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Abstract
Non-parametric two-sample tests (TSTs) that
judge whether two sets of samples are drawn from
the same distribution, have been widely used in
the analysis of critical data. People tend to employ
TSTs as trusted basic tools and rarely have any
doubt about their reliability. This paper systemati-
cally uncovers the failure mode of non-parametric
TSTs through adversarial attacks and then pro-
poses corresponding defense strategies. First, we
theoretically show that an adversary can upper-
bound the distributional shift which guarantees
the attack’s invisibility. Furthermore, we theo-
retically find that the adversary can also degrade
the lower bound of a TST’s test power, which
enables us to iteratively minimize the test crite-
rion in order to search for adversarial pairs. To
enable TST-agnostic attacks, we propose an en-
semble attack (EA) framework that jointly min-
imizes the different types of test criteria. Sec-
ond, to robustify TSTs, we propose a max-min
optimization that iteratively generates adversar-
ial pairs to train the deep kernels. Extensive
experiments on both simulated and real-world
datasets validate the adversarial vulnerabilities
of non-parametric TSTs and the effectiveness of
our proposed defense. Source code is available at
https://github.com/GodXuxilie/Robust-TST.git.

1. Introduction
Non-parametric two-sample tests (TSTs) that judge whether
two sets of samples drawn from the same distribution have
been widely used to analyze critical data in physics (Baldi
et al., 2014), neurophysiology (Rasch et al., 2008), biol-
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ogy (Borgwardt et al., 2006), etc. Compared with traditional
methods (such as the t-test), non-parametric TSTs can relax
the strong parametric assumption about the distributions be-
ing studied and are effective in complex domains (Gretton
et al., 2009; 2012; Chwialkowski et al., 2015; Jitkrittum
et al., 2016; Sutherland et al., 2017; Lopez-Paz & Oquab,
2016; Cheng & Cloninger, 2019; Liu et al., 2020a; 2021).
Notably, the use of deep kernels (Liu et al., 2020a) flexi-
bly empowers the non-parametric TSTs to learn even more
complex distributions.

However, the adversarial robustness of non-parametric TSTs
is rarely studied, despite its extensive studies for deep neu-
ral networks (DNNs). Studies of DNNs’ adversarial ro-
bustness (Madry et al., 2018) have enabled significant ad-
vances in defending against adversarial attacks (Szegedy
et al., 2014), which can help enhance the security in various
domains such as computer vision (Xie et al., 2017; Mah-
mood et al., 2021), natural language processing (Zhu et al.,
2020; Yoo & Qi, 2021), recommendation system (Peng &
Mine, 2020), etc. We therefore undertake this pioneer study
on adversarial robustness of non-parametric TSTs, which
uncovers the failure mode of non-parametric TSTs through
adversarial attacks and facilitate an effective strategy for
making TSTs reliable in critical applications (Baldi et al.,
2014; Rasch et al., 2008; Borgwardt et al., 2006).

First, we theoretically show the adversary could upper-
bound the distributional shift and degrade the lower bound
of a TST’s test power (details in Section 3.1). Given a
benign pair (SP, SQ), in which SP = {xi}mi=1 ∼ Pm and
SQ = {yj}nj=1 ∼ Qn , an `∞-bounded adversary could gen-
erate the adversarial pair (SP, S̃Q). We will show in Propo-
sition 1 that the maximum mean discrepancy (MMD) (Gret-
ton et al., 2012) between the benign and adversarial pairs is
upper-bounded, which guarantees imperceptible adversarial
perturbations (Szegedy et al., 2014). Furthermore, we will
show in Theorem 2 that the adversary can degrade the lower
bound of a TST’s test power, which implies that a TST could
wrongly determine P = Q with a larger probability under
adversarial attacks when P 6= Q holds.

Then, we realize effective adversarial attacks against non-
parametric TSTs (details in Section 3.2). We formulate
an attack as a constraint optimization problem that mini-
mizes a TST’s test criterion (Liu et al., 2020a) within the
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Figure 1.An example of adversarial pair(SP; ~SQ) generated by
embedding an adversarial perturbation in the benign setSQ of the
benign pair(SP; SQ). Experimental details are in Section 5.1.

