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Abstract
Tabular datasets with low-sample-size or many
variables are prevalent in biomedicine. Practi-
tioners in this domain prefer linear or tree-based
models over neural networks since the latter are
harder to interpret and tend to overfit when ap-
plied to tabular datasets. To address these neural
networks’ shortcomings, we propose an intrin-
sically interpretable network for heterogeneous
biomedical data. We design a locally sparse neu-
ral network where the local sparsity is learned
to identify the subset of most relevant features
for each sample. This sample-specific sparsity is
predicted via a gating network, which is trained
in tandem with the prediction network. By forc-
ing the model to select a subset of the most in-
formative features for each sample, we reduce
model overfitting in low-sample-size data and ob-
tain an interpretable model. We demonstrate that
our method outperforms state-of-the-art models
when applied to synthetic or real-world biomed-
ical datasets using extensive experiments. Fur-
thermore, the proposed framework dramatically
outperforms existing schemes when evaluating its
interpretability capabilities. Finally, we demon-
strate the applicability of our model to two im-
portant biomedical tasks: survival analysis and
marker gene identification.

1. Introduction
Machine learning has revolutionized the way we do scien-
tific research. In recent years, deep neural networks (NN)
have closed the performance gap between humans and ma-
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chines in disciplines such as vision, image processing, audio
processing, and natural language processing. The tremen-
dous success of these complex models may be explained
by an increase in data size, computational resources that
enable training deeper networks (Tishby & Zaslavsky, 2015;
Arora et al., 2016), or by implicit properties of the opti-
mization tools (Yaguchi et al., 2018; Soudry et al., 2018).
State-of-the-art frameworks, such as convolutional neural
networks, recurrent neural networks, and transformers ex-
ploit structures or invariants in the data to inform the design
of the NN. Unfortunately, these models are not suitable for
biomedical applications when the associated datasets are
tabular, lack spatial or temporal structure, or are heteroge-
neous. Therefore, biomedical data pose a challenge for deep
nets and require deviating from tried and true methodologies
(Borisov et al., 2021; Marais, 2019; Shavitt & Segal, 2018;
Shwartz-Ziv & Armon, 2021).

In medicine or biology, practitioners seek for ML models
that are accurate and interpretable. Accuracy is important
for improving personalized prognosis and diagnosis. At
the same time, interpretability can lead to the identifica-
tion of driving factors in complex high-dimensional sys-
tems and is imperative to help practitioners trust the model.
When trained on tabular biomedical data, deep nets are
hard to interpret and may lead to low accuracy. This is be-
cause biomedical datasets are often low-sample-size (LSS)
(Liu et al., 2017; Aoshima et al., 2018), high dimensional,
or contain nuisance features. These challenges often lead
practitioners to abandon NNs and switch to linear models
in biomedicine. Linear feature selection models such as
(Tibshirani, 1996; Fan & Li, 2001; Lindenbaum & Steiner-
berger, 2021a;b) are interpretable and able to cope with
high-dimensional low sample size (HDLSS) data but come
with the cost of limited expressivity.

In contrast, deep over-parametrized nets are highly expres-
sive but tend to overfit on LSS tabular data; one reason is
that in this regime, the vast amount of parameters leads to
a large variance of the gradient estimates (Liu et al., 2017).
To prevent model overfitting, several authors (Li et al., 2016;
Scardapane et al., 2017; Feng & Simon, 2017; Yamada
et al., 2020) have proposed to apply different regulariza-
tion schemes to sparsify the input features. Since these
models select one global set of informative features, they
are not suited for the heterogeneity of tabular biomedical
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Figure 1: Strong ML models fail to learn the correct regression function when the target depends on different subsets of
variables for different samples (see data model in Eq. 1). Each subplot presents the predicted (y-axis) vs. true (x-axis) values
for different baselines. Points on the diagonal line indicate correct predictions. R-square and Mean Squared Error (MSE) are
reported for each model. In this work, our proposed model (left plot) that effectively identifies the informative features for
each sample while learning the regression coefficients.

data. These global feature selection models occasionally
result in unsatisfactory performance and do not provide a
sample-specific explanation for the predictions.

