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Abstract
We show that the input correlation matrix of typ-
ical classification datasets has an eigenspectrum
where, after a sharp initial drop, a large number of
small eigenvalues are distributed uniformly over
an exponentially large range. This structure is
mirrored in a network trained on this data: we
show that the Hessian and the Fisher Information
Matrix (FIM) have eigenvalues that are spread
uniformly over exponentially large ranges. We
call such eigenspectra “sloppy” because sets of
weights corresponding to small eigenvalues can
be changed by large magnitudes without affecting
the loss. Networks trained on atypical datasets
with non-sloppy inputs do not share these traits
and deep networks trained on such datasets gener-
alize poorly. Inspired by this, we study the hypoth-
esis that sloppiness of inputs aids generalization
in deep networks. We show that if the Hessian is
sloppy, we can compute non-vacuous PAC-Bayes
generalization bounds analytically. By exploiting
our empirical observation that training predomi-
nantly takes place in the non-sloppy subspace of
the FIM, we develop data-distribution dependent
PAC-Bayes priors that lead to accurate generaliza-
tion bounds using numerical optimization.

1. Introduction
In Fig. 1 (top), for a wide residual network (with 10 layers)
on CIFAR-10, we calculated the eigenspectrum of the input
correlation matrix (n−1XX> where each column of X is
one input image) and compared it to the eigenspectra of the
Fisher Information Matrix (FIM) and the Hessian. We find
that this decay pattern for the input correlation matrix is
mirrored in that of the FIM and the Hessian. There are very
few (less than 5% of the input dimensionality) large eigen-
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values (stiff) after which there is a sharp drop and a long
tail of small eigenvalues (we call them sloppy as defined in
Def. 8). Other quantities, e.g., correlations of activations of
different layers, Jacobians of different logits with respect
to the weights, and gradients of the loss with respect to
activations of different layers, have a similar decay pattern.
Eigenvalues span exponentially large ranges—about 7 or-
ders of magnitude in this experiment. Sloppy eigenvalues
are distributed uniformly across such exponentially large
ranges.

Eigenspectra of many typical datasets and networks are
similar. In Fig. 1 bottom, we created synthetic inputs with
varying slopes for the decay of sloppy eigenvalues. We
labeled such inputs using a teacher network with randomly
generated, but fixed, weights and trained different student
networks on such datasets. Each student was trained to have
zero training error, i.e., it interpolated its training dataset
perfectly. We find in Fig. 1 (left) that, again, the decay
pattern of the inputs is mirrored in the FIM/Hessian of the
students—sloppier the inputs, sloppier the FIM and the
Hessian. Sloppier the input correlations, better the general-
ization error of the student (Fig. 1 bottom right).

The Hessian governs the local geometry of the loss function
in the weight space; small eigenvalues correspond to direc-
tions along which the loss is insensitive to changes in the
weights. The FIM governs the local geometry in the pre-
diction space; if we think of a network as a parameterized
distribution pw(y |x), eigenvectors corresponding to small
eigenvalues of the FIM correspond to sets of weights which
can be changed significantly without affecting the distri-
bution pw(y |x) much. A sloppy eigenspectrum for these
matrices indicates that the trained network is in some sense,
“simple”: few sets of weights dominate its predictions while
there exists a large set of sets that improve the predictions
marginally. Both these matrices play a role in determining
the generalization error of a neural network.

This paper investigates how sloppiness of the inputs causes
the sloppiness of the FIM and the Hessian and how such
sloppiness aids generalization.

1.1. Contributions

(1) We show that for typical datasets and deep networks,
eigenspectra of correlation matrices of the inputs, ac-
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Figure 1. Top: Eigenspectra of the correlations of the inputs, ac-
tivations and activation gradients, logit Jacobians and the FIM,
Hessian at the end of training; for FIM we also calculate the spec-
tra at initialization and middle of training. All eigenspectra are
scaled by the largest eigenvalue of the input correlations (activation
gradients are scaled up by 1012). Eigenspectra corresponding to
activations/activation gradients of all layers of the network, and
logit Jacobians of all logits are very similar (see Appendix G).
Eigenspectra of these quantities are also qualitatively the same at
initialization, at the middle of training (see Appendix G.4 Fig. S-
15). This plot is drawn for a wide residual network with 10 lay-
ers on CIFAR-10 (WRN-10-8 Zagoruyko & Komodakis (2016)),
eigenspectra of other networks/datasets are qualitatively the same
(see Fig. S-7 and Appendix G).
Bottom Left: Eigenspectra of the input correlation matix, FIM
and Hessian at begining and end of training for sloppy factor (slope
of the sloppy eigenvalue decay) c = 10�3 (orange) and c = 10�1

(green). If inputs are not sloppy (small c) then even if there is a
sharp drop after the top few eigenvalues (around 100 for orange
lines), the eigenspectrum is flat. In comparison, the FIM/Hessian
decay by about 3 orders of magnitude for c = 0.1. The details of
the experiments can be found at Appendix A.
Bottom Right: Validation error of a student (S) network on syn-
thetic datasets of different sloppiness (X-axis) labeled by a teacher
network (T). Numbers in brackets indicate number of hidden neu-
rons in two-layer teachers/students. All students in this plot inter-
polate the training data perfectly. For non-sloppy inputs, interpo-
lation leads to poor generalization, whereas interpolation is not
detrimental to generalization for sloppy inputs. As the number of
student neurons increases, fixed the teacher’s size and the sloppi-
ness factor, the validation error is better. Fixed teacher size, say
20, if inputs are sloppier (sloppy factor of 0.5 vs. 0.1) then we can
generalize—roughly equally well—even if the student is smaller
(10 vs. 500).

tivations of different layers, Jacobian of logits with re-
spect to the weights, gradients of the loss with respect
to the activations, as also the Hessian and the FIM, are
sloppy. These eigenspectra consists of few large eigen-
values and a large number of small eigenvalues that are
distributed uniformly across an exponentially large range.
We call such eigenspectra (or the corresponding quantities)
“sloppy” and define this notion in Def. 8. Synthetic datasets
can be constructed where these quantities are not sloppy; in-
terpolating networks do not generalize well for such datasets.
We prove that (a) the trace of the correlation of the activa-
tions, logit Jacobians, Hessian and the FIM can be upper
bounded by the trace of the input correlation matrix, (b) if
we assume that the activations are sloppy then the eigenspec-
trum of a block-diagonal approximation of the FIM is also
sloppy, (c) under the assumption of weights with bounded
norm, eigenvalues of activations decays faster than O(1/i).
(2) For a Gaussian isotropic prior N(w0, ε

−1I) centered at
the initialized weights w0, we calculate the optimal covari-
ance of a Gaussian posterior N(w,Σq) (where w are weights
of the trained network) that minimizes a PAC-Bayes gen-
eralization bound. If the Hessian at w is sloppy, then we
obtain a non-vacuous generalization bound. For example,
for MNIST, we get a bound of 32.4% for a fully-connected
network and 5.7% for LeNet. This indicates that sloppi-
ness of inputs controls the capacity of the model. To our
knowledge, this is the only analytical, non-vacuous gen-
eralization bound for deep networks that does not use
weight compression.
(3) We characterize the effective dimensionality of a deep
network as

p(n, ε) =
Pp
i=1 1

n
|λi| > ε

2(n−1)

o
,

where ε is the inverse covariance of the PAC-Bayes prior and
n is the number of samples. Roughly speaking, ε/(2(n− 1))

is the elbow of the eigenspectrum in Fig. 1 (top); eigenval-
ues of the optimal PAC-Bayes posterior beyond this thresh-
old are dominated by the complexity term in a PAC-Bayes
bound while eigenvalues before this threshold are domi-
nated by the training error. For sloppy eigenspectra, this
dimensionality is typically a tiny fraction of the num-
ber of weights, e.g., it is less than 0.5% of the number of
weights for all networks/datasets considered in this paper,
and much smaller than, say the VC-dimension.
(4) We find that the stiff sub-space of the FIM at initial-
ization has a strong overlap with its counterpart at the
end of training, and weight updates during training pri-
marily happen in this stiff subspace. We exploit this ob-
servation to numerically compute a PAC-Bayes bound using
a Gaussian prior whose covariance is proportional to the
FIM and a Gaussian posterior whose eigenvectors are the
same as those of the FIM at initialization. This is a remark-
ably accurate estimate of generalization gap, e.g., for LeNet
on MNIST, it is 0.9% whereas the gap is about 0.5%.
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All the code for experiments in this paper is provided at
https://github.com/grasp-lyrl/sloppy.

2. Background
Consider a dataset Dn = {(xi, yi)}ni=1 with n samples,
xi ∈ X ⊂ Rd and yi ∈ Y = {1, . . . ,m}. We assume that
this dataset is drawn from a joint distribution D on X × Y .
A classifier hw : X 7→ [0, 1]m parameterized by weights
w ∈ Rp belongs to a hypothesis space {hw : w ∈ Rp}; this
classifier maps inputs x ∈ X to m-dimensional categorical
distributions pw(y |x) ∈ [0, 1]m. Let Q be a distribution on
hypotheses, which is implicitly a measure on Rp. We define

(a) training error of a hypothesis ê(hw, Dn) =
1
n

Pn
i=1 1{yi 6= argmaxy(pw(y |xi))};

(b) population error e(hw) = EDn∼Dn [ê(hw, Dn)];
(c) training loss is ĕ(hw, Dn) =

− 1
n log(2)

Pn
i=1 log pw(yi |xi);

(d) empirical error and loss of the distribution Q

of hypotheses ê(Q,Dn) = Ew∼Q [ê(hw, Dn)] and
ĕ(Q,Dn) = Ew∼Q [ĕ(hw, Dn)], respectively;

(e) population error of distribution Q given by e(Q) =

EDn∼Dn [ê(Q,Dn)]; and
(f) population loss is ĕ(Q) = EDn∼Dn [ĕ(Q,Dn)].

Hessian and Fisher Information Matrix (FIM) The
Hessian H ∈ Rp×p is the second derivative of the em-
pirical loss with respect to the weights w, i.e., Hij =

∂i∂j ĕ(hw, Dn). The Fisher Information Matrix (FIM) F ∈
Rp×p has entries

Fij =
1

n

nX
k=1

mX
y=1

pw(y |xk)∂i log pw(y |xk)∂j log pw(y |xk).

It is important to note the expectation over the outputs y. The
empirical FIM is an approximation of the FIM where one
sets y = yk. Both the Hessian and FIM are large matrices
and it is difficult to compute them for modern deep networks.
Therefore some of our experiments use a Kronecker-factor
approximation (Martens & Grosse, 2016) of a block diago-
nal Hessian and FIM where cross-terms ∂i∂j across different
layers of a deep network are set to zero.

