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Abstract

We show that the input correlation matrix of typ-
ical classification datasets has an eigenspectrum
where, after a sharp initial drop, a large number of
small eigenvalues are distributed uniformly over
an exponentially large range. This structure is
mirrored in a network trained on this data: we
show that the Hessian and the Fisher Information
Matrix (FIM) have eigenvalues that are spread
uniformly over exponentially large ranges. We
call such eigenspectra “sloppy” because sets of
weights corresponding to small eigenvalues can
be changed by large magnitudes without affecting
the loss. Networks trained on atypical datasets
with non-sloppy inputs do not share these traits
and deep networks trained on such datasets gener-
alize poorly. Inspired by this, we study the hypoth-
esis that sloppiness of inputs aids generalization
in deep networks. We show that if the Hessian is
sloppy, we can compute non-vacuous PAC-Bayes
generalization bounds analytically. By exploiting
our empirical observation that training predomi-
nantly takes place in the non-sloppy subspace of
the FIM, we develop data-distribution dependent
PAC-Bayes priors that lead to accurate generaliza-
tion bounds using numerical optimization.

1. Introduction

In Fig. 1 (top), for a wide residual network (with 10 layers)
on CIFAR-10, we calculated the eigenspectrum of the input
correlation matrix (n~ ' X X | where each column of X is
one input image) and compared it to the eigenspectra of the
Fisher Information Matrix (FIM) and the Hessian. We find
that this decay pattern for the input correlation matrix is
mirrored in that of the FIM and the Hessian. There are very
few (less than 5% of the input dimensionality) large eigen-
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values (stiff) after which there is a sharp drop and a long
tail of small eigenvalues (we call them sloppy as defined in
Def. 8). Other quantities, e.g., correlations of activations of
different layers, Jacobians of different logits with respect
to the weights, and gradients of the loss with respect to
activations of different layers, have a similar decay pattern.
Eigenvalues span exponentially large ranges—about 7 or-
ders of magnitude in this experiment. Sloppy eigenvalues
are distributed uniformly across such exponentially large
ranges.

Eigenspectra of many typical datasets and networks are
similar. In Fig. 1 bottom, we created synthetic inputs with
varying slopes for the decay of sloppy eigenvalues. We
labeled such inputs using a teacher network with randomly
generated, but fixed, weights and trained different student
networks on such datasets. Each student was trained to have
zero training error, i.e., it interpolated its training dataset
perfectly. We find in Fig. 1 (left) that, again, the decay
pattern of the inputs is mirrored in the FIM/Hessian of the
students—sloppier the inputs, sloppier the FIM and the
Hessian. Sloppier the input correlations, better the general-
ization error of the student (Fig. 1 bottom right).

The Hessian governs the local geometry of the loss function
in the weight space; small eigenvalues correspond to direc-
tions along which the loss is insensitive to changes in the
weights. The FIM governs the local geometry in the pre-
diction space; if we think of a network as a parameterized
distribution p., (y | z), eigenvectors corresponding to small
eigenvalues of the FIM correspond to sets of weights which
can be changed significantly without affecting the distri-
bution py (y | ) much. A sloppy eigenspectrum for these
matrices indicates that the trained network is in some sense,
“simple”: few sets of weights dominate its predictions while
there exists a large set of sets that improve the predictions
marginally. Both these matrices play a role in determining
the generalization error of a neural network.

This paper investigates how sloppiness of the inputs causes
the sloppiness of the FIM and the Hessian and how such
sloppiness aids generalization.

1.1. Contributions

(1) We show that for typical datasets and deep networks,
eigenspectra of correlation matrices of the inputs, ac-
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Figure 1. Top: Eigenspectra of the correlations of the inputs, ac-
tivations and activation gradients, logit Jacobians and the FIM,
Hessian at the end of training; for FIM we also calculate the spec-
tra at initialization and middle of training. All eigenspectra are
scaled by the largest eigenvalue of the input correlations (activation
gradients are scaled up by 10*?). Eigenspectra corresponding to
activations/activation gradients of all layers of the network, and
logit Jacobians of all logits are very similar (see Appendix G).
Eigenspectra of these quantities are also qualitatively the same at
initialization, at the middle of training (see Appendix G.4 Fig. S-
15). This plot is drawn for a wide residual network with 10 lay-
ers on CIFAR-10 (WRN-10-8 Zagoruyko & Komodakis (2016)),
eigenspectra of other networks/datasets are qualitatively the same
(see Fig. S-7 and Appendix G).

Bottom Left: Eigenspectra of the input correlation matix, FIM
and Hessian at begining and end of training for sloppy factor (slope
of the sloppy eigenvalue decay) ¢ = 10 2 (orange) and ¢ = 10 *
(green). If inputs are not sloppy (small c) then even if there is a
sharp drop after the top few eigenvalues (around 100 for orange
lines), the eigenspectrum is flat. In comparison, the FIM/Hessian
decay by about 3 orders of magnitude for ¢ = 0.1. The details of
the experiments can be found at Appendix A.

Bottom Right: Validation error of a student (S) network on syn-
thetic datasets of different sloppiness (X-axis) labeled by a teacher
network (T). Numbers in brackets indicate number of hidden neu-
rons in two-layer teachers/students. All students in this plot inter-
polate the training data perfectly. For non-sloppy inputs, interpo-
lation leads to poor generalization, whereas interpolation is not
detrimental to generalization for sloppy inputs. As the number of
student neurons increases, fixed the teacher’s size and the sloppi-
ness factor, the validation error is better. Fixed teacher size, say
20, if inputs are sloppier (sloppy factor of 0.5 vs. 0.1) then we can
generalize—roughly equally well—even if the student is smaller
(10 vs. 500).

tivations of different layers, Jacobian of logits with re-
spect to the weights, gradients of the loss with respect
to the activations, as also the Hessian and the FIM, are
sloppy. These eigenspectra consists of few large eigen-
values and a large number of small eigenvalues that are
distributed uniformly across an exponentially large range.
We call such eigenspectra (or the corresponding quantities)
“sloppy” and define this notion in Def. 8. Synthetic datasets
can be constructed where these quantities are not sloppy; in-
terpolating networks do not generalize well for such datasets.
We prove that (a) the trace of the correlation of the activa-
tions, logit Jacobians, Hessian and the FIM can be upper
bounded by the trace of the input correlation matrix, (b) if
we assume that the activations are sloppy then the eigenspec-
trum of a block-diagonal approximation of the FIM is also
sloppy, (c) under the assumption of weights with bounded
norm, eigenvalues of activations decays faster than O(1/7).
(2) For a Gaussian isotropic prior N (wg,e 1) centered at
the initialized weights wg, we calculate the optimal covari-
ance of a Gaussian posterior N (w, X4) (Where w are weights
of the trained network) that minimizes a PAC-Bayes gen-
eralization bound. If the Hessian at w is sloppy, then we
obtain a non-vacuous generalization bound. For example,
for MNIST, we get a bound of 32.4% for a fully-connected
network and 5.7% for LeNet. This indicates that sloppi-
ness of inputs controls the capacity of the model. To our
knowledge, this is the only analytical, non-vacuous gen-
eralization bound for deep networks that does not use
weight compression.

(3) We characterize the effective dimensionality of a deep

network as
n o

F)
PN > gy

p(n,e) = 2(7;,1

where e is the inverse covariance of the PAC-Bayes prior and
n is the number of samples. Roughly speaking, ¢/(2(n — 1))
is the elbow of the eigenspectrum in Fig. 1 (top); eigenval-
ues of the optimal PAC-Bayes posterior beyond this thresh-
old are dominated by the complexity term in a PAC-Bayes
bound while eigenvalues before this threshold are domi-
nated by the training error. For sloppy eigenspectra, this
dimensionality is typically a tiny fraction of the num-
ber of weights, e.g., it is less than 0.5% of the number of
weights for all networks/datasets considered in this paper,
and much smaller than, say the VC-dimension.

(4) We find that the stiff sub-space of the FIM at initial-
ization has a strong overlap with its counterpart at the
end of training, and weight updates during training pri-
marily happen in this stiff subspace. We exploit this ob-
servation to numerically compute a PAC-Bayes bound using
a Gaussian prior whose covariance is proportional to the
FIM and a Gaussian posterior whose eigenvectors are the
same as those of the FIM at initialization. This is a remark-
ably accurate estimate of generalization gap, e.g., for LeNet
on MNIST, it is 0.9% whereas the gap is about 0.5%.
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All the code for experiments in this paper is provided at
https://github.com/grasp-lyrl/sloppy.

2. Background

Consider a dataset D,, = {(z;,y;)};—, With n samples,
z;e X cR%andy; € Y = {1,...,m}. We assume that
this dataset is drawn from a joint distribution D on X x Y.
A classifier hy : X — [0,1]™ parameterized by weights
w € RP belongs to a hypothesis space {h., : w € RP}; this
classifier maps inputs z € X to m-dimensional categorical
distributions pw (y | ) € [0,1]™. Let Q be a distribution on
hypotheses, which is implicitly a measure on RP. We define

(a) training error of a hypothesis

Lo 1y # argmax, (po (y] 2:)}:

(b) population error e(hw) = Ep,,~pn [é(hw, Dn)];

(c) training P loss is &(hw, Dn) =
—#g(g) ?:1 log puw (yi | z4);

(d) empirical error and loss of the distribution Q
of hypotheses é(Q,Dn) = Ey~q [é(hw,Dn)] and
é(Q, Dn) = Eynq [E(hw, Dn)], respectively;

(e) population error of distribution @ given by e(Q) =
EDn,\,Dn [é(Q, Dn)}, and

(f) population loss is é&(Q) = Ep,,~.pn[é(Q, Dn)].