Our working hypothesis is that since biomedical data is
heterogeneous, different samples may require distinct pre-
diction functions. Therefore, we design a simple yet re-
markably effective NN-based framework that leads to dra-
matically higher prediction performance yet is intrinsically
interpretable and is less prone to overfitting. Specifically, we
propose a Locally SParse Interpretable Network (LSPIN),
a NN that incorporates interpretability into its design (self-
explanatory) by sparsifying the input variables used by the
model locally (for each sample) while learning a prediction
function. To identify the local sparsity patterns, we train a
gating network to predict the probabilities of the instance-
wise gates being active. The parameters of the local gates,
along with the model coefficients, are learned in tandem
by minimizing a classification or regression loss. Our para-
metric construction leads to a highly interpretable (locally
sparse) model which relies on a small subset of the input
features for each instance.

Our contributions are: (i) We propose a probabilistic ‘0 like
regularization that leads to sample-specific feature selection
that is stable across close samples defined by an affinity
kernel. (ii) By training our gating network alongside a pre-
diction network, we obtain a powerful interpretable NN
framework for tabular biomedical data. (iii) We show via
extensive synthetic simulations that our model, albeit sim-
ple, can learn the correct target function and identify the
informative variables while requiring a small number of
observations. (iv) We demonstrate a strong property of our
framework: a linear predictor with local sparsity often out-
performs state-of-the-art nonlinear models when applied
to real-world datasets. (v) We explore the applicability
of the proposed approach to several challenging tasks in
biomedicine, including survival analysis and marker genes
identification.

2. Motivating Example
To motivate our proposed framework, let us consider a data
matrix X , with N measurements (e.g., patients) and D
variables (e.g., genes). Given a target variable y, in super-
vised learning, we are interested in modeling a function f
that can predict the target y based on the observations X .
Unfortunately, if D > N learning such function becomes
challenging and may lead to overfitting. Moreover, since
the biomedical datasets are heterogeneous, the informative
variables may vary within different population subsets. To
clarify this point, let us consider the following simple lin-
ear regression problem. We are given a small (N = 10)
synthetic dataset in which the response variable y of dif-
ferent samples depends on different subsets of features of
the data matrixX . We assume that the data comprise two
subpopulations, which we term here group-1 and group-
2. The corresponding response variable y for samples in
group-1 and group-2 is defined in Eq. 1 where for group-1,
the response is a linear combination of the 1st,2nd, and 3rd

features, and for group-2 it is a linear combination of the
3rd,4th, and 5th features:

y =

(
�2x1 + x2 � 0:5x3; if in group 1,
�0:5x3 + x4 � 2x5; if in group 2:

(1)

Group 1 and 2 are defined by drawing values for x1 � x5

from separated Gaussians (details appear in Appendix sec-
tion B.3). The simple example above comprises two dif-
ferent linear relationships between the response y and the
observed variables. Since we do not know the membership
of each point to one of the two groups, attempting to fit a
single model to this data is challenging. One way to model
this type of relationship is via Hierarchical Bayesian Mod-
els (HBM) (Allenby & Rossi, 2006; Shiffrin et al., 2008).
HBMs combine multiple sub-models with Bayes’ theorem
to estimate the posterior distribution of the data. While
HBMs can account for data dependent parameters, ensur-
ing sparsity of the features requires careful design of the
prior distributions. To demonstrate the difficulty involved in
modeling data generated by the model above, in Fig. 1 we
demonstrate that strong ML models fail to learn the correct
regression function. In this study, we design LSPIN that
is able to learn the correct target function while accurately
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identifying the informative features for each sample (see
Appendix Fig. A.1).

