
Locally Sparse Neural Networks for Tabular Biomedical Data

Junchen Yang * 1 Ofir Lindenbaum * 2 Yuval Kluger 1 3 4

Abstract
Tabular datasets with low-sample-size or many
variables are prevalent in biomedicine. Practi-
tioners in this domain prefer linear or tree-based
models over neural networks since the latter are
harder to interpret and tend to overfit when ap-
plied to tabular datasets. To address these neural
networks’ shortcomings, we propose an intrin-
sically interpretable network for heterogeneous
biomedical data. We design a locally sparse neu-
ral network where the local sparsity is learned
to identify the subset of most relevant features
for each sample. This sample-specific sparsity is
predicted via a gating network, which is trained
in tandem with the prediction network. By forc-
ing the model to select a subset of the most in-
formative features for each sample, we reduce
model overfitting in low-sample-size data and ob-
tain an interpretable model. We demonstrate that
our method outperforms state-of-the-art models
when applied to synthetic or real-world biomed-
ical datasets using extensive experiments. Fur-
thermore, the proposed framework dramatically
outperforms existing schemes when evaluating its
interpretability capabilities. Finally, we demon-
strate the applicability of our model to two im-
portant biomedical tasks: survival analysis and
marker gene identification.

1. Introduction
Machine learning has revolutionized the way we do scien-
tific research. In recent years, deep neural networks (NN)
have closed the performance gap between humans and ma-

*Equal contribution 1Interdepartmental Program in Computa-
tional Biology and Bioinformatics, Yale University, New Haven,
CT, USA 2Faculty of Engineering, Bar Ilan University, Ramat Gan,
Israel 3Applied Math Program, Yale University, New Haven, CT,
USA 4Department of Pathology, School of Medicine, Yale Uni-
versity, New Haven, CT, USA. Correspondence to: Yuval Kluger
<yuval.kluger@yale.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

chines in disciplines such as vision, image processing, audio
processing, and natural language processing. The tremen-
dous success of these complex models may be explained
by an increase in data size, computational resources that
enable training deeper networks (Tishby & Zaslavsky, 2015;
Arora et al., 2016), or by implicit properties of the opti-
mization tools (Yaguchi et al., 2018; Soudry et al., 2018).
State-of-the-art frameworks, such as convolutional neural
networks, recurrent neural networks, and transformers ex-
ploit structures or invariants in the data to inform the design
of the NN. Unfortunately, these models are not suitable for
biomedical applications when the associated datasets are
tabular, lack spatial or temporal structure, or are heteroge-
neous. Therefore, biomedical data pose a challenge for deep
nets and require deviating from tried and true methodologies
(Borisov et al., 2021; Marais, 2019; Shavitt & Segal, 2018;
Shwartz-Ziv & Armon, 2021).

In medicine or biology, practitioners seek for ML models
that are accurate and interpretable. Accuracy is important
for improving personalized prognosis and diagnosis. At
the same time, interpretability can lead to the identifica-
tion of driving factors in complex high-dimensional sys-
tems and is imperative to help practitioners trust the model.
When trained on tabular biomedical data, deep nets are
hard to interpret and may lead to low accuracy. This is be-
cause biomedical datasets are often low-sample-size (LSS)
(Liu et al., 2017; Aoshima et al., 2018), high dimensional,
or contain nuisance features. These challenges often lead
practitioners to abandon NNs and switch to linear models
in biomedicine. Linear feature selection models such as
(Tibshirani, 1996; Fan & Li, 2001; Lindenbaum & Steiner-
berger, 2021a;b) are interpretable and able to cope with
high-dimensional low sample size (HDLSS) data but come
with the cost of limited expressivity.

In contrast, deep over-parametrized nets are highly expres-
sive but tend to overfit on LSS tabular data; one reason is
that in this regime, the vast amount of parameters leads to
a large variance of the gradient estimates (Liu et al., 2017).
To prevent model overfitting, several authors (Li et al., 2016;
Scardapane et al., 2017; Feng & Simon, 2017; Yamada
et al., 2020) have proposed to apply different regulariza-
tion schemes to sparsify the input features. Since these
models select one global set of informative features, they
are not suited for the heterogeneity of tabular biomedical

Locally Sparse Neural Networks for Tabular Biomedical Data

Figure 1: Strong ML models fail to learn the correct regression function when the target depends on different subsets of
variables for different samples (see data model in Eq. 1). Each subplot presents the predicted (y-axis) vs. true (x-axis) values
for different baselines. Points on the diagonal line indicate correct predictions. R-square and Mean Squared Error (MSE) are
reported for each model. In this work, our proposed model (left plot) that effectively identifies the informative features for
each sample while learning the regression coefficients.

data. These global feature selection models occasionally
result in unsatisfactory performance and do not provide a
sample-specific explanation for the predictions.

Our working hypothesis is that since biomedical data is
heterogeneous, different samples may require distinct pre-
diction functions. Therefore, we design a simple yet re-
markably effective NN-based framework that leads to dra-
matically higher prediction performance yet is intrinsically
interpretable and is less prone to overfitting. Specifically, we
propose a Locally SParse Interpretable Network (LSPIN),
a NN that incorporates interpretability into its design (self-
explanatory) by sparsifying the input variables used by the
model locally (for each sample) while learning a prediction
function. To identify the local sparsity patterns, we train a
gating network to predict the probabilities of the instance-
wise gates being active. The parameters of the local gates,
along with the model coefficients, are learned in tandem
by minimizing a classification or regression loss. Our para-
metric construction leads to a highly interpretable (locally
sparse) model which relies on a small subset of the input
features for each instance.

Our contributions are: (i) We propose a probabilistic ℓ0 like
regularization that leads to sample-specific feature selection
that is stable across close samples defined by an affinity
kernel. (ii) By training our gating network alongside a pre-
diction network, we obtain a powerful interpretable NN
framework for tabular biomedical data. (iii) We show via
extensive synthetic simulations that our model, albeit sim-
ple, can learn the correct target function and identify the
informative variables while requiring a small number of
observations. (iv) We demonstrate a strong property of our
framework: a linear predictor with local sparsity often out-
performs state-of-the-art nonlinear models when applied
to real-world datasets. (v) We explore the applicability
of the proposed approach to several challenging tasks in
biomedicine, including survival analysis and marker genes
identification.

2. Motivating Example
To motivate our proposed framework, let us consider a data
matrix X , with N measurements (e.g., patients) and D
variables (e.g., genes). Given a target variable y, in super-
vised learning, we are interested in modeling a function f
that can predict the target y based on the observations X .
Unfortunately, if D > N learning such function becomes
challenging and may lead to overfitting. Moreover, since
the biomedical datasets are heterogeneous, the informative
variables may vary within different population subsets. To
clarify this point, let us consider the following simple lin-
ear regression problem. We are given a small (N = 10)
synthetic dataset in which the response variable y of dif-
ferent samples depends on different subsets of features of
the data matrixX . We assume that the data comprise two
subpopulations, which we term here group-1 and group-
2. The corresponding response variable y for samples in
group-1 and group-2 is defined in Eq. 1 where for group-1,
the response is a linear combination of the 1st,2nd, and 3rd

features, and for group-2 it is a linear combination of the
3rd,4th, and 5th features:

y =

{
−2x1 + x2 − 0.5x3, if in group 1,
−0.5x3 + x4 − 2x5, if in group 2.

(1)

Group 1 and 2 are defined by drawing values for x1 − x5

from separated Gaussians (details appear in Appendix sec-
tion B.3). The simple example above comprises two dif-
ferent linear relationships between the response y and the
observed variables. Since we do not know the membership
of each point to one of the two groups, attempting to fit a
single model to this data is challenging. One way to model
this type of relationship is via Hierarchical Bayesian Mod-
els (HBM) (Allenby & Rossi, 2006; Shiffrin et al., 2008).
HBMs combine multiple sub-models with Bayes’ theorem
to estimate the posterior distribution of the data. While
HBMs can account for data dependent parameters, ensur-
ing sparsity of the features requires careful design of the
prior distributions. To demonstrate the difficulty involved in
modeling data generated by the model above, in Fig. 1 we
demonstrate that strong ML models fail to learn the correct
regression function. In this study, we design LSPIN that
is able to learn the correct target function while accurately

Locally Sparse Neural Networks for Tabular Biomedical Data

identifying the informative features for each sample (see
Appendix Fig. A.1).

3. Problem Setup and Method
We are interested in the standard supervised learning based
on tabular biomedical data points {x(i), y(i)}Ni=1, where
x(i) ∈ RD, with x

(i)
d representing the dth feature of the

ith vector-valued observations. Our goal is to design a
method that can overcome the challenges posed by biomed-
ical datasets while leading to accurate and interpretable
predictions. Specifically, we want to learn an intrinsically
interpretable prediction model fθ ∈ F with:
P1 Small generalization error even in cases of N < D.
P2 Sample-specific removal of nuisance variables whose
inclusion could be detrimental for predictions.
P3 High expressive power.

Perhaps the most simple model that leads to P1 is the
LASSO (Tibshirani, 1996). The LASSO minimizes the em-
pirical risk of a linear model f(x(i)) = θx(i) (with θT ∈
RD), while penalizing for the sum of absolute values of ac-
tive coefficients. This global linear feature selection model
is interpretable since it provides an additive quantification to
the contribution of each variable. To enable sample-specific
variable selection (P2), the Localized LASSO was intro-
duced in (Yamada et al., 2017). The authors introduce local
weights θ(i) to the following model f(x(i)) = θ(i)x(i),
and minimize the empirical risk with a network type regular-
ization λ1

∑
ri,j∥θ(i) − θ(j)∥2 + λ2

∑
∥θ(i)∥21. The first

term regularizes models parameters to be similar if ri,j > 0,
where the values of ri,j are given by a graph that represents
affinities between samples. The second term encourages
local sparsity. While the Localized LASSO addresses P1
and P2, it only relies on linear relations between features to
learn the coefficients θ(i). Furthermore, the model has lim-
ited generalization capabilities since coefficients of unseen
samples are estimated based on neighbors in the training
set.

In this work, we extend the Localized LASSO by using
a NN framework to learn the local sparsity patterns and
enable more expressive prediction functions. To this end,
we propose a NN framework with local sparsity such that
predictions are only based on a small subset of features
S(i) ⊂ {1, 2, . . . , D}, i = 1, ..., N which is optimized for
each sample individually. By forcing |S(i)| ≪ D, we can
reduce the generalization gap of the model and use the
(sample-specific) subset of selected features to interpret the
prediction model.

3.1. Locally Sparse Predictor

Given labeled observations {x(i), y(i)}Ni=1, we want to learn
a global prediction function fθ (parametrized using a NN)

and sets of indicator vectors s(i) ∈ {0, 1}D (s(i)j = 1 if j ∈
S(i) and 0 otherwise) that will “highlight” which subset of
variables the model should rely on for the prediction of each
target value yi. This will enable the model to attain to fewer
features for each sample and therefore reduce overfiting.

Such a model can be learned by minimizing the following
empirical regularized risk

1

N

N∑
i=1

L
(
fθ(x

(i) ⊙ s(i)), y(i)
)
+

λ

N

N∑
i=1

∥s(i)∥0, (2)

where L is a desired loss function (e.g., cross-entropy), and
⊙ represents the Hadamard product (element-wise multi-
plication), and λ is a regularization parameter that controls
the sparsity level of the model. Unfortunately, due to the
discrete nature of the ℓ0 regularizer, this objective is not
differentiable, and finding the optimal solution becomes
intractable. Moreover, even if it finds the optimal solution,
it is not clear that the model would not overfit when N < D.
Explicitly, in this regime, the model may select one feature
for each sample and “memorize” the training set. Also, it
is unclear how such a model can generalize on unseen sam-
ples (at test time), namely, because we need to predict the
indicator vectors s for the unlabeled data.

3.2. Probabilistic Reformulation of the ℓ0 Regularizer

Fortunately, the ℓ0 norm can be relaxed via a probabilis-
tic differentiable counterpart, specifically, by replacing the
binary indicator vector s with a Bernoulli vector s̃, with
independent entries which satisfy P(s̃d = 1) = πd for
d ∈ {1, 2, . . . , D}. Such probabilistic formulation (of bi-
nary indicator vectors) converts the combinatorial search
(over the discrete space of s ∈ {0, 1}D) to a search over
the continuous space of Bernoulli parameters (π ∈ [0, 1]D).
This formulation becomes useful in several applications
such as: model compression (Louizos et al., 2017), feature
selection (Yamada et al., 2020), discrete softmax (Jang et al.,
2016), and many more.