2.1. PAC-Bayes Generalization Bounds

The PAC-Bayesian framework developed in Langford &
Seeger (2001); McAllester (1999) allows us to estimate the
population error of a randomized hypothesis with distribu-
tion Q using its empirical error and its Kullback-Leibler
(KL) divergence with respect to some prior distribution P .
For any δ > 0, with probability at least 1− δ over draws of
the dataset Dn, we have

kl(ê(Q,Dn), e(Q)) ≤ KL(Q,P ) + log(n/δ)

(n− 1)
, (1)

where KL(Q,P ) =
R

dQ(w) log(dQ/ dP )(w). We will also
define a KL divergence between two Bernoulli random vari-
ables with parameters b, a as kl(b, a) = b log(b/a) + (1 −
b) log((1− b)/(1− a)). The right hand-side of this inequal-
ity can be minimized to compute a distribution Q that has
a small generalization error (Langford & Caruana, 2002;
Dziugaite & Roy, 2017). Typically, we pick a simple form
for distributions Q and P , say Gaussian. We can also have
hyper-parameters for the prior P , say the scale ε of the co-
variance of P and search over this scale while optimizing
the bound. See Appendix B for details.

2.2. Data-dependent PAC-Bayes Priors

The posteriorQ in (1) may depend upon the training samples
Dn, e.g., it could be the distribution on the weight space
induced by a randomized training algorithm like stochastic
gradient descent (SGD). The prior P can depend upon the
data distribution D, but not the samples Dn themselves.
Although it is common to use priors that do not depend
upon the data at all, it is has been increasingly noticed
that data-distribution dependent priors may provide tighter
bounds (Dziugaite & Roy, 2018). To gain intuition, recall
that in the expression for the KL-divergence between two
Gaussians Q = N(w,Σq) and P = N(w0,Σp), we have a
term of the form (w−w0)>Σ−1

p (w−w0) that depends upon
the distance between trained weights w and the initialization
w0. Priors P that do not depend upon the data may therefore
incur a large KL-term.

FIM and Hessian-dependent priors We can pick a prior
using a subset of the training samples (Ambroladze et al.,
2007), e.g., we can center the Gaussian prior on weights
trained on this subset, to obtain a better PAC-Bayes bound—
the theory allows this. Doing so leads to a worse denom-
inator in (1), although this may be mitigated by a smaller
numerator. Parrado-Hernández et al. (2012) also define
expectation-priors, i.e., where we choose a prior that de-
pends on the data distribution and, in practice, evaluate
this prior using samples in the training dataset in lieu of
the distribution. For example, PAC-Bayes theory allows
both picking the prior covariance Σp to be Σp ∝ Fw0 and
Σp ∝ H̃w0 where H̃ is the Gauss-Newton approximation of
the Hessian. But while we may use all the samples to com-
pute the FIM, we should compute the Hessian on a separate
subset of the data.

3. Theoretical Results
We prove how sloppiness in the Hessian and the FIM is
related to sloppiness of the correlations of the activations
(§3.1) and the inputs (§3.2). We then exploit sloppiness
to compute PAC-Bayes generalization bounds (§3.3) and
develop an expression for the effective dimensionality of a
deep network (§4.1). We exploit sloppiness to get effective

https://github.com/grasp-lyrl/sloppy
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methods for optimizing PAC-Bayes bounds (§5). All proofs
are provided in Appendix C. The theory in this section
applies for general deep networks; we will remark when
restrictions are in place.

3.1. Sloppy Input Correlation Matrix Leads to a
Sloppy FIM and Hessian

Consider a deep network withL layers with weightsw =
(w0; w1; : : : ; wL ). Activations of thekth layer are given by
hk = � (wk � 1hk � 1); and we seth0 � x. The non-linearity�
acts element-wise upon its argument and we assume that it
has a bounded derivative

�
� � 0(x)

�
� � a with � (x) = 0 in which

casej� (x)j � a jxj; ReLU, leaky ReLUs and tanh satisfy
this assumption. Preactivations (before nonlinearities) will
be denoted byuk = wk � 1hk � 1 for k = 1 ; � � � ; L + 1 , and
for clarity, we use a special notationz � uL +1 to denote the
logits of the network. The dimensionality of these quantities
is hk 2 Rdk , wk 2 Rdk +1 � dk andwL 2 Rm � dL . The linear
map represented bywk can model both fully-connected
layers and convolutional layers. For the sake of exposition,
we set all the bias terms to zero.

Theorem 1 (Trace of the FIM and Hessian are bounded
by that of the input correlation matrix). For any weights,
the trace of the FIMFw and the Gauss-Newton approxima-
tion of the Hessian~H w are both upper-bounded by

2ma2L tr
�

E[xx > ]
� LY

j =0



 wj





2

2

0

@
LX

j =0



 wj





� 2

2

1

A : (2)

The Gauss-Newton approximation which neglects the so-
calledH terms of the Hessian (Papyan, 2019) is good to-
wards the end of training when the logits have a small en-
tropy. For the FIM, the above bound is remarkable however,
it indicates that the trace of FIM is controlled by that the
input correlations and multiplicative terms that depend upon
the`2 norm of the weights.

We can also go beyond the trace and control the entire eigen-
spectrum. But this is dif�cult to do in general because both
FIM and Hessian are a result of multiple nonlinear opera-
tions on the inputs. We therefore bound the eigenvalues of
a block-diagonal approximation of the FIM in terms of the
eigenvalues of the activations.

Lemma 2 (Block-diagonal approximation of the FIM is
sloppy if the activations are sloppy).Let spec(A) denote
the eigenvalues(� 1(A); : : : ; � p(A)) of a matrixA in descend-
ing order. For a constantc, let spec(A) � c spec(B ) denote
that � i (A) � c� i (B ) for all i � p. For any logitzi , for all

layersk � L , we have

spec

 

E

"
dzi

dwk
dzi

dwk

>
#!

� a2(L � k )
LY

j = k+1



 wj





2

2

spec(I dk +1 ) 
 spec
�

E
�
hk hk >

��
;

(3)

with
Q L

j = L +1


 wj


 2

2 � 1. A similar result also holds for the
sum of logits

P m
i =1 zi as in Lemma 2 (see Corollary 15).

The proof of this lemma also shows that a block-diagonal
approximation of the Gauss-Newton approximation of the
Hessian is sloppy if the activations are sloppy.

This lemma indicates that the eigenspectrum of the block-
diagonal approximation of the FIM (concatenation of the
eigenspectra of different blocks) is controlled by the eigen-
spectrum of the activation correlations of different layers.
Our experiments show that activations of all layers (except
the logits) of a trained deep network are sloppy.

3.2. Special Cases Where Sloppy Inputs Lead to Sloppy
Activations and Thereby Sloppy FIM and Hessian

Although our experiments show that activations are sloppy
if the inputs are, it seems rather dif�cult to prove in general.
We therefore discuss two special cases where this holds.
The �rst case is for a kernel machine with an inner product
kernel while the second case assumes that the width of the
network goes to in�nity and weights remain bounded in`2

norm.

Remark 3 (Eigenspectrum of inner product kernel is
controlled by that of its inputs). Let x i 2 Rd for i � n
be iid random vectors. Karoui (2010, Theorem 2.1) shows
that the Gram matrix of an inner product kernelM i;j =

f
�

x >
i x j
d

�
for some functionf can be approximated by

K =

 

f (0) + f 00(0)
tr(� 2

d)
2d2

!

11> + f (0)
XX >

d
+ vd I n

wherevd = f
�

tr(� d)
d

�
� f (0) � f 0(0)

tr(� d)
d

:

More preciselykM � K k2 ! 0 in probability whend; n !

1 for a �xed ratio d=n. Note thatvd is small whentr(� d )
d is

small. Hence, we can see that the eigenspectrum ofK , and
therebyM , is controlled directly by that ofXX > .

Note that this argument cannot directly be used for a deep
network because correlations of activations in the network
are not an inner product kernel. But this indicates that even
for such a kernel machine, sloppiness of the inputs leads to
sloppiness of the FIM.

Remark 4 (In�nitely wide network with bounded
weight norm). If the `2 norm of the weights is bounded,
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we show in Lemma 10 that

tr
�

E
�
hk hk >

��
� a2



 wk � 1





2

2
tr

�
E

�
hk � 1hk � 1>

��
:

If we iterate upon this inequality down to the last layer to
tr E[xx > ] on the right hand-side (which is a constant). If
the width of thekth layer goes to in�nity, for the trace to be
summable, we have that the eigenvalues ofE[hk hk >

] decay
faster thanO(1=i).

3.3. Analytical Bound on Generalization (Method 1)

Consider a deep network trained to minimize the loss
�e(hw ; D n ). Assume thatw is a local minimum of the ob-
jective and thus the HessianH w is positive semi-de�nite.
We can writeH w as its orthonormal decompositionH w =
Uw � w U>

w where� w = diag(� 1; : : : ; � p) with eigenvalues
� 1; � � � � � � p � 0 arranged in descending order. Consider
a Gaussian posteriorQ = N (� q; � q) with the mean� q = w
�xed. We would like to compute the best� q that gives a
tight PAC-Bayes bound.

We use a loose version of the bounde(Q) � L (� q) :=
�e(Q; D n ) + KL (Q; P )=(2(n � 1)) to simplify the analytical
calculation and show in Appendix B.2 that

� q = Uw ( �� w ) � 1U>
w ; (4)

where�� i = 2( n � 1)� i + � 8i � p: (5)

This posterior gives a non-vacuous bound on the general-
ization error (as explained in§4.2) and to our knowledge,
this is the only analytical bound that is non-vacuous and
does not use weight compression (e.g., (Zhou et al., 2018)).
For example, the bound for a fully-connected network on
MNIST with one hidden layer of 600 neurons is 0.32 while
the test errore(Q) is � 0:089. For comparison, Dziugaite
& Roy (2017)numerically optimize(1) to get a bound of
0.161.

Remark 5 (PAC-Bayes posterior is more spread out
along sloppy eigenvectors).In (5), we can think of the
scaled prior inverse variance�=(2(n � 1)) as a threshold
beyond which the sloppy eigenvalues of the Hessian� i are
small enough and the loss changes so little that the optimal
PAC-Bayes posterior in (1) focuses on accurately capturing
the prior's covariance to obtain a small KL-term. For eigen-
values above this threshold, e.g., the stiff eigenvalues, the
optimal posterior has to ensure that the empirical loss is not
large. We will see in§6.3 that this phenomenon also holds
for cases when posteriors are optimized.

4. Effective Dimensionality of a Deep Network

4.1. De�nition of Effective Dimensionality

Motivated by Remark 5, we de�ne the effective dimen-
sionality for a deep network at weightsw as the number

of eigenvalues of the HessianH w with magnitude at least
�=(2(n � 1)), i.e.,

p(n; � ) =
P p

i =1 1
n

j� i (H w )j � �
2(n � 1)

o
: (6)

Appendix B.3 gives the calculation for why this is a good
de�nition of the dimensionality. It indicates that the thresh-
old �=(2(n � 1)) can be thought of as the “elbow” in the
eigenspectra in Fig. 1 (top), which separates the stiff eigen-
values which decrease quickly and the sloppy eigenvalues.
This gives an easy way to compute the effective dimension-
ality, e.g., for the purposes of model selection. This is also
true if we use more sophisticated, numerical, methods for
optimizing the PAC-Bayes bound as shown in Fig. 2 and
Table 1.