3. Problem Setup and Method
We are interested in the standard supervised learning based
on tabular biomedical data points fx(i); y(i)gNi=1, where
x(i) 2 RD, with x(i)

d representing the dth feature of the
ith vector-valued observations. Our goal is to design a
method that can overcome the challenges posed by biomed-
ical datasets while leading to accurate and interpretable
predictions. Specifically, we want to learn an intrinsically
interpretable prediction model f� 2 F with:
P1 Small generalization error even in cases of N < D.
P2 Sample-specific removal of nuisance variables whose
inclusion could be detrimental for predictions.
P3 High expressive power.

Perhaps the most simple model that leads to P1 is the
LASSO (Tibshirani, 1996). The LASSO minimizes the em-
pirical risk of a linear model f(x(i)) = �x(i) (with �T 2
RD), while penalizing for the sum of absolute values of ac-
tive coefficients. This global linear feature selection model
is interpretable since it provides an additive quantification to
the contribution of each variable. To enable sample-specific
variable selection (P2), the Localized LASSO was intro-
duced in (Yamada et al., 2017). The authors introduce local
weights �(i) to the following model f(x(i)) = �(i)x(i),
and minimize the empirical risk with a network type regular-
ization �1

P
ri;jk�(i) � �(j)k2 + �2

P
k�(i)k2

1. The first
term regularizes models parameters to be similar if ri;j > 0,
where the values of ri;j are given by a graph that represents
affinities between samples. The second term encourages
local sparsity. While the Localized LASSO addresses P1
and P2, it only relies on linear relations between features to
learn the coefficients �(i). Furthermore, the model has lim-
ited generalization capabilities since coefficients of unseen
samples are estimated based on neighbors in the training
set.

In this work, we extend the Localized LASSO by using
a NN framework to learn the local sparsity patterns and
enable more expressive prediction functions. To this end,
we propose a NN framework with local sparsity such that
predictions are only based on a small subset of features
S(i) � f1; 2; : : : ; Dg; i = 1; :::; N which is optimized for
each sample individually. By forcing jS(i)j � D, we can
reduce the generalization gap of the model and use the
(sample-specific) subset of selected features to interpret the
prediction model.

3.1. Locally Sparse Predictor

Given labeled observations fx(i); y(i)gNi=1, we want to learn
a global prediction function f� (parametrized using a NN)

and sets of indicator vectors s(i) 2 f0; 1gD (s(i)
j = 1 if j 2

S(i) and 0 otherwise) that will “highlight” which subset of
variables the model should rely on for the prediction of each
target value yi. This will enable the model to attain to fewer
features for each sample and therefore reduce overfiting.

Such a model can be learned by minimizing the following
empirical regularized risk

1

N

NX
i=1

L
�
f�(x(i) � s(i)); y(i)

�
+
�

N

NX
i=1

ks(i)k0; (2)

where L is a desired loss function (e.g., cross-entropy), and
� represents the Hadamard product (element-wise multi-
plication), and � is a regularization parameter that controls
the sparsity level of the model. Unfortunately, due to the
discrete nature of the ‘0 regularizer, this objective is not
differentiable, and finding the optimal solution becomes
intractable. Moreover, even if it finds the optimal solution,
it is not clear that the model would not overfit when N < D.
Explicitly, in this regime, the model may select one feature
for each sample and “memorize” the training set. Also, it
is unclear how such a model can generalize on unseen sam-
ples (at test time), namely, because we need to predict the
indicator vectors s for the unlabeled data.