By replacing the deterministic vectors s(i) in Eq. 2 with
their probabilistic counterparts s̃(i) we can now differentiate
through the random variables using REINFORCE (Williams,
1992) or REBAR (Tucker et al., 2017). However, these meth-
ods suffer from high variance and require many Monte Carlo
samples. Alternatively, as demonstrated in (Maddison et al.,
2016; Yamada et al., 2020) a continuous reparametrization
of the discrete random variables can reduce the variance of
the gradient estimates. In the next section, we propose to
learn the indicator vectors s(i)(xi) by re-formalizing them
as random vectors whose parameters (probabilities of being
active) are predicted using a NN.

Locally Sparse Neural Networks for Tabular Biomedical Data

Figure 2: The architecture of Locally Linear SParse Interpretable Networks (LLSPIN). The data {x(i) =

[x
(i)
1 , x

(i)
2 , ..., x

(i)
D]}ni=1 is fed simultaneously to a gating network Ψ and to a prediction network fθ (which is linear

in this example). The gating network Ψ learns to predict a set of parameters {µ(i)
d }D,n

d=1,i=1. The parameters µ(i)
d depict the

behavior of local stochastic gates z(i)d ∈ [0, 1] that sparsify (for each instance i) the set of features that propagate into in the
prediction model fθ . LLSPIN leads to sample-specific (local) sparsification (obtained via the gating network). Therefore, it
can handle extreme cases of LSS and lead to interpretable predictions (since the model only uses a small subset of features
for each sample). For illustration purposes, we overlay this figure using green (active) and red (non-active) arrows, which
indicate that some samples require two features while others only one, in this example. In Section 5, we demonstrate using
extensive experiments that our model, leads to accurate predictions in the challenging regime of LSS data.

3.3. Locally Sparse NN

This section describes the proposed Locally SParse Inter-
pretable Network (LSPIN). LSPIN is a prediction NN with
sample-specific gates which sparsify the variables used by
the model locally. The sparsity patterns of the gates are
learned via a second NN. This leads to a natural framework
to predict the sparsity patterns of unseen samples. Fig. 2
shows the architecture of our model where the prediction
NN is linear. We call this variant of our model Locally
Linear SParse Interpretable Network (LLSPIN).

Each stochastic gate (for feature d and sample i) is defined
based on the following hard thresholding function

z(i)d = max(0,min(1, 0.5 + µ
(i)
d + ϵ

(i)
d)), (3)

where ϵ(i)d is drawn from N (0, σ2) and σ is fixed throughout
training. The choice of σ (which controls the injected noise)
is discussed in Section B in the Appendix. The sample-
specific parameters µ(i) ∈ RD, i = 1, ..., N are predicted
based on a gating network Ψ such that µ(i) = ψ(x(i)|Ω),
where Ω are the weights of the gating network. These
weights are learned simultaneously with the weights of the
prediction network by minimizing the following loss:

E
[
L(fθ(x

(i) ⊙ z(i)), y(i)) +R(z(i))
]
, (4)

where L is a desired loss (e.g. cross entropy), and we com-
pute its empirical expectation over x(i), y(i) and z(i), for i
in a batch of size B. The term R(z(i)) is a regularizer that
we define as

R(z(i)) = λ1∥z(i)∥0 + λ2

∑
j

Ki,j∥z(i) − z(j)∥22. (5)

After taking the expectation (over z(i)), the leading term
in R can be rewritten using a double sum in terms of the
Gaussian error function (erf):

1

N

N∑
i=1

D∑
d=1

(
1

2
− 1

2
erf

(
−
µ
(i)
d + 0.5√

2σ

))
. (6)

The second regularization term (in Eq. 5) is introduced to
encourage stability of the local variable selection mecha-
nism and is evaluated using Monte Carlo sampling. The
kernel Ki,j ≥ 0 is user defined (e.g. radial basis function)
and should reflect the affinity between samples x(i) and
x(j), therefore, we can ensure that for nearby points our
model would lead to similar sparsity patterns in z(i) and
z(j). Altogether, Eq. 4 is optimized using SGD over the
model parameters θ and the parameters of the gating net-
work Ω (see Algorithm 1 in the Appendix for description

Locally Sparse Neural Networks for Tabular Biomedical Data

of training procedure). If µ(i)
d of sample i is a large number,

then the d-th feature will be relevant for predicting y(i) with
high probability (and vice versa for very small numbers).
The stochasticity of the model plays two important roles: (1)
it allows us to train weights of a binary model (the gating
network). (2) it enables the model to re-evaluate features
that are sparsified at an early step of training.

At inference, we remove the stochasticity from the gates
and set ẑ(i)d = max(0,min(1, 0.5 + µ

(i)
d)), which informs

what features are selected. In practice, we observe that the
coordinates of ẑ(i)d mostly converge to 0 or 1 (see statistics
in Table A.1 in the Appendix). This solution is encouraged
as it is stable to the injected Gaussian noise (ϵ(i)d). Namely,
once µ(i)

d = {−1, 1} (which are at the boundary of the range
of the tanh activation used in the gating network), the value
of the corresponding z(i)d would be with high probability 0
and 1, respectively. This is because the injected noise is less
likely to push the values of z(i)d into the range (0, 1).

4. Related Work
Identifying sample-specific subsets of variables that are im-
portant for prediction has been studied in the context of
interpretability. Methods such as (Simonyan et al., 2013;
Zeiler & Fergus, 2014; Lundberg & Lee, 2017) try to iden-
tify a small subset of features that explain the predictions
made by a pre-trained model. These models either use the
gradients of the pre-trained model or use perturbations to
study the influence of different variables on the predictions
of each instance. However, as shown in (Jethani et al., 2021),
these models either require heavy post-training computa-
tions or are inaccurate (Adebayo et al., 2018; Gale et al.,
2019). More recent works such as (Dabkowski & Gal, 2017;
Chen et al., 2018; Schwab & Karlen, 2019; Yoon et al.,
2018) alleviate the computational burden by training a sin-
gle model to explain all samples. Still, they are all designed
to explain pre-trained black-box models and thus cannot
reduce the generalization gap in the case of LSS data.

Two recent works (Yoon et al., 2018; Jethani et al., 2021)
present solutions which allow for training a prediction
model in tandem with an explanatory model. However,
both methods try to learn a model that “imitates” the predic-
tions made by a baseline model, which uses the complete
set of features. We argue that using the entire feature space
in LSS data can lead to overfitting. Moreover, these meth-
ods require training a large number of parameters and use
REINFORCE (Williams, 1992) or REBAR (Tucker et al.,
2017) for learning the sparsity patterns. We demonstrate
in the benchmark experiment (see Fig. A.12 in the Ap-
pendix) that the method proposed in (Yoon et al., 2018) is
computationally expensive and does not scale well to large
datasets. Furthermore, in Section 5 we provided extensive

empirical evidence that our framework is more accurate and
interpretable compared to (Yoon et al., 2018; Jethani et al.,
2021).

Sparsification has also been utilized for other purposes, e.g.,
in Mixture of Experts (Peralta & Soto, 2014; Khalili, 2010;
Pan & Shen, 2007; Shazeer et al., 2017; Riquelme et al.,
2021), for accelerating the inference of over parametrized
deep nets (Dong et al., 2017; Gao et al., 2018; Ashouri et al.,
2019; Kurtz et al., 2020; Fedus et al., 2021), and genome-
wide association studies (Demetci et al., 2021). In contrast
to these models, our method sparsifies the number of fea-
tures used for predictions of each instance, thus leading to a
more robust and interpretable model.

5. Experiments
In this section, we evaluate how accurate and interpretable
the proposed approach is on both synthetic and real-world
biomedical datasets. We compare to: embedded feature
selection methods such as LASSO (Tibshirani, 1996), linear
support vector classification (SVC) (Chang & Lin, 2008),
tree-based wrapper methods such as Random Forest (RF)
(Dı́az-Uriarte & De Andres, 2006) and XGBoost (Chen &
Guestrin, 2016), fully connected neural network (with no
convolution, distortion, weight decay, or unsupervised pre-
training) and other neural network-based feature selection
and interpretability methods such as STG (Yamada et al.,
2020), INVASE (Yoon et al., 2018), L2X (Chen et al., 2018),
TabNet (Arık & Pfister, 2020), and REAL-x (Jethani et al.,
2021). Additionally we compare to RANSAC (Fischler &
Bolles, 1981) and Localized LASSO (Yamada et al., 2017)
for the motivating example, both RF and NN with SHAP
(Lundberg & Lee, 2017; Shrikumar et al., 2017) for the
MNIST example, and DeepSurv (Katzman et al., 2018),
COX-LASSO, COX-STG (Yamada et al., 2020), and Ran-
dom Survival Forest (Ishwaran et al., 2008) for the survival
analysis result. We failed to compare to Localized LASSO,
since is not suited for classification and it did not converge
on the regression examples. Details of the datasets avail-
ability, training procedure, and hyper-parameter tuning are
included in Appendix section B.

5.1. Nonlinear Prediction on Synthetic Datasets

This section uses synthetic datasets where the target value
only depends on a subset of variables that varies across sam-
ples. Since the per sample subset of informative variables is
known, we can perform a controlled evaluation of the predic-
tivity and interpretability of our model. First, we focus on
classification data models E1-E3 which were also used for
evaluation in (Yoon et al., 2018; Jethani et al., 2021; Arık &
Pfister, 2020). We further design a higher dimensional exam-
ple E4, and a highly nonlinear “moving-XOR” regression
example E5. In all datasets, we use less than 2000 samples

Locally Sparse Neural Networks for Tabular Biomedical Data

E1 E2 E3 E4 E5
F1 ACC F1 ACC F1 ACC F1 ACC F1 MSE

LASSO 0.5000 52.00 0.5000 74.50 0.6250 71.50 0.1290 64.00 0.3704 1.0190
SVC 0.4444 51.50 0.5000 74.50 0.6667 71.50 0.2353 68.00 NA NA
RF 0.5333 88.50 0.5333 88.50 0.6250 87.00 0.0769 86.00 0.2500 0.2499

XGBoost 0.5333 93.00 0.5333 95.00 0.6250 86.50 0.0769 96.00 0.2500 0.0118
MLP NA 78.00 NA 88.50 NA 84.50 NA 64.00 NA 0.6526

Linear STG 0.4000 55.50 0.4000 76.00 0.3750 69.00 0.6667 70.00 0.5000 1.0067
Nonlinear STG 0.7272 84.50 0.7272 90.00 0.7143 86.00 0.6667 76.00 0.7500 0.0004

INVASE 0.5390 89.00 0.7000 88.00 0.6923 86.00 0.6667 94.00 0.1526 3.1264
L2X 0.7986 88.00 0.6050 94.50 0.2450 87.00 0.5000 92.00 0.6081 0.5134

TabNet 0.4789 54.50 0.5426 65.50 0.6905 78.50 0.0036 60.00 0.4454 1.0317
REAL-x 0.8306 85.00 0.7089 88.50 0.7823 86.00 0.8511 90.00 NA* NA*
LLSPIN 0.3337 80.50 0.7216 86.50 0.4741 73.50 0.9458 90.00 0.6815 0.4927
LSPIN 0.9761 94.00 0.8600 95.00 0.9296 89.00 0.9615 98.00 1 0.0019

Table 1: Nonlinear synthetic datasets (see Eqs. 9-13 in Appendix section B.4). We compare the proposed LLSPIN/LSPIN
to other baselines in terms of the F1 score of the selected features and accuracy(%)/ MSE for the prediction performance.
Across these examples, LSPIN correctly identifies the informative features with a substantially higher F1 and higher
accuracy/lower mse. *We attempted to implement REAL-x for the regression task, but the model failed to converge.

for training, a regime which is more challenging than what
was previously studied by (Yoon et al., 2018; Jethani et al.,
2021; Arık & Pfister, 2020). The exact data models and
training procedures are described in the Appendix section
B.4. We evaluate all models by measuring the F1 score
of the selected features (F1 = TP

TP+ 1
2 (FP+FN)

where TP is
the number of informative features that are selected by the
model, FP is the number of selected features that are un-
informative, and FN is the number of informative features
unrecovered by the model) and the prediction performance
(accuracy for classification and Mean Squared Error (MSE)
for regression).

As shown in Table 1, LSPIN consistently outperforms exist-
ing baselines in terms of its ability to identify the informa-
tive variables (evaluated using the F1 score). At the same
time, our model leads to improved predictive capabilities
compared to these baselines. Our linear model (LLSPIN)
leads to relatively high F1 score in E2, E4, E5 despite the
fact that the data contains nonlinear feature interactions.