é(hw,Dn) =

Hessian and Fisher Information Matrix (FIM) The
Hessian H € RP*P is the second derivative of the em-
pirical loss with respect to the weights w, i.e., H;; =
0;0j€(hw, Dr). The Fisher Information Matrix (FIM) F €
RP*P has entries

1 X X

Fij = Pw(y | k)0 log pw (y | 1) 0; log pw (v | T1)-

n
k=1y=1

It is important to note the expectation over the outputs y. The
empirical FIM is an approximation of the FIM where one
sets y = yi. Both the Hessian and FIM are large matrices
and it is difficult to compute them for modern deep networks.
Therefore some of our experiments use a Kronecker-factor
approximation (Martens & Grosse, 2016) of a block diago-
nal Hessian and FIM where cross-terms 0;9; across different
layers of a deep network are set to zero.

2.1. PAC-Bayes Generalization Bounds

The PAC-Bayesian framework developed in Langford &
Seeger (2001); McAllester (1999) allows us to estimate the
population error of a randomized hypothesis with distribu-
tion @ using its empirical error and its Kullback-Leibler
(KL) divergence with respect to some prior distribution P.
For any ¢ > 0, with probability at least 1 — § over draws of
the dataset D,,, we have

KL(Q, P) + log(n/5)

K@, D) e(Q)) < =10 o),

(D

where KL(Q, P) = R dQ(w) log(dQ / dP)(w). We will also
define a KL divergence between two Bernoulli random vari-
ables with parameters b, a as kl(b,a) = blog(b/a) + (1 —
b)log((1 —b)/(1 — a)). The right hand-side of this inequal-
ity can be minimized to compute a distribution @ that has
a small generalization error (Langford & Caruana, 2002;
Dziugaite & Roy, 2017). Typically, we pick a simple form
for distributions @ and P, say Gaussian. We can also have
hyper-parameters for the prior P, say the scale e of the co-
variance of P and search over this scale while optimizing
the bound. See Appendix B for details.

2.2. Data-dependent PAC-Bayes Priors

The posterior Q in (1) may depend upon the training samples
Dy, e.g., it could be the distribution on the weight space
induced by a randomized training algorithm like stochastic
gradient descent (SGD). The prior P can depend upon the
data distribution D, but not the samples D, themselves.
Although it is common to use priors that do not depend
upon the data at all, it is has been increasingly noticed
that data-distribution dependent priors may provide tighter
bounds (Dziugaite & Roy, 2018). To gain intuition, recall
that in the expression for the KL-divergence between two
Gaussians Q = N(w,X4) and P = N(wp, ¥p), we have a
term of the form (w — wo)TE; ! (w — wp) that depends upon
the distance between trained weights w and the initialization
wy. Priors P that do not depend upon the data may therefore
incur a large KL-term.

FIM and Hessian-dependent priors We can pick a prior
using a subset of the training samples (Ambroladze et al.,
2007), e.g., we can center the Gaussian prior on weights
trained on this subset, to obtain a better PAC-Bayes bound—
the theory allows this. Doing so leads to a worse denom-
inator in (1), although this may be mitigated by a smaller
numerator. Parrado-Hernandez et al. (2012) also define
expectation-priors, i.e., where we choose a prior that de-
pends on the data distribution and, in practice, evaluate
this prior using samples in the training dataset in lieu of
the distribution. For example, PAC-Bayes theory allows
both picking the prior covariance X, to be ¥, « Fu, and
¥p o Huy, where H is the Gauss-Newton approximation of
the Hessian. But while we may use all the samples to com-
pute the FIM, we should compute the Hessian on a separate
subset of the data.

3. Theoretical Results

We prove how sloppiness in the Hessian and the FIM is
related to sloppiness of the correlations of the activations
(§3.1) and the inputs (§3.2). We then exploit sloppiness
to compute PAC-Bayes generalization bounds (§3.3) and
develop an expression for the effective dimensionality of a
deep network (§4.1). We exploit sloppiness to get effective
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methods for optimizing PAC-Bayes boundss). All proofs  layersk L, we have

are provided in Appendix C. The theory in this section #!
applies for general deep networks; we will remark when spec E dzi dz ~ 2L k) ¥ w 2
L ) "
restrictions are in place. dwX dw (ke 2 3)
>
3.1. Sloppy Input Correlation Matrix Leads to a spe€lg,., ) spec E h¥h® ;

Sloppy FIM and Hessian
with QjL: L+1 pWi 2 1. A similar result also holds for the
sum of logits [, z asin Lemma 2 (see Corollary 15).

h = (wk 1h% 1);andweseh®  x. The non-linearity The proof of this lemma also shows that a block-diagonal

acts element-wise upon its argument and we assume thatﬁrlpprQX'mat'?n of t?(tahGau?'s—I:l.eWton apFroxmatlon of the
has a bounded derivativex)  awith (x) =0 in which essian is sioppy It the activations are sioppy.

casg (x)j ajxj; ReLU, leaky ReLUs and tanh satisfy
this assumption. Preactivations (before nonlinearities) wil
be denoted byk = wk thk fork=1; ;L +1,and

for clarity, we use a special notatian u-*! to denote the

logits of the network. The dimensionality of these quantities
ishk 2 RI%, wk 2 R&+1 d gndwt 2 R™ 9| The linear
map represented by* can model both fully-connecte

layers and convolutional layers. For the sake of exposition, )
we set all the bias terms to zero. 3.2. Special Cases Where Sloppy Inputs Lead to Sloppy

Activations and Thereby Sloppy FIM and Hessian

Consider a deep network withlayers with weightsv =
wOwt; i wh). Activations of thek™ layer are given by

[This lemma indicates that the eigenspectrum of the block-
diagonal approximation of the FIM (concatenation of the
eigenspectra of different blocks) is controlled by the eigen-
spectrum of the activation correlations of different layers.
Our experiments show that activations of all layers (except
g thelogits) of a trained deep network are sloppy.

d Although our experiments show that activations are sloppy
if the inputs are, it seems rather dif cult to prove in general.
We therefore discuss two special cases where this holds.
The rst case is for a kernel machine with an inner product
kernel while the second case assumes that the width of the
network goes to in nity and weights remain bounded in

& norm.

2ma’ttr E[xx” ] ¥ w ‘@ W A 2 . . .
_ 2 Remark 3 (Eigenspectrum of inner product kernel is

controlled by that of its inputs). Letx; 2 RY fori n
be iid random vectors. Karoui (2010, Theorem 2.1) shows

o , that the Gram matrix of an inner product kermej; =
The Gauss-Newton approximation which neglects the so- .

calledH terms of the Hessian (Papyan, 2019) is good tof g~ for some functiorf can be approximated by
wards the end of training when the logits have a small en- |

Theorem 1 (Trace of the FIM and Hessian are bounde
by that of the input correlation matrix). For any weights,
the trace of the FIM~y and the Gauss-Newton approxima-
tion of the Hessiaifty, are both upper-bounded by

tropy. For the FIM, the above bound is remarkable however, B 00~ tr( 3)' > XX 7

it indicates that the trace of FIM is controlled by thatthe =~ K = O+ f o) oz W 05—+ valn
input correlations and multiplicative terms that depend upon tr( q) tr( q)

the*» norm of the weights. wherevy = f dd f(0) f%0) Tdi

We can also go b_ey_ond_ the trace a_nd control the entire eigeNi e preciselkM Kk, ! 0in probability whend: n |
spectrum. But this is dif cult to do in general because both o ) o q)

FIM and Hessian are a result of multiple nonlinear operal for @ xed ratiod=n. Note thatg is small when==" is
tions on the inputs. We therefore bound the eigenvalues gimall- Hence, we can see that the elgenspe::trum,(atnd

a block-diagonal approximation of the FIM in terms of the t€rebYM , is controlled directly by that akX ~.

eigenvalues of the activations. Note that this argument cannot directly be used for a deep
network because correlations of activations in the network
are not an inner product kernel. But this indicates that even
for such a kernel machine, sloppiness of the inputs leads to
sloppiness of the FIM.

Lemma 2 (Block-diagonal approximation of the FIM is
sloppy if the activations are sloppy).Let spe¢A) denote

ing order. For a constant letspe¢A) cspe¢B) denote Remark 4 (Innitely wide network with bounded
that j(A) «c (B)foralli p. Forany logitz, forall  weight norm). If the “» norm of the weights is bounded,
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we show in Lemma 10 that of eigenvalues of the Hessiaty, with magnitude at least
tr E h¥nk” 22wk 1l E ok gk U =@n 1) 1e.
2 P n. - o
p(n; )= ip:]_ 1 i(Hw)j D - (6)

If we iterate upon this inequality down to the last layer to

trE[xx” ] on the tﬂght hand-side (which is a constant). If Appendix B.3 gives the calculation for why this is a good
the width of thek™ layer goes to in nity, for the trace to be - ye nition of the dimensionality. It indicates that the thresh-

summable, we have that the eigenvalueglokh*” ] decay old =(2(n 1)) can be thought of as the “elbow” in the

faster tharo(1=i). eigenspectra in Fig. 1 (top), which separates the stiff eigen-
_ o values which decrease quickly and the sloppy eigenvalues.
3.3. Analytical Bound on Generalization (Method 1) This gives an easy way to compute the effective dimension-

Consider a deep network trained to minimize the loslity, €.g., for the purposes of model selection. This is also
e(hw:Dn). Assume thatv is a local minimum of the ob- true if we use more sophisticated, numerical, methods for

jective and thus the Hessih, is positive semi-de nite. OPtimizing the PAC-Bayes bound as shown in Fig. 2 and
We can writeH, as its orthonormal decompositieh, = 1aple 1.

1 p Oarranged in descending order. Consider
a Gaussian posteri@¥ = N( q; ¢) withthe mean q=w
xed. We would like to compute the best, that gives a
tight PAC-Bayes bound.