3.2. Probabilistic Reformulation of the ‘0 Regularizer

Fortunately, the ‘0 norm can be relaxed via a probabilis-
tic differentiable counterpart, specifically, by replacing the
binary indicator vector s with a Bernoulli vector ~s, with
independent entries which satisfy P(~sd = 1) = �d for
d 2 f1; 2; : : : ; Dg. Such probabilistic formulation (of bi-
nary indicator vectors) converts the combinatorial search
(over the discrete space of s 2 f0; 1gD) to a search over
the continuous space of Bernoulli parameters (� 2 [0; 1]D).
This formulation becomes useful in several applications
such as: model compression (Louizos et al., 2017), feature
selection (Yamada et al., 2020), discrete softmax (Jang et al.,
2016), and many more.

By replacing the deterministic vectors s(i) in Eq. 2 with
their probabilistic counterparts ~s(i) we can now differentiate
through the random variables using REINFORCE (Williams,
1992) or REBAR (Tucker et al., 2017). However, these meth-
ods suffer from high variance and require many Monte Carlo
samples. Alternatively, as demonstrated in (Maddison et al.,
2016; Yamada et al., 2020) a continuous reparametrization
of the discrete random variables can reduce the variance of
the gradient estimates. In the next section, we propose to
learn the indicator vectors s(i)(xi) by re-formalizing them
as random vectors whose parameters (probabilities of being
active) are predicted using a NN.
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Figure 2: The architecture of Locally Linear SParse Interpretable Networks (LLSPIN). The dataf x ( i ) =
[x ( i )

1 ; x ( i )
2 ; :::; x ( i )

D ]gn
i =1 is fed simultaneously to agating network 	 and to apredictionnetwork f � (which is linear

in this example). Thegatingnetwork	 learns to predict a set of parametersf � ( i )
d gD;n

d=1 ;i =1 . The parameters� ( i )
d depict the

behavior of local stochastic gatesz( i )
d 2 [0; 1] that sparsify (for each instancei ) the set of features that propagate into in the

prediction modelf � . LLSPIN leads to sample-speci�c (local) sparsi�cation (obtained via thegatingnetwork). Therefore, it
can handle extreme cases of LSS and lead to interpretable predictions (since the model only uses a small subset of features
for each sample). For illustration purposes, we overlay this �gure using green (active) and red (non-active) arrows, which
indicate that some samples require two features while others only one, in this example. In Section 5, we demonstrate using
extensive experiments that our model, leads to accurate predictions in the challenging regime of LSS data.

3.3. Locally Sparse NN

This section describes the proposed Locally SParse Inter-
pretable Network (LSPIN). LSPIN is apredictionNN with
sample-speci�c gates which sparsify the variables used by
the model locally. The sparsity patterns of the gates are
learned via a second NN. This leads to a natural framework
to predict the sparsity patterns of unseen samples. Fig. 2
shows the architecture of our model where theprediction
NN is linear. We call this variant of our model Locally
Linear SParse Interpretable Network (LLSPIN).

Each stochastic gate (for featured and samplei ) is de�ned
based on the following hard thresholding function

z( i )
d = max(0 ; min(1; 0:5 + � ( i )

d + � ( i )
d )) ; (3)

where� ( i )
d is drawn fromN (0; � 2) and� is �xed throughout

training. The choice of� (which controls the injected noise)
is discussed in Section B in the Appendix. The sample-
speci�c parameters� ( i ) 2 RD ; i = 1 ; :::; N are predicted
based on agatingnetwork	 such that� ( i ) =  (x ( i ) j
 ),
where
 are the weights of thegating network. These
weights are learned simultaneously with the weights of the
predictionnetwork by minimizing the following loss:

E
�
L (f � (x ( i ) � z( i ) ); y( i ) ) + R(z( i ) )

�
; (4)

whereL is a desired loss (e.g. cross entropy), and we com-
pute its empirical expectation overx ( i ) ; y( i ) andz( i ) , for i
in a batch of sizeB . The termR(z( i ) ) is a regularizer that
we de�ne as

R(z( i ) ) = � 1kz( i ) k0 + � 2

X

j

K i;j kz( i ) � z( j ) k2
2: (5)

After taking the expectation (overz( i ) ), the leading term
in R can be rewritten using a double sum in terms of the
Gaussian error function (erf):

1
N

NX

i =1

DX

d=1

 
1
2

�
1
2

erf

 

�
� ( i )

d + 0 :5
p

2�

!!

