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Abstract

Basketball shot location data provide valu-
able summary information regarding players to
coaches, sports analysts, fans, statisticians, as
well as players themselves. Represented by spa-
tial points, such data are naturally analyzed with
spatial point process models. We present a novel
nonparametric Bayesian method for learning the
underlying intensity surface built upon a com-
bination of Dirichlet process and Markov ran-
dom field. Our method has the advantage of
effectively encouraging local spatial homogene-
ity when estimating a globally heterogeneous in-
tensity surface. Posterior inferences are per-
formed with an efficient Markov chain Monte
Carlo (MCMC) algorithm. Simulation studies
show that the inferences are accurate and the
method is superior compared to a wide range of
competing methods. Application to the shot lo-
cation data of 20 representative NBA players in
the 2017-2018 regular season offers interesting
insights about the shooting patterns of these play-
ers. A comparison against the competing method
shows that the proposed method can effectively
incorporate spatial contiguity into the estimation
of intensity surfaces.

1. Introduction
Quantitative analytics have been a key driving force for ad-
vancing modern professional sports, and there is no excep-
tion for professional basketball (Kubatko et al., 2007). In
professional basketball, analyses of shooting patterns of-
fer important insights about players’ attacking styles and
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shed light on the evolution of defensive tactics, which has
aroused substantial research interests from the statistical
community (e.g., Reich et al., 2006; Miller et al., 2014;
Franks et al., 2015; Cervone et al., 2016; Jiao et al., 2021a;
Hu et al., 2020b). As shot location data are naturally rep-
resented by spatial points, developments of novel methods
for analyzing spatial point patterns are of fundamental im-
portance.

The literature on spatial point pattern data is voluminous
(see, e.g., Illian et al., 2008; Diggle, 2013; Guan, 2006;
Guan & Shen, 2010; Baddeley, 2017; Jiao et al., 2021b).
The most frequently adopted class of models in empirical
research is nonhomogeneous Poisson processes (NHPP),
or more generally, Cox processes, including log-Gaussian
Cox process (Møller et al., 1998). Such parametric mod-
els impose restrictions on the functional forms of under-
lying process intensity, which can suffer from underfitting
of data when there is a misfit between the complexity of
the model and the data available. In contrast, nonparamet-
ric approaches such as two-way kernel density estimation
provide more flexibility compared to parametric modeling
as the underfitting can be mitigated by using models with
unbounded complexity.

Several important features of the shot location data need to
be captured in any realistic nonparametric method. First,
near regions are highly likely to have similar intensities.
This makes that certain spatial contiguous constraints on
the intensity surface desirable. Existing method such as
mixture of finite mixtures (MFM) of nonhomogeneous
Poisson processes (Taddy & Kottas, 2012; Geng et al.,
2021) is lacking in this aspect. There are also rich litera-
ture (Blei & Frazier, 2011; Müller et al., 2011; Ghosh et al.,
2011; Page et al., 2016; Dahl et al., 2017) discussing spa-
tial constraint prior for regression models however lacking
the discussion on intensity estimation of spatial point pat-
tern data. Second, spatial contiguous constraints should not
dominate the intensity surface globally (Hu et al., 2020a;
Zhao et al., 2020). For some players, there are more than
one hot zones in their one-season shooting. Some play-
ers will prefer more corner three and top three rather than
45 degrees. Although, the corner is not spatial contigu-
ous with top area, the same intensity value can still belong
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to spatially disconnected regions that are sufficiently sim-
ilar with respect to intensity values, which is not well ac-
commodated by the penalized method (Li & Sang, 2019).
From the application prospect, zone defense is common de-
fense strategy in NBA from 2001. In addition, each play-
ers will have floor coverage in court. Knowing the hot re-
gions rather than small hot points will help the team opti-
mize their team defense strategy. For some players, there
are more than one hot zones in their one-season shooting.
Finally, the extent to which the spatial contiguous affects
the intensity surface may differ from player to player, and
needs to be learned from the data.

To address these challenges, we consider a spatially con-
strained Bayesian nonparametric method for point pro-
cesses to capture the spatial homogeneity of intensity sur-
faces. Our contributions are three-fold. First, we develop a
novel nonparametric Bayesian method for intensity estima-
tion of spatial point processes. Compared to existing meth-
ods, the proposed approach is capable of capturing both
locally spatially contiguous clusters and globally discon-
tinuous clusters and the number of clusters. Second, an
efficient Markov chain Monte Carlo (MCMC) algorithm
is designed for our model without complicated reversible
jump MCMC. Lastly, we gain important insights about the
shooting behaviors of NBA players based on an application
to their shot location data.