5.2. Interpretability Evaluation on MNIST

In this section, we demonstrate that the proposed method is
exceptionally interpretable while leading to predictions that
are more accurate than state-of-the-art nonlinear models.
To evaluate interpretability, previous authors suggest the
following criteria:
Faithfulness: Are the identified features significant for
prediction?
Stability: Are explanations to similar samples consistent?
Diversity: How different are the selected variables for in-
stances of distinct classes?
Generalizability: Are the selected features beneficial for

making accurate predictions using other simple models?

We use MNIST handwritten dataset as a table with 784
features and do not consider spatial information (since we
are interested in tabular data). We compare our model to
both RF and NN with SHAP and other leading NN inter-
pretability models, including L2X, REAL-x, INVASE, and
TabNet.

As suggested by (Alvarez-Melis & Jaakkola, 2018), faith-
fulness could be evaluated by removing features one by one
(based on their importance) and calculating the correlation
between the predictivity drop and the feature importance.
Following (Alvarez-Melis & Jaakkola, 2018; Yoshikawa
& Iwata, 2020), stability is evaluated by computing the
Lipchitz constant of the explanation function. This is es-
timated for xi using max

xi,xk≤ϵ

∥wi−wk∥2

∥xi−xk∥2
, where wi is the

explanation vector for sample i provided by each method.
Then we average the Lipchitz constant over all samples. To
evaluate diversity we take the per class median selected
features and use the Jaccard index to count the portion of
non-overlapping selected features across classes (exact for-
mula appears in Appendix A.7). To evaluate the generaliz-
ability of the selected features, we measure the accuracies
of SVM and k-means when applied to the data, which is
masked by the selected features. We expect the performance
to be preserved if the selected features are crucial for pre-
diction (compared to the accuracy obtained when using all
features).

We tune all models to identify the ∼ 10 most informative
pixels per image and present these in Fig. 3. As visually
indicated by this figure, LLSPIN, Real-X, L2X, and Deep-
SHAP tend to select pixels with non-zero values that cover
“unique” patterns in the digits. INVASE seems to lead to a

Locally Sparse Neural Networks for Tabular Biomedical Data

Method ACC # Feat Stability Diversity Faithfulness Gen-SVM Gen-k-means
RF-SHAP 96.81 8 0.418 41.15 0.531 52.42 40.15
Deep-SHAP 97.86 8 0.634 88.10 0.780 83.56 56.31
REAL-x 96.95 10 0.415 80.55 0.885 94.04 87.94
L2X 89.11 8 0.268 94.79 0.791 94.18 89.56
INVASE 85.07 11 0.162 13.43 0.864 69.67 43.02
TabNet 96.79 6 0.265 89.17 0.759 54.42 43.22
LLSPIN (λ2 = 0) 98.26 7 0.294 99.14 0.950 98.22 97.50
LLSPIN (λ2 = 0.1) 98.18 6 0.098 99.05 0.926 96.23 96.84
LSPIN (λ2 = 0) 98.45 7 0.256 99.84 0.987 98.43 97.99
LSPIN (λ2 = 0.1) 98.29 6 0.065 99.39 0.917 98.42 97.57

Figure 3: Top: Random samples from the MNIST dataset. For each example, we overlay the image with color dots indicating
locations of the estimated informative pixels by each method. Bottom: Test accuracy (ACC), the median number of features
selected by each the model (# Feat), and several metrics for evaluating interpretability capabilities (explained in Section
5.2). Our model leads to high classification accuracy while relying on a few faithful and generalizable features. The selected
features by our model are diverse across different classes while remaining stable for nearby samples. We compare our
models with and without the second regularization term (λ2 in Eq. 5), and demonstrate that it improves stability.

more global selection; RF-SHAP concentrates on one region
per digit, and TabNet selects several non-active pixels. Since
TabNet still leads to high classification accuracy, we suspect
that it encodes the prediction within the binary interpretation
vector as an input to the prediction model (as suggested in
(Jethani et al., 2021)).

Next, we use the interpretability metrics described above
to compare all baselines. As indicated in the table (see bot-
tom panel of Fig. 3), both LSPIN and LLSPIN perform

exceptionally well in terms of accuracy and interpretability.
We compare our models with and without the second regu-
larization term (see λ2 in Eq. 5). Our results suggest that
including this term improves the stability of the selected
features without a significant compromise for other quali-
ties. The results highlight three encouraging findings: (i)
our linear model leads to an accuracy close to CNN level
(which is 98.9%). (ii) applying k-means to the data gates
by the selected features leads to a dramatic improvement

Locally Sparse Neural Networks for Tabular Biomedical Data

in clustering accuracy. Namely, it improves from ∼ 55%
to an accuracy higher than 96% when using the features
selected by LLSPIN or LSPIN. (iii) our model improves
robustness and uncertainty estimates (Ovadia et al., 2019)
under distributional shifts compared with a standard fully
connected network (see results in Appendix A.12).

5.3. Classification of LSS Real World Data

In this section, we evaluate LLSPIN and LSPIN on several
challenging LSS real-world datasets (properties are summa-
rized at the bottom of Table 2). BASEHOCK, RELATHE,
PCMAC, COLON, TOX171 are from the feature selection
dataset collections1, and the purified PBMC dataset is from
(Zheng et al., 2017).

For the BASEHOCK, RELATHE, PCMAC, and PBMC
datasets, 5% of each dataset is set aside as a validation
set. We split the remaining 95% of the data into 5 non-
overlapping folds, with 1 fold for training and the remaining
folds for testing each time (see details in Appendix section
B.5). This procedure is repeated for several regularization
parameters; then, we report the best average performance
(test accuracy) for each method, along with the correspond-
ing standard deviation and the number of selected features.
Since COLON and TOX-171 are of extreme LSS, we use
a grid of regularization parameters for each method and
identify the best average performance across ten runs (using
80% of the samples for training and 20% for testing).

In Table 2, we present the average test accuracy, standard de-
viation, and number of selected features for all baselines. As
evident across several datasets, our framework dramatically
improves the accuracy compared to standard MLP while
using a small portion of the input set of variables. More-
over, in most cases, our model outperforms state-of-the-art
models such as XGBoost, TabNet, and REAL-x. We rank
the methods based on the average classification accuracy for
each dataset. Our models (LLSPIN/LSPIN) reach the top 2
places based on the median rank across all datasets.

In these examples, to our surprise, LLSPIN outperforms
LSPIN. We reason that LLSPIN (the linear version of our
model) remains highly expressive in the high dimensional
setting since it learns several linear relationships, each based
on a small set of coefficients. Moreover, since this prediction
model does not contain any nonlinearity, overfitting is less
likely to happen than in the nonlinear models. These results
suggest that LLSPIN can serve as an accurate and highly
interpretable model in LSS data regimes. In Appendix A.12
we evaluate our models predictive uncertainty using the
Negative Log Likelihood (NLL) and demonstrate that it
leads to more calibrated uncertainty estimates (Ovadia et al.,
2019) compared with other baselines.

1https://jundongl.github.io/scikit-feature/datasets.html

5.4. Survival Analysis

Survival Analysis involves predicting the survival time of in-
dividual patients based on different clinical variables. In Sur-
vival Analysis, instance-level interpretation of the selected
features is of particular interest as it can answer what vari-
ables have the most significant effect on the survival of indi-
vidual patients. We integrate our models (LSPIN/LLSPIN)
into DeepSurv (Katzman et al., 2018), which is a neural
network framework for Cox regression. Then, we apply
the integrated models (COX-LLSPIN/COX-LSPIN) on a
Surveillance, Epidemiology, and End Results (SEER) breast
cancer dataset 2 to perform survival analysis.

We evaluate the performance of our models by computing
test Concordance Index (C-Index) w.r.t. the number of se-
lected features. We compare the performance with other
Survival Analysis models as shown in Fig. 4 (Left). We
can see that the COX-LLSPIN/COX-LSPIN is comparable
to state-of-the-art schemes when using more than 28 fea-
tures and outperforms all existing methods when focusing
on small subsets of selected features. More importantly,
our model (COX-LLSPIN) can provide more interpretable
results while remaining accurate.

Fig. 4 (Right) shows the frequency of the selected feature
sets among the different subjects (samples). For instance,
57.2% of the samples have Age and TsizeMerged selected
as important factors for the prediction. In contrast, 1.2% of
the samples have only NodesRatio selected, demonstrating
that our models can characterize the heterogeneity among
these samples. We argue that this is an important property
for practitioners since knowing what variables affect each
patient’s outcome can improve personalized treatments.

5.5. Marker Gene Identification

Accurate cell classification is imperative for the success of
many single-cell genomics studies. Developing an auto-
mated way to identify genes that allow identification of cell
types (marker genes) is an ongoing challenge (Dai et al.,
2021). Here, we apply our model to a Single Nucleus RNA-
sequencing dataset. The cell types in this data, namely
Microglia and Oligodendrocyte Precursor Cells, are well
characterized by ITGAM gene and PDGFRA gene, respec-
tively. We aim to apply our model to identify these markers
for each cell type automatically. Details of the data prepro-
cessing and split are in Appendix section B.7.

Towards this goal, we aim to encourage our model to select a
diverse set of features for each class. Therefore, we modify
the second term in our regularizer (see Eq. 5) to λ2

∑
j(1−

Ki,j)× (−∥z(i) − z(j)∥22). Intuitively, when sample i and
j are dissimilar (Ki,j is small), the corresponding gates are

2www.seer.cancer.gov

Locally Sparse Neural Networks for Tabular Biomedical Data
BASEHOCK RELATHE PCMAC PBMC COLON TOX-171 Median Rank

LASSO 74.46± 5.19 [34] 58.69± 1.59 [18] 68.09± 4.08 [21] 90.30± 0.36 [31] 81.54± 9.85 [24] 87.71± 4.62 [49] 6.5
SVC 74.46± 3.37 [22] 56.48± 3.00 [6] 67.41± 3.72 [12] 89.02± 0.74 [30] 76.15± 9.39 [25] 81.14± 7.47 [38] 8.5
RF 64.46± 4.52 [10] 71.42± 3.50 [50] 67.44± 7.00 [9] 48.56± 6.18 [10] 79.23± 9.76 [47] 53.71± 9.96 [42] 11.5

XGBoost 90.37± 1.05 [45] 76.75± 1.67 [32] 83.93± 0.67 [43] 76.58± 0.72 [64] 76.15± 12.14 [7] 67.43± 5.60 [38] 6
MLP 56.51± 1.43 55.44± 2.38 54.38± 1.27 61.57± 1.45 81.54± 7.84 62.59± 8.03 12.5

Linear STG 89.36± 1.40 [27] 69.94± 5.05 [16] 85.11± 1.07 [42] 88.22± 0.82 [27] 74.62± 11.44 [14] 71.14± 5.78 [16] 7
Nonlinear STG 89.24± 1.18 [20] 74.83± 3.95 [27] 84.16± 0.90 [32] 86.29± 1.31 [19] 76.15± 13.95 [8] 67.43± 7.25 [14] 6.5

INVASE 84.02± 0.81 [42] 70.81± 1.56 [43] 77.06± 1.01 [48] 86.34± 0.81 [30] 76.92± 12.40 [6] 76.86± 7.39[26] 7.5
L2X 88.48± 2.01 [1] 77.10± 5.19 [10] 78.69± 3.62 [10] 70.77± 11.24 [10] 78.46± 8.28 [8] 71.71± 10.42[9] 6.5

TabNet 88.21± 2.00 [3] 67.84± 15.40 [10] 69.35± 10.49 [4] 92.13± 0.59 [3] 64.62± 12.02 [28] 30.00± 6.29 [34] 9.5
REAL-x 89.80± 1.96 [5] 80.61± 1.31 [3] 80.98± 3.05 [6] 83.39± 2.19 [24] 75.38± 12.78 [15] 77.71± 7.65 [42] 5
LSPIN 89.37± 1.48 [3] 80.59± 1.95 [3] 78.51± 1.48 [3] 88.67± 0.64 [15] 71.54± 6.92 [1] 90.29± 5.45[1] 4.5

LLSPIN 91.56± 1.51 [4] 82.01± 2.20 [11] 81.48± 1.74 [3] 90.43± 0.6 [18] 83.85± 5.38 [7] 92.57± 6.41 [6] 1
Train / Test 379 / 1514 271 / 1084 369 / 1476 721 / 2880 49 / 13 136 / 35
Dim/ Classes 4862 / 2 4322 / 2 3289 / 2 2000 / 4 2000 / 2 5748 / 4

Type Text Text Text Biomedical Biomedical Biomedical

Table 2: Classification on real-world tabular datasets. We report the average accuracy and standard deviation, with the
corresponding median number of selected features in square brackets. The number of training/test samples, dimensions,
classes, and data types are also reported.