Figure 2.For two layer fully connected network (FC-600-2), we
calculated the eigenspectrum (blue) of Kronecker-factored approx-
imation of the Hessian at the mean of the posteriorQ (using numer-
ical optimization of the PAC-Bayes bound using Method 3 in§5
but that is not important at the present). The dimensionalityp(n; � )
(green) was calculated using the� obtained by the same procedure.
The red line shows the linear decay of sloppy eigenvalues (slope is
0.0004). The green line is close to the elbow and effectively splits
the stiff and sloppy eigenvalues.

Remark 6 (Why does the effective dimensionality de-
pend on � ?). Our de�nition in (6) may seem unusual be-
cause� is a user-chosen parameter but this is only an artifact
of PAC-Bayes theory. As� ! 0, the effective dimensional-
ity converges to the number of weightsp, but for non-zero
values of� , where the PAC-Bayes theory effectively restricts
its predictions to a subset of the hypothesis space, this ex-
pression coupled with the analytical calculation in (5) may
provide a useful way to perform model selection.

Remark 7 (Why does the effective dimensionality de-
pend onn?). The fact thatp(n; � ) depends uponn is remi-
niscent of the Bayesian Information Criterion (BIC) where
the the model complexity term scales withlog n (Schwarz,
1978). The dependence onn in our cases also arises for
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Model #weights (p) p( n; � ) =p (%)

FC-600-1 472,202 0.487
FC-600-2 832,802 0.292
FC-1200-1 944,402 0.245
FC-1200-2 2,385,602 0.095
LeNet 44,429 0.184
Synthetic (c = 10 � 1 ) 211,010 0.256
Synthetic (c = 10 � 3 ) 211,010 0.820

Table 1.Effective dimensionality of different modelscalculated
using the� and Hessian from Method 3 in§5 for different networks
on MNIST (except last two rows which use fully-connected net-
works for synthetic datasets created in Fig. 1 with different slopes
of the eigenspectrac). We see that in all cases,p(n; � ) is a very
small fraction of the number of weights.

similar reasons, from a balance between the training er-
ror ê(Q; D n ) and the KL-term in (1). Asn ! 1 , we see
that p(n; � ) ! p. This is because for inputs with sloppy
dimensions the model needs to captureall the dimensions
to predict accurately.

4.2. De�nition of Sloppiness

We next build upon §4.1 to de�ne sloppiness.

De�nition 8 (Strength factor and sloppy factor). Let
� i (A) denote eigenvalues of a positive semi-de�nite matrix
A 2 Rp� p in descending order� 1 � � � � � � p. The strength
factor for a model with effective dimensionalityp(n; � ) at
a local minimumw (whereH w is positive semi-de�nite) is
de�ned to be

s(n; � ) =
P p(n;� )

i =1 1 + log
�

2(n � 1) � i (H w )
� + 1

�
: (7)

The strength factor characterizes the stiff eigenvalues of the
eigenspectrum. For a matrixA , the sloppy factor for such a
model at indexr is de�ned to be

c(A; r ) = sup f c0 � 0 : � i (A) � � r (A)e� c0( i � r ) 8i � r � 1g
(8)

This de�nition implicitly means that the small eigenvalues
beyond� r (A) are uniformly distributed across an exponen-
tially large range(� r ; � p) if c(A; r ) > 0. We will be primar-
ily interested in setting the indexr to be simplyp(n; � ). Note
that sloppiness is a phenomenon pertaining to thenon-zero
eigenvaluesof a matrix and is relevant even if the matrix is
singular, e.g., the FIM loses rank for non-identi�able models
like deep networks (Amari et al., 2002).

How do the strength and sloppy factor affect generaliza-
tion? Let us simplify notation to write the sloppy factor
asc(n; � ) � c(H w ; p(n; � )) . Under the assumption that the
c(n; � ) is non-negative, when the training error�e(hw ; D n )

is close to zero, we show in Appendix B a loose version
of PAC-Bayes bound�e(Q; D n ) + KL (Q; P )=(2(n � 1)) (this
was also used in Method 1 in §3.3) is

s(n; � ) + 2 =c(n; � ) + � kw � w0k2
2

4(n � 1)
: (9)

Thus, the strength and sloppy factor together determine
the generalization performance. If the HessianH w is
sloppy, then the effective dimensionalityp(n; � ) is small.
This ensures that boths(n; � ) and1=c(n; � ) are small com-
pare ton. The third term� kw � w0k2 comes from the the
fact that the mean ofP and Q are different. It is typi-
cally not large compared ton. For example, for a two-
layer fully-connected network on MINST,p(n; � ) = 2429 ,
s(n; � ) = 6810 , 1=c(n; � ) = 2545 , and� kw � w0k2 = 8526,
with n = 55000; � = 101:3). For comparison, if we have an
isotropic Hessian� i � � , eithers(n; � ) or 1=c(n; � ) will be
O(p) andp is about 0.8 million.

This suggests thateven if the hypothesis class of deep
networks is very large, sloppiness ofH w , which is in-
herited from sloppiness of the input data, restricts the
set of hypotheses that the trained model belongs to. The
three quantities that we have de�ned herep(n; � ), s(n; e) and
c(n; � ) together help understand this phenomenon; see Ap-
pendix F their values for other models.

5. Numerical Methods to Compute
PAC-Bayes Bounds

We next discuss three methods to numerically optimize the
PAC-Bayes bound. These methods exploit the observation
in our experiments that there is a large overlap between
the subspace spanned by the stiff eigenvectors of the FIM
at the end of training with the corresponding subspace at
the beginning of training (Fig. 4). Similarly, there is a
large overlap between the subspace spanned by the stiff
eigenvectors of the Hessian with that of the FIM (Fig. 3). We
will use the notationEv(A) to denote the set of eigenvectors
of the matrixA , arranged in decreasing order of eigenvalues.

Method 2: Eigenvectors of covariance ofQ are �xed to
those of FIM at initialization (Ev(� q) = Ev(Fw0 )) We
pick the posterior covariance matrix to have the same eigen-
vectors as that of FIM at initialization and optimize only its
eigenvalues, i.e., we set

P = N (w0; � � 1I ); Q = N (w; � q = Uw0
�� w U>

w0 ); (10)

whereFw0 = Uw0 � U>
w0 is the orthonormal decomposition

of the FIM at initializationw0. We can optimize the bound
in (1) numerically over the mean of the posteriorw, eigen-
values of the covariance�� w and the scale of the prior� .

Method 3: Eigenvectors of covariance ofQ are the same
as those of the Hessian (Ev(� q) = Ev(H w )) We show
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in Appendix B.2 that the covariance of the optimal Gaussian
posterior has the same eigenvectors as those of the Hessian.
Building upon this, we modify the eigenvectors of� q while
optimizing the bound as

P = N (w0; � � 1I ); Q = N (w; � q = Uw �� w U>
w ); (11)

whereH w = Uw � U>
w is the orthonormal decomposition of

the Hessian at weightsw. The variables of optimization are
the mean of the posteriorw, eigenvalues of the covariance
�� w , and the scale of the prior� . Note that this involves
recomputing the Hessian at every candidate weightw during
optimization of the bound.

Method 4: Covariance of P is proportional to FIM at
initialization; eigenvectors of covariance ofQ are the
same as those of FIM at initialization (� p = aFw0 +
� � 1; Ev(� q) = Ev(Fw0 )) This is a data-distribution depen-
dent prior. We set

P = N (w0; aFw0 + � � 1I ); Q = N (w; � q = Uw0
�� w U>

w0 );
(12)

whereFw0 = Uw0 � U>
w0 is the orthonormal decomposition

of the FIM at initializationw0. The variables of optimization
of the bound are the posterior meanw, eigenvalues�� w , and
scalar constantsa and� � 1.

6. Empirical Validation

We use fully-connected networks (of varying widths, and up
to two hidden layers), convolutional networks (LeNet, ALL-
CNN of Springenberg et al. (2015) and wide residual net-
work of Zagoruyko & Komodakis (2016)) of varying sizes
on MNIST (LeCun et al., 1990) and CIFAR-10 (Krizhevsky,
2009) for empirical validation of our theoretical results.
See Appendices A and D for further details.

To be able to work with Hessian/FIM of large networks,
in some cases, e.g., Fig. 1 we compute fewer eigenval-
ues, but compute them exactly without any approximations.
When the Hessian/FIM are used for optimizing the PAC-
Bayes bound (e.g., Methods 3–4) we use Kronecker-factor
(KFAC) approximation of the Gauss-Newton matrix in Back-
pack (Dangel et al., 2020). We have also developed a trick in
PyTorch (see Appendix E) that allows us to quickly estimate
�e(Q; D n ) using a large number of samples (we use 150, for
comparison Dziugaite & Roy (2017) use 1). This allows us
to optimize the PAC-Bayes bound with much fewer itera-
tions. This trick that we have developed is also useful for
Bayesian deep learning (Wilson, 2020).

6.1. Sloppiness of the Hessian, FIM and Other Related
Quantities in the Network

Appendix G.1 shows the eigenspectra of the Hessian, FIM
and correlations of the activations, logit Jacobians and ac-

tivation gradients for two and three-layer fully-connected
networks on MNIST and All-CNN and a wide residual net-
work on CIFAR-10; Appendix G.4 shows some eigenspectra
at the middle of training; Appendix G.5 shows eigenspectra
for synthetic datasets. The eigenspectra are qualitatively the
same as those in Fig. 1 so we do not repeat them in the main
text. Fig. 3 studies how eigenspectra of FIM and Hessian
compare to their KFAC approximations.

Figure 3.(Left) Eigenspectra of FIM, Hessian and a KFAC ap-
proximation of the Gauss-Newton matrix for a two-layer fully-
connected network on MNIST.Even if FIM's eigenvalues are
quite different, its eigenvectors have a large inner product with
those of the Hessian (right), much larger than a random vector.
KFAC is a good approximation for the eigenvalues of the Hessian
but eigenvectors computed from KFAC are quite different from
those of the Hessian. This also shows that eigenvectors of the FIM
have a strong overlap with those of the Hessian.

6.2. Overlap of the Stiff Subspaces of the FIM/Hessian
at the End of Training with that at Initialization

Fig. 4 (left) computes the overlap of the subspace spanned by
the topk eigenvectors of the FIM at the end of training with
that at the initialization. Fig. 4 (right) shows a projection
of the change in the weights (difference between weights at
the and that at initialization) into the subspace spanned by
the topk eigenvectors of the FIM. Both these overlaps are
large, e.g., projection into a random subspace of dimension
k for the latter. This suggests that during training, weights
change predominantly in the stiff subspace of the FIM at
initialization.