`1 -bound of size� on SQ. We utilize projected gradient
descent (PGD) (Madry et al., 2018) to ef�ciently search the
adversarial set~SQ and incorporate automatic schedule of
the step size (Croce & Hein, 2020) to improve the optimiza-
tion convergence. Moreover, we extend the attack beyond
a speci�c TST to a generic TST-agnostic attack, namely,
ensemble attack (EA). EA jointly minimizes a weighted
sum of different test criteria, which can simultaneously fool
various TSTs. For example, Figure 1 shows non-parametric
TSTs can correctly differentiate the benign pair of “cats”
and “dogs” (top) coming from the different distributions,
but wrongly judge adversarial pairs (bottom) as belonging
to the same distribution.

Second, to robustify the non-parametric TSTs, we study the
corresponding defense approaches (details in Section 4). A
straightforward defense seems to use an ensemble of TSTs.
We �nd an ensemble of TSTs is sometimes effective against
a speci�c attack targeting a certain type of TSTs but al-
most always fails under EA (see experiments in Section 5.1).
Therefore, to effectively defend against adversarial attacks,
we propose to adversarially learn the robust kernels. The
defense is formulated as amax-minoptimization that is
similar in �avor to the adversarial training'smin-maxformu-
lation (Madry et al., 2018). For its realization, we iteratively
generate adversarial pairs by minimizing the test criterion
in the inner minimizationand update kernel parameters
by maximizing the test criterion on the adversarial pairs

in the outer maximization. We realize our defense using
deep kernels that have achieved the state-of-the-art (SOTA)
performance in non-parametric TSTs (Liu et al., 2020a).

Lastly, we empirically justify the proposed attacks and de-
fenses (in Section 5). We evaluate the test power of many
existing non-parametric TSTs (non-robust) and the robust-
kernel TST (robust) under the EA on simulated and real-
world datasets, including complex synthetic distributions,
high-energy physics data, and challenging images. Compre-
hensive experimental results validate that the existing non-
parametric TSTs lack adversarial robustness; we can signi�-
cantly improve the adversarial robustness of non-parametric
TSTs through adversarially learning the deep kernels.

2. Non-Parametric Two-Sample Tests

In this section, we provide the preliminaries of non-
parametric TSTs and provide discussions with the related
studies in Appendix C.

2.1. Problem Formulation

Let X � Rd andP, Q be Borel probability measures onX .
A non-parametric TSTJ (SP; SQ) : X m � X n 7! f 0; 1g is
used to distinguish between the null hypothesisH 0 : P = Q
and the alternative hypothesisH 1 : P 6= Q, whereSP and
SQ are independent identically distributed (IID) samples of
sizem andn drawn fromP andQ, respectively. A non-
parametric TST constructs a mean embedding based on
a kernel parameterized with� for each distribution, and
utilizes the differences in these embeddings as thetest
statistic for the hypothesis test. The judgement is made
by comparing the test statisticD(SP; SQ) with a partic-
ular thresholdr : if the threshold is exceeded, then the
test rejectsH 0. Thetest power(TP) of a non-parametric
TST J is measured by the probability of correctly re-
jecting H 0 when the alternative hypothesis is true, i.e.,
TP( J ) = ESP� Pm ;SQ� Qn [1(J (SP; SQ) = 1)] for a par-
itular P 6= Q. A non-parametric TST optimizes its learnable
parameters� via maximizing itstest criterion, thus approxi-
mately maximizing its test power.

2.2. Test Statistics

Here, we introduce a typical test statistic, maximum mean
discrepancy (MMD) (Gretton et al., 2012), and leave
other test statistics in Appendix D, such as tests based
on Gaussian kernel mean embeddings at speci�c posi-
tions (Chwialkowski et al., 2015; Jitkrittum et al., 2016) and
classi�er two-sample tests (C2ST) (Lopez-Paz & Oquab,
2016; Cheng & Cloninger, 2019).

De�nition 1 (Gretton et al. (2012)). Let k : X � X ! R
be a kernel of a reproducing kernel Hilbert spaceH k , with
feature mapsk(�; x) 2 H k . Let X � P andY � Q, and


