỹ =

Y − β0

β1SX + ϵα,σY

, s̃α(X) =
sα(X)

β1SX + ϵα,σY

To continue, note that the conditional variance Var(Y |X) is equivalent to the expected least squares error
E
[
(Y − f(X))2

]
where f(X) = E [Y |X]. The rescaled variables are shown to be linked with the identity function

f(X̃) = X̃ and g(Ỹ ) = Ỹ in the limit of α → 0. We begin by transforming the initial SEM to use the rescaled variables
X̃ and Ỹ .

Y = f(X) + sα(X) ·NY

⇐⇒ Y − β0 = β1X + sα(X) ·NY

⇐⇒ Ỹ =
β1

β1SX + ϵα,σY

X +
sα(X)

β1SX + ϵα,σY

·NY

⇐⇒ Ỹ =
β1

β1SX + ϵα,σY

SXX̃ + s̃α(X) ·NY

We may express the conditional expectation of the normalized Ỹ given X̃ as

E
[
Ỹ |X̃

]
= E

[
β1

β1SX + ϵα,σY

SXX̃ + s̃α(X) ·NY |X̃
]

= E

[
β1

β1SX + ϵα,σY

SXX̃|X̃
]
+ E

[
s̃α(X) ·NY |X̃

]

The righthand term disappears as the noise NY is unbiased and is independent of the scaling s̃α(X) and X̃ since by
assumption NX ⊥⊥NY .

In the limit α → 0, the noise support ϵα,σY
trends to zero. Then, the normalization factors of X̃ cancel each other out

and it remains that E
[
Ỹ |X̃

]
= E

[
X̃|X̃

]
= X̃ . Similarly it can be shown, that E

[
X̃|Ỹ

]
= Ỹ . We see that for the

normalized variables in the limit of α → 0, the functional relationships E
[
Ỹ |X̃

]
= f

(
X̃
)
= X̃ in the causal direction

and E
[
X̃|Ỹ

]
= g

(
Ỹ
)
= Ỹ in the anti-causal direction both are the identity function.

Continuing, we assume the variables X and Y to be normalized in the scheme described above and drop the X̃ notation.
In the causal direction we can express the conditional variance of Y given X as

Var(Y |X) = E
[
(Y − f(X))2

]
= E [(f(X) + sα(X) ·NY − f(X))2] = E [sα(X)2]

Var(Y |X = x) = E [sα(X)2|x] =
∫ 1

0

pX|X=x(x
′) · sα(x′)2dx′ = sα(x)

2

Thus we can give the continuous score of the causal direction as∫ 1

0

pX(x) · log (Var(Y |X = x)) dx

=

∫ 1

0

pX(x) · log
(
sα(x)

2
)
dx .

In the anti-causal direction with g(Y ) = Y for α→ 0, the conditional variance is

Var(X|Y ) = E
[
(X − g(Y ))2

]
= E [(X − g(f(X) + sα(X) ·N))2] = E [(X −X − sα(X) ·N)2] = E [sα(X)2]

Var(X|Y = y) = E [sα(X)2|Y = y] =

∫ 1

0

pX|Y=y(x)sα(x)
2dx .
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This renders the continuous score of the anti-causal direction

∫ 1

0

pY (y) · log (Var(X|Y = y)) dy

=

∫ 1

0

pY (y) · log
(∫ 1

0

pX|Y=y(x) · sα(x)2dx
)
dy .

The logarithm is a concave function and we use Jensens inequality to show

≥
∫ 1

0

pY (y) ·
(∫ 1

0

pX|Y=y(x) · log
(
sα(x)

2
)
dx

)
dy

=

∫ 1

0

(∫ 1

0

pY (y) · pX|Y=y(x) · log
(
sα(x)

2
)
dy

)
dx

=

∫ 1

0

pX(x) · log
(
sα(x)

2
)
dx

=

∫ 1

0

pX(x) · log (Var(Y |X = x)) dx .

To prove under which conditions both terms are equal, we note that the term on the left side of the inequality

log

(∫ 1

0

pX|Y=y(x) · sα(x)2dx
)

= log
(
E
[
sα(X)2|Y = y

])
,

is equal to the logarithm of the expected value for the squared noise scaling function of X at Y = y. On the other hand, if
the order of the expectation and the logarithm is switched up, we obtain

∫ 1

0

pX|Y=y(x) · log
(
sα(x)

2
)
= E

[
log
(
sα(X)2

)
|Y = y

]
.

This corresponds to the expected value of the logarithmic squared noise scaling of X at Y = y. As the logarithm is strictly
concave, Jensen’s inequality lends the conclusion that

log (E [sα(X)|Y = y]) ≥ E
[
log
(
sα(X)2

)
|Y = y

]
.