We also constructed a third network (denoted -v2) as follows.
Given a trained networkw from initializationw0, we trainw
for more epochs to minimize the training loss and a penalty
kw � w0k2 which pulls it closer tow0—without changing
the training/validation error much. We �nd in Fig. 4 (right)
that this variant has a much larger projection into the stiff
eigenspace, and thereby a smaller overlap with the sloppy
eigenvectors. Thus, weights can effectively “come back”
towards the initialization in the sloppy subspace although
they evolved during training in the stiff subspace. See Fig. S-
14 for more details.
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Figure 4.(Left) Overlap between the subspace of the topk
eigenvectors (X-axis) of the FIM at the end of training with
that at initialization (


 Evk (Fw )> Evk (Fw 0 )


 2

F
=k) for fully-

connected (FC) and convolutional networks (WRN) is far larger
than overlap of two random subspaces inRp , which is approxi-
mately10� 6 . (Right) Projection kEvk (Fw 0 )� wk2

2=k� wk2
2 of

the change in weights(where� w = w � w0) into the subspace
of the top k (shown as percentage of weights because different
networks have different sizes) eigenvectors of the FIM is much
larger than the projection into a random subspace.

6.3. PAC-Bayes Bounds

Table 2 shows results of using different methods to calculate
PAC-Bayes bounds. It is remarkable that for all networks,
the analytical method using Method 1 obtains a non-vacuous
bound. Methods 2–4 obtain bounds that are comparable to
those of existing methods, e.g.,Dziugaite & Roy (2017); Wu
et al. (2021). Appendix D discusses a number of technical
details in how each method are implemented numerically,
e.g., sampling weights from posteriors whose covariance
is represented as a KFAC approximation. As discussed
in §5, our methods in Table 2 exploit the fact that the stiff
subspaces of the Hessian/FIM have a strong overlap at the
beginning and that training predominantly takes place in the
stiff subspace of the FIM at initialization. This experiment
therefore shows that we can exploit sloppiness to compute
non-vacuous generalization bounds for deep networks.

We next study how similar the optimal PAC-Bayes pos-
terior covariance computed by numerical optimization
and the one obtained analytically are.We will contrast
two numerical methods, our Method 3 withEv(� q) =
Ev(H w ), and the method of Dziugaite & Roy (2017) in Ta-
ble 2 which uses a diagonal posterior covariance. We �nd
in Fig. 5 that the eigenvalues of the posterior computed by
Method 3 match remarkably well with our analytical ex-
pression in (5) for Method 1. This sheds light into why our
analytical PAC-Bayes bound is non-vacuous—essentially
numeric optimization �nds a very similar posterior as that of
the analytical method. It is however important to run even
the numerical optimization in the appropriate basis. The
bounds obtained by Dziugaite & Roy (2017) for a diagonal
posterior are worse than Method 3 in Table 2 and as Fig. 5
(left) indicates, this is because their posterior has a smaller

Model Method

1 2 3 4 A B

FC-600-1 0.3241 0.1590 0.1357 0.1323 0.161 0.1198

FC-600-2 0.3794 0.1767 0.1540 0.1397 0.186 0.1443

FC-1200-1 0.3509 0.1523 0.1515 0.1486 0.179 0.1413

FC-1200-2 0.3915 0.2017 0.1817 0.1702 0.223 -

LeNet-5 0.0572 0.0099 0.0188 0.0092 - -

Table 2.PAC-Bayes bounds on MNIST for different methods.
Methods 1–4 are ours, described in§§3.3 and 5. The prior
for Method 4 is� p = aFw 0 + � � 1 ; all other methods use
P = N (w0 ; � � 1 I ). The penultimate column (A) is from Dziu-
gaite & Roy (2017) and optimizes the diagonal of the covariance
of Q numerically. The �nal column (B) which sets eigenvectors
of covariance ofQ to be the same as that of the block-diagonal
Hessian is from Wu et al. (2021). For fully-connected nets, the
errore(Q) ranges from 6–8� 10� 2 for Method 1 and 1–4� 10� 2

for all other methods. For LeNet-5 the errore(Q) ranges from 1–2
� 10� 2 for all methods. See Appendix F for the extended version.

Figure 5.Posterior covariance computed by numerically opti-
mizing PAC-Bayes bound is aligned with sloppy directions.
(Left) Inverse eigenvalues of the posterior covariance (�� � 1

i ) in-
dexed by eigenvaluesof the Hessian (X-axis) forEv(� q) =
Ev(H w ) (orange, our Method 3) and a diagonal-� q (blue, this
is the method of Dziugaite & Roy (2017)). For the latter, abscissa
are the indices of the sorted diagonal of the Hessian. (Right) In-
verse eigenvalues of the posterior covariance (�� � 1

i ) plotted against
eigenvaluesof the Hessian forEv(� q) = Ev(H w ) (orange) and
for diagonal-� q (blue). For the latter the X-axis is the correspond-
ing entry on the diagonal of the Hessian. For the orange pointcloud,
we obtain a surprisingly accurate �t for our analytical expression
( �� � 1

i = 2( n � 1)� i + � : we getn � 43; 000(truen = 55 ; 000)
and� � 210:6 (true� = 101:3) with R2 = 0 :972, which indicates
good �t for regression.
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variance in the sloppy subspace (blue cloud).

7. Related Work

Sloppy models in physics and biologyOur work is in-
spired by Brown et al. (2004); Gutenkunst et al. (2007) who
noticed that regression models �tted to systems biology data
have few stiff parameters that determine the outcome and
a large number of sloppy parameters which only weakly
determine the outcome. These authors have developed
an elaborate geometric understanding of this phenomenon,
see Transtrum et al. (2011) and references therein. While
sloppiness is thought to be a universal property of parametric
models (Waterfall et al., 2006), the mechanism that causes
models to be sloppy has not been studied yet. This work
has also exclusively focused on the under-parameterized
regime. We connect the sloppiness of a deep network to the
sloppiness of inputs and show that if the inputs are sloppy,
then key quantities pertaining to the model, e.g., activations,
FIM and Hessian etc., are also sloppy.

Hessian and the FIM of deep networkshave been stud-
ied to understand the local geometry of the energy land-
scape and the behavior of SGD, see Hochreiter & Schmid-
huber (1997); Chaudhari et al. (2017); Fort & Ganguli
(2019), among others. FIM has been used to study opti-
mization (Amari, 1998; Martens & Grosse, 2016; Karakida
et al., 2019), gradient diversity (Yin et al., 2018; Chaudhari
& Soatto, 2018), and generalization (Achille et al., 2019).
A number of these works have pointed out that the Hessian
and the FIM have spiky/large eigenvalues (Papyan, 2019)
along with a bulk of near-zero eigenvalues (Papyan, 2018;
Pennington & Bahri), and that this indicates that the en-
ergy landscape, or the prediction space, is locally �at. We
focus on the decay pattern of the eigenspectra of these ma-
trices and discover that it mirrors the decay pattern of the
inputs for typical datasets. We see a strong overlap of the
stiff subspace of the Hessian/FIM at initialization with that
at the end of training; this is consistent with the analysis
in Gur-Ari et al. (2018); Chizat et al. (2019).

GeneralizationPAC-Bayes bounds for deep networks have
been obtained using the methods of (Langford & Caruana,
2002) by Dziugaite & Roy (2017); Dziugaite (2020); Zhou
et al. (2018). While analytical generalization bounds are
often vacuous (Bartlett et al., 2017; 2021; Neyshabur et al.,
2017), we show that if we exploit the sloppiness of the Hes-
sian, then we can obtain non-vacuous analytical bounds. We
show that the posterior computed by the method of Dziu-
gaite & Roy (2017) aligns well with sloppy eigenvalues of
the Hessian/FIM. We build upon this work and show the ben-
e�ts of sloppiness by providing data-distribution dependent
PAC-Bayes bounds (also see Dziugaite & Roy (2018)).

Our Method 3 is related to the work of Wu et al. (2021).

The difference is that they assume that the block-diagonal
approximation of the Hessian decouples into a Kronecker
product of the Hessian of the activations and the input cor-
relation matrix; we instead optimize the PAC-Bayes prior
using the top few eigenvectors of the full Hessian for some
models (LeNet) and the Kronecker-factored approximation
of the blocks for others. They analyze the case when the
data matrix has rank 1 and Hessian has rankm � 1 (m is
the number of classes). Our experiments show that they
are both full-rank but sloppy, and we therefore analyze this
instead.

Bartlett et al. (2020) show that a minimum norm interpo-
lating solution of over-parameterized linear regression can
predict accurately if the data matrix has a long tail of small
eigenvalues. Our notion of effective dimensionality is also
seen in their calculations: roughly speaking, larger our slop-
piness factorc in Def. 8, better the excess risk in their
linear regression, which is consistent with Fig. 1 (bottom
right). (Liang & Rakhlin, 2018) show similar results on the
minimum-norm interpolating solution for kernel regression.

8. Discussion

We showed that for typical datasets, the sloppy decay pattern
of eigenvalues of the input correlation matrix is mirrored
in key quantities of the deep network, e.g., eigenspectra of
the activation correlations, activation gradients, logit Jaco-
bians, Hessian and the FIM. This suggests that the “sim-
plicity”, more precisely, the sloppiness, of inputs of high-
dimensional datasets controls the representations learned
by the network. We validated this hypothesis by providing
non-vacuous PAC-Bayes generalization bounds for deep
networks, including analytical ones. Our calculations also
provided a simple de�nition of the effective dimensionality
of a deep network and we showed how this number can be
much smaller than the number of weights.
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A. Details of the experimental setup

Data We use the MNIST dataset for experiments on fully-connected networks and LeNet. We setup a binary classi�cation
problem (we mapf 0,1,2,3,4g to label 0 andf 5,6,7,8,9g to label 1). We use 55000 samples from the training set to train the
model and to optimize the PAC-Bayes bound. We set aside 5000 samples for calculating the FIM, which is used in Method
4 of PAC-Bayes bound optimization. Strictly speaking, it is not required to do so because a prior that depends upon the FIM
is an expectation-prior (as discussed in Parrado-Hernández et al. (2012)) but we set aside these samples to compare in a
systematic manner to existing methods in the literature that use 55,000 samples. Test error of all models is estimated using
the validation set of MNIST. We use the CIFAR-10 dataset for experiments using two architectures, an All-CNN network
and a wide residual network. For CIFAR-10, we use 50, 000 samples for training and 10, 000 samples for estimating the test
error. No data augmentation is performed for MNIST, for CIFAR-10 we randomly �ip images (left to right) with probability
0.5 and select random crops of size 32� 32 after adding a padding of 4 pixels on the width and height.

Architectures For experiments on MNIST, we use LeNet-5 (this is a network with two convolutional layers of 20 and 50
channels respectively, both of 5� 5 kernel size, and a fully-connected layer with 500 hidden neurons) and fully-connected
net with one or two layers and 600 or 1200 neurons on each layer. The latter are denoted as FC-600-1, or FC-1200-2 in our
experimental section. For CIFAR-10, we use ALL-CNN (in order to reduce the number of weights, we reduced the number
of channels in the �rst set of blocks to 64, and in the second set of blocks to 128; this is down from 96 and 192 respectively
in the original network) and wide residual net with depth 10 and a widening factor of 8. In the latter case, in order to reduce
the number of weights which makes computing Hessian amenable, we reduce the number of channels in each block of the
WRN to [4, 32, 64, 128], down from [16, 128, 256, 512] for a widen factor of 8.