We use a loose version of the boua@) L( ¢ =
e(Q;Dn)+ KL(Q;P)=(2(n 1)) to simplify the analytical
calculation and show in Appendix B.2 that

q= Uw( w) lUvT/; 4)
where  =2(n 1) j + 8i p: (5)

This posterior gives a non-vacuous bound on the general-

ization error (as explained i#4.2) and to our knowledge,

this is the only analytical bound that is non-vacuous and

does not use weight compression (e.g., (Zhou et al., 2018ﬁ!gure 2.For two layer fully connected network (FC-600-2), we

For example, the bound for a fully-connected network oncalculated the eigenspectrum (blue) of Kronecker-factored approx-

MNIST with one hidden layer of 600 neurons is 0.32 while 'Mation of the Hessian at the mean of the poste@iusing numer-

the test erroe(Q) is  0:089. For comparison, Dziugaite ical optimization of the PAC-Bayes bound using Method $5n

. . but that is not important at the present). The dimensionplity )
& Roy (2017)numerically optimiz€1) to get a bound of (green) was calculated using thebtained by the same procedure.

0.161. The red line shows the linear decay of sloppy eigenvalues (slope is
Remark 5 (PAC-Bayes posterior is more spread out 0.000_4). The green Ii_ne is close to the elbow and effectively splits
along sloppy eigenvectors)in (5), we can think of the the stiff and sloppy eigenvalues.
scaled prior inverse variance(2(n 1)) as a threshold
beyond which the sloppy eigenvalues of the Hessjaare = Remark 6 (Why does the effective dimensionality de-
small enough and the loss changes so little that the optimaiend on ?). Our de nition in (6) may seem unusual be-
PAC-Bayes posterior in (1) focuses on accurately capturingause is a user-chosen parameter but this is only an artifact
the prior's covariance to obtain a small KL-term. For eigen-of PAC-Bayes theory. As! 0, the effective dimensional-
values above this threshold, e.g., the stiff eigenvalues, thity converges to the number of weightsbut for non-zero
optimal posterior has to ensure that the empirical loss is notalues of , where the PAC-Bayes theory effectively restricts
large. We will see ir§6.3 that this phenomenon also holds its predictions to a subset of the hypothesis space, this ex-
for cases when posteriors are optimized. pression coupled with the analytical calculation in (5) may
provide a useful way to perform model selection.

4. Effective Dimensionality of a Deep Network  remark 7 (Why does the effective dimensionality de-
pend onn?). The fact thap(n; ) depends upon is remi-
niscent of the Bayesian Information Criterion (BIC) where
Motivated by Remark 5, we de ne the effective dimen-the the model complexity term scales witlg n (Schwarz,
sionality for a deep network at weightsas the number 1978). The dependence onin our cases also arises for

4.1. De nition of Effective Dimensionality
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Model #weightsp)  p(n; )=p (%) is close to zero, we show in Appendix B a loose version
of PAC-Bayes bound(Q; D)+ KL(Q;P)=(2(n 1)) (this

FC-600-1 472,202 0.487 was also used in Method 1 in 83.3) is

FC-600-2 832,802 0.292 >

FC-1200-1 944,402 0.245 s(n; )+2=dn; )+ kw wokj. ©)

FC-1200-2 2,385,602 0.095 An 1)

LeNet 44,429 0.184 Thus, the strength and sloppy factor together determine

Synthetic ¢ =10 1) 211,010 0.256 the generalization performance. If the Hessian is

Synthetic ¢ = 10 3) 211,010 0.820 sloppy, then the effective dimensionalityn; ) is small.

This ensures that bo#t{n; ) and1=¢n; ) are small com-
Table 1.Effective dimensionality of different modelscalculated ~ pare ton. The third termkw  wok? comes from the the
using the and Hessian from Method 3 B5 for different networks  fact that the mean of and Q are different. It is typi-
on MNIST (except last two rows which use fully-connected net-cally not large compared to. For example, for a two-
works for synthetic datasets created in Fig. 1 with different slopegayer fully-connected network on MINSH(n; ) = 2429,
of the eigenspectre). We see that in all caseg(n; ) is a very s(n; ) = 6810, 1=o(n; ) = 2545, and kw wok2 - 8526
small fraction of the number of weights. with n = 55000; = 101:3). For comparison, if we have an

isotropic Hessian; , eithers(n; ) or 1=¢(n; ) will be
similar reasons, from a balance between the training eP(p) andp is about 0.8 million.

ror Q;Dn) and the KL-termin (1). A:i 11, we see  Thjis suggests thatven if the hypothesis class of deep
thatp(n; ) ! p. This is because for inputs with sloppy nenworks is very large, sloppiness oHw, which is in-
dimensions the model needs to captaltehe dimensions  perjted from sloppiness of the input data, restricts the

to predict accurately. set of hypotheses that the trained model belongs tdhe

three quantities that we have de ned hete; ), s(n;e) and
4.2. De nition of Sloppiness c(n; ) together help understand this phenomenon; see Ap-
pendix F their values for other models.
We next build upon §4.1 to de ne sloppiness.

De nition 8 (Strength factor and sloppy factor). Let 9. Numerical Methods to Compute
i (A) denote eigenvalues of a positive semi-de nite matrix PAC-Bayes Bounds

A 2 RP Pindescending order; p. The strength

factor for a model with effective dimensionalipyn; ) at

a local minimumw (whereH,, is positive semi-de nite) is

de ned to be

We next discuss three methods to numerically optimize the
PAC-Bayes bound. These methods exploit the observation
in our experiments that there is a large overlap between
the subspace spanned by the stiff eigenvectors of the FIM
s(n; )= P Ipz(’l‘ )1+ log 20D i(Hw) g . (7) at the end of training with the corresponding subspace at
the beginning of training (Fig. 4). Similarly, there is a
The strength factor characterizes the stiff eigenvalues of théarge overlap between the subspace spanned by the stiff
eigenspectrum. For a matri, the sloppy factor for such a eigenvectors of the Hessian with that of the FIM (Fig. 3). We
model at index is de ned to be will use the notatiorEv(A) to denote the set of eigenvectors
o of the matrixA, arranged in decreasing order of eigenvalues.
cA;r)=supfc® 0: i(A) (Ae 0 Ng ¢ 1g
_ o ~ (8 Method 2: Eigenvectors of covariance o are xed to
This de nition |mpI|c.|tIy means t'hat the small eigenvalues those of FIM at initialization ~ (Ev( ) = EV(Fw,)) We
beyond [ (A) are uniformly distributed across an exponen-pick the posterior covariance matrix to have the same eigen-

tially large rangg r; p) if c(A;r) > 0. We will be primar-  vectors as that of FIM at initialization and optimize only its
ily interested in setting the indexto be simplyp(n; ). Note  ejgenvalues, i.e., we set

that sloppiness is a phenomenon pertaining tanthve-zero 1 S
eigenvaluesf a matrix and is relevant even if the matrixis ~ © = N(Woi  71); Q= N(W; q= Uwo wluw,); (10)
singular, e.g., the FIM loses rank for non-identi able modelswhereF, = Uy, Uy, is the orthonormal decomposition
like deep networks (Amari et al., 2002). of the FIM at initializationwo. We can optimize the bound
in (1) numerically over the mean of the posterigreigen-
How do the strength and sloppy factor affect generaliza- values of the covariancey, and the scale of the prior
tion? Let us simplify notation to write the sloppy factor
asc(n; ) c(Hw;p(n; )). Under the assumption that the Method 3: Eigenvectors of covariance of) are the same
c(n; ) is non-negative, when the training errghy;Dn) as those of the Hessian (Ev( ¢) = Ev(Hw)) We show
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in Appendix B.2 that the covariance of the optimal Gaussiartivation gradients for two and three-layer fully-connected
posterior has the same eigenvectors as those of the Hessiaptworks on MNIST and All-CNN and a wide residual net-
Building upon this, we modify the eigenvectors of while  work on CIFAR-10; Appendix G.4 shows some eigenspectra
optimizing the bound as at the middle of training; Appendix G.5 shows eigenspectra
1 . for synthetic datasets. The eigenspectra are qualitatively the
P=N(wo; 1) Q=NW q¢=Us wUs); (1)  gsame asthose in Fig. 1 so we do not repeat them in the main
text. Fig. 3 studies how eigenspectra of FIM and Hessian

whereHy = Uy Uy is the orthonormal decomposition of : ) g
woo oW W P compare to their KFAC approximations.

the Hessian at weightg. The variables of optimization are
the mean of the posterier, eigenvalues of the covariance

w, and the scale of the prior Note that this involves
recomputing the Hessian at every candidate weigtitiring
optimization of the bound.

Method 4: Covariance of P is proportional to FIM at
initialization; eigenvectors of covariance ofQ are the
same as those of FIM at initialization ( p = aFw, +

L EV( ¢) = EV(Fw,)) Thisis a data-distribution depen-
dent prior. We set

P=N(WoaFw, + 1); Q= NW, q= Un, wUq,);

(12) Figure 3.(Left) Eigenspectra of FIM, Hessian and a KFAC ap-

hereFw. = U Us s th h Id i proximation of the Gauss-Newton matrix for a two-layer fully-
whereFw, = Uwo  Uw, IS The orthonormal decomposItion ., e ted network on MNIST. Even if FIM's eigenvalues are

of the FIM at initializationwg. The variables of optimization quite different, its eigenvectors have a large inner product with

of the bound are the posterior meaneigenvalues w, and  those of the Hessian (right), much larger than a random vector.

scalar constantsand  *. KFAC is a good approximation for the eigenvalues of the Hessian
but eigenvectors computed from KFAC are quite different from

6. Empirical Validation thhose of the Hessian. Th.IS also shows that elgenvectors of the FIM

ave a strong overlap with those of the Hessian.

We use fully-connected networks (of varying widths, and up

to two hidden layers), convolutional networks (LeNet, ALL-

CNN of Springenberg et al. (2015) and wide residual netg.2. Overlap of the Stiff Subspaces of the FIM/Hessian

work of Zagoruyko & Komodakis (2016)) of varying sizes at the End of Training with that at Initialization

on MNIST (LeCun et al., 1990) and CIFAR-10 (Krizhevsky,

2009) for empirical validation of our theoretical results.

See Appendices A and D for further details.