: (6)

The second regularization term (in Eq. 5) is introduced to
encouragestability of the local variable selection mecha-
nism and is evaluated using Monte Carlo sampling. The
kernelK i;j � 0 is user de�ned (e.g. radial basis function)
and should re�ect the af�nity between samplesx ( i ) and
x ( j ) , therefore, we can ensure that for nearby points our
model would lead to similar sparsity patterns inz( i ) and
z( j ) . Altogether, Eq. 4 is optimized using SGD over the
model parameters� and the parameters of thegatingnet-
work 
 (see Algorithm 1 in the Appendix for description
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of training procedure). If� ( i )
d of samplei is a large number,

then thed-th feature will be relevant for predictingy( i ) with
high probability (and vice versa for very small numbers).
The stochasticity of the model plays two important roles: (1)
it allows us to train weights of a binary model (thegating
network). (2) it enables the model to re-evaluate features
that are sparsi�ed at an early step of training.

At inference, we remove the stochasticity from the gates
and set̂z( i )

d = max(0 ; min(1; 0:5 + � ( i )
d )) , which informs

what features are selected. In practice, we observe that the
coordinates of̂z( i )

d mostly converge to0 or 1 (see statistics
in Table A.1 in the Appendix). This solution is encouraged
as it is stable to the injected Gaussian noise (� ( i )

d ). Namely,

once� ( i )
d = f� 1; 1g (which are at the boundary of the range

of the tanh activation used in thegatingnetwork), the value
of the correspondingz( i )

d would be with high probability0
and1, respectively. This is because the injected noise is less
likely to push the values of z( i )

d into the range(0; 1).

4. Related Work

Identifying sample-speci�c subsets of variables that are im-
portant for prediction has been studied in the context of
interpretability. Methods such as (Simonyan et al., 2013;
Zeiler & Fergus, 2014; Lundberg & Lee, 2017) try to iden-
tify a small subset of features that explain the predictions
made by a pre-trained model. These models either use the
gradients of the pre-trained model or use perturbations to
study the in�uence of different variables on the predictions
of each instance. However, as shown in (Jethani et al., 2021),
these models either require heavy post-training computa-
tions or are inaccurate (Adebayo et al., 2018; Gale et al.,
2019). More recent works such as (Dabkowski & Gal, 2017;
Chen et al., 2018; Schwab & Karlen, 2019; Yoon et al.,
2018) alleviate the computational burden by training a sin-
gle model to explain all samples. Still, they are all designed
to explain pre-trained black-box models and thus cannot
reduce the generalization gap in the case of LSS data.

Two recent works (Yoon et al., 2018; Jethani et al., 2021)
present solutions which allow for training a prediction
model in tandem with an explanatory model. However,
both methods try to learn a model that “imitates” the predic-
tions made by a baseline model, which uses the complete
set of features. We argue that using the entire feature space
in LSS data can lead to over�tting. Moreover, these meth-
ods require training a large number of parameters and use
REINFORCE (Williams, 1992) or REBAR (Tucker et al.,
2017) for learning the sparsity patterns. We demonstrate
in the benchmark experiment (see Fig. A.12 in the Ap-
pendix) that the method proposed in (Yoon et al., 2018) is
computationally expensive and does not scale well to large
datasets. Furthermore, in Section 5 we provided extensive

empirical evidence that our framework is more accurate and
interpretable compared to (Yoon et al., 2018; Jethani et al.,
2021).