Training procedure We train for 30 epochs on MNIST and for 100 epochs on CIFAR-10. The batch-size is �xed to 500
for both datasets. For all experiments with train with Adam and reduce the learning rate using a cosine annealing schedule
starting from an initial learning rate of10� 3 and ending at a learning rate of10� 5.

Constructing the v2 model in Fig. 4 We construct the v2 model by training in two phases. The �rst phase proceeds as
usual: we initialize the model atw0 and train as discussed above to obtain the trained weightsw1. In the second phase,
and training further for 20 epochs with an objective that is the sum of the original training objective and an addition term
spring-force-like term:

ê(hw ; D n ) + � kw � w0k2
2:

The second term forces the weight updates the reduce the Euclidean distance with respect tow0. The coef�cient� is set to
be twice that of the learning rate.

Hyperparameters for optimizing the PAC-Bayes bound In Methods 2, 3, 4, we chooseb = 0 :01, c = 0 :1 for the penalty
of the scaling parameters in the prior. In method 1, we chooseb = 0 :1, c = 0 :05. For all PAC-Bayes bound optimization
experiments, we use con�dence parameter� = 0 :025.

Optimizing the PAC-Bayes bound We use batch size of 1100, we draw 150 samples from the posteriorQ to estimate
ê(Q; D n ) for each weight update; see Appendix E for some more implementation details of how to compute a large number
of samples ef�ciently. Adam is used to optimize the PAC-Bayes bound. For Methods 2, 3, 4, we �rst train for 100 epochs
with learning rate10� 3 and train for another 150 epochs while decaying the learning rate by a multiplicative factor of 0.95
every 5 epochs. We found that for this problem, having a constant learning rate at the beginning is bene�cial, instead of
decaying the learning rate immediately, say using a cosine schedule. For the reproduction of the approach of Dziugaite &
Roy (2017) (which we denote as diag(� q) = � ), we train for 300 epochs for the second phase with decaying learning rate.

Atypical problems For atypical problems in, we constructed a training set of 50,000 samples and a validation set of
10,000 samples. Inputsx i 2 R200 were generated from distributionN (0; �) where� = ( � 1; :::; � 200). We set� i = bexp(� ci)
where andb=c= 50 ; �xing the ratio b=cto be a constant keeps the trace of the data correlation matrix to be about the same
for different values ofc. Labels were generated byyi = argmaxy2 [m ] pt

w (yjx i ), wherept
w is the teacher network randomly

initialized with one hidden layer and ten output classes. We train fully-connected networks on these synthetic datasets for 50
epochs; Adam is used with a batch-size of 500 and a cosine learning rate schedule with learning rate that ranges from10� 3

to 10� 5.
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We constructed datasets of Gaussian inputs of varying degrees of sloppiness by selecting decay patterns for the eigenvalues
of a diagonal data correlation matrix. Forn � 1 diag(XX > ) = � where� = ( � 1; : : : ; � d) are eigenvalues in descending
order, we set� i = bexp(� ci) whereb; care constants. The trace of this correlation matrix is roughlyb=cwhich we keep
constant for different datasets. Larger the value of the “sloppy factor”c, more sharp the decay for the eigenspectrum of the
data matrix. We randomly initialize a two layer fully-connected neural network with 10 output classes (called the teacher)
and use it to label a dataset of such inputs. Note that since the teacher's weights in the �rst layer multiply the inputs, the
correlation matrix of the �rst layer activations is non-diagonal and we are not being unduly restrictive in picking a diagonal
data correlation matrix. We then �t student networks (fully-connected networks with two layers) on this data until they
interpolate on the training dataset. Our goal is to study (i) how the various quantities discussed in this paper, e.g., the
Hessian, FIM, activations, activation gradients, logit Jacobians , depend upon the sloppiness of the data matrix; (ii) whether
the student can interpolate on sloppy datasets without over �tting. Fig. 1 shows the results of the experiment.

B. Calculation of the effective dimensionality of a deep network

B.1. PAC-Bayes bounds

Theorem 9 (PAC-Bayes generalization bound McAllester (1999); Langford & Seeger (2001)).For every� > 0, n 2 N,
distributionD on Rk � f 0; 1gm , and distributionP on H , with probability at least1 � � overD n � D n , for all distributions
Q on H ,

kl(ê(Q; D n ); e(Q)) �
KL (Q; P ) + log n

�
n � 1

We have the following lower-bound from Pinksker's inequality on the KL-divergence between two Bernoulli random
variables:

2(q � p)2 � kl(q; p):

We can invert this inequality to get
kl � 1(q; p) � q +

p
p=2:

When this is substituted into the above PAC-Bayes bound (1), we have

e(Q) � ê(Q) +

s
KL (Q; P ) + log

� n
�

�

2(n � 1)
:

Since

1

(

yi 6= argmax
y

(pw (y j x i ))

)

� �
1

log 2
log pw (yi jx i )

we also have
ê(Q) � �e(Q):

Now set� = cexp(j=b), for j 2 N and for a �xedb; c � 0, by the calculations in Appendix D.5, we see that

e(Q) � �e(Q) +

vu
u
t KL (Q; P ) + 2 log

�
blog c

�

�
+ log

�
� 2 n
6�

�

2(n � 1)
;

holds with probability1 � � .

B.2. Calculation for the closed form expression for eigenvalues of the inverse posterior covariance in (5)

The KL-divergence between two multivariate GaussiansQ = N (� q; � q), P = N (� p; � p) be two multivariate Gaussians is

KL (Q; P ) =
1
2

�
tr(� � 1

p � q) � p + ( � p � � q)> � � 1
p (� p � � q) + log

�
det � p

det � q

��
: (S-13)

In order to compute the inverse posterior covariance that minimizes the right-hand side of the PAC-Bayes bound, we would
like to solve the problem

minimize L (� q) := �e(Q; D n ) +
KL (Q; P )
2(n � 1)

such that Q = N (w; � q)

and � q � 0:
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Observe that
�e(hw 0; D n ) = �e(hw ; D n ) +

1
2



w0 � w; H w (w0 � w)

�
:

P = N (w0; � � 1I ):

For Pw = N (w; � � 1I ), we have
KL (Q; P ) = KL (Q; Pw ) +

�
2

kw � w0k2

Hence,

L (� q) =
Z

Q(w0)�e(hw 0; D n ) dw0+
1

2(n � 1)

Z
Q(w0) log

Q(w0)
Pw (w0)

dw0+
�

4(n � 1)
kw � w0k2

=
1

2(n � 1)

Z �
� log exp

�
� 2(n � 1)�e(w0; D n )

�
+ log

Q(w0)
Pw (w0)

�
Q(w0) dw0+

�
4(n � 1)

kw � w0k2

=
1

2(n � 1)

Z �
log

Q(w0)
exp(� 2(n � 1)�e(w0; D n ))Pw (w0)=Z

� log Z
�

Q(w0) dw0+
�

4(n � 1)
kw � w0k2

=
1

2(n � 1)
(KL (Q; B ) � log Z ) +

�
4(n � 1)

kw � w0k2;

where we have de�ned
B (w0) = exp

�
� 2(n � 1)�e(w0; D n )

�
Pw (w0)=Z; and

Z =
Z

exp
�
� 2(n � 1)�e(w0; D n )

�
Pw (w0) dw0:

We can now see thatL (� q) attains a minimum when

Q = B / exp
�
� 2(n � 1)�e(w0; D n )

�
Pw (w0) (S-14)

or � � 1
q = 2( n � 1)H w + � I , in other words,

� q = Uw ( �� w ) � 1U>
w ;

where
�� i = 2( n � 1)� i + � 8i � p:

B.3. Calculation for (9)

Recall that the effective dimensionality of a model at a local minimumw is the number of eigenvalues of the Hessian with
magnitude at least �

2(n � 1) , i.e.,

p(n; � ) =
pX

i =1

1
�

j� i j �
�

2(n � 1)

�
;

The strength of the model atw is

s(n; � ) =
p(n;� )X

i =1

1 + log
�

2(n � 1)� i

�
+ 1

�
:

We assume thatc(H w ; p(n; � )) > 0. i.e., denotec(H w ; p(n; � )) asc(n; � )

� i �
�

2(n � 1)
exp(� c(n; � )( i � p(n; � )))

We can also assume a weaker version of this decay pattern,

pX

i = p(n;� )+1

� i =
�

2(n � 1)c(n; � )
:

We approximate the training objective in the neighborhood ofw as

�e(hw 0; D n ) = �e(hw ; D n ) +
1
2



w0 � w; H w (w0 � w)

�
:
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and we assume that the model atw is a interpolation solution. In§3.3, for the posteriorQ = N (w; � q) that maximizes the
loose version of the PAC-Bayes bound (1), where

� q = Uw �� � 1
w Uw

> ;
�� i = 2( n � 1)� i + �:

We can now calculate

�e(Q; D n ) � �e(hw ; D n ) =
1
2

pX

i =1

� i
�� i

�
p(n; � ) + 1 =c(n; � )

4(n � 1)
; and

KL (Q; P )
2(n � 1)

=
1

4(n � 1)

 

� kw � w0k2 � p +
pX

i =1

log
�� i

�
+

�
�� i

!

�
1

4(n � 1)

0

@� kw � w0k2 +
p(n;� )X

i =1

log
�

2(n � 1)� i

�
+ 1

�
+

pX

i = p(n;� )+1

2(n � 1)� i

�

1

A

�
1

4(n � 1)

0

@� kw � w0k2 +
p(n;� )X

i =1

log
�

2(n � 1)� i

�
+ 1

�
+

1
c(n; � )

1

A ; hence

�e(Q; D n ) +
KL (Q; P )
2(n � 1)

�
s(n; � ) + 2 =c(n; � ) + � kw � w0k2

4(n � 1)
:

For the KL-term, in the �rst inequality we have used the fact thatlog(1 + x) � x to split the �rst summation into two parts;
in the second inequality we have used the assumption that the eigenspectrum is sloppy to sum the series fromi = p(n; � ) + 1 ;
the latter is also used in the inequality for the gap in the loss.

C. Proofs of Lemmas in §3.1

We useE to denote the expectation over inputsx. The following lemmas holds for all distribution ofx. In particular, we
can choose the distribution ofx to be the point mass distribution on the datasetD n , i.e. x � 1

n
P n

i =1 � x i , in this case,
E

h
xx >

i
= 1

n XX > 2 Rd� d is the input corelation matrix.

The following lemma bounds the trace of the activation correlations and the norm of the gradient of each logit with respect
to the activations.

Lemma 10 (Bounding the trace of the correlations of activations and norm of activation gradients).We have

tr
�

E
h
hk hk > i�

� a2


 wk � 1





2

2
tr

�
E

h
hk � 1hk � 1> i�

; (S-15)

and





dzi

dhk






2
� a






dzi

dhk+1






2



 wk





2
: (S-16)
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Proof of Lemma 10. For the �rst inequality in (S-15), observe that

tr
�

E
�
hk hk >

��
�

dkX

j =1

E
h
� (uk

j )2
i

� a2
dkX

j =1

E
h
(uk

j )2
i

= a2tr
�

E
�
uk uk >

��

= a2tr
�

E
� �

wk � 1hk � 1
� �

wk � 1hk � 1>
���

= a2tr
�

wk � 1 E
�
hk � 1hk � 1>

�
wk � 1>

�

� a2


 wk � 1





2

2
tr

�
E

�
hk � 1hk � 1>

��
:

For the second inequality in (S-16), observe that

dzi

dhk =
dzi

duk+1 wk

= a
�

dzi

dhk+1 1u k +1 � 0

�
wk

)






dzi

dhk






2
� a






dzi

dhk+1






2



 wk





2
:

where1cond is a vector of 1s at elements where the condition is true.