Fig. 4 (left) computes the overlap of the subspace spanned by
the topk eigenvectors of the FIM at the end of training with
that at the initialization. Fig. 4 (right) shows a projection
To be able to work with Hessian/FIM of large networks, of the change in the weights (difference between weights at
in some cases, e.g., Fig. 1 we compute fewer eigenvajhe and that at initialization) into the subspace spanned by
ues, but compute them exactly without any approximationghe topk eigenvectors of the FIM. Both these overlaps are
When the Hessian/FIM are used for optimizing the PAC1arge, e.g., projection into a random subspace of dimension
Bayes bound (e.g., Methods 3—4) we use Kronecker-factok for the latter. This suggests that during training, weights

(KFAC) approximation of the Gauss-Newton matrix in Back-change predominantly in the stiff subspace of the FIM at
pack (Dangel et al., 2020). We have also developed a trick ipnitialization.

PyTorch (see Appendix E) that allows us to quickly estimate )

e(Q; Dn) using a large number of samples (we use 150 forVe also constructed a third network (denoted -v2) as follows.
comparison Dziugaite & Roy (2017) use 1). This allows usCiven atrained netwo_rk_/ frpm initializ_a_tionwo, we trainw

to optimize the PAC-Bayes bound with much fewer iterg.fOr more epochs to minimize the training loss and a penalty

tions. This trick that we have developed is also useful foW ~Wok™ which pulls it closer tavo—without changing
Bayesian deep learning (Wilson, 2020). the training/validation error much. We nd in Fig. 4 (right)
’ that this variant has a much larger projection into the stiff

eigenspace, and thereby a smaller overlap with the sloppy
eigenvectors. Thus, weights can effectively “come back”

towards the initialization in the sloppy subspace although

Appendix G.1 shows the eigenspectra of the Hessian, FIMhey evolved during training in the stiff subspace. See Fig. S-
and correlations of the activations, logit Jacobians and ad4 for more details.

6.1. Sloppiness of the Hessian, FIM and Other Related
Quantities in the Network
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Model Method
1 2 3 4 A B

FC-600-1  0.3241 0.1590 0.1357 0.1323 0.161 0.1198
FC-600-2 0.3794 0.1767 0.1540 0.1397 0.186 0.1443
FC-1200-1 0.3509 0.1523 0.1515 0.1486 0.179 0.1413
FC-1200-2 0.3915 0.2017 0.1817 0.1702 0.223

Figure 4.(Left) Overlap between the subspace of the toj LeNet-5 0.0572 0.0099 0.0188 0.0092

eigenvectors (X-axis) of the FIM at the end of training with
that at initialization ( Evk(Fw)” EVk (Fw,) i:k) for fully-

Table 2.PAC-Bayes bounds on MNIST for different methods.

connected (FC) and convolutional networks (WRN) is far IargerMethOdS 1-4 are ou_rs, descr|bed1§§3.3 and 5. The prior
o Y 'for Method 4 is , = aFw, + ; all other methods use
than overlap of two random subspacesRih which is approxi- _ 1 . - .
5 . o 2 2 P = N(wp; ~I). The penultimate column (A) is from Dziu-
mately10 °. (Right) Projection KEvi (Fw,) wk;=k wkj of . L . .
. ; - . gaite & Roy (2017) and optimizes the diagonal of the covariance
the change in weight{where w = w  wp) into the subspace

of the top k (shown as percentage of weights because di]‘feren?f Q nur_nencally. The nal column (B) which sets elgen\_/ectors
. . : : of covariance of) to be the same as that of the block-diagonal
networks have different sizes) eigenvectors of the FIM is muchH

larger than the projection into a random subspace. essian is from Wu et al. (2021). For fully-connected nets, the

errore(Q) ranges from 6-8 10 2 for Method 1 and 1-4 10 ?

for all other methods. For LeNet-5 the erefiQ) ranges from 1-2
10 2 for all methods. See Appendix F for the extended version.

6.3. PAC-Bayes Bounds

Table 2 shows results of using different methods to calculate
PAC-Bayes bounds. It is remarkable that for all networks,
the analytical method using Method 1 obtains a non-vacuous
bound. Methods 2—4 obtain bounds that are comparable to
those of existing methods, e.g.,Dziugaite & Roy (2017); Wu
et al. (2021). Appendix D discusses a number of technical
details in how each method are implemented numerically,
e.g., sampling weights from posteriors whose covariance
is represented as a KFAC approximation. As discussed
in 85, our methods in Table 2 exploit the fact that the stiff
subspaces of the Hessian/FIM have a strong overlap at the
beginning and that training predominantly takes place in the
stiff subspace of the FIM at initialization. This experiment
therefore shows that we can exploit sloppiness to compute

non-vacuous generalization bounds for deep networks.

o . Figure 5.Posterior covariance computed by numerically opti-
We next study how similar the optimal PAC-Bayes pos- mjzing PAC-Bayes bound is aligned with sloppy directions.
terior covariance computed by numerical optimization  (Left) Inverse eigenvalues of the posterior covariange'j in-
and the one obtained analytically are.We will contrast  dexed by eigenvaluesf the Hessian (X-axis) foEv( 4) =
two numerical methods, our Method 3 wittv( ¢) = Ev(Hw) (orange, our Method 3) and a diagonal-(blue, this
EV(Hw), and the method of Dziugaite & Roy (2017) in Ta- is the method of Dziugaite & Roy (2017)). For the latter, abscissa
ble 2 which uses a diagona' posterior covariance. We ndg@re the-indices of the sorted d?agonal Of the Hessian. (nght) In-
in Fig. 5 that the eigenvalues of the posterior computed by€rse eigenvalues of the_ posterior covariange') plotted against
Method 3 match remarkably well with our analytical ex- e|genvalue$)f the Hessian foEV( 4) = EV(HW.) (orange) and

for diagonal- 4 (blue). For the latter the X-axis is the correspond-

pression in (5) for Method 1. This sheds light into why our ing entry on the diagonal of the Hessian. For the orange pointcloud,

analyt!cal P,A(,:'B"_iyes bound is n.or?—vacuous.—essentlallme obtain a surprisingly accurate t for our analytical expression
numeric optimization nds a very similar posterior as that of( 1=2(n 1) i+ :wegetn 43 000(truen = 55;000)

the analytical method. It is however important to run evengng 2106 (true = 101:3) with R? = 0:972, which indicates
the numerical optimization in the appropriate basis. Theyood t for regression.

bounds obtained by Dziugaite & Roy (2017) for a diagonal

posterior are worse than Method 3 in Table 2 and as Fig. 5

(left) indicates, this is because their posterior has a smaller
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variance in the sloppy subspace (blue cloud). The difference is that they assume that the block-diagonal
approximation of the Hessian decouples into a Kronecker
7. Related Work product of the Hessian of the activations and the input cor-

relation matrix; we instead optimize the PAC-Bayes prior
Sloppy models in physics and biologyOur work is in-  using the top few eigenvectors of the full Hessian for some
spired by Brown et al. (2004); Gutenkunst et al. (2007) whomodels (LeNet) and the Kronecker-factored approximation
noticed that regression models tted to systems biology dataf the blocks for others. They analyze the case when the
have few stiff parameters that determine the outcome andata matrix has rank 1 and Hessian has nank 1 (m is
a large number of sloppy parameters which only weaklythe number of classes). Our experiments show that they
determine the outcome. These authors have developeate both full-rank but sloppy, and we therefore analyze this
an elaborate geometric understanding of this phenomenoimstead.

see Transtrum et al. (2011) and references therein. Whi.lgartlett et al. (2020) show that a minimum norm interpo-

sloppiness is thought to be a universal property of parametrlfatin solution of over-parameterized linear regression can
models (Waterfall et al., 2006), the mechanism that causes 9 P 9

models to be sloppy has not been studied yet. This wor!?.redICt accurately if the data matrlx ha}s a Iopg ta[l Of. small
%Jgenvalues. Our notion of effective dimensionality is also

has also exclusively focused on the under-parameterize : ; o .
seen in their calculations: roughly speaking, larger our slop-

regime. We connect the sloppiness of a deep network to theiness factorc in Def. 8, better the excess risk in their

sloppiness of inputs and show that if the inputs are slopp inear regression, which is consistent with Fig. 1 (bottom

then key quan'qtles pertaining to the model, e.g., act|vat|onsﬁght). (Liang & Rakhlin, 2018) show similar results on the
FIM and Hessian etc., are also sloppy.

minimum-norm interpolating solution for kernel regression.
Hessian and the FIM of deep networkshave been stud-

ied to understand thg local geometry of thg energy Iaqd8_ Discussion

scape and the behavior of SGD, see Hochreiter & Schmid-

huber (1997); Chaudhari et al. (2017); Fort & GanguliWe showed that for typical datasets, the sloppy decay pattern
(2019), among others. FIM has been used to study optof eigenvalues of the input correlation matrix is mirrored
mization (Amari, 1998; Martens & Grosse, 2016; Karakidain key quantities of the deep network, e.g., eigenspectra of
et al., 2019), gradient diversity (Yin et al., 2018; Chaudharithe activation correlations, activation gradients, logit Jaco-
& Soatto, 2018), and generalization (Achille et al., 2019)bians, Hessian and the FIM. This suggests that the “sim-
A number of these works have pointed out that the Hessiaplicity”, more precisely, the sloppiness, of inputs of high-
and the FIM have spiky/large eigenvalues (Papyan, 2019Jimensional datasets controls the representations learned
along with a bulk of near-zero eigenvalues (Papyan, 2018yy the network. We validated this hypothesis by providing
Pennington & Bahri), and that this indicates that the ennon-vacuous PAC-Bayes generalization bounds for deep
ergy landscape, or the prediction space, is locally at. Wenetworks, including analytical ones. Our calculations also
focus on the decay pattern of the eigenspectra of these marovided a simple de nition of the effective dimensionality
trices and discover that it mirrors the decay pattern of theof a deep network and we showed how this number can be
inputs for typical datasets. We see a strong overlap of thenuch smaller than the number of weights.

stiff subspace of the Hessian/FIM at initialization with that

gt the enq of training; thisi is consistent with the analysisQ_ Acknowledgments
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A. Details of the experimental setup

Data We use the MNIST dataset for experiments on fully-connected networks and LeNet. We setup a binary classi cation
problem (we map0,1,2,3,4 to label 0 and 5,6,7,8,9 to label 1). We use 55000 samples from the training set to train the
model and to optimize the PAC-Bayes bound. We set aside 5000 samples for calculating the FIM, which is used in Method
4 of PAC-Bayes bound optimization. Strictly speaking, it is not required to do so because a prior that depends upon the FIM
is an expectation-prior (as discussed in Parrado-&tedaz et al. (2012)) but we set aside these samples to compare in a
systematic manner to existing methods in the literature that use 55,000 samples. Test error of all models is estimated using
the validation set of MNIST. We use the CIFAR-10 dataset for experiments using two architectures, an All-CNN network
and a wide residual network. For CIFAR-10, we use 50, 000 samples for training and 10, 000 samples for estimating the test
error. No data augmentation is performed for MNIST, for CIFAR-10 we randomly ip images (left to right) with probability

0.5 and select random crops of size 2 after adding a padding of 4 pixels on the width and height.