Sparsi�cation has also been utilized for other purposes, e.g.,
in Mixture of Experts (Peralta & Soto, 2014; Khalili, 2010;
Pan & Shen, 2007; Shazeer et al., 2017; Riquelme et al.,
2021), for accelerating the inference of over parametrized
deep nets (Dong et al., 2017; Gao et al., 2018; Ashouri et al.,
2019; Kurtz et al., 2020; Fedus et al., 2021), and genome-
wide association studies (Demetci et al., 2021). In contrast
to these models, our method sparsi�es the number of fea-
tures used for predictions of each instance, thus leading to a
more robust and interpretable model.

5. Experiments

In this section, we evaluate howaccurateandinterpretable
the proposed approach is on both synthetic and real-world
biomedical datasets. We compare to: embedded feature
selection methods such as LASSO (Tibshirani, 1996), linear
support vector classi�cation (SVC) (Chang & Lin, 2008),
tree-based wrapper methods such as Random Forest (RF)
(D�́az-Uriarte & De Andres, 2006) and XGBoost (Chen &
Guestrin, 2016), fully connected neural network (with no
convolution, distortion, weight decay, or unsupervised pre-
training) and other neural network-based feature selection
and interpretability methods such as STG (Yamada et al.,
2020), INVASE (Yoon et al., 2018), L2X (Chen et al., 2018),
TabNet (Ar�k & P�ster, 2020), and REAL-x (Jethani et al.,
2021). Additionally we compare to RANSAC (Fischler &
Bolles, 1981) and Localized LASSO (Yamada et al., 2017)
for the motivating example, both RF and NN with SHAP
(Lundberg & Lee, 2017; Shrikumar et al., 2017) for the
MNIST example, and DeepSurv (Katzman et al., 2018),
COX-LASSO, COX-STG (Yamada et al., 2020), and Ran-
dom Survival Forest (Ishwaran et al., 2008) for the survival
analysis result. We failed to compare to Localized LASSO,
since is not suited for classi�cation and it did not converge
on the regression examples. Details of the datasets avail-
ability, training procedure, and hyper-parameter tuning are
included in Appendix section B.

5.1. Nonlinear Prediction on Synthetic Datasets

This section uses synthetic datasets where the target value
only depends on a subset of variables that varies across sam-
ples. Since the per sample subset of informative variables is
known, we can perform a controlled evaluation of the predic-
tivity and interpretability of our model. First, we focus on
classi�cation data modelsE1-E3 which were also used for
evaluation in (Yoon et al., 2018; Jethani et al., 2021; Ar�k &
P�ster, 2020). We further design a higher dimensional exam-
pleE4, and a highly nonlinear “moving-XOR” regression
exampleE5. In all datasets, we use less than2000samples
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E1 E2 E3 E4 E5
F1 ACC F1 ACC F1 ACC F1 ACC F1 MSE

LASSO 0.5000 52.00 0.5000 74.50 0.6250 71.50 0.1290 64.00 0.3704 1.0190
SVC 0.4444 51.50 0.5000 74.50 0.6667 71.50 0.2353 68.00 NA NA
RF 0.5333 88.50 0.5333 88.50 0.6250 87.00 0.0769 86.00 0.2500 0.2499

XGBoost 0.5333 93.00 0.5333 95.00 0.6250 86.50 0.0769 96.00 0.2500 0.0118
MLP NA 78.00 NA 88.50 NA 84.50 NA 64.00 NA 0.6526

Linear STG 0.4000 55.50 0.4000 76.00 0.3750 69.00 0.6667 70.00 0.5000 1.0067
Nonlinear STG 0.7272 84.50 0.7272 90.00 0.7143 86.00 0.6667 76.00 0.7500 0.0004

INVASE 0.5390 89.00 0.7000 88.00 0.6923 86.00 0.6667 94.00 0.1526 3.1264
L2X 0.7986 88.00 0.6050 94.50 0.2450 87.00 0.5000 92.00 0.6081 0.5134