Figure 4: Survival analysis based on the SEER breast cancer data. Left: Comparing the test C-Index obtained using subsets
of most informative features. Right: Frequency of variables selected by COX-LLSPIN across the different patients.

encouraged to be different. Here, we fix λ2 = 1.

LLSPIN successfully identifies the two cell-type-specific
markers (see Appendix Fig. A.11) while predicting the
correct cell with 99.0% accuracy. We further evaluate other
instance-wise feature selection methods on this example. As
indicated by the F1 score of the selected genes in Table 3
our approach significantly outperforms other schemes in its
ability to identify the marker genes correctly.

LLSPIN INVASE L2X TabNet REAL-x
F1 0.9950 0.4900 0.4900 0.2817 0.5000

Table 3: Marker gene identification using several baselines.
LLSPIN accurately identifies the known marker genes re-
flected by the F1 score computed based on selected features.

6. Conclusion
We present a NN framework for making accurate and in-
tepratable predictions based on tabular biomedical datasets.
To achieve these goals, we design a special kind of sample-
specific regularizer that leads to sparsification that is stable

for similar samples. Our regularizer is parametrized using a
gating network that is trained simultaneously with a predic-
tion network and learns for each sample the set of most infor-
mative features. This leads to an intrinsically interpretable
model, which can handle cases of low-sample-size (LSS)
data that is either high dimensional or contains nuisance fea-
tures. We demonstrate using synthetic and real datasets that
our model can outperform state-of-the-art classification and
regression models. Furthermore, when applied to datasets
with nuisance variables, our model correctly identifies the
subsets of informative features.

Acknowledgements
The authors thank Mihir Khunte and Michal Marczyk for
the preprocessing steps of the SEER breast cancer data, Le
Zhang, Serena Spudich, and Mark Gerstein for providing
the snRNA-seq data. Y.K. acknowledges support by NIH
grant R01GM131642, UM1DA051410, U54AG076043,
P50CA121974, and U01DA053628.

Locally Sparse Neural Networks for Tabular Biomedical Data

References
Abid, A., Balin, M. F., and Zou, J. Y. Concrete autoencoders

for differentiable feature selection and reconstruction.
CoRR, abs/1901.09346, 2019.

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt,
M., and Kim, B. Sanity checks for saliency maps. arXiv
preprint arXiv:1810.03292, 2018.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. KDD, 2019.

Allenby, G. M. and Rossi, P. E. Hierarchical bayes models.
The handbook of marketing research: Uses, misuses, and
future advances, pp. 418–440, 2006.

Alvarez-Melis, D. and Jaakkola, T. S. Towards robust inter-
pretability with self-explaining neural networks. arXiv
preprint arXiv:1806.07538, 2018.

Aoshima, M., Shen, D., Shen, H., Yata, K., Zhou, Y.-H.,
and Marron, J. A survey of high dimension low sample
size asymptotics. Australian & New Zealand journal of
statistics, 60(1):4–19, 2018.

Arık, S. O. and Pfister, T. Tabnet: Attentive interpretable
tabular learning. arXiv, 2020.

Arora, R., Basu, A., Mianjy, P., and Mukherjee, A. Under-
standing deep neural networks with rectified linear units.
arXiv preprint arXiv:1611.01491, 2016.

Ashouri, A. H., Abdelrahman, T. S., and Dos Remedios,
A. Retraining-free methods for fast on-the-fly pruning
of convolutional neural networks. Neurocomputing, 370:
56–69, 2019.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. Deep neural networks and tabular
data: A survey. arXiv preprint arXiv:2110.01889, 2021.

Chang, Y.-W. and Lin, C.-J. Feature ranking using linear
svm. In Causation and Prediction Challenge, pp. 53–64,
2008.

Chen, J., Song, L., Wainwright, M., and Jordan, M. Learn-
ing to explain: An information-theoretic perspective on
model interpretation. In International Conference on
Machine Learning, pp. 883–892. PMLR, 2018.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794. ACM, 2016.

Dabkowski, P. and Gal, Y. Real time image saliency for
black box classifiers. arXiv preprint arXiv:1705.07857,
2017.

Dai, M., Pei, X., and Wang, X.-J. Accurate and fast cell
marker gene identification with cosg. bioRxiv, 2021.

Demetci, P., Cheng, W., Darnell, G., Zhou, X., Ramachan-
dran, S., and Crawford, L. Multi-scale inference of ge-
netic trait architecture using biologically annotated neural
networks. PLoS genetics, 17(8):e1009754, 2021.

Dı́az-Uriarte, R. and De Andres, S. A. Gene selection
and classification of microarray data using random forest.
BMC bioinformatics, 7(1):3, 2006.

Dong, X., Huang, J., Yang, Y., and Yan, S. More is less: A
more complicated network with less inference complexity.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5840–5848, 2017.

Fan, J. and Li, R. Variable selection via nonconcave pe-
nalized likelihood and its oracle properties. Journal of
the American statistical Association, 96(456):1348–1360,
2001.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple and
efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Feng, J. and Simon, N. Sparse-Input Neural Networks for
High-dimensional Nonparametric Regression and Classi-
fication. ArXiv e-prints, November 2017.

Fischler, M. A. and Bolles, R. C. Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of
the ACM, 24(6):381–395, 1981.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Gao, X., Zhao, Y., Dudziak, Ł., Mullins, R., and Xu, C.-z.
Dynamic channel pruning: Feature boosting and suppres-
sion. arXiv preprint arXiv:1810.05331, 2018.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

Ishwaran, H., Kogalur, U., Blackstone, E., and Lauer, M.
Random survival forests. Annals of Applied Statistics, 2
(3):841–860, 9 2008. ISSN 1932-6157. doi: 10.1214/
08-AOAS169.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Locally Sparse Neural Networks for Tabular Biomedical Data

Jethani, N., Sudarshan, M., Aphinyanaphongs, Y., and Ran-
ganath, R. Have we learned to explain?: How inter-
pretability methods can learn to encode predictions in
their interpretations. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 1459–1467. PMLR,
2021.

Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang,
T., and Kluger, Y. Deepsurv: personalized treatment rec-
ommender system using a cox proportional hazards deep
neural network. BMC Medical Research Methodology,
18, 2018.

Khalili, A. New estimation and feature selection methods in
mixture-of-experts models. Canadian Journal of Statis-
tics, 38(4):519–539, 2010.

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr,
J., Goin, M., Leiserson, W., Moore, S., Nell, B., Shavit,
N., et al. Inducing and exploiting activation sparsity
for fast neural network inference. In 37th International
Conference on Machine Learning, ICML 2020, volume
119, 2020.

Li, Y., Chen, C.-Y., and Wasserman, W. W. Deep feature
selection: theory and application to identify enhancers
and promoters. Journal of Computational Biology, 23(5):
322–336, 2016.

Lindenbaum, O. and Steinerberger, S. Randomly aggregated
least squares for support recovery. Signal Processing, 180:
107858, 2021a.

Lindenbaum, O. and Steinerberger, S. Refined least squares
for support recovery. arXiv preprint arXiv:2103.10949,
2021b.

Linderman, G. C., Zhao, J., Roulis, M., Bielecki, P., Flavell,
R. A., Nadler, B., and Kluger, Y. Zero-preserving imputa-
tion of single-cell rna-seq data. Nature Communications,
13(1):1–11, 2022.

Liu, B., Wei, Y., Zhang, Y., and Yang, Q. Deep neural
networks for high dimension, low sample size data. In
IJCAI, pp. 2287–2293, 2017.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through l0 regularization. CoRR,
abs/1712.01312, 2017.

Lundberg, S. and Lee, S.-I. A unified approach to interpret-
ing model predictions. arXiv preprint arXiv:1705.07874,
2017.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.

Marais, J. A. Deep learning for tabular data: an exploratory
study. PhD thesis, Stellenbosch: Stellenbosch University,
2019.

National Cancer Institute. Surveillance, epidemiology, and
end results (SEER) program research data (1975–2016).
In National Cancer Institute, DCCPS, Surveillance Re-
search Program, Surveillance Systems Branch, released
April 2019, based on the November 2018 submission.
SEER. (www.seer.cancer.gov)., 2019.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J. V., Lakshminarayanan, B., and
Snoek, J. Can you trust your model’s uncertainty? eval-
uating predictive uncertainty under dataset shift. arXiv
preprint arXiv:1906.02530, 2019.

Pan, W. and Shen, X. Penalized model-based clustering
with application to variable selection. Journal of machine
learning research, 8(5), 2007.

Peralta, B. and Soto, A. Embedded local feature selection
within mixture of experts. Information Sciences, 269:
176–187, 2014.

Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M.,
Jenatton, R., Pinto, A. S., Keysers, D., and Houlsby, N.
Scaling vision with sparse mixture of experts. arXiv
preprint arXiv:2106.05974, 2021.

Scardapane, S., Comminiello, D., Hussain, A., and Uncini,
A. Group sparse regularization for deep neural networks.
Neurocomput., 241(C):81–89, June 2017. ISSN 0925-
2312. doi: 10.1016/j.neucom.2017.02.029.

Schwab, P. and Karlen, W. Cxplain: Causal explanations
for model interpretation under uncertainty. arXiv preprint
arXiv:1910.12336, 2019.

Shavitt, I. and Segal, E. Regularization learning net-
works: deep learning for tabular datasets. arXiv preprint
arXiv:1805.06440, 2018.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Shiffrin, R. M., Lee, M. D., Kim, W., and Wagenmakers, E.-
J. A survey of model evaluation approaches with a tutorial
on hierarchical bayesian methods. Cognitive Science, 32
(8):1248–1284, 2008.

Shrikumar, A., Greenside, P., and Kundaje, A. Learning
important features through propagating activation differ-
ences. In International conference on machine learning,
pp. 3145–3153. PMLR, 2017.

Locally Sparse Neural Networks for Tabular Biomedical Data

Shwartz-Ziv, R. and Armon, A. Tabular data: Deep learning
is not all you need. arXiv preprint arXiv:2106.03253,
2021.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image clas-
sification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The implicit bias of gradient descent on sepa-
rable data. The Journal of Machine Learning Research,
19(1):2822–2878, 2018.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B
(Methodological), pp. 267–288, 1996.

Tishby, N. and Zaslavsky, N. Deep learning and the infor-
mation bottleneck principle. In 2015 IEEE Information
Theory Workshop (ITW), pp. 1–5. IEEE, 2015.

Tucker, G., Mnih, A., Maddison, C. J., Lawson, D., and
Sohl-Dickstein, J. Rebar: Low-variance, unbiased gradi-
ent estimates for discrete latent variable models. arXiv
preprint arXiv:1703.07370, 2017.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8:229–256, 1992.

Yaguchi, A., Suzuki, T., Asano, W., Nitta, S., Sakata, Y.,
and Tanizawa, A. Adam induces implicit weight sparsity
in rectifier neural networks. In 2018 17th IEEE Interna-
tional Conference on Machine Learning and Applications
(ICMLA), pp. 318–325. IEEE, 2018.

Yamada, M., Koh, T., Iwata, T., Shawe-Taylor, J., and Kaski,
S. Localized lasso for high-dimensional regression. In
Artificial Intelligence and Statistics, pp. 325–333. PMLR,
2017.

Yamada, Y., Lindenbaum, O., Negahban, S., and Kluger,
Y. Feature selection using stochastic gates. In Inter-
national Conference on Machine Learning, pp. 10648–
10659. PMLR, 2020.

Yoon, J., Jordon, J., and van der Schaar, M. Invase: Instance-
wise variable selection using neural networks. In Interna-
tional Conference on Learning Representations, 2018.

Yoshikawa, Y. and Iwata, T. Gaussian process regression
with local explanation. arXiv preprint arXiv:2007.01669,
2020.

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In European conference on
computer vision, pp. 818–833. Springer, 2014.

Zheng, G. X., Terry, J. M., Belgrader, P., Ryvkin, P., Bent,
Z. W., Wilson, R., Ziraldo, S. B., Wheeler, T. D., Mc-
Dermott, G. P., Zhu, J., et al. Massively parallel digital
transcriptional profiling of single cells. Nature communi-
cations, 8:14049, 2017.

Locally Sparse Neural Networks for Tabular Biomedical Data

A. Additional Results
In the following sections, we provide additional experimental results to support the effectiveness of the proposed approach.

A.1. Visualization of the Motivating Example and Extended Evaluations

For the motivating example in section 2, we used a training set with only 10 samples. As shown in Fig. A.1, LLSPIN
correctly identifies the sample-specific features.

Figure A.1: Heat-map comparison between the ground truth informative features for each sample (Left, 1 for truly
explanatory and 0 for not) and the identified features by the proposed LLSPIN’s gates (Right, > 0 for open gates and 0 for
closed). The values across the x-axis correspond to the feature indices, and the values across the y-axis correspond to the
sample indices. Samples are sorted based on their ground truth groups.