Architectures For experiments on MNIST, we use LeNet-5 (this is a network with two convolutional layers of 20 and 50
channels respectively, both of 5 kernel size, and a fully-connected layer with 500 hidden neurons) and fully-connected

net with one or two layers and 600 or 1200 neurons on each layer. The latter are denoted as FC-600-1, or FC-1200-2 in our
experimental section. For CIFAR-10, we use ALL-CNN (in order to reduce the number of weights, we reduced the nhumber
of channels in the rst set of blocks to 64, and in the second set of blocks to 128; this is down from 96 and 192 respectively
in the original network) and wide residual net with depth 10 and a widening factor of 8. In the latter case, in order to reduce
the number of weights which makes computing Hessian amenable, we reduce the number of channels in each block of the
WRN to [4, 32, 64, 128], down from [16, 128, 256, 512] for a widen factor of 8.

Training procedure  We train for 30 epochs on MNIST and for 100 epochs on CIFAR-10. The batch-size is xed to 500
for both datasets. For all experiments with train with Adam and reduce the learning rate using a cosine annealing schedule
starting from an initial learning rate ab 2 and ending at a learning rate o 5.

Constructing the v2 model in Fig. 4 We construct the v2 model by training in two phases. The rst phase proceeds as
usual: we initialize the model aty and train as discussed above to obtain the trained weight#n the second phase,
and training further for 20 epochs with an objective that is the sum of the original training objective and an addition term
spring-force-like term:

&hw;Dn)+ kw wok:

The second term forces the weight updates the reduce the Euclidean distance with regpeth&coef cient is set to
be twice that of the learning rate.

Hyperparameters for optimizing the PAC-Bayes bound In Methods 2, 3, 4, we choose= 0:01, ¢ = 0:1 for the penalty
of the scaling parameters in the prior. In method 1, we choese:1, c = 0:05. For all PAC-Bayes bound optimization
experiments, we use con dence parameter0 :025.

Optimizing the PAC-Bayes bound We use batch size of 1100, we draw 150 samples from the pos@etmestimate

&(Q; Dn) for each weight update; see Appendix E for some more implementation details of how to compute a large number
of samples ef ciently. Adam is used to optimize the PAC-Bayes bound. For Methods 2, 3, 4, we rst train for 100 epochs
with learning ratet0 2 and train for another 150 epochs while decaying the learning rate by a multiplicative factor of 0.95
every 5 epochs. We found that for this problem, having a constant learning rate at the beginning is bene cial, instead of
decaying the learning rate immediately, say using a cosine schedule. For the reproduction of the approach of Dziugaite &
Roy (2017) (which we denote as diag) = ), we train for 300 epochs for the second phase with decaying learning rate.

Atypical problems For atypical problems in, we constructed a training set of 50,000 samples and a validation set of
10,000 samples. Inputs 2 R>® were generated from distribution(0; ) where = ( 1;::; 200). We set ; = bexp( ci)

where and=c=50; xing the ratio b=cto be a constant keeps the trace of the data correlation matrix to be about the same
for different values ot. Labels were generated hy= argmay, piv (vixi), wherepl, is the teacher network randomly
initialized with one hidden layer and ten output classes. We train fully-connected networks on these synthetic datasets for 50
epochs; Adam is used with a batch-size of 500 and a cosine learning rate schedule with learning rate that range% from

to 10 S.
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We constructed datasets of Gaussian inputs of varying degrees of sloppiness by selecting decay patterns for the eigenvalues
of a diagonal data correlation matrix. For!diagXX >) = where = ( 1;::1; 4) are eigenvalues in descending

order, we set; = bexp( ci) whereb; care constants. The trace of this correlation matrix is roughtyvhich we keep
constant for different datasets. Larger the value of the “sloppy factanbre sharp the decay for the eigenspectrum of the

data matrix. We randomly initialize a two layer fully-connected neural network with 10 output classes (called the teacher)
and use it to label a dataset of such inputs. Note that since the teacher's weights in the rst layer multiply the inputs, the
correlation matrix of the rst layer activations is non-diagonal and we are not being unduly restrictive in picking a diagonal
data correlation matrix. We then t student networks (fully-connected networks with two layers) on this data until they
interpolate on the training dataset. Our goal is to study (i) how the various quantities discussed in this paper, e.g., the
Hessian, FIM, activations, activation gradients, logit Jacobians , depend upon the sloppiness of the data matrix; (i) whether
the student can interpolate on sloppy datasets without over tting. Fig. 1 shows the results of the experiment.

B. Calculation of the effective dimensionality of a deep network
B.1. PAC-Bayes bounds

Theorem 9 (PAC-Bayes generalization bound McAllester (1999); Langford & Seeger (2001hor every > 0,n 2 N,
distributiond onR¥ f 0;1g™, and distributiorP onH, with probability at least ~ overD, D", for all distributions
QonH,

KL(Q;P)+log ™

kI(&(Q;Dn); &(Q)) n 1

We have the following lower-bound from Pinksker's inequality on the KL-divergence between two Bernoulli random
variables:
2 p)?  Ki(a;p:
We can invert this inequality to get b
Kl Y(a;p a+ p=2
When this is substituted into the above PAC-Bayes bound (1), we have
S

KL(Q;P)+log ™

oQ) Q)+ D
Since ( )
. 1 .
1vyi6 argymaXpw(nyi)) @log Pw (YijXi)
we also have
Q) eQ):

Now set = cexp(j=b), forj 2 N and for a xedb;c 0, by the calculations in Appendix D.5, we see that

Vv

u 2

P KL(Q;P)+2log blog¢ +log —"

Q) eQ)+ ) :

holds with probabilityl

B.2. Calculation for the closed form expression for eigenvalues of the inverse posterior covariance in (5)

The KL-divergence between two multivariate Gaussi@ns N( q; q), P = N( p; p) be two multivariate Gaussians is

1 det
KL@QP)= 5 (" @) Pr(p @ p'(p atloy G

In order to compute the inverse posterior covariance that minimizes the right-hand side of the PAC-Bayes bound, we would
like to solve the problem

(S-13)

KL(Q;P)

minimize L( ¢):= ¢Q;Dn)+ 20 1)

suchthat Q = N(w; q)
and q O
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Observe that

e(hyo;Dn) = e(hw;Dn) + % w? W;HW(W0 w)

P = N (wp; 1I):

ForPw = N(w; !I), we have
KL(Q;P) = KL(Q;Pw)+ skw wok?

Hence,
L= Qe D) dus T 1)2 Quiog 2 aus ok wok?
= 2(n1 1)i logexp 2(n  1)ew®Dpn) +log FSV(EI\\/IV% Qw9 dw’+ i 1)kw Wok?
i 2(n711) %9 xp( 20 1)2(%?Dn))PW(w0)=z logZ QW dw’+ Zo—gskw  wok®
= o1 KLQB) log2)+ ook ok

where we have de ned
BwY) = ezxp 2n 1ew’Dn) Puw9=z; and

Z= exp 2(n l)e(WO;Dn) PW(WO)dWO:
We can now see that( ) attains a minimum when
Q=B/ exp 2(n 1ew®Dn) Pu(wd

or qt=2(n 1)Hw+ 1 ,inotherwords,
9= Un( w) 'Us;
where
i=2(n 1) ; + 8i p:

B.3. Calculation for (9)

(S-14)

Recall that the effective dimensionality of a model at a local minimuis the number of eigenvalues of the Hessian with

magnitude at Ieas}m—l), ie.,

. _W H H .
p(ny)—i:lllil m ;

The strength of the model atis

pga; ) )
s(n; )= 1+log M
i=1

We assume tha{Hw;p(n; )) > 0. i.e., denote&(Hw;p(n; )) asc(n; )

+1

i meXp( c(m; ) p(n; )

We can also assume a weaker version of this decay pattern,

x°

o et |20 el )’

We approximate the training objective in the neighborhood af

e(hyo;Dn) = e(hw;Dn) + % wP W;HW(W0 w)
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and we assume that the modehais a interpolation solution. 183.3, for the posterio = N (w; ¢) that maximizes the
loose version of the PAC-Bayes bound (1), where

q = Uw WlUW>;
i=2(n 1) i+ :

We can now calculate
1 x i
&Q:Dn) ehwiDn)= 5  —

i=1 !
p(n; )+1=dn; ), and

4(n 1) '
!
KL(Q;P) 1 2 i
= kw  wgk + log—+ —
20 1 4 1) o P i
0 ) 1
' : xP .
7 1 1 kw W0k2+ |Og M+l + MA
(n )O ;1) i=p(n; ):[rl
pga;
1 5 20 1) 1
kw  wok® + log =———'+1 + —_——_A": hence
4n 1) ° o1 J c(n; )
e(Q;Dn) + KL(Q;P) s(n; )+2=cn; )+ kw W0k2:

2(n 1) 4(n 1)

For the KL-term, in the rst inequality we have used the fact thg{1 + x) x to split the rst summation into two parts;
in the second inequality we have used the assumption that the eigenspectrum is sloppy to sum the sérep(iiom+ 1 ;
the latter is also used in the inequality for the gap in the loss.