TabNet 0.4789 54.50 0.5426 65.50 0.6905 78.50 0.0036 60.00 0.4454 1.0317
REAL-x 0.8306 85.00 0.7089 88.50 0.7823 86.00 0.8511 90.00 NA* NA*
LLSPIN 0.3337 80.50 0.7216 86.50 0.4741 73.50 0.9458 90.00 0.6815 0.4927
LSPIN 0.9761 94.00 0.8600 95.00 0.9296 89.00 0.9615 98.00 1 0.0019

Table 1: Nonlinear synthetic datasets (see Eqs. 9-13 in Appendix section B.4). We compare the proposed LLSPIN/LSPIN
to other baselines in terms of the F1 score of the selected features and accuracy(%)/ MSE for the prediction performance.
Across these examples, LSPIN correctly identi�es the informative features with a substantially higher F1 and higher
accuracy/lower mse. *We attempted to implement REAL-x for the regression task, but the model failed to converge.

for training, a regime which is more challenging than what
was previously studied by (Yoon et al., 2018; Jethani et al.,
2021; Ar�k & P�ster, 2020). The exact data models and
training procedures are described in the Appendix section
B.4. We evaluate all models by measuring the F1 score
of the selected features (F1 = TP

TP+ 1
2 (FP+ FN) whereTP is

the number of informative features that are selected by the
model,FP is the number of selected features that are un-
informative, andFN is the number of informative features
unrecovered by the model) and the prediction performance
(accuracy for classi�cation and Mean Squared Error (MSE)
for regression).

As shown in Table 1, LSPIN consistently outperforms exist-
ing baselines in terms of its ability to identify the informa-
tive variables (evaluated using the F1 score). At the same
time, our model leads to improved predictive capabilities
compared to these baselines. Our linear model (LLSPIN)
leads to relatively high F1 score inE2, E4, E5 despite the
fact that the data contains nonlinear feature interactions.

5.2. Interpretability Evaluation on MNIST

In this section, we demonstrate that the proposed method is
exceptionallyinterpretablewhile leading to predictions that
are moreaccuratethan state-of-the-art nonlinear models.
To evaluate interpretability, previous authors suggest the
following criteria:
Faithfulness: Are the identi�ed features signi�cant for
prediction?
Stability: Are explanations to similar samples consistent?
Diversity: How different are the selected variables for in-
stances of distinct classes?
Generalizability: Are the selected features bene�cial for

making accurate predictions using other simple models?

We use MNIST handwritten dataset as a table with 784
features and do not consider spatial information (since we
are interested in tabular data). We compare our model to
both RF and NN with SHAP and other leading NN inter-
pretability models, including L2X, REAL-x, INVASE, and
TabNet.

As suggested by (Alvarez-Melis & Jaakkola, 2018),faith-
fulnesscould be evaluated by removing features one by one
(based on their importance) and calculating the correlation
between the predictivity drop and the feature importance.
Following (Alvarez-Melis & Jaakkola, 2018; Yoshikawa
& Iwata, 2020),stability is evaluated by computing the
Lipchitz constant of the explanation function. This is es-
timated forx i using max

x i ;x k � �

kw i � w k k2

kx i � x k k2
, wherew i is the

explanation vector for samplei provided by each method.
Then we average the Lipchitz constant over all samples. To
evaluatediversity we take the per class median selected
features and use the Jaccard index to count the portion of
non-overlapping selected features across classes (exact for-
mula appears in Appendix A.7). To evaluate thegeneraliz-
ability of the selected features, we measure the accuracies
of SVM andk-means when applied to the data, which is
masked by the selected features. We expect the performance
to be preserved if the selected features are crucial for pre-
diction (compared to the accuracy obtained when using all
features).

We tune all models to identify the� 10 most informative
pixels per image and present these in Fig. 3. As visually
indicated by this �gure, LLSPIN, Real-X, L2X, and Deep-
SHAP tend to select pixels with non-zero values that cover
“unique” patterns in the digits. INVASE seems to lead to a