The above inequalities can be used in Lemma 11 to bound the trace of the gradient correlation of any logitzi with respect to
weights of a layerwk .

Lemma 11 (Bounding the trace of the correlation sum-of-logit Jacobian).For logit zi , i = 1 ; :::; m

tr

 

E

"
dzi

dwk
dzi

dwk

>
#!

� a2L tr
�

E
h
xx >

i� LY

j =0 ;j 6= k



 wj





2

2
: (S-17)

for k = 0 ; :::; L . As a result,

tr

 

E

"
dzi

dw
dzi

dw

>
#!

� a2L tr
�

E
h
xx >

i� LY

j =0



 wj





2

2

0

@
LX

j =0

1

kwj k2
2

1

A :
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Proof of Lemma 11. The proof follows via an application of Lemma 10. Fork = 0 ; 1; :::; L � 1,

tr

 

E

"
dzi

dwk
dzi

dwk

>
#!

= tr

 

E

"
dzi

duk+1
dzi

duk+1

>

 hk hk >

#!

= E

"

tr

 
dzi

duk+1
dzi

duk+1

>
!

tr
�

hk hk >
� #

� a2





dzi

dhk+1






2

2
tr

�
E

�
hk hk >

��

� a2





dzi

dhL






2

2

0

@
L � 1Y

j = k+1



 wj





2

2

1

A a2(L � k � 1)

a2k
k � 1Y

j =0



 wj





2

2
tr

�
E

h
xx >

i�

� a2L tr
�

E
h
xx >

i� LY

j =0 ;j 6= k



 wj





2

2
:

The third line comes from the fact that the matrixdzi
du k +1

dzi
du k +1

>
is rank one and its trace is the same as 2-norm. The last

inequality comes from the fact that


 wL

i





2
�



 wL





2
. Fork = L ,

tr

 

E

"
dzi

dwL
dzi

dwL

>
#!

= tr

 

E

"
dzi

dwL
i

dzi

dwL
i

>
#!

= tr
�

E
�
hL hL >

��

� a2L tr
�

E
h
xx >

i� L � 1Y

j =0



 wj





2

2
:

Proof of Theorem 1. We �rst calculate an inequality for the Fisher Information Matrix (FIM)

F = E

2

4
mX

y=1

pw (y j x)(@w log pw (y j x))( @w log pw (y j x)) >

3

5

= E

2

4@w z

2

4
mX

y=1

pw (y j x)
d log pw (y j x)

dz
d log pw (y j x)

dz

>
3

5 @w z>

3

5

For an output distributionpw (y j x) obtained using the softmax operator on the logitszy

py � pw (y j x) =
ezy

P
y0 ezy 0

we have
d
dz

log pw (y j x) = ey � p

whereey is the one-hot vector of the classy andp = [ p1; :::; pm ].

mX

y=1

pw (y j x)
d log pw (y j x)

dz
d log pw (y j x)

dz

>
�

mX

y=1

pw (y j x)






d log pw (y j x)
dz






2

2
I

= (1 � k pk2
2)I

� I
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Hence we have

F � E
h
(@w z) (@w z)>

i
:

In the case of the Hessian for the cross-entropy loss we make a similar calculation following the calculation of Fort &
Ganguli (2019). For the calculation of Hessian, the expectationE denotes the expectation with respect to inputs and labels in
the training set. We write

(log 2)H � E
h
(@w z) r 2

z (� log pw (y j x)) ( @w z)>
i

= E
h
(@w z)

�
diag(p) � pp>

�
(@w z)>

i

� E
h
(@w z) (diag(p)) ( @w z)>

i

� E
h
(@w z) (@w z)>

i
:

In the above calculation, we have kept only the so-called G-term of the Hessian and neglected an additional H-term.

E

"
mX

i =1

(yi � pi )
@2zi

@w� @w�

#

which is typically small in practice for a well-trained network because the terms1� pi are close to zero for all logits (Papyan,
2019; Sagun et al., 2016)(E[

P m
i =1 jyi � pi j is 5:32� 10� 8 for FC-600-2 on MNIST). Hence, bothtr (F ) and(log 2)tr (H ) can

be bounded by

tr (F ) ; (log 2)tr (H ) �
mX

i =1

E

"
dzi

dw
dzi

dw

>
#

� ma2L tr
�

E
h
xx >

i� LY

j =0



 wj





2

2

0

@
LX

j =0

1

kwj k2
2

1

A : (S-18)

Notice that thelog 2 factor in front of tr(H ) comes from the rescaling factor in the de�nition of�e(hw ; D n ).

Remark 12.The G-term is always positive semi-de�nite since the output distributionp 2 RC is always convex on the logits

z 2 RC , i.e.,
�

� log
�

ez yP
y 0e

z y 0

�� C

y=1
is convex inz.

Remark 13.Empirically, the trace of FIM and Hessian at the end of training (Fig. 3) is usually much smaller than the trace
of correlation matrix of logit Jacobians (Fig. S-8). In this case, the prediction of the bound in (S-18) seems very loose.
However from the above calculation, we also know that

tr(F ) � (1 � k pk2
2) tr

 
mX

i =1

E

"
dzi

dw
dzi

dw

>
#!

;

tr(H ) � tr
�

E
h
(@w z)

�
diag(p) � pp>

�
(@w z)>

i�
:

For trained network that predicts accurately, we usually get the probabilitiesp that are very close to one-hot vectors of the
correct classes. In this case, both1 � k pk2

2 anddiag(p) � pp> are close to zero. This explains why in our experiments the
trace ofF andH at the end of training are much smaller than that of logit Jacobians.

Proof of Lemma 2. The proof depends upon Weyl's inequality to control the eigenvalues of the sum of Hermitian matrices.
It states that for Hermitian matricesA; B; C 2 Rp� p, if C = A + B , then

� i + j � 1(C) � � i (A) + � j (B ); � p� i � j (C) � � p� i (A) + � p� j (B ) (S-19)

for all 1 � i; j � p. In particular ifB � 0, then� i (C) � � i (A) for all i � p.
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We can now write,

E

"
dzi

dwk
dzi

dwk

>
#

= E

2

4

 
dzi

dhk+1 �
dhk+1

duk+1

!  
dzi
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! >
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2
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#
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2
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�
hk hk >

�

= a2(L � k )
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@
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1

A I dk +1 
 E
�
hk hk >
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Hence, by (S-19)
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"
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dwk
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>
#!
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@a2(L � k )
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j = k+1
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�
hk hk >

�
1

A

so we have

spec

 

E

"
dzi

dwk

dzi

dwk

>
#!

� a2(L � k )
LY

j = k+1

jjwj jj 2spec
�
I dk +1

�

 spec(E

�
hk hk >

�
)

Remark 14 (Modi�cation using sloppiness of activation gradients).Fig. 1 shows that the slope of decay of FIM and
the activations are essentially the same. However, in (3) ifspec

�
E

h
hk hk > i�

decays asO(exp(� ci)) , the decay of

spec
�

E
h

dzi
dw k

dzi
dw k

> i�
is O(exp(� ci=dk+1 )) . This is a loose bound, especially whendk+1 is large, e.g., the spectrum could

decay much more faster. But note that if we can write a KFAC-approximation

E

"
dzi

dwk
dzi

dwk

>
#

� E

"
dzi

duk+1
dzi

duk+1

>
#


 E
�
hk hk >

�
:

then we obtain a stronger decay for the logit gradient whendk+1 is large, if we assume that the activationsgradientsare sloppy.

If spec
�

E
h

dzi
du k +1

dzi
du k +1

> i�
decays asexpf� c1i g andspec

�
E

h
hk hk > i�

decays asexpf� c2j g, then the(i + j )2th largest

eigenvalue ofE
h

dzi
dw k

dzi
dw k

> i
is smaller thanexp(� minf c1; c2g(i + j )) , hence thekth largest eigenvalue ofE

h
dzi
dw k

dzi
dw k

> i
is

smaller thanexp
�

� minf c1; c2g
p

k
�
. Hence, the decay rate of spec

�
E

h
dzi
dw k

dzi
dw k

> i�
is O

�
exp

�
� minf c1; c2g

p
k

��
.

Corollary 15. Denote the FIM and Hessian with respect to thekth layerF (wk ); H (wk ) respectively, then we have,

spec(F (wk )) ; spec(H (wk )) � 2ma2(L � k )
LY

j = k+1



 wj





2

2
spec(I dk +1 ) 
 spec

�
E

�
hk hk >

��
:

As in Lemma 2,
Q L

j = L =1



 wj





2

2
= 1 .

Proof. From Lemma 11 we know that

F (wk ); H (wk ) � 2E
h
(@wk z)(@wk z)>

i

Let s =
P m

i =1 zi be the sum of logits, then we have

F (wk ); H (wk ) � 2E

" �
ds

dwk

� �
ds

dwk

� >
#

� 2ma2(L � k )
LY

j = k+1
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2

2
spec(I dk +1 ) 
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�
E

�
hk hk >

��

The second inequality comes from a similar calculation as in Lemma 2 for network with one added layer wherehL +1 =
uL +1 = z, uL +2 = wL +1 hL +1 , andwL +1 = [1 ; :::; 1], kwL +1 k2

2 = m.
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D. Technical details of different methods for optimizing the PAC-Bayes bound

We optimize the problem,

min �e(Q; D n ) +

s
KL (Q; P ) + '

2(n � 1)
(S-20)

whereQ, P are multivariate normal distribution,' is the penalty we added for including a trainable parameter in prior (say
its scale), andn is the number of samples. For Gaussian distributions on the weight spaceQ; P , as we saw in (S-13), the
KL-divergence is

1
2

�
tr(� � 1

p � q) � p + ( w � w0)> � � 1
p (w � w0) + log(det � p=det � q)

�
:

The penalty for the case whenP = N (0; � � 1I ) comes from the union bound over the set� = cexp(j=b) for j 2 N and is
given by

' = 2 log ( blog(c=�)) + log
�

� 2n=(6� )
�

Note that for Method 4, we need more than one trainable parameters for the prior, and the penalty' should also be modi�ed
according to Appendix D.5. We calculate�e(Q; D n ) using Monte Carlo samples fromQ. After the optimization process, we
calculate the PAC-Bayes bound one(Q) using

kl(ê(Q; D n ); e(Q)) �
KL (Q; P ) + '

n � 1
; (S-21)

which involves �nding an approximation ofkl � 1(b; a) := sup f a0 2 [0; 1] : kl(b; a0) � ag (see (Dziugaite & Roy, 2017) for
details). We next discuss the various methods for calculating PAC-Bayes bounds developed in the paper and provide their
implementation details.