C. Proofs of Lemmas in §3.1

We uset to denote the expectation over inputsThe following lemmas holds for all distributigw af In particular, we
cgp choose the distribution efto be the point mass distribution on the dateset i.e. x 170, x,in this case,

E xx” = 1xx~ 2 RY %is the input corelation matrix.
The following lemma bounds the trace of the activation correlations and the norm of the gradient of each logit with respect
to the activations.

Lemma 10 (Bounding the trace of the correlations of activations and norm of activation gradients)Ve have
h i » h Ji
tr E h¥pk a? wk 1 i E hk 1pk 17 (S-15)

and

dZi dZi k

=
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Proof of Lemma 10 For the rstinequality in (S-15), observe that

¥« h i

>
tr E hpk E (u?

¥« h i
a® E (u}‘)2
i=1

>
= a°tr E uku¥

>
—22tr E wK Ink 1 gk Ik 1

> >
klEhklhkl k 1

a’tr w w

2 >
a.2 Wk 1 Ztr E hk 1hk 1

For the second inequality in (S-16), observe that

dz; _  dz K
dhk = duk+l w
dz; K
=a dhk':'l 1uk+1 0 w
dz; dz; K
a w .
T » dnk+l , 7
wherelgnqis a vector of 1s at elements where the condition is true. O

The above inequalities can be used in Lemma 11 to bound the trace of the gradient correlation of anyitgitspect to
weights of a layew.

Lemma 11 (Bounding the trace of the correlation sum-of-logit Jacobian)For logitz,i =1;::;m

' #! .
. > h | Y— )
tr (;jvfllk (;j\;'k a’ttr E xx” woo (S-17)
j=0:j6k
fork =0;::; L. As aresult,

" #! hoix OxL 1

) o> | .2
rog 9292 a®ttr E xx” w @ LI A

L2
dw dw . 2 j=0 kwi k;
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Proof of Lemma 11 The proof follows via an application of Lemma 10. kot 0;1;:5;L 1,

#! #l
dz; dz; ~ _ dz; dz; K, k>
tr E Gk dwk =tr E GukT gkl h"h
" ! #
_ dzi  dz K, k>
2
a2 d:% tr E h*n
¢ - 1
2
2 dz:_ Y W 2A 2L k1)
dh™ 5 j=k+1
1 h i
a® wootr E xx”
j=0 2
I A 2
atr E xx” w!
j=0;j6k

The third line comes from the fact that the matgi¥%.; dj‘%> is rank one and its trace is the same as 2-norm. The last
inequality comes from the fact thaiv" , wh - Fork =L,

#l " #l
tr E dz; dz ~ —tr dz; dz ~
dwl dwk dw! dwh
=tr E hth-~
iyl
a?tr E xx” w!

j=0

Proof of Theorem 1 We rst calculate an inequality for the Fisher Information Matrix (FIM)

2 3
X0
F=E4  pw(yix)(@Glogpw(yjx))(@logpw(yjx))” S
=1
277 o 3 3
x . .dlo jx) dlo ix)”
S E4@z4 pu(yi) grzjwz(yj ) grgvz(yj )"5 G2 5
y=1

For an output distributiopw (y j x) obtained using the softmax operator on the logjts

) ey
Py Pw(yix)= P—7psp
yo &7

we have

iIo (yjx)=

dz gpwlYlX)= ¢ p
whereey is the one-hot vector of the clagsindp = [p1;:::; pm].

xn

. dlogpw(yjx)dlogpw(yjx)> X __ dlogpw(yjx) 2
- dz dz - dz 2
y=1 y=1

=(1 k pk3)l



Does the Data Induce Capacity Control in Deep Learning?

Hence we have h

|
F E (@G2)(@2)”

In the case of the Hessian for the cross-entropy loss we make a similar calculation following the calculation of Fort &
Ganguli (2019). For the calculation of Hessian, the expect&idanotes the expectation with respect to inputs and labels in
the training set. We write

(log 2)H E:(@z)ri( Iogrm(ij))(@z):I
= E (@z) diagp) pp” (@Jz)>
E (@,z)(dlagp))(@,z)
E (@z)(@z)

In the above calculation, we have kept only the so-called G-term of the Hessian and neglected an additional H-term.
" 4

xn
E W )@%W

which is typically small in pyactice for a well-trained network because the terms are close to zero for all logits (Papyan,
2019; Sagun et al., 201 miyi pijis532 10 8 for FC-600-2 on MNIST). Hence, both(F) and(log 2)tr (H) can
be bounded by

; 4 _ 0 1
xn h i ¢ o2 X
tr(F): (log 2)tr (H) g 9zdz” ey b w @ L S A (S-18)
. dw dw . 2 = kwi K2
i=1 j=0 =0 2
Notice that thdog 2 factor in front of t(H) comes from the rescaling factor in the de nitioneghw;Dn). O

Remark 12. The G-term is always positive semi-de nite since the output distribuianR® is always convex on the logits
C

z2RC,ie, log PEY_ is convex inz.
y Oe y0 y=1

Remark 13. Empirically, the trace of FIM and Hessian at the end of training (Fig. 3) is usually much smaller than the trace
of correlation matrix of logit Jacobians (Fig. S-8). In this case, the prediction of the bound in (S-18) seems very loose.
However from the above calculation, we also know that

" #!
x dzj dz; ~
tr(F) (1 k pkd) tr E dT\llﬁ ;
h i=1

i
t(H) tr E (@z) diagp) pp (@2)”
For trained network that predicts accurately, we usually get the probabilitied are very close to one-hot vectors of the

correct classes. In this case, battk pkg anddiagp) pp~ are close to zero. This explains why in our experiments the
trace ofF andH at the end of training are much smaller than that of logit Jacobians.

Proof of Lemma 2. The proof depends upon Weyl's inequality to control the eigenvalues of the sum of Hermitian matrices.
It states that for Hermitian matricésB;C 2 RP P if C = A + B, then

i+; 1(C)  i(A)+ j(B); i j(C) pi(A)+ p j(B) (S-19)

forall1 i;j p.Inparticularife 0, then ;(C) i(A) foralli p.
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We can now write,

" w2 ! s 3
) . > ) k+1 : k+1
E dzi dgz _ g4 dz; dh dz; dh hkhk>5
dwk dwk dhk+1 duk+1 dhk+1 duk+1
" #
dz; >
E a2 dhﬁ ldk+1 hkhk
2
dz; >
= a2 gt ldea E h¥hk
0 v 1
=2t V@ jwji?Aly,, E h*n*
j=k+1
Hence, by (S-19) " 0 . 1
. . >
spec E f;' O?Z' sped@a?(t ¥ iiwi%lg,, E hn*" A
k OWk .
j=k+1
so we have " #
dz; dz; ~ a k¥ Ky k>
spec E a Jiw;j jj“spec l g, Spe¢E h™h )
de de = k+1 "

O

Remark 14 (Modi cation using sloppiness of activation gradients)ﬁig. 1 §hows that the slope of decay of FIM and
the actir\]/ations are essentially the same. However, in (3pét E hkpk” decays aD(exp( ci)), the decay of

|
spec E dz_dz ” g O(exp( ci=dx+1)). This is aloose bound, especially whan, is large, e.g., the spectrum could

dwk dwk
decay much more faster. But note that if we can write a KFAC-approximation
" " " 4
dz; dz dz;  dz Kk
dwk dwk duk+l dyk+1 E h'h

then we olatain astronger decay for the logit gradient when ﬁ Iarge,i if we assume that the activatigmadientsare sloppy.

If spec E ﬁﬁ%> decays asxpf ciigandspec E h*hk~  decays asxpf cyj g, then the(i : j)%th largest
I i
eigenvalue ot 4z 4z~ dz_dz 7 g

dwk dwk dwk dwk

is smaller tharexp( minfcy;cog(i + j)),ki‘wence theth largest eigenvalue &
|
smaller tharexp mim‘cl;czgIO k . Hence, the decay rate of spee

dz; dz; >

2 o iSO exp mim‘Cl:ngpE

Corollary 15. Denote the FIM and Hessian with respect to kkhielayerF (wy); H (wy) respectively, then we have,

L2
speq(F (wy)) ;spedH (wy))  2ma2t ® w ’spe¢ly,,) spec E h*n*”
j=k+1 2
.2
Asin LemmaZ,Q}-:L:1 wo=1.
2
Proof. From Lemma 11 we know that o )
|

F(we);Hwk)  2E (@ 2)(@, 2)”

P .
Lets= {1, z be the sum of logits, then we have

#
_ ds ds ~
F(wg)iH(wg) 2E m m
2
2ma?t 1 w! ,spedlq,.,) spec E hkhk”

j=k+1

The second inequality comes from a similar calculation as in Lemma 2 for network with one added layen,whete
U +1 = Z, UL+ = W41 g, andWL+1 =01;:5 1], kw41 k% = m. O]
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D. Technical details of different methods for optimizing the PAC-Bayes bound

We optimize the problem, s

mine(Q:Dn)+ RL(QP)*"

0D (S-20)

whereQ, P are multivariate normal distribution, is the penalty we added for including a trainable parameter in prior (say
its scale), and is the number of samples. For Gaussian distributions on the weight @pB¢as we saw in (S-13), the
KL-divergence is

1

5 i bt @) pr(w wo)” pl(w wp)+log(det p=det q)

The penalty for the case whén= N (0; 1) comes from the union bound over the set cexp(j=b) forj 2 N and is
given by
' =2log(blog(c=))+log  ?n=(6 )

Note that for Method 4, we need more than one trainable parameters for the prior, and the'pshaltyd also be modi ed
according to Appendix D.5. We calcula#&Q; D) using Monte Carlo samples fro@. After the optimization process, we
calculate the PAC-Bayes bound (@) using

KL(Q;P)+ "

N (S-21)

kl(&(Q:Dn); e(Q))
which involves nding an approximation &l (b;a) :=supfa®2 [0;1] : kl(b; &% ag (see (Dziugaite & Roy, 2017) for
details). We next discuss the various methods for calculating PAC-Bayes bounds developed in the paper and provide their
implementation details.