Next, we extend our evaluation to other numbers of training samples (60,30,18,12,6) to explore the bound of N for which
our model can help with performance improvement. Fig. A.2a demonstrates that LLSPIN consistently outperforms other
methods. Fig. A.2b reveals that in each case, LLSPIN correctly uncovers the corresponding interpretable features for each
sample in the gate matrices compared to the ground truth, except when the training is limited with just 6 training samples
where LLSPIN misses one feature for the second sample group. This simulation demonstrates the effectiveness of LLSPIN
on low sample size (LSS) datasets. Details of the data model, data split, and hyper-parameter tuning are in the Appendix
section B.3.

A.2. Additional Experiment Involving Linear Synthetic Dataset with Unequal Regression Coefficients

To further demonstrate our approach’s applicability in a more challenging setting, we modified the linear synthetic dataset
(Eq. 1 in the main text). Specifically, the coefficient of x3 in group 2 is set to 0.5 instead of −0.5, while the coefficient of
x3 in group 1 remains −0.5, as shown below:

y =

{
−2x1 + x2 − 0.5x3, if in group 1,
0.5x3 + x4 − 2x5, otherwise.

(7)

We note that to learn this more complex regression function (due to the unequal feature coefficients), we had to change the
prediction model to a fully connected deep network with nonlinear activation (since the regression function is no longer
linear). We applied our nonlinear model (LSPIN) on this example and obtained a 100% true positive rate and 0% false
discovery rate in terms of discovering the correct features on the test set. The mean square error on the test is 0.000199.

A.3. Nonlinear Synthetic Datasets

In the following subsection, we first demonstrate LSPIN’s interpretability capabilities. We examine the sparsification
patterns of LSPIN on the test sets for the 5 nonlinear synthetic examples (see Section 5.1 and the Appendix section B.4 for
details), as shown in Fig. A.3 where LSPIN correctly identifies the informative features in most of the examples.

Next, we aim to demonstrate the applicability of our approach in a scenario with overlapping features; we experimented

Locally Sparse Neural Networks for Tabular Biomedical Data

(a) (b)

Figure A.2: (a) Evaluation of the performance for different training sizes. Each row indicates a different number of training
samples, from top to bottom: 60, 30, 18, 12, and 6, respectively. The x-axis represents the true target value y, and the y-axis
presents the predicted value ŷ for each model (as indicated in the subtitles of the columns). Points on the diagonal line
indicate correct predictions. R-square and Mean Squared Error (MSE) are reported for each model.
(b) Heat-map comparison between the ground truth informative features for each sample (Left, 1 for truly informative
and 0 for not) and the identified features by LLSPIN’s local gates (Right, > 0 for open gates and 0 for closed gates). The
values across the x-axis correspond to the feature indices, and the values across the y-axis correspond to the sample indices.
Samples are sorted based on their group assignments (see model description in Eq. 1 in the main text).

with a modified version of E1 (see Eq. 9 in the Appendix section B.4) by changing the model to consist of two overlapping
features. Specifically, the Logit(x) in the new function we evaluate becomes:

Logit(x) =

{
e(x1×x3), if x11 < 0,

e(
∑6

i=3x
2
i−4), otherwise

(8)

We note that in this example, both x11 and x3 are overlapping. x3 has an unequal factor, and the nonlinear function is not
the same in both groups. We applied LSPIN and obtained a true positive rate of 94.68%, a false discovery rate of 12.58% on
the test set, and test accuracy of 93.00%.

For this modified version of E1, we generate data of 6000 samples by 11 features with 90% as the training set, 5% as the
validation set, and 5% as the test set. In this example, we set the architecture of LSPIN to 5 hidden layers with 100 neurons
in each layer in the prediction network. The number of hidden layers in the gating network is 3 with 100 neurons in each
layer. We set the batch size to 1000 for training. λ is set to 0.15, the learning rate is set to 0.08, and the number of epochs is
set to 5000.

Locally Sparse Neural Networks for Tabular Biomedical Data

(a) E1 (b) E2

(c) E3 (d) E4

(e) E5

Figure A.3: Informative feature identification using the nonlinear synthetic datasets. We present heat maps comparing the
ground truth informative features (the left panel in each subfigure) and identified features by LSPIN based on the 5 synthetic
datasets (see description in Appendix section B.4). For more convenient visualization, we only present the first 25 features
for E4.

A.4. Performance Evaluation with Additional Noisy Features on the Nonlinear Synthetic Dataset

In the following subsection, we explore the bound of D for which our model can help with performance improvement. Using
the nonlinear synthetic dataset E1, we fix the number of samples and then further add different numbers of noisy features
(D = 10, 20, 30, 40, 50, 100, 150, 200, sampled from U(−1, 1)) and evaluate the performance of our model (LSPIN) in each
scenario.

Fig. A.4 shows that our model performs reasonably well in terms of test accuracy and F1 score, with fewer than 50 noisy
features added. As the number of noisy features increases, the performance of our model gradually drops. On the other
hand, increasing the number of samples would allow our model to perform better even when many noisy features are added.

A.5. Comparison of Model’s Ability to Alleviate Overfitting

To evaluate our model’s ability to alleviate the overfitting problem, we compare our model (LSPIN) to three other models
(Neural Network, Neural Network with dropout (drop out rate 0.1), and Neural Network with weight decay (L2 regularizer
with scale 0.1)) in terms of the training and validation loss change on the nonlinear synthetic dataset (E4).

Fig. A.5 shows that our model maintains a small generalization error between training and validation set compared to other
baselines.

Locally Sparse Neural Networks for Tabular Biomedical Data

Figure A.4: Evaluation of Test ACC and F1 score of LSPIN on E1 with different number of noisy features

Figure A.5: Comparison of the loss change on E4

A.6. Statistics of the Selected Features for Other Methods on the SEER Dataset

In Fig. A.6, we present the selected variables on the SEER dataset for other methods (COX-LSPIN,COX-STG,COX-LASSO)
compared to the result of COX-LLSPIN as shown in the piechart of Fig. 4. Random Survival Forest and DeepSurv are not
shown since both methods select almost all variables.

The global set of selected features appears to be similar, however, we argue that sample-specific variable selection as in
LLSPIN/LSPIN discards variables that are not most relevant to the prediction for some patients and leads to improved
prediction performance, as shown on the left of Fig. 4.

Method Selected Variables
COX-STG(Linear) Age, Pnodes, TsizeMerged, NodesRatio

COX-STG(Nonlinear) Age, Pnodes, TsizeMerged
COX-LASSO Age, Pnodes, TsizeMerged, NodesRatio

Figure A.6: Left: Frequency of variables selected by COX-LSPIN across the different patients. Right: Selected variables by
the global feature selection methods

Locally Sparse Neural Networks for Tabular Biomedical Data

A.7. Diversity Evaluation Using the Jaccard Index

We expect an excellent interpretability model to identify different sets of variables as driving factors for explaining distinct
classes. To evaluate the diversity of all models, we propose using the following Jaccard-based metric.

First, we compute for each method the per class median set of active features (as indicated by the gates for our method). We
denote this set for class ci, i = 1, ...,M , as Sci . Then, for each pair of classes we compute intersection using the Jaccard
index, namely

J(Sci ,Scj) =
|Sci ∩ Scj |
|Sci ∪ Scj |

, i ̸= j,

then we sum over all possible pairs and normalize by the size of this set, and scale it to [0, 100], specifically

Diversity = 100(1−
∑
i ̸=j

J(Sci ,Scj)

M(M − 1)/2)
).

This quantifies what is the portion of non overlapping features between distinct classes.

A.8. Extended results for the MNIST Experiment

Extending from the MNIST experiment demonstrated in Section 5.2, here we present additional randomly selected images
for the different MNIST classes and superimpose the images using gates with non zero values in Figs. A.7,A.8, and A.9. In
these examples we highlight the effect of adding the second regularization term, controlled by λ2. Finally, in Fig. A.10 we
present the selected pixels when we tune our model to select more features per sample.

A.9. Experiment with Low Sample Size MNIST Dataset

To further test the performance of our method on the LSS regime, we evaluate LLSPIN on a low sample size MNIST
variant. Specifically, we use 6k samples for training and 10k samples for testing. A fully connected MLP with four layers
[784,300,100,10] and a tanh activation leads to a test accuracy of 94.2%. Using the linear variant of our method LLSPIN,
we reach a test accuracy of 94.8% while using a median of 10 pixels per image with no activation in the prediction network.
In comparison, this may seem like a minor improvement and far from state-of-the-art (which requires a convolution layer).
However, we argue that because our prediction model is linear, we can easily interpret each prediction since we obtain a
small subset of active pixels and their linear coefficient values.

A.10. Identification of Cell-type Specific Markers

In this subsection, we examine LLSPIN’s interpretability capabilities on the Single Nucleus RNA-sequencing dataset
described in Section 5.5.

We note that in our original implementation (see Eq. 5), the model encourages similar samples to select similar features but
doesn’t encourage dissimilar samples to select different features. For this marker gene selection task, we find that this model
tends to select genes that are stable across cells even though they are of different cell types (left of Fig. A.11).

To encourage our model to select different genes for each cell type, we modify the second term in our regularizer (see Eq. 5)
to λ2

∑
j(1−Ki,j)× (−∥z(i) − z(j)∥22), such that when sample i and j are dissimilar (Ki,j is small), the corresponding

gates are encouraged to be different.

As shown on the right of Fig. A.11, LLSPIN with the modified regularizer identifies the correct cell type specific marker
genes for each cell type group (ITGAM gene for Microglia cells and PDGFRA gene for Oligodendrocyte Precursor Cells
(OPC)). Therefore, we recommend to use our model with the modified regularizer for this task.

A.11. Sparsity of the Local Gates

To demonstrate that our model performs local sparsification of input features, we evaluate the statistics of the gate values.
Table A.1 presents the distribution of local gates values in some of the synthetic experiments. Our results demonstrate that
most gates converge to 0 and 1 with only a few gates converging to values in the range (0, 1).

Locally Sparse Neural Networks for Tabular Biomedical Data

Figure A.7: Random representative samples of 0− 3 from the MNIST dataset. For each example, we overlay the image with
active gates, here color dots indicate locations of non zero gates. Left columns (cyan dots) represents the selected pixels
with LLSPIN using λ2 = 0. Right columns (darker blue dots) represents the selected pixels with LLSPIN using λ2 = 0.1.
Notice that when we increase λ2 the selection becomes more stable across samples within a class.

A.12. Evaluation of the Fairness and Robustness of LLSPIN

Following the analysis in (Ovadia et al., 2019), we conducted several experiments to evaluate how our proposed method
performs under distributional shifts. Specifically, we have compared the accuracy, Negative Log-Likelihood (NLL), and
Expected Calibration Error (ECE) of our model (LLSPIN) to those obtained by a fully connected nonlinear MLP. Table A.2
details the results for different rotation angles of the test samples from MNIST datasets.

Next, we present the NLL results based on the experiments performed on MNIST, low sample size MNIST, and real-world
datasets in Table A.3. Based on the results presented in the table, we conclude that our model leads to better-calibrated
uncertainty. This is evident by the lower ECE and NLL values our model obtains compared with others.

Locally Sparse Neural Networks for Tabular Biomedical Data

Figure A.8: Random representative samples of 4 − 7 from the MNIST dataset. We overlay the image with active gates
locations for each example, indicated here as color dots. Left columns (cyan dots) represents the selected pixels with
LLSPIN using λ2 = 0. Right columns (darker blue dots) represents the selected pixels with LLSPIN using λ2 = 0.1. Notice
that when we increase λ2 the selection becomes more stable across samples within a class.

A.13. Discussion on the Number of Selected Features

When applied to high dimensional data, the model may select a large set of features across some samples. This phenomenon
suggests that the model is overfitting. Based on our experience, this happens for a small set of observations in the dataset
(both in the train and test). For example, in the PBMC data for 8.6% of the train samples, the model selects more than
10% of the features (genes). This information could indicate that the model may be overfitting on a small subset of
samples. Therefore, we believe that the local gates could provide additional information for practitioners to help interpret
the sample-specific predictions made by the model instead of just relying on the average accuracy the model obtains on the
test set. We did not observe this overfitting phenomenon in some of the low-dimensional datasets evaluated in the paper. For
example, on MNIST, the model selects a median of 8 features, a union of 165 features. Furthermore, we provide Table A.4
to demonstrate the statistics of the selected features on MNIST.