D.1. Method 1

The tightest bound in this case is obtained using the v2 model described in Fig. 4 and Appendix A. To recall, this involves a
second post-training phase where the trained model is updated to be closer to the initializationw0. In the context of the
PAC-Bayes upper bound, this reduces the distance between the means of the Gaussian prior and posterior. We choose� q

as in (4) and (5). For� = cexp(j=b) andj = 1 ; : : : ; 60, we evaluateKL (Q; P ) by using (S-13), and̂e(Q; D n ) is estimated
by sampling. The covariance� q is approximated by the top eigenvalues and eigenvectors of the Hessian as discussed
in Appendix D.4.2. The PAC-Bayes bound is calculated by (S-20) and we choose the smallest bound among all choices of� .

We also set� q = Uw �� w U>
w and calculate�� by directly minimizing (S-20) where the variables of optimization are�� i for

i � k using nonlinear optimization in scipy (using the BFGS algorithm), and the PAC-Bayes bound is calculated in the same
way as above. This is denoted as Method 5 (Numerical) in Table S-3.

For comparison, we also choose� q = � � 1I and calculate the PAC-Bayes bound. This is denoted as Method 6 (Isotropic)
in Table S-3.

D.2. Methods 2 and 3

We chooseP andQ as described in§5. We set� � 1 = exp(2 � ) , �� w = exp(2 � ). The parameters� , w, � are optimized
while optimizing the PAC-Bayes upper bound. We initialize� � 1 at exp(� 6) and �� w at (� F + � � 1)=10 where� F are the
eigenvalues of the FIM at initialization. For fully-connected networks and LeNet, we evaluateê(Q; D n ) using the methods
described in Appendix D.4.1 and Appendix D.4.2 respectively.

We use the Gauss-Newton matrix as an approximation of the FIM for Method 2.

D.3. Method 4

We chooseP andQ as described in§5. We seta = exp(2 � 1), � � 1 = exp(2 � 2), � = exp(2 � ) and train parameters� 1, � 2, w,
� . In our experiments,� � 1 is initialized toexp(� 6), a is initialized toexp(� 1) and� q is initialized to be(aFw0 + � )=10. In
this case,

KL (Q; P ) =
1
2

 
X

i

� i

a� F
i + � � 1

� d + ( w � w0)> (aFw0 + � � 1) � 1(w � w0) +
X

i

log
a� F

i + � � 1

� i

!
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where� F
i are eigenvalues ofFw0 . For fully-connected networks and LeNet, we approximate(w � w0)> (aFw0 + � � 1) � 1(w �

w0) using the methods described in Appendix D.4.1 and Appendix D.4.2 respectively.

We use the Gauss-Newton matrix as an approximation of the FIM for Method 4.

D.4. Computing the PAC-Bayes term that corresponds to the distance from initialization

In Method 4, we need to calculate
E = ( w � w0)> (aFw0 + � � 1) � 1(w � w0):

In Methods 2 and 3, we need to sample from a posterior of the formN (0; U� U> ) for various different values ofU and� .
Doing either of these is not easy for high-dimensional weight spaces. We employ two different methods to deal with this
problem. For fully-connected networks we use a KFAC approximation of the Hessian/FIM while for LeNet which has much
fewer weights, we approximate these matrices using their top few eigenvalues and eigenvectors.

D.4.1. KFACAPPROXIMATION OF THEFIM AND HESSIAN

We approximate the Hessian/FIM by a variation of Kronecker decomposition of block-diagonal Hessian/FIM (KFRA, (Botev
et al., 2017)). We use the BACKPACK library for implementing this (Dangel et al., 2020). For the weight of thekth layer
wk 2 Rdk +1 � dk , the KFRA approximation of the corresponding block in the Hessian/FIM which is denoted byF k or H k

can be written asAk 
 Bk . Denote byUA k ; UB k the eigenspaces ofAk andBk . To estimateE , we can �rst decomposeE as
the summation where each term is for a particular layerk

E =
LX

k=0

E k

where
E k = ( wk � wk

0 )> (a (Fw0 )k + � � 1) � 1(wk � wk
0 )

= ( wk � wk
0 )> Uk (a� k + � � 1) � 1Uk >

(wk � wk
0 )

=
�

(wk � wk
0 )> Uk

�
a� k + � � 1

� � 1=2
� �

(wk � wk
0 )> Uk

�
a� k + � � 1

� � 1=2
� >

(E k )1=2 can be calculated by

E k 1=2
= ( wk � wk

0 )> Uk
�

a� k + � � 1
� � 1=2

= ( U>
A k

(wk � wk
0 )UB k ) �

�
a� k + � � 1

� � 1=2

where in the last line,(wk � wk
0 ) 2 Rdk +1 � dk . We use� to denote element wise multiplication.UT

A k
(wk � wk

0 )UB k can now
be easily calculated using the KFAC factors.

To sample from the posteriorN (w; U� U> ), we can concatenate the samples of the weights of each layer. We �rst sample
r k � N (0; I dk ), then calculate

p
� k � r k and thereby

� k := Uk

� p
� k � r k

�
= UA k

� p
� k � r k

�
U>

B k
:

The �nal sample is thereforew + [ � 1; :::; � k ] which is distributed asN (w; U� U> ).

D.4.2. APPROXIMATE FIM AND HESSIAN USING ITS TOP EIGENVALUES AND EIGENVECTORS

For symmetric� with orthogonal decomposition� = U� U> , U = [ U1; U2], � = diag(� 1; � 2), we have

� = U1� 1U>
1 + U2� 2U>

2

whereI = U1U>
1 + U2U>

2 :

In this case, to calculateE , we approximateaFw0 + � � 1 by

aFw0 + � � 1 = U1(a� 1 + � � 1
1 )U>

1 + � � 1
2 U2U>

2
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where� 1; U1 are the stiff (largestk) eigenvalues and corresponding eigenvectors forFw0 andU2; � 2 are the sloppy ones.
Notice that we use two scalar parameters� 1 and� 2 to set the additive constant in the prior covariance.

E = ( w � w0)> U1(a� 1 + � � 1
1 ) � 1U>

1 (w � w0) + � 2(w � w0)> U2U>
2 (w � w0)

= ( w � w0)> U1(a� 1 + � � 1
1 ) � 1U>

1 (w � w0) + � 2

�
kw � w0k2

2 � (w � w0)> U1U>
1 (w � w0)

�

Notice that the term(w � w0)> U1 is not hard to calculate becauseU1 2 Rp� k and since we are choosing the top few
eigenvalues of the Hessian/FIM, the value ofk is small (about 300).

To sample from the posteriorN (w; U� U> ), we �rst set � = diag(� 1; � 2) where� 1 are the topk stiff eigenvectors and
� 2 are thep � k other eigenvectors. Correspondingly, we haveU = [ U1; U2]. We use an isotropic variance for the sloppy
subspace and set� 2 = � � 1I p� k . We �rst sampler � N (0; I k ), then calculate

� 1 = U1
p

� 1U>
1 r

� 2 = � � 1=2U2U>
2 r = � � 1=2(r � U1U>

1 r )

Notice thatU1U>
1 r , andU1

p
� 1U>

1 r are easy to calculate. The resultw + [ � 1; � 2] is distributed asN (w; U� U> ).

For cases when we recompute the FIM/Hessian while optimizing the PAC-Bayes bound (Method 2 and 3 respectively), we
recompute the eigenvalues� 1 and the corresponding eigenvectorsU1. Note that the parameter� in the covariance of the
posterior is also optimized when we optimize the PAC-Bayes bound.

D.5. Optimizing parameters of the prior in the PAC-Bayes bound

The prior should be �xed before looking at the training set, but for all methods above, we optimize the scale of the prior. We
do this by adding an additional penalty in the KL term. Assume thatai for i = 1 ; : : : ; m0 are the number of parameters in the
prior that we can select, we chooseai = (1 =ci ) exp

�
� j i =bi

�
for j i 2 N. We reindexj i as a single indexk = (

P
i j i )m 0

, then

if the PAC-Bayes bound for each indexk is designed to hold with probability at least1 � 6�
� 2 k 2 , then by union bound, it will

hold uniformly for allk 2 N with probability at least1 � � . For a bound that holds with probability1 � � 0, the penalty we
should add islog n

� 0 , hence, using the relation

ai = (1 =ci ) exp
�

j i =bi
�

; � 0 =
6�

� 2k2 ; k = (
X

i

j i )m 0

we add the penalty

' (a1; :::; am 0

) = 2 m0log

 
X

i

bi log
�

ci ai
�

!

+ log
� 2n
6�

Similarly, for any positive or negative integerj i , we can setk = (
P

i 2jj j i )m 0
to get the penalty

' (a1; :::; am 0

) = 2 m0log

 

2
X

i

�
�
�bi log

�
ci ai

� �
�
�

!

+ log
� 2n
6�

In Methods 1, 2, 3 we choosea1 = � � 1, in Method 4, we choosea1 = a anda2 = � � 1.

E. Working ef�ciently with Bayesian deep networks

Typically, a Bayesian neural network is implemented by programming Bayesian variants of standard layers in deep learning.
For instance, one de�nes a BayesianLinear layer which maintains two sets of parameters, the mean weight vector and a
standard deviation for each weight. At each forward pass, the layer samples a weight vector using the reparameterization
trick to compute the activations. This is a reasonably ef�cient way to implement a Bayesian neural network but it is
cumbersome because code for complex deep network architectures has to be rewritten from scratch to accommodate these
Bayesian layers. We noticed that we can use the following trick (this is likely speci�c to PyTorch) to create a wrapper
around any existing deep network code and construct its Bayesian variant. All our experiments use 150 samples fromQ
before each update; in comparison typical implementations use 1 sample (Dziugaite & Roy, 2017; Wu et al., 2021). This
strategy is potentially useful for other problems as well, e.g., for estimating the prediction uncertainty.
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The code shown in Appendix E is adapted from
https://github.com/pytorch/pytorch/blob/master/benchmarks/functionalautogradbenchmark/utils.py and works by �rst
calculating the reparameterization trick (Line 45) using the mean and (logarithm of the) standard deviation of the weights
(self.mustd) and then swapping the weight of the actual model (self.w) that performs the forward propagation using the
sampled weights.