D.1. Method 1

The tightest bound in this case is obtained using the v2 model described in Fig. 4 and Appendix A. To recall, this involves a
second post-training phase where the trained model is updated to be closer to the initialigatiothe context of the
PAC-Bayes upper bound, this reduces the distance between the means of the Gaussian prior and posterior. We choose
asin (4) and (5). For= cexp(j=b) andj =1;:::;60, we evaluat&L (Q; P) by using (S-13), ané(Q;Dn) is estimated
by sampling. The covariancey is approximated by the top eigenvalues and eigenvectors of the Hessian as discussed
in Appendix D.4.2. The PAC-Bayes bound is calculated by (S-20) and we choose the smallest bound among all choices of

We also set g = Uy wUy and calculate by directly minimizing (S-20) where the variables of optimization gréor
ik using nonlinear optimization in scipy (using the BFGS algorithm), and the PAC-Bayes bound is calculated in the same
way as above. This is denoted as Method 5 (Numerical) in Table S-3.

For comparison, we also choosg= !l and calculate the PAC-Bayes bound. This is denoted as Method 6 (Isotropic)
in Table S-3.

D.2. Methods 2 and 3

We choose® andQ as described in§5. We set ' =exp(2 ), w =exp(2 ). The parameters, w, are optimized
while optimizing the PAC-Bayes upper bound. We initializé atexp( 6) and w at( F + )=10where F are the
eigenvalues of the FIM at initialization. For fully-connected networks and LeNet, we eval@ten) using the methods
described in Appendix D.4.1 and Appendix D.4.2 respectively.

We use the Gauss-Newton matrix as an approximation of the FIM for Method 2.

D.3. Method 4

We choosé andQ as described ir§5. We se=exp(2 1), *=exp2 2), =exp(2 ) and train parameterg, »,w,
. In our experiments, ! is initialized toexp( 6), ais initialized toexp( 1) and q is initialized to be(aFw, + )=10. In
this case,
X . X F 1
KL@P)= 3~ gl d+(w wo)” @Fuwe+ ) 'w wo)+  log?l”

.aF+1 . i
i | i
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where T are eigenvalues dfy,. For fully-connected networks and LeNet, we approxintate wo)” (aFw, + 1) (w

wp) using the methods described in Appendix D.4.1 and Appendix D.4.2 respectively.

We use the Gauss-Newton matrix as an approximation of the FIM for Method 4.

D.4. Computing the PAC-Bayes term that corresponds to the distance from initialization

In Method 4, we need to calculate
E=(w wo) (aFw, + ) ‘(W wo):
In Methods 2 and 3, we need to sample from a posterior of the fog@nU U ) for various different values df and .
Doing either of these is not easy for high-dimensional weight spaces. We employ two different methods to deal with this

problem. For fully-connected networks we use a KFAC approximation of the Hessian/FIM while for LeNet which has much
fewer weights, we approximate these matrices using their top few eigenvalues and eigenvectors.

D.4.1. KFACAPPROXIMATION OF THEFIM AND HESSIAN

We approximate the Hessian/FIM by a variation of Kronecker decomposition of block-diagonal Hessian/FIM (KFRA, (Botev
et al., 2017)). We use the BACKPACK library for implementing this (Dangel et al., 2020). For the weightidt tager

wy 2 R%+1 d the KFRA approximation of the corresponding block in the Hessian/FIM which is denoteti byH

can be written a#\y  By. Denote byJ,, ; Ug, the eigenspaces & andBy. To estimateE, we can rst decomposg as

the summation where each term is for a particular l&yer

where
EX=(w" W) @Fw)k+ B twk wh)

=W whTUR@ ) U wh)

= wf whTuk aks+ 1 (w

(E¥)*2 can be calculated by
1=2 1=2
ENT o (WK wk)P UK a ke 1

1=2
=(Us, (W* whug,) a X+ 1

where in the last lingw*  wf) 2 R%+ % We use to denote element wise multiplication, (W wf)Ug, can now
be easily calculated using the KFAC factors.

To sample from the posterigg(w; U U~ ), we can concatenate the samples of the weights of each layer. We rst sample
rk N(O;1 a4 ). then calculate ¥  r, and thereby

k = Uk k g = UAK k Mk ngi
The nal sample is therefor +[ 1;::; ] which is distributed asl (w;U U”).

D.4.2. APPROXIMATE FIM AND HESSIAN USING ITS TOP EIGENVALUES AND EIGENVECTORS

For symmetric with orthogonal decomposition= U U”,U =[Ug;Uy], = diag 1; »2), we have

= Up U7 + Uy U7

wherel = U U7 + UoU3 ¢
In this case, to calculate, we approximat@Fy, + * by

aFw, + T=Ui(a 1+ {HUT + ,'UU5
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where 1;U; are the stiff (largest) eigenvalues and corresponding eigenvector&fgrandu,; » are the sloppy ones.
Notice that we use two scalar parametgrand ; to set the additive constant in the prior covariance.

E=(w wp) U(a 1+ 1) "Ui(w wo)+ 2w wo)” U2U3 (W wo)
=(w wo) U(a 1+ 1) Uf (w wo)+ 2 kw woki (w wo)” UiUr (W  wo)
Notice that the terniw  wp)” U; is not hard to calculate because 2 RP X and since we are choosing the top few
eigenvalues of the Hessian/FIM, the valuead$ small (about 300).

To sample from the posteriot (w;U U”), we rstset = diag 1; 2) where ; are the togk stiff eigenvectors and
2 are thep k other eigenvectors. Correspondingly, we have [ Uz ; U>]. We use an isotropic variance for the sloppy
subspace and sep = l|p k- We rstsampler N (0;1y), then calculate
P —
1=Ur  1Ufr

2= PUUzr= T Uil

Notice thatu, U7 r, andUlp “1U7 r are easy to calculate. The result [ 1; ] is distributed asd (w;U U”).

For cases when we recompute the FIM/Hessian while optimizing the PAC-Bayes bound (Method 2 and 3 respectively), we
recompute the eigenvalues and the corresponding eigenvectols Note that the parameteiin the covariance of the
posterior is also optimized when we optimize the PAC-Bayes bound.

D.5. Optimizing parameters of the prior in the PAC-Bayes bound

The prior should be xed before looking at the training set, but for all methods above, we optimize the scale of the prior. We

prior that we can select, we choasie= (1=d)exp =8 forj' 2 N. We reindex' as a single indek = (' ,j")™’, then

if the PAC-Bayes bound for each indexs designed to hold with probability at leaist ?—kz then by union bound, it will
hold uniformly for allk 2 N with probability at least . For a bound that holds with probability ©, the penalty we
should add isog %%, hence, using the relation

a =@=d)exp j'=0 ; = Cok=( jhm

we add the penalty !

0 0 X i n
;ina™)=2m’log blog ca  +log 5
[

' (al

Similarly, for any positive or negative integgr, we can sek = ( ; 2jjj' )mo to get the penalty
|

0 X . 2

y=2m'log 2 blog c'a +|096—

In Methods 1, 2, 3 we choosé = 1, in Method 4, we choosa' = aanda?= 1.

E. Working ef ciently with Bayesian deep networks

Typically, a Bayesian neural network is implemented by programming Bayesian variants of standard layers in deep learning.
For instance, one de nes a BayesianLinear layer which maintains two sets of parameters, the mean weight vector and a
standard deviation for each weight. At each forward pass, the layer samples a weight vector using the reparameterization
trick to compute the activations. This is a reasonably ef cient way to implement a Bayesian neural network but it is
cumbersome because code for complex deep network architectures has to be rewritten from scratch to accommodate these
Bayesian layers. We noticed that we can use the following trick (this is likely speci c to PyTorch) to create a wrapper
around any existing deep network code and construct its Bayesian variant. All our experiments use 150 sam@les from
before each update; in comparison typical implementations use 1 sample (Dziugaite & Roy, 2017; Wu et al., 2021). This
strategy is potentially useful for other problems as well, e.g., for estimating the prediction uncertainty.
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The code shown in Appendix E is adapted from
https://github.com/pytorch/pytorch/blob/master/benchmarks/functamalgradoenchmark/utils.py and works by rst
calculating the reparameterization trick (Line 45) using the mean and (logarithm of the) standard deviation of the weights

(self.mustd) and then swapping the weight of the actual model (self.w) that performs the forward propagation using the
sampled weights.

Figure S-6.Code for Bayesian neural networks
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F. Full results of PAC-Bayes generalization bounds and effective dimensionalities

We display the extended version of the results of PAC-Bayes bound optimization in Table S-3. Methods 1 and 5 give bounds
that are similar to each other: this shows that our analytical expression (4) for the optimal posterior using a loose PAC-Bayes
bound under the assumption that the loss is quadratic at the weights at the end of training is an accurate estimate of the
optimal posterior (1). The bound calculated by these two methods is smaller than that of Method 6, which shows that the
sloppiness of the Hessian at the end of training ) is effective at providing non-vacuous generalization bounds. Using an
isotropic posterior in Method 6 produces a remarkably good bound because almost all eigenvaludsrdfINIST are

small; even the largest eigenvalue is quite small in its magnitude as shown in Fig. 3). Methods 1, 5, 6 (which are the three
methods that compute a bound without any optimization using the training dataset) give worse bounds than Methods 2, 3, 4
and also the method of Dziugaite & Roy (2017). This is because the approximation

e(hus;Dn) = elhwiDn)+ 5 WO WiHW(W® w) :

as we discussed in Method 1 may not be an accurate estimate®bn) in the neighborhood ofi. As we see in
Appendix B, the posterior that optimizes the loose PAC-Bayes buiithdutthe approximation of the quadratic loss instead

looks like (S-14). Methods 2—4 which involve optimization of the PAC-Bayes bound capture the optimal posterior better
than the one corresponding to the quadratic assumption leads to a tighter PAC-Bayes bound. Method 4 gives the tightest
bound since the training predominantly takes place in the stiff subspace of FIM at initialization, and the prior with covariance
proportional to FIM puts less penalty than the isotropic prior on the stiff directions. Using posteridEWwigh= Hw

(Method 3, which is similar to Wu et al. (2021)) works better than a diagonal postrig) =  (which is the method

in Dziugaite & Roy (2017)); this coincides with our calculation in Method 1 §28) that the eigenvectors of the optimal
posterior is the same as that of the Hesslan

We also calculated the effective dimensionalities, strength and sloppy factor of different modelsdesiived in Method 3
(the calculated by PAC-Bayes bound optimization can be regarded as a sound choice), the results are displayed in the 4th
block of Table S-3.