Another example is the SEER cancer dataset; when the model selects a median of 3 features (leftmost point of Fig. 4 (Left)),

Locally Sparse Neural Networks for Tabular Biomedical Data

Figure A.9: Random representative samples of 8 − 9 from the MNIST dataset. We overlay the image with active gates
locations for each example, indicated here as color dots. Left columns (cyan dots) represents the selected pixels with
LLSPIN using λ2 = 0. Right columns (darker blue dots) represents the selected pixels with LLSPIN using λ2 = 0.1. Notice
that when we increase λ2 the selection becomes more stable across samples within a class.

Figure A.10: Random representative samples of 0− 1 from the MNIST dataset. We overlay the image with active gates
locations for each example, indicated here as color dots. Here, we tune the model to select a median of 24 informative
features per image.

the union number of selected features is 9. In Table A.5, we present the statistics of the features chosen for this example.

In these two examples, the model can also reduce the total number of selected features (since the union of features used by
the model is relatively small).

A.14. Time Benchmark Results

To demonstrate the computational efficiency of our models, we first compare the training running time between LL-
SPIN/LSPIN and INVASE on the nonlinear synthetic example E1 (Eq. 9 in Appendix section B.4) where we vary the
number of training samples (200, 600, 1000, 1400, 1800) as shown in Fig. A.12a. We can see that the running time of
INVASE increases rapidly with more training samples, whereas our models remain scalable.

To benchmark the running time when there are more features, we use the dataset from E2 (Eq. 10 in Appendix section B.4)
and generate additional noisy features (2000 features in total including the informative 11 features) by sampling values
from N (0, 1). We show the comparison in Fig. A.12b. In this high dimensional regime, LLSPIN/LSPIN remain scalable
compared with INVASE.

Locally Sparse Neural Networks for Tabular Biomedical Data

Figure A.11: Identification of the cell-type-specific markers by LLSPIN’s local gates (> 0 for open gates and 0 for closed
gates) with the original regularizer (left) and the modified regularizer (right). The values across the x-axis correspond to
the different genes (with only the 2 marker genes shown), and the values across the y-axis correspond to the different cells
(sorted by the cell types: Microglia and Oligodendrocyte Precursor Cells (OPC)). For more convenient visualization, we
only present the first 30 genes.

Training Test
Experiments Models % of 0s % of 1s % 0-1 % of 0s % of 1s % 0-1

Linear 60 samples LLSPIN 40.00 57.67 2.33 40.00 57.33 2.67
Linear 30 samples LLSPIN 40.00 60.00 0.00 40.00 60.00 0.00
Linear 18 samples LLSPIN 40.00 60.00 0.00 40.00 60.00 0.00
Linear 12 samples LLSPIN 40.00 60.00 0.00 40.00 60.00 0.00
Linear 10 samples LLSPIN 40.00 58.00 2.00 40.00 59.33 0.67
Linear 6 samples LLSPIN 50.00 50.00 0.00 50.00 49.33 0.67

Nonlinear E1 LLSPIN 91.11 8.60 0.29 91.14 7.27 1.59
LSPIN 62.90 36.54 0.56 62.27 37.00 0.73

Nonlinear E2 LLSPIN 78.36 20.68 0.96 78.59 20.09 1.32
LSPIN 63.25 35.53 1.22 62.91 35.59 1.50

Nonlinear E3 LLSPIN 83.67 13.69 2.63 83.36 13.32 3.32
LSPIN 52.04 44.90 3.07 51.82 44.73 3.45

Nonlinear E4 LLSPIN 95.50 3.56 0.94 95.68 3.28 1.04
LSPIN 95.82 3.74 0.44 95.72 3.68 0.60

Table A.1: Statistics of the local gate values. The percentage of gates between 0 and 1 is listed in bold.

Rotation MNIST LLSPIN FULL
Angle ACC NLL ECE ACC NLL ECE

10 96.9 1.403 0.014 96.8 1.987 0.023
20 92.1 3.777 0.039 90.8 6.455 0.071
30 77.9 10.341 0.126 75.8 19.859 0.195
40 59.8 20.532 0.243 56.4 43.771 0.367
50 40.1 31.006 0.377 38.6 71.346 0.532
60 27.8 40.641 0.473 26.8 96.177 0.643
70 19.49 48.614 0.543 18.4 119.586 0.724
80 14.24 55.249 0.601 14.6 139.701 0.769
90 11.7 60.477 0.637 12.3 155.147 0.795

Table A.2: Comparison of classification accuracy (ACC), Negative Log Likelihood (NLL), Expected Calibration Error
(ECE) on rotated MNIST.

We design LLSPIN/LSPIN/INVASE using 2 hidden layers with 200 neurons each to perform a fair comparison. We set 2
hidden layers with 100 neurons each for the gating network of LLSPIN/LSPIN and the selector network of INVASE. For all
the three models, λ is set to 1, the batch size is set to full batch training, and epochs is set to 3000. We set the learning rate
for INVASE to 0.0001 (Adam optimizer) and 0.1 for SGD optimizer of LLSPIN/LSPIN.

Locally Sparse Neural Networks for Tabular Biomedical Data

LLSPIN FULL INVASE
MNIST 0.826 1.043 2.008

low sample size MNIST 1.985 3.311 4.675
TOX-171 0.760±0.411 3.968±0.500 2.593±0.799

RELATHE 0.879±0.189 1.858±0.047 1.098±0.123
BASEHOCK 0.367±0.057 1.813±0.040 0.668±0.103

COLON 0.884±0.415 1.071±0.394 1.318±0.653
PBMC 1.012±0.046 4.062±0.059 1.441±0.048

PCMAC 0.816±0.118 1.873±0.049 0.905±0.050

Table A.3: Comparison of Negative Log-Likelihood (NLL) on MNIST, low sample size MNIST, and the real-world datasets.

Number of selected features Percent of samples
< 5 5.90%
5− 9 79.36%
10− 14 14.50%
15− 19 0.24%
20+ 0.00%

Table A.4: Statistics of the selected features on MNIST

Number of selected features Percent of samples
< 3 95.25%
3− 5 4.73%
6− 7 0.02%
8+ 0.00%

Table A.5: Statistics of the selected features on the SEER dataset.

(a) (b)

Figure A.12: Time Benchmark between LLSPIN/LSPIN and INVASE on 2 datasets

B. Reproducibility and Additional Details
In the following subsections, we provide additional experimental details required for the reproduction of the experiments
provided in the main text. The CPU model used for the experiments is Intel(R) Xeon(R) Gold 6150 CPU @ 2.70GHz (72
cores total). GPU model is NVIDIA GeForce RTX 2080 Ti. The operating system is Ubuntu 20.04.2 LTS. The memory
storage is 1 TB in total. The software dependencies are specified in the associated codes.

We apply batch normalization to the prediction network of LLSPIN/LSPIN and STG models throughout the experiments,

Locally Sparse Neural Networks for Tabular Biomedical Data

except for the MNIST example and the survival analysis. We note that the application of batch normalization to the MNIST
data did not improve performance. In the survival analysis, the performance was satisfactory without the application of
batch normalization.

For LLSPIN/LSPIN/STG models, the network weights are initialized by drawing N (0, s) and bias terms are set to 0.
For LLSPIN/LSPIN, we set s to be 0.1 for the MNIST example, time benchmark experiments, and the synthetic datasets
experiments (Except for LSPIN on E1 and LLSPIN/LSPIN on E3 in Section 5.1 where s is set to 0.05 for better convergence).
We set s = 1√

D
(D is the input dimensionality) following Xaiver initialization (Glorot & Bengio, 2010) for the real-world

examples, and s = 0.05 for the cox survival analysis. For marker gene identification, s in the prediction network is 0.1,
and s in the gating network is set to 0.001 which we found to be helpful for stabilizing the training. For STG models, s
is set to 0.1 for the real-world datasets and 0.05 for the cox survival analysis. Unless expressly noted, we use tanh as the
hidden layer activation function for both the gating network of LLSPIN/LSPIN and the nonlinear prediction network of
LSPIN/STG. For other neural network-based methods, we use their default activation functions.

Across the experiments, we only enabled the second regularization term in the MNIST example and the marker gene
identification example.

For the experiments, standard metrics in supervised learning, including classification accuracy, R2 and mean squared error
and concordance index, are adopted to evaluate the performance of different models in classification, regression, and survival
analysis tasks.

B.1. Algorithms

Algorithm 1 Locally SParse Interpretable Networks (LSPIN) Pseudo-code
Training:
Input: observations {x(i), y(i)}Ni=1, regularization parameter λ, number of epochs T , batch size B, learning rate γ.
Output: Gating network ΨΩ and prediction model fθ
Initialize the weights Ω of gating network Ψ
for t = 1 to T do

for each size B batch do
for i = 1 to B do

Compute µ(i) = ψ(x(i)|Ω)
Sample ϵ(i) from N (0, Iσ2)
Compute local stochastic gates:
z(i) = max(0,min(1, 0.5 + µ(i) + ϵ(i)))

end for
Compute the loss:
L̃ = 1

B

∑B
i=1(∥fθ(x

(i) ⊙ z(i))− y(i)∥2 +R(z(i))) (whereR(z(i)) is defined in Eq. 5)
Update θ = θ − γ∇θL̃, Ω = Ω− γ∇ΩL̃

end for
end for

Inference:
Input: observations {x(i)}Mi=1 with x(i) ∈ RD, Trained gating network ΨΩ, and prediction model fθ
Output: Local gates:

{z(i) = max(0,min(1, 0.5 +ψ(x(i)|Ω)))}Mi=1

Predictions: {ỹ(i) = fθ(x
(i) ⊙ z(i))}Mi=1

Locally Sparse Neural Networks for Tabular Biomedical Data

B.2. Regularization Term

The leading term in our regularizer is expressed by :

EZ ∥Z∥0 =

D∑
d=1

P[zd > 0] =

D∑
d=1

P[µd + σϵd + 0.5 > 0]

=

D∑
d=1

{1− P[µd + σϵd + 0.5 ≤ 0]}

=

D∑
d=1

{1− Φ(
−µd − 0.5

σ
)}

=

D∑
d=1

Φ

(
µd + 0.5

σ

)

=

D∑
d=1

(
1

2
− 1

2
erf

(
−µd + 0.5√

2σ

))

To tune σ, we follow the suggestion in (Yamada et al., 2020). Specifically, the effect of σ can be understood by looking
at the value of ∂

∂µd
EZ ||Z||0. In the first training step, µd is 0. Therefore, at initial training phase, ∂

∂µd
EZ ||Z||0 is close

to 1√
2πσ2

d

e
− 1

8σ2
d . To enable sparsification, this term (multiplied by the regularization parameter λ) has to be greater than

the derivative of the loss with respect to µd because otherwise µd is updated in the incorrect direction. To encourage such
behavior, we tune σ to the value that maximizes the gradient of the regularization term. As demonstrated in Fig. B.1 this is
obtained when σ = 0.5. Therefore, we keep σ = 0.5 throughout our experiments unless specifically noted.

Figure B.1: The value of ∂
∂µEZ ||Z||0|µ=0.5 = 1√

2πσ2
e−

1
8σ2 for σ = [0.001, 2].

B.3. Linear Regression Example Details

B.3.1. DETAILS OF THE MOTIVATING EXAMPLE AND EXTENDED EVALUATIONS

First, we describe the data model used in the motivating example (see Section 2) and the extended results in section A.1.

In total, the data matrix X has 2N = 600 samples where the first 300 samples (group 1) are i.i.d. based on N (1, 0.5I),
and the remaining 300 i.i.d. samples (group 2) are drawn from N (−1, 0.5I) where I is a 5× 5 identity matrix. 10% of the
samples (60 data points) are used as validation set, 10% of the samples (60 data points) are used as the test set. From the
remaining data (480 data points), we randomly pick small subsets of samples (60,30,18,12,10,6 samples) as our training
sets. We compute y based on Eq. 1 in the main text for all the samples. For the motivating example, the training set has 10
samples. For the extended evaluations, the training set has 60,30,18,12,6 samples for each case.

Locally Sparse Neural Networks for Tabular Biomedical Data

For LLSPIN, LASSO, Random Forest, and Neural Network, we optimize each model using 100 trials of Optuna (a hyper-
parameter optimization software (Akiba et al., 2019)) on the validation set by minimizing the validation mean squared error,
with grids of parameters listed in Table B.1. After Optuna selects the parameters, we test each model’s performance on the
test set.