Figure S-6.Code for Bayesian neural networks
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F. Full results of PAC-Bayes generalization bounds and effective dimensionalities

We display the extended version of the results of PAC-Bayes bound optimization in Table S-3. Methods 1 and 5 give bounds
that are similar to each other: this shows that our analytical expression (4) for the optimal posterior using a loose PAC-Bayes
bound under the assumption that the loss is quadratic at the weights at the end of training is an accurate estimate of the
optimal posterior (1). The bound calculated by these two methods is smaller than that of Method 6, which shows that the
sloppiness of the Hessian at the end of training (H w ) is effective at providing non-vacuous generalization bounds. Using an
isotropic posterior in Method 6 produces a remarkably good bound because almost all eigenvalues ofH w for MNIST are
small; even the largest eigenvalue is quite small in its magnitude as shown in Fig. 3). Methods 1, 5, 6 (which are the three
methods that compute a bound without any optimization using the training dataset) give worse bounds than Methods 2, 3, 4
and also the method of Dziugaite & Roy (2017). This is because the approximation

�e(hw 0; D n ) = �e(hw ; D n ) +
1
2



w0 � w; H w (w0 � w)

�
:

as we discussed in Method 1 may not be an accurate estimate of�e(w0; D n ) in the neighborhood ofw. As we see in
Appendix B, the posterior that optimizes the loose PAC-Bayes boundwithoutthe approximation of the quadratic loss instead
looks like (S-14). Methods 2–4 which involve optimization of the PAC-Bayes bound capture the optimal posterior better
than the one corresponding to the quadratic assumption leads to a tighter PAC-Bayes bound. Method 4 gives the tightest
bound since the training predominantly takes place in the stiff subspace of FIM at initialization, and the prior with covariance
proportional to FIM puts less penalty than the isotropic prior on the stiff directions. Using posterior withE(� q) = H w

(Method 3, which is similar to Wu et al. (2021)) works better than a diagonal posteriorE(� q) = � (which is the method
in Dziugaite & Roy (2017)); this coincides with our calculation in Method 1 (see§3.3) that the eigenvectors of the optimal
posterior is the same as that of the HessianH w .

We also calculated the effective dimensionalities, strength and sloppy factor of different models using� derived in Method 3
(the � calculated by PAC-Bayes bound optimization can be regarded as a sound choice), the results are displayed in the 4th
block of Table S-3.

G. Further experimental studies

G.1. Additional results on the sloppiness of different architectures and datasets

MNIST in spite of its lower dimensionality has roughly the same range of eigenvalues but it has a very small thresholdr
in Def. 8 which indicates that data has a lower number of effective dimensions than CIFAR-10. The FIM (empirical FIM is
essentially the same line) shows a very strong decay for MNIST; since the trace of the FIM has been used as an indicator of
the information stored in the weights (Achille et al., 2018), this indicates that the weights have to store very little information
to predict MNIST well. The Hessian and FIM have very different eigenvalues for MNIST but as Fig. 3 indicates the two
matrices have a larger overlap in their top eigenvectors. Eigenspectra of other networks on MNIST are similar to Fig. S-7
while those of CIFAR-10 are similar to Fig. 1.

In Fig. S-8, we compare the correlation matrices of logit Jacobian for different logits, which shows that the eigenspectra
for different logits are similar. In Fig. S-9 and Fig. S-10 we compare the correlation matrices of activations and their
gradients. From the �gures, we can see that the eigenspectra are similar for different layers, which shows that the sloppiness
is preserved as we getting into higher layers of neural network. In S-11 and S-12 we ploted the eigenspectra for different
networks. The similarity of eigenspectra of matrices calculated on same dataset but different architectures strongly indicates
that the sloppiness of Hessian, FIM, correlations of logit Jacobians, activations and gradients of activations are all inherited
from the sloppiness of the data set. Fig. S-13 is a reproduction of Fig. 5 using FC-1200-1 on MNIST.

G.2. Weights of a trained network can come back towards the initialization in the sloppy subspace even if they
evolved in the stiff subspace

Fig. S-14 shows that the projection of change of weights of the model (w � w0) for the v2 model (which has a second phase
of training with a penalty/ jj w � w0jj 2

2) onto the stiff directions is larger than that of original model (FC). This indicates
that the projection onto the sloppy directions of model v2 is smaller than that of the original model because the projection
onto orthogonal decompositions of the parameter space sums to one. This indicates that weights can effectively come back
towards the initialization in the sloppy subspace without affecting the accuracy of the model even if the model predominantly
evolves in the stiff subspace during training.
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Quantity/Model FC-600-1 FC-600-2 FC-1200-1 FC-1200-2 LeNet

Training and validation error of the trained model
ê( h w ; D n ) 0.0000 0.0000 0.0000 0.0000 0.0000
log 2 � �e( h w ; D n ) 0.0008 0.0000 0.0010 0.0000 0.0000
e( h w ) 0.0150 0.0143 0.0146 0.0139 0.0111
log 2 � �e( h w ) 0.0641 0.0956 0.0584 0.0977 0.0669

Analytic (Method 1)
ê( Q; D n ) 0.0901 0.0766 0.0534 0.0678 0.0074
log 2 � �e( Q; D n ) 0.2299 0.1997 0.1410 0.1776 0.0263
e( Q ) 0.0897 0.0827 0.0553 0.0729 0.0167
log 2 � �e( Q ) 0.2384 0.2314 0.1492 0.2015 0.0927
PAC-Bayes bound 0.3241 0.3794 0.3509 0.3915 0.0572
KL( Q; P ) 8512.5098 13417.4023 14088.1738 15308.4170 1965.8048
� 199.4836 401.7107 328.8929 443.9590 36.4424

Ev(� q ) = Ev( F w 0 ) (Method 2)
ê( Q; D n ) 0.0309 0.0288 0.0267 0.0298 0.0053
log 2 � �e( Q; D n ) 0.0895 0.0798 0.0742 0.0829 0.0160
e( Q ) 0.0346 0.0331 0.0327 0.0348 0.0147
log 2 � �e( Q ) 0.0995 0.0959 0.0947 0.0995 0.0590
PAC-Bayes bound 0.1590 0.1767 0.1523 0.2017 0.0099
KL( Q; P ) 4772.4854 5953.1523 4841.5972 7268.2832 46.5822

E(� q ) = E( H w ) (Method 3, our implementation)
ê( Q; D n ) 0.0202 0.0165 0.0169 0.0178 0.0043
log 2 � �e( Q; D n ) 0.0556 0.0451 0.0466 0.0487 0.0133
e( Q ) 0.0268 0.0253 0.0245 0.0249 0.0141
log 2 � �e( Q ) 0.0781 0.0781 0.0761 0.0742 0.0564
PAC-Bayes bound 0.1357 0.1540 0.1515 0.1817 0.0188
KL( Q; P ) 4645.1128 6122.5703 5919.6455 7589.6387 430.4026
� 46 101 53 172 1360
p( n; � ) 2301 (0.487%) 2429 (0.292 %) 2315 (0.245 %) 2287 (0.095 %) 82 (0.184 %)
s( n; � ) 6435 6810 6420 6280 231
1=c( n; � ) 2236 2497 2604 2841 38

� p = aF w 0 + � � 1 ; E(� q ) = E( F w 0 ) (Method 4)
ê( Q; D n ) 0.0237 0.0218 0.0226 0.0220 0.0048
log 2 � �e( Q; D n ) 0.0663 0.0611 0.0631 0.0614 0.0147
e( Q ) 0.0270 0.0265 0.0266 0.0264 0.0145
log 2 � �e( Q ) 0.0806 0.0956 0.0789 0.0801 0.0573
PAC-Bayes bound 0.1323 0.1397 0.1486 0.1702 0.0092
KL( Q; P ) 4090.7241 4679.0293 5074.4102 6369.7505 23.2886

diag(� q ) = � (our implementation)
ê( Q; D n ) 0.0283 0.0249 0.0284 0.0285 0.0079
log 2 � �e( Q; D n ) 0.0795 0.0700 0.0795 0.0797 0.0236
e( Q ) 0.0330 0.0311 0.0326 0.0331 0.0161
log 2 � �e( Q ) 0.0942 0.0923 0.0940 0.0963 0.0637
PAC-Bayes bound 0.1707 0.1846 0.1886 0.2167 0.0131
KL( Q; P ) 5674.5186 6854.7871 6668.9023 8332.5869 37.5598

Numerical optimization of Method 1 calculations (Method 5)
ê( Q; D n ) 0.0711 0.0630 0.0805 0.0580 0.0087
log 2 � �e( Q; D n ) 0.1805 0.1673 0.2072 0.1510 0.0331
e( Q ) 0.0717 0.0683 0.0800 0.0644 0.0168
log 2 � �e( Q ) 0.1902 0.1925 0.2092 0.1811 0.0955
PAC-Bayes bound 0.3182 0.3917 0.3539 0.4366 0.0792
KL( Q; P ) 9920.2510 15908.7813 11271.7246 20162.2891 2941.7917
� 243.6499 490.6506 269.2748 599.2820 54.3656

Isotropic Posterior (Method 6)
ê( Q; D n ) 0.0473 0.0879 0.0653 0.0638 0.0094
log 2 � �e( Q; D n ) 0.1266 0.2538 0.1661 0.1757 0.0385
e( Q ) 0.0524 0.0937 0.0677 0.0697 0.0191
log 2 � �e( Q ) 0.1409 0.2935 0.1759 0.2057 0.1076
PAC-Bayes bound 0.3694 0.5461 18533.2422 0.5490 0.1146
KL( Q; P ) 16261.0205 26160.2773 0.4288 30034.0645 4807.3564
� 401.7107 808.9461 443.9590 894.0237 89.6338

diag(� q ) = � (from Dziugaite & Roy (2017))
e( h w ) 0.018 0.016 0.018 0.015 -
e( Q ) 0.034 0.033 0.035 0.035 -
PAC-Bayes bound 0.161 0.186 0.179 0.223 -
KL( Q; P ) 5144 6534 5977 8558 -

E(� q ) = E( H w ) (from (Wu et al., 2021))
e( h w ) 0.0153 0.0148 0.0161 - -
e( Q ) 0.02347 0.02523 0.02316 - -
PAC-Bayes bound 0.1198 0.1443 0.1413 - -
KL( Q; P ) 3766.1 4956.8 5021.1 - -

Table S-3.Comparison of PAC-Bayes bounds on MNIST for different methods.This table is an expansion of Table 2. The 6th block
is our reproduction of (Dziugaite & Roy, 2017), the �rst, 7th and 8th block corresponds to the three methods of constructing posterior for
PAC-Bayes bound without training described in Appendix D.1.
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Figure S-7.Eigenspectra for a two-layer fully-connected network on MNIST. The eigenspectra are qualitatively the same as those of Fig. 1,
e.g., there is a sharp drop at the beginning and a long, linear tail of small eigenvalues follows. Slopes of the eigenspectra of activations,
activation gradients, Jacobians and Hessian mirror those of the data. In contrast to Fig. 1, the slope of the FIM is quite different here. The
Empirical FIM and FIM overlaps with each other since the model is trained to nearly perfect train and validation error.

Figure S-8.Eigenspectra of the correlation matrices of Jacobian of logits for FC-600-2 on MNIST (Left) and wide residual net on
CIFAR-10 (Right). The eigenspectra are similar for different logits.
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Figure S-9.Eigenspectra of the correlation matrices of activations of different layers for FC-600-2 on MNIST (Left) and wide residual net
on CIFAR-10 (Right). For different layers, the eigenspectra are similar.

Figure S-10.Eigenspectra of the correlation matrices of gradients with respect to the activations of different layers for FC-600-2 on
MNIST (Left) and wide residual net on CIFAR-10 (Right). For different layers, the eigenspectra are qualitatively similar, and as we move
into higher layers of neural networks, the eigenvalues becomes smaller for gradient of activations.