G. Further experimental studies
G.1. Additional results on the sloppiness of different architectures and datasets

MNIST in spite of its lower dimensionality has roughly the same range of eigenvalues but it has a very small threshold

in Def. 8 which indicates that data has a lower number of effective dimensions than CIFAR-10. The FIM (empirical FIM is
essentially the same line) shows a very strong decay for MNIST; since the trace of the FIM has been used as an indicator of
the information stored in the weights (Achille et al., 2018), this indicates that the weights have to store very little information
to predict MNIST well. The Hessian and FIM have very different eigenvalues for MNIST but as Fig. 3 indicates the two
matrices have a larger overlap in their top eigenvectors. Eigenspectra of other networks on MNIST are similar to Fig. S-7
while those of CIFAR-10 are similar to Fig. 1.

In Fig. S-8, we compare the correlation matrices of logit Jacobian for different logits, which shows that the eigenspectra
for different logits are similar. In Fig. S-9 and Fig. S-10 we compare the correlation matrices of activations and their
gradients. From the gures, we can see that the eigenspectra are similar for different layers, which shows that the sloppiness
is preserved as we getting into higher layers of neural network. In S-11 and S-12 we ploted the eigenspectra for different
networks. The similarity of eigenspectra of matrices calculated on same dataset but different architectures strongly indicates
that the sloppiness of Hessian, FIM, correlations of logit Jacobians, activations and gradients of activations are all inherited
from the sloppiness of the data set. Fig. S-13 is a reproduction of Fig. 5 using FC-1200-1 on MNIST.

G.2. Weights of a trained network can come back towards the initialization in the sloppy subspace even if they
evolved in the stiff subspace

Fig. S-14 shows that the projection of change of weights of the medely) for the v2 model (which has a second phase

of training with a penalty jj w  wojj3) onto the stiff directions is larger than that of original model (FC). This indicates

that the projection onto the sloppy directions of model v2 is smaller than that of the original model because the projection
onto orthogonal decompositions of the parameter space sums to one. This indicates that weights can effectively come back
towards the initialization in the sloppy subspace without affecting the accuracy of the model even if the model predominantly
evolves in the stiff subspace during training.
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Quantity/Model FC-600-1 FC-600-2 FC-1200-1 FC-1200-2 LeNet
Training and validation error of the trained model
é(hw;Dnp) 0.0000 0.0000 0.0000 0.0000 0.0000
log2 e(hw;Dn) 0.0008 0.0000 0.0010 0.0000 0.0000
e(hw) 0.0150 0.0143 0.0146 0.0139 0.0111
log2 e(hw) 0.0641 0.0956 0.0584 0.0977 0.0669
Analytic (Method 1)
e(Q;D pn) 0.0901 0.0766 0.0534 0.0678 0.0074
log2 e(Q;D n) 0.2299 0.1997 0.1410 0.1776 0.0263
e 0.0897 0.0827 0.0553 0.0729 0.0167
log2 e(Q) 0.2384 0.2314 0.1492 0.2015 0.0927
PAC-Bayes bound 0.3241 0.3794 0.3509 0.3915 0.0572
KL(Q;P ) 8512.5098 13417.4023 14088.1738 15308.4170 1965.8048
199.4836 401.7107 328.8929 443.9590 4424
Ev( q) = EV(Fw,) (Method 2)
e(Q;D n) 0.0309 0.0288 0.0267 0.0298 0.0053
log2 e(Q;D n) 0.0895 0.0798 0.0742 0.0829 0.0160
e 0.0346 0.0331 0.0327 0.0348 0.0147
log2 e(Q) 0.0995 0.0959 0.0947 0.0995 0.0590
PAC-Bayes bound 0.1590 0.1767 0.1523 0.2017 0.0099
KL(Q:P ) 4772.4854 5953.1523 4841.5972 7268.2832 46.5822
E( g)= E(Hw) (Method 3, our implementation)
e(Q;D n) 0.0202 0.0165 0.0169 0.0178 0.0043
log2 e(Q;D n) 0.0556 0.0451 0.0466 0.0487 0.0133
e 0.0268 0.0253 0.0245 0.0249 0.0141
log2 e(Q 0.0781 0.0781 0.0761 0.0742 0.0564
PAC-Bayes bound 0.1357 0.1540 0.1515 0.1817 0.0188
KL(Q;P ) 4645.1128 6122.5703 5919.6455 7589.6387 430.4026
46 101 53 172 1360
p(n; ) 2301 (0.487%) 2429 (0.292 %) 2315(0.245%) 2287 (0.095%) 82 (0.184 %)
s(n; ) 6435 6810 6420 6280 231
1=c(n; ) 2236 2497 2604 2841 38
p=aFwg+ LE( q)= E(Fwg) (Method 4)
é(Q;D n) 0.0237 0.0218 0.0226 0.0220 0.0048
log2 e(Q;D p) 0.0663 0.0611 0.0631 0.0614 0.0147
e 0.0270 0.0265 0.0266 0.0264 0.0145
log2 e(Q) 0.0806 0.0956 0.0789 0.0801 0.0573
PAC-Bayes bound 0.1323 0.1397 0.1486 0.1702 0.0092
KL(Q:P ) 4090.7241 4679.0293 5074.4102 6369.7505 23.2886
diag( q) = (our implementation)
e(Q;D n) 0.0283 0.0249 0.0284 0.0285 0.0079
log2 e(Q;D n) 0.0795 0.0700 0.0795 0.0797 0.0236
e 0.0330 0.0311 0.0326 0.0331 0.0161
log2 e(Q) 0.0942 0.0923 0.0940 0.0963 0.0637
PAC-Bayes bound 0.1707 0.1846 0.1886 0.2167 0.0131
KL(Q;P ) 5674.5186 6854.7871 6668.9023 8332.5869 37.5598
Numerical optimization of Method 1 calculations (Method 5)
é(Q;D n) 0.0711 0.0630 0.0805 0.0580 0.0087
log2 e(Q;D n) 0.1805 0.1673 0.2072 0.1510 0.0331
e 0.0717 0.0683 0.0800 0.0644 0.0168
log2 e(Q) 0.1902 0.1925 0.2092 0.1811 0.0955
PAC-Bayes bound 0.3182 0.3917 0.3539 0.4366 0.0792
KL(Q;P ) 9920.2510 15908.7813 11271.7246 20162.2891 2941.7917
243.6499 490.6506 269.2748 599.2820 54.3656
Isotropic Posterior (Method 6)
e(Q;D n) 0.0473 0.0879 0.0653 0.0638 0.0094
log2 e(Q;D n) 0.1266 0.2538 0.1661 0.1757 0.0385
e 0.0524 0.0937 0.0677 0.0697 0.0191
log2 e(Q) 0.1409 0.2935 0.1759 0.2057 0.1076
PAC-Bayes bound 0.3694 0.5461 18533.2422 0.5490 0.1146
KL(Q:P ) 16261.0205 26160.2773 0.4288 30034.0645 4807.3564
401.7107 808.9461 443.9590 894.0237 89.6338
diag( q) = (from Dziugaite & Roy (2017))
e(hw) 0.018 0.016 0.018 0.015 -
e(Q) 0.034 0.033 0.035 0.035 -
PAC-Bayes bound 0.161 0.186 0.179 0.223 -
KL(Q;P ) 5144 6534 5977 8558 -
E( ¢)= E(Hw) (from (Wu etal., 2021))
e(hy) 0.0153 0.0148 0.0161 - -
e(Q) 0.02347 0.02523 0.02316 - -
PAC-Bayes bound 0.119 0.1443 0.1413 - -
K P ) 3766.1 4956.8 21.1 - -

Table S-3Comparison of PAC-Bayes bounds on MNIST for different methodsThis table is an expansion of Table 2. The 6th block
is our reproduction of (Dziugaite & Roy, 2017), the rst, 7th and 8th block corresponds to the three methods of constructing posterior for
PAC-Bayes bound without training described in Appendix D.1.
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Figure S-7 Eigenspectra for a two-layer fully-connected network on MNIST. The eigenspectra are qualitatively the same as those of Fig. 1,
e.g., there is a sharp drop at the beginning and a long, linear tail of small eigenvalues follows. Slopes of the eigenspectra of activations,
activation gradients, Jacobians and Hessian mirror those of the data. In contrast to Fig. 1, the slope of the FIM is quite different here. The
Empirical FIM and FIM overlaps with each other since the model is trained to nearly perfect train and validation error.

Figure S-8Eigenspectra of the correlation matrices of Jacobian of logits for FC-600-2 on MNIST (Left) and wide residual net on
CIFAR-10 (Right). The eigenspectra are similar for different logits.
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Figure S-9Eigenspectra of the correlation matrices of activations of different layers for FC-600-2 on MNIST (Left) and wide residual net
on CIFAR-10 (Right). For different layers, the eigenspectra are similar.

Figure S-10Eigenspectra of the correlation matrices of gradients with respect to the activations of different layers for FC-600-2 on
MNIST (Left) and wide residual net on CIFAR-10 (Right). For different layers, the eigenspectra are qualitatively similar, and as we move
into higher layers of neural networks, the eigenvalues becomes smaller for gradient of activations.