Parameters Search Range
learning rate (LLSPIN,Neural Net) [1e-2,2e-1]

epochs (LLSPIN,Neural Net) {2000, 5000, 10000, 15000}
λ (LLSPIN) [1e-3,1e-2]
α (LASSO) [1e-3,5e-1]

n estimators (RF) [1,500]
max depth (RF) [1,30]

min samples split (RF) [2,10]

Table B.1: Parameter settings for different models applied to the linear synthetic example

For the motivating example where the training size is 10, we include Localized LASSO and INVASE into com-
parison. For Localized LASSO, the affinity between samples are computed using the default gaussian kernel from
sklearn.metrics.pairwise.pairwise kernels. We also optimize these 2 models via 100 trials of Optuna. For Localized
LASSO, the grid of lam net and lam exc is set to be {0.001, 0.01, 0.1, 1, 5, 10, 50, 100}, and the grid of number of
iterations is {100, 300, 500, 1000}. For INVASE, the grid of λ is [1e − 3,1e − 2]. The grid of number of epochs is
{2000, 5000, 10000, 15000}. The grid of learning rate is [1e− 5,1e− 4].

In this example, we set the architecture of LLSPIN and the baseline Neural Network to 4 hidden layers with 100, 100, 10, 1
neurons in each layer, respectively. For the gating network of LLSPIN we use 1 hidden layer with 10 neurons. We use full
batch training for both LLSPIN and the Neural Network. INVASE is set to have identical architectures.

B.3.2. DETAILS OF THE EXPERIMENT INVOLVING LINEAR SYNTHETIC DATASET WITH UNEQUAL FEATURE
COEFFICIENTS

We take all the 480 remaining data points as training samples for this experiment. y is computed based on Eq. 7 in Section
A.2 for all the samples. In this example, we set the architecture of LSPIN to 3 hidden layers with 100, 10, 1 neurons in each
layer, respectively. For the gating network of LSPIN we use 2 hidden layer with 100 neurons in each layer. The activation
function of the prediction network is set to relu for this particular example. The λ is set to 10−5, the learning rate is set to
0.2, and the number of epochs is set to 3500. We use full batch training for this example.

B.4. Nonlinear Synthetic Datasets Details

Here we provide details for reproduction of the example presented in Section 5.1.

B.4.1. DATA GENERATION AND SPLIT

E1, E2, and E3 are adapted from (Yoon et al., 2018) (see Eq. 9, 10, and 11). In each example, we generate the data matrix
X with 2000 samples and 11 features that are sampled independently from N (0, I) where I is an 11× 11 identity matrix.
The response is y = 1A(

1
1+Logit(x) > 0.5) where 1A is an indicator function and the Logit(x) for each sample is calculated

based on different features depending on the sign of the 11th feature x11. Each Logit is defined based on one of the following
equations

Locally Sparse Neural Networks for Tabular Biomedical Data

E1: Logit =

{
e(x1×x2), if x11 < 0,

e(
∑6

i=3x
2
i−4), otherwise

(9)

E2: Logit =

{
e(x1×x2), if x11 < 0,

e(−10 sin (0.2x7)+|x8|+x9+e−x10−2.4), otherwise
(10)

E3: Logit =

{
e(

∑6
i=3x

2
i−4), if x11 < 0,

e(−10 sin (0.2x7)+|x8|+x9+e−x10−2.4), otherwise
(11)

To evaluate a LSS regime, the number of samples we use is far fewer compared with the number of samples used in
experiments conducted in (Yoon et al., 2018). We split the data and used 90% for training and 10% for testing. 5% of the
training set is set aside as a validation set.

Additionally, to further demonstrate LSPIN’s robustness on challenging domains, we design a 4th example (termed E4, see
Eq. 12), for which we generate the data matrixX with 2N = 1000 samples and 4 features that consists of 2 sample groups.
The first N samples are sampled from N (1, 0.5I), and the second N samples are sampled from N (−1, 0.5I) where I is a
4× 4 identity matrix. The response is defined as y = 1A(

1
1+Logit(x) > 0.5), where 1A is an indicator function and Logit(x)

depends on features x1 and x2 for the first N samples, and on features x3 and x4 for the remaining N samples. To make the
classification task harder, we add other 46 nuisance features (irrelevant for the prediction task) sampled from N (0, 0.5I)
where I is an 46× 46 identity matrix.

E4: Logit =

{
e(x1×x2−0.9), if first N samples
e(x

2
3+x

2
4−2.5), otherwise

(12)

For E4, we split the data and use 95% for training and 5% for testing. 10% of the training set is set aside as validation set.

Lastly, to evaluate our model in the nonlinear regression regime, we design a moving XOR dataset as the 5th example (E5,
see Eq. 13). Specifically, we generate the data matrix X with 3N = 2100 samples and 20 features, where each entry is
sampled from a fair Bernoulli distribution (P (xij = 1) = P (xij = −1) = 0.5). Then we add an additional feature x21 for
each sample where x21 = −1 for the first N samples, x21 = 0 for the second N samples, x21 = 1 for the last N samples.
Based on the value of x21, the response variable y for different samples will have different subset of features, as defined in
Eq. 13.

E5: y =

x1 × x2 + 2x21, if x21 = −1,

x2 × x3 + 2x21, if x21 = 0,

x3 × x4 + 2x21, if x21 = 1,

(13)

For E5, the training set has 1500 samples, the validation and test have 300 samples each.

B.4.2. TRAINING PROCEDURES AND HYPER-PARAMETER TUNING AND SETTINGS

For these 5 experiments, we optimize each model on the validation set (minimizing classification error for classification and
mean squared error for regression) using Optuna and evaluate the optimized models on the test sets. For the neural network
based methods, the F1-score of the selected features is also evaluated on the test set.

For lasso, we optimize the l1 regularization parameter with 20 trials and the grid range is [1e − 2, 1e3]. For SVC, we
optimize the regularization parameter c with 20 trials and the grid range is [1e− 2, 1e3]. For Random Forest, we optimize
the number of estimators, max depth, and min samples split with 100 trials and the corresponding grid ranges are [1, 500],
[1, 30], [2, 10]. For XGBoost, we optimize the number of estimators and max depth with 20 trials and the corresponding
grid ranges are [1, 500] and [1, 30].

Locally Sparse Neural Networks for Tabular Biomedical Data

For MLP/STG(Linear&Nonlinear)/LLSPIN/LSPIN/INVASE/L2X/REAL-x, the parameter settings and grids are listed
in Table B.2. The number of hidden layers and nodes are identical for these models. For E2, E3, E4, we use 2 hidden
layers with 200 nodes each for the prediction network architecture. We use 2 layers with 100 nodes each for the gating
network of LLSPIN/LSPIN and the selector network of INVASE/L2X/REAL-x. For E1, we add one layer with 200 nodes
to the prediction architecture for all models and one layer with 100 nodes to the gating network of LLSPIN/LSPIN and
selector network of INVASE/L2X/REAL-x. For E5, we use 3 hidden layers with 500, 100, 1 nodes each for the prediction
network architecture. We use 1 layer with 100 nodes for the gating network of LLSPIN/LSPIN and the selector network of
INVASE/L2X. For E5, we use leaky relu as the activation function for the prediction network of LSPIN.

To visualize the selected features for LSPIN (Fig. A.3), we repeated the optimization procedure 5 times and plotted the
average gate values on the test set.

Batch Size Number of Epochs Learning Rate λ/k
E1 Full 10000 1e-1 [2e-1,3e-1]/

(MLP/STG/LLSPIN/LSPIN/INVASE) (MLP/STG/LLSPIN/LSPIN) {1,2,3,4,5,6,7}
{1000,3000,5000,7000,9000} (L2X) 1e-4 (INVASE)

{500,1000,2000,5000,10000} (REAL-x) [1e-5,1e-2] (L2X, REAL-x)
E2 Full 10000 1e-1 [0.1,0.15]/

(MLP/STG/LLSPIN/LSPIN/INVASE) (MLP/STG/LLSPIN/LSPIN) {1,2,3,4,5,6,7}
{1000,3000,5000,7000,9000} (L2X) 1e-4 (INVASE)

{500,1000,2000,5000,10000} (REAL-x) [1e-5,1e-2] (L2X, REAL-x)
E3 Full 3000 1e-1 [0.15,0.2]/

(MLP/STG/LLSPIN/LSPIN/INVASE) (MLP/STG/LLSPIN/LSPIN) {1,2,3,4,5,6,7}
{1000,3000,5000,7000,9000} (L2X) 1e-4 (INVASE)

{500,1000,2000,5000,10000} (REAL-x) [1e-5,1e-2] (L2X, REAL-x)
E4 Full {1000, 1200} [3e-2,5e-2] [1.33,1.35]/

(MLP/STG/LLSPIN/LSPIN/INVASE) (MLP/STG/LLSPIN/LSPIN) {1,2,3,4,5,6,7}
{1000,3000,5000,7000,9000} (L2X) [1e-5,1e-4] (INVASE)

{500,1000,2000,5000,10000} (REAL-x) [1e-5,1e-2] (L2X, REAL-x)
E5 Full {2000,3000,5000,7000} [1e-2,1e-1] 1/

(MLP/STG/LLSPIN/LSPIN/INVASE) (MLP/STG/LLSPIN/LSPIN) {1,2,3,4,5,6,7}
{1000,3000,5000,7000,9000} (L2X) [1e-5,1e-3] (INVASE)

[1e-5,1e-2] (L2X)

Table B.2: Parameter settings and grids for the 5 nonlinear experiments. For LLSPIN/LSPIN/INVASE, we run 5 Optuna
trials for E1, E2, E3 and 20 trials for E4 and E5. For L2X and REAL-x, we run 100 trials across datasets. Note that
LLSPIN/LSPIN use SGD Optimizer and others use Adam optimizer. * We note that for Linear STG in E1, we observed that
[2e-1,3e-1] is too high for λ that no features are selected, therefore, we adjust the corresponding range to [1e-2,1e-1].

To evaluate a fair comparison of the prediction performance, we sparsify the input to the prediction network of REAL-x by
multiplying the original information with the output from the selector network.

For TabNet, the grid of the regularization parameter λsparse is set to {0.0001, 0.001,0.01,0.1,0.2,0.3,0.5}. The grids of nd

and na are both {8,16,24,32,64,128}. The grid of number of steps is {3,4,5,6,7,8,9,10}. The grid of γ is {1.0,1.2,1.5,2.0}.
The grid of learning rate is {0.005,0.01,0.02,0.025}, and the grid of momentum is {0.6,0.7,0.8,0.9,0.95,0.98}. The sched-
uler function is set to StepLR and the grids of the corresponding step size and decay rate are {500,2000,8000,10000,20000}
and {0.4,0.8,0.9,0.95}, respectively. The grid of max number of epochs is {4000,10000,20000}. The batch size is set to
full batch and the virtual batch size is set to 5. The early stopping patience is set to 30 epochs. Other parameters are set to be
default. We optimize the model on each dataset with 100 trials of Optuna.

B.5. Real-world Datasets Details

Here we provide details for reproduction of the example presented in Section 5.3.

Locally Sparse Neural Networks for Tabular Biomedical Data

B.5.1. PBMC DATASET PREPROCESSING STEPS

The purified Peripheral Blood Mononuclear Cells (PBMC) dataset is collected from (Zheng et al., 2017), in which the
data matrix has cells as samples, genes as features, and each entry represents the number of mRNAs expressed from the
corresponding gene of that cell. This raw data matrix is first filtered (cells that have less than 400 expressed genes are
excluded, and genes that are expressed in less than 100 cells are excluded) and normalized by the library size (total number
of mRNAs expressed per cell). We then exclude the non-protein-coding genes and retain only cells that belong to the
following 4 cell types: memory T cells, naive T cells, regulatory T cells, naive cytotoxic T cells.

We use 34, 115 cells (90% of the data) to select the 2000 most variable genes and use the remaining 3, 791 cells (10% of the
data) with these 2000 genes as the final processed dataset. Then, we split training/test/validation sets as described in the
following subsection.

B.5.2. TRAINING PROCEDURES

In this section, we introduce our training procedures for the real-world LSS datasets. Specifically, for the BASEHOCK,
RELATHE, PCMAC, and PBMC datasets, 5% of each dataset is set aside as a validation set. Let us denote the remaining
95% of the data as X̄ . We split X̄ into 5 non-overlapping folds.

We train each model on 1 fold of X̄ and test it on the remaining non-overlapping 4 folds of X̄ . The hyper-parameters are
optimized on the validation set via Optuna (50 trials for the neural network-based methods and tree-based methods and five
trials for INVASE due to long computation time) based on the model trained on a single fold and tested on the remaining 4
non-overlapping folds. These (fixed) hyper-parameters are then used to train the model on the second fold and test it on the
remaining 4 non-overlapping folds. Similarly, we use these fixed hyper-parameters to train models for folds No.3, No.4, and
No.5, and each time test these models on the remaining 4 non-overlapping folds. This training and testing procedure is
repeated for several regularization parameters; then, we report the best average performance for each method.