Equality holds for a given y ∈ Y if and only if sα(X|Y = y) is constant. Throughout the whole domain this is enforced
by Var(s(X)|Y ) = 0. This relationship holds most prominently with equality for homoscedastic noise with s(x) = c. □

B. Empirical Log-Likelihood
Given a sample {xi.yi}ni=1 drawn iid from the joint distribution of X and Y the negative log-likelihood for the X → Y
direction with normal distributed residuals ri = yi − f(xi) can be expressed as
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p(r|xi; sα) =
1√

2πsα(xi)2
exp

(
− r2

2sα(xi)2

)

− log
[
LX→Y (s

2
α, f̂)

]
= − log

[
n∏

i=1

p(ri|xi; s
2
α)

]

= −
n∑

i=1

log(p(ri|xi; s
2
α))

= −
n∑

i=1

log

(
1√

2πsα(xi)2
exp

(
− r2

2sα(xi)2

))

= −
n∑

i=1

log

(
1√

2πsα(xi)2

)
+ log

(
exp

(
− r2

2sα(xi)2

))

= −
n∑

i=1

−1

2
log
(
2πsα(xi)

2
)
− r2

2sα(xi)2

=

(
1

2

n∑
i=1

log
[
sα(xi)

2
])

+

(
n∑

i=1

1

2

r2i
sα(xi)2

)
+

(
n∑

i=1

1

2
log(2π)

)

=
1

2

n∑
i=1

log
[
sα(xi)

2
]
+

1

2

n∑
i=1

r2i
sα(xi)2

+
n

2
log(2π) .

B.1. Heteroscedastic Noise

For heteroscedastic noise, the negative log-likelihood can be derived in a similar fashion. Let the domain of X be parti-
tioned in m non-overlapping bins s.t. within each binj ⊂ {xi, yi}ni=1 there are nj points, then the variance σ̂2

j is estimated
constant as σ̂2

j = 1
nj

∑
xi∈binj r

2
i .

The empirical negative log-likelihood w.r.t. a partitioning P̂ with m non-overlapping bins can be expressed as

− log
[
LX→Y (σ̂

2, f, P̂)
]
=

1

2

n∑
i=1

log
[
σ̂2(xi)

]
+

1

2

n∑
i=1

r2i
σ̂2(xi)

=
1

2

m∑
j=1

nj log(σ̂
2
j ) +

1

2

m∑
j=1

∑
xk∈binj

r2k
σ̂2
j

=
1

2

m∑
j=1

nj log(σ̂
2
j ) +

1

2

m∑
j=1

1

σ̂2
j

∑
xk∈binj

r2k

=
1

2

m∑
j=1

nj log(σ̂
2
j ) +

1

2

m∑
j=1

1

σ̂2
j

nj σ̂
2
j

=
1

2

m∑
j=1

nj log(σ̂
2
j ) +

1

2

m∑
j=1

nj

=
1

2

m∑
j=1

nj log(σ̂
2
j ) +

n

2
,

so that the last term only depends on n and is thus equal in both directions. After dropping we obtain

− log
[
LX→Y (σ̂

2, f̂ , P̂)
]
=

m∑
j=1

nj

2
· log(σ̂2

j ).
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Figure 10. [Higher is better] Accuracy in determining cause from effect for an increasing number of bins on the simulated linear het-
eroscedastic (see Sec. 5.1) and the Tübingen dataset

C. Setting the Binning Parameter ∆

The parameter ∆ determines the width and therewith number of initial bins. In the limit ∆→ 0, with the number of initial
bins growing as a sub-linear function of n, we can recover the true noise variance function. In practice however, each bin
must contain sufficient points for variance estimation. Thus, on a finite sample, setting ∆ is a trade-off between running
time, which depends quadratically on the number of initial bins, and accuracy through the more accurate approximation of
the borders between regions in which the noise changes.

To show that ∆ has a small influence in practice, we re-run our experiments on the linear heteroscedastic and Tübingen
datasets for different values of ∆, and plot the results in Fig. 10. We can see that ∆ has barely any influence on the accuracy
of HECI, and plateaus beyond 20 initial bins (corresponding to ∆ = 0.05, which we use in the main body of paper).

In general, starting with a more fine grained grid allows for better estimation of the noise variance, since the binning
algorithm finds the optimal solution given the starting bins. Each initial bin though has to at least contain multiple data
points to allow for an initial noise estimate and regression step. Smaller values of ∆ may thus come at a cost of running
time while providing marginal gains in accuracy.