Since COLON and TOX-171 are of extreme LSS, we use a grid of regularization parameters for each method and identify
the best average performance (test accuracy and the number of selected features) across ten runs (using 80% of the samples
for training and 20% for testing).

The regularization parameters are tuned to select fewer than 50 features, except for XGBoost when we applied it to the
PBMC dataset. In this case, the minimum possible number of features chosen by XGBoost was 64. For local methods
including LLSPIN, LSPIN, and INVASE, L2X, TabNet, and REAL-x, the average (over the five folds) median (over the
training samples) number of selected features is reported.

B.5.3. HYPER-PARAMETER TUNING AND SETTINGS

For LLSPIN/LSPIN/STG/Neural Network model, the prediction network architecture is set to 3 hidden layers with 100,
50, 30 neurons, respectively, for all the datasets. The gating network for LLSPIN/LSPIN models is set to one single layer
with 500 neurons for BASEHOCK, RELATHE, PCMAC, PBMC datasets, and two hidden layers with 100 and 10 neurons
respectively for the COLON and TOX-171 datasets. For INVASE/L2X/REAL-x, the network architecture is set to default.
The predictor network has two hidden layers and 200 neurons on each layer, and the selector network has two hidden layers
and 100 neurons on each layer.

For these neural network-based methods, the grids of regularization parameter λ are listed in Table B.3, along with the grids
of learning rate and epochs that are optimized via Optuna for the BASEHOCK, RELATHE, PCMAC, PBMC datasets, and
the settings of learning rate and epochs in the COLON and TOX-171 datasets. We use full batch training for all neural
network-based methods for all 6 datasets, except for TabNet, where we set batch size and virtual batch size to be 100 and 10
for BASEHOCK/RELATHE/PCMAC/PBMC and 20 and 4 for COLON and TOX-171.

We studied the TOX-171 dataset, setting the grid of λ of the STG models in the range of [1,2]. We observed that in this
range, the number of features was too high; therefore we extended the range to [1,10] for the STG models.

For LASSO and SVC, the grid for their regularization parameter c is set to [1e-3,1e-1] for the BASEHOCK, RELATHE,
PCMAC, PBMC datasets, and [1e-2,1e3] for the COLON and TOX-171 datasets.

For Random Forest and XGBoost, we use number of estimators to replace the regularization parameter proposed
in the previously training procedures. The grid of number of estimators is {1,5,10,20,30,50,100,200,500,1000}

Locally Sparse Neural Networks for Tabular Biomedical Data

Dataset Method λ/k/λsparse Learning Rate Number of Epochs

BASEHOCK
RELATHE
PCMAC
PBMC

LLSPIN [1,10] [1e-2,1e-1] {1000, 3000, 5000, 7000, 9000}
LSPIN [1,10] [1e-2,1e-1] {1000, 3000, 5000, 7000, 9000}
STG (l) [1,10] [1e-1,2e-1] {3000, 5000, 7000, 9000}
STG (n) [1,10] [1e-1,2e-1] {3000, 5000, 7000, 9000}

Neural Net None [1e-2,1e-1] {1000, 3000, 5000, 7000, 9000}
INVASE {1, 5, 10} [1e-5,1e-4] 10000

L2X {1, 5, 10} [1e-5,1e-2] {1000, 3000, 5000, 7000, 9000}
TabNet {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.5} [0.005,0.025] {2000, 4000, 6000, 8000, 10000}

REAL-x {10, 30, 50, 70, 90} [1e-5,1e-2] {100, 200, 500, 1000, 2000}

COLON

LLSPIN [1,2] 0.1 7000
LSPIN [1,2] 0.05 7000
STG (l) [1,2] 0.5 7000
STG (n) [1,2] 0.5 7000

Neural Net None 0.1 7000
INVASE {1, 1.5, 2} 0.0001 10000

L2X {1, 3, 5, 7, 9, 10} 0.0001 10000
TabNet {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.5} 0.0001 10000

REAL-x {1, 5, 10, 30, 50} 0.0001 1000

TOX-171

LLSPIN [1,2] 0.1 7000
LSPIN [1,2] 0.05 7000
STG (l) [1,10] 0.5 7000
STG (n) [1,10] 0.5 7000

Neural Net None 0.1 7000
INVASE {1, 1.5, 2} 0.0001 10000

L2X {1, 3, 5, 7, 9, 10} 0.0001 10000
TabNet {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.5} 0.0001 10000

REAL-x {1, 5, 10, 30, 50} 0.0001 1000

Table B.3: Parameter settings for the neural network based methods on the real-world data. Note that
INVASE/L2X/TabNet/REAL-x use Adam Optimizer and others use SGD optimizer. For the regularization parameter
λ, the grid size for LSPIN and STG models is 5 on BASEHOCK/RELATHE/PCMAC/PBMC datasets and 20 on COLON
and TOX-171 datasets.

for both methods when we applied them to the BASEHOCK, RELATHE, PCMAC, PBMC datasets, and is
{1,2,3,4,5,8,10,15,20,25,30,40,50,60,70,80,100,200,500,1000} when we applied them to the COLON and TOX-171 datasets.

Other parameter settings for XGBoost are as follows: For the BASEHOCK, RELATHE, PCMAC, PBMC datasets, we
optimize max depth via Optuna with grid range [1,10]. For the COLON and TOX-171 datasets, we set max depth to 10.

Other parameter settings for Random Forest are as follows: For the BASEHOCK, RELATHE, PCMAC, PBMC datasets,
we optimize max depth and minimum samples to split via Optuna with grid range [1,10] and [2,50], respectively. For the
COLON and TOX-171 datasets, we set max depth to 10 and minimum samples to split to 5.

To evaluate a fair comparison of the prediction performance, we sparsify the input to the prediction network of REAL-x by
multiplying the original information with the output from the selector network.

For TabNet, the early stopping patience is set to 30 epochs. Other parameters are set to be Default.

In the MNIST experiment we use a batch size of 100 with a learning rate of 0.1 and train for 300 epochs. When λ2 > 0, we
use a warm up procedure where we first train the model for 200 epochs with λ2 = 0 and then increase λ2. We observe that
this stabilizes the training procedure.

B.6. Cox Proportional Hazard Models for Survival Analysis Details

Here we provide details for reproduction of the example presented in Section 5.4.

Locally Sparse Neural Networks for Tabular Biomedical Data

B.6.1. SEER DATASET PREPROCESSING STEPS

The data for this study were collected from the Surveillance, Epidemiology, and End Results (SEER) public datasets
(National Cancer Institute, 2019). Female patients, ages 25-85, diagnosed with histologically confirmed non-metastatic
breast cancer between Jan 1, 2000, and Dec 31, 2016, are included. Patients with metastatic disease and those with missing
data on stage, T grade, number of positive nodes, number of T nodes, vital status, and survival time are excluded. Only
those patients who underwent surgery and had a known tumor size of less than 200 mm are included. Patients with bilateral
breast cancer, inflammatory disease, and in-situ tumor are excluded. We use one-hot encoding for the categorical variables
and drop features with unknown/unspecified values. Continuous variables are z-scored. We further add 3 random uniform
variables as noise to the data. In total, we have 538, 315 patients and 55 features after processing.

B.6.2. TRAINING PROCEDURES AND HYPER-PARAMETER TUNING AND SETTINGS

We apply a training procedure similar to the one we used to the BASEHOCK, RELATHE, PCMAC, PBMC datasets for the
SEER data.

5% of each dataset is set aside as a validation set. Let us denote the remaining 95% of the data as X̄ . We split X̄ into 10
non-overlapping folds.

We train each model on 1 fold of X̄ and test it on the remaining non-overlapping 9 folds of X̄ . The hyper-parameters
are optimized on the validation set via Optuna (50 Optuna trials for the neural network methods on the learning rate and
epochs as in Table B.4) based on the model trained on a single fold and tested on the remaining 9 non-overlapping folds.
These (fixed) hyper-parameters are then used in training the model on the second fold and testing it on the remaining 9
non-overlapping folds. Similarly, we use these fixed hyper-parameters to train models for folds No.3, No.4, No.5, ..., No.10,
and each time test these models on the remaining 9 non-overlapping folds. We then compute the average (over the ten folds)
performance (test concordance index and the number of selected features). This training and testing procedure is repeated
for several regularization parameters to produce the results in the interpolation plot Fig.4 (Left). We note that Random
Survival Forest selects almost all the features over different n estimators parameters as shown as an isolated interpolation
point in Fig.4 (Left).

Parameters Range
learning rate (all Neural Network methods) [1e-2,1]

epochs (all Neural Network methods) {500, 1000, 2000}
λ (COX-LLSPIN, COX-LSPIN) [1e-9,1e-5]
λ (COX-STG(Linear/Nonlinear)) [1e-3,1e-1]

α (COX-LASSO) [1e-7,1]
n estimators (Random Survival Forest) {1,10,100,500,1000}

Table B.4: Parameter settings for different models for the survival analysis example. For COX-LLSPIN/COX-LSPIN/COX-
STG, the regularization parameter is λ. For COX-LASSO, the regularization parameter is α. For Random Survival Forest,
we use n estimators to replace the regularization parameter.

In this example, we set the nonlinear neural network methods (COX-LSPIN, COX-STG(Nonlinear), DeepSurv) to 3 hidden
layers with 100, 30, and 5 neurons, respectively. The linear neural network methods (COX-LLSPIN, COX-STG(Linear))
have no hidden layers. The gating network of LLSPIN/LSPIN is set to 1 hidden layer with 300 neurons. For the local
methods, including COX-LLSPIN and COX-LSPIN, the average (over the 10 folds) median (over the training samples)
number of selected features is reported.

B.7. Single Nucleus RNA-seq Dataset Details

B.7.1. DATA PREPROCESSING AND SPLIT

Similar to the scRNA-seq data, in the data matrix, the samples are cells, the features are the genes, and each entry represents
the number of mRNAs expressed from the corresponding gene of that cell. The cells are first filtered based on the number
of genes that have non-zeros values (lower threshold is 500 and upper threshold is 7500) and then filtered based on the
mitochondrial ratio (10%). The data are imputed using ALRA (Linderman et al., 2022).

Locally Sparse Neural Networks for Tabular Biomedical Data

We randomly sample 1000 cells of each type (Microglia cells and Oligodendrocyte Precursor Cells (OPC)), then use 50%
of the data to select 100 most variable genes that are not correlated with ITGAM and PDGFRA as noisy genes. For the
remaining data, we keep these 100 genes along with ITGAM and PDGFRA as features and use 80%/10%/10% as the
train/validation/test split.

B.7.2. HYPER-PARAMETER TUNING AND SETTINGS

For each model in Table 3, we optimize over a grid of the corresponding regularization parameter by minimizing the
classification error (if two models have the same performance, the sparse one will be chosen). For LLSPIN/INVASE/REAL-
x, the grid of λ is {1, 10, 20, 30, 40, 50}. For L2X, the grid of k is {1, 2, 3, 4, 5, 6, 7}. For TabNet, the grid of λsparse is
{0.5, 1, 5, 10, 20, 50}.

For LLSPIN, the prediction network is 2 layers with 200 and 100 nodes each. The gating network is a 1 layer with 100
nodes. The learning rate is set to be 0.1. The number of epochs is 2000. The batch size is set to full batch training. The
standard deviation (σ) of the Gaussian reparameterization is set to 1.

For INVASE/L2X/REAL-x, the network architecture is set to default. The predictor network has two hidden layers and 200
neurons on each layer, and the selector network has two hidden layers and 100 neurons on each layer. The learning rate is
set to be 1e− 3, the number of epochs is 2000. To evaluate a fair comparison of the prediction performance, we sparsify
the input to the prediction network of REAL-x by multiplying the original information with the output from the selector
network.

For TabNet, the learning rate is set to 1e− 3, and the number of epochs is 2000. The batch size is 100, and the virtual batch
size is 10. The early stopping patience is 30 epochs. Other parameters are set as default.

C. Strengths and Limitations
The proposed model leads to an interpretable prediction model that can handle datasets of low sample size (LSS). Our
results demonstrate that local sparsity tied with a linear model can be a robust classifier on real biological datasets. As for
the societal impact, we don’t know the effect of adversarial examples on the hazards model.

Currently, the sparsity of our model is tuned via a regularization parameter λ1 while stability is tuned via λ2 (see Eq. 5). In
certain setting, tuning these parameters could be a demanding task, since it involves balancing with the main loss term. In
the future, we plan to explore a more flexible mechanism for local feature selection. One possible way that this could be
realized is using a concrete layer as proposed in (Abid et al., 2019).