2. Model Specification
2.1. NHPP

Spatial point process models provide a natural framework
for capturing the random behavior of event location data.
Let S = {s1, . . . , sN} with si = (xi, yi), be the set of
observed locations in a pre-defined, bounded region B ⊆
R2. Let the underlying stochastic mechanism that gives
rise to the observed point pattern S be denoted as spatial
point process Y. Process NY(A) =

∑N
i=1 1(si ∈ A)

is a counting process associated with Y, which counts the
number of points falling into area A ⊆ B.

The NHPP model assumes conditionally independent event
locations given the process intensity λ(s). For an NHPP,
the number of events in area A, NY(A), follows Poisson
distribution with rate parameter λ(A) =

∫
A
λ(s)ds. In ad-

dition, NY(A1) and NY(A2) are independent if two areas
A1 ⊆ B and A2 ⊆ B are disjoint. Given the observed point
pattern S on fixed region B, the likelihood of the NHPP
model is ∏N

i=1 λ(si)

exp(
∫
B λ(s)ds)

, (2.1)

where λ(si) is the intensity function evaluated at location
si. The NHPP reduces to a homogeneous Poisson process
(HPP) when λ(s) is constant over the entire study region

B, and it is synonymous with complete spatial randomness
(CSR).

2.2. Nonparametric Bayesian Methods for NHPP

As the CSR assumption over the entire study region rarely
holds in real-world problems, and to simplify the poten-
tially overcomplicated problem induced by complete non-
homogeneity on intensity values, Teng et al. (2017) pro-
posed to approximate the intensity function λ(s) by a
piecewise constant function. Specifically, the study re-
gion B is partitioned into n disjoint regions and the in-
tensity over each region is assumed to be constant. Let
A1, A2, . . . , An be a partition of B, i.e., ∪n

i=1Ai = B and
Ai ∩Aj = ∅,∀i ̸= j. For each region Ai, i = 1, . . . , n, we
have λ(s) = λi,∀ s ∈ Ai. Therefore, the likelihood (2.1)
can be written as

n∏
i=1

fpoisson(NY(Ai)|λiµ(Ai)), (2.2)

where µ(Ai) =
∫
Ai

1ds is the area of region Ai and
fpoisson(·|λ) is the probability mass function of the Poisson
distribution with rate parameter λ. For ease of notation, we
use N(Ai) for NY(Ai) throughout the remainder of the
text.

The heterogeneity in the intensity function across different
regions can be naturally represented through a latent clus-
tering structure. The conventional finite mixture modeling
framework (McLachlan & Basford, 1988; Bouveyron et al.,
2019) assumes that the heterogeneity can be characterized
by a discrete set of subpopulations or clusters, such that the
points located in the regions belonging to any given sub-
population tend to be produced by similar intensities. The
selection of the number of clusters (or components) in fi-
nite mixture models are often recasted as statistical model
selection problems which can solved using information cri-
teria (Fraley & Raftery, 2002) or cross-validation (Fu &
Perry, 2020), among others. Despite its prevalence in em-
pirical research, such model selection procedures for finite
mixture model ignore uncertainty in the number of clusters,
which may in turn lead to increased erroneous cluster as-
signments. The Bayesian nonparametric approach provides
an alternative to parametric modeling and model selection.
The Dirichlet process (Ferguson, 1973) is currently one of
the most popular Bayesian nonparametric models and it can
be viewed as the limit of the following finite mixture model

yi|Zi, βZi
∼ F (βZi

)

Zi|p ∼ Discrete(p1, · · · , pK)

βZi
∼ G0 p ∼ DirichletK(α/K, · · · , α/K)

(2.3)

where Zi stands for the cluster of ith observation, βci
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means the parameter of cith cluster, α stands for the pre-
cision parameter, and G0 is the base measure in Dirichlet
process, which is also the prior on cluster specific param-
eters β’s. As K → ∞, the model becomes a Dirichlet
process mixture (DPM) model Neal (2000), which can be
used to simultaneously estimate the number of clusters and
cluster configurations. Combining DPM with NHPP yields
the following DPM-NHPP model

N(Ai) | λ1, . . . , λn ∼ Poisson(λiµ(Ai)) i = 1, . . . , n,

(λ1, . . . , λn) ∼
n∏

i=1

G(λi)

G ∼ DP(α,G0)

(2.4)

where the Dirichlet process (DP) here is parameterized by
a base measure G0 ≡ Gamma(a, b) and a concentration
parameter α. Given λ1, . . . , λn drawn from G, a condi-
tional prior can be obtained by integration (Blackwell &
MacQueen, 1973)

Pr(λn+1|λ1, . . . , λn) =
1

n+ α

n∑
i=1

δλi
(λn+1)

+
n

n+ α
G0(λn+1)

(2.5)

where δλi
(λj) = I(λi = λj) denote a degenerate distribu-

tion concentrated at a single point λi.

Under Dirichlet process mixture model (DPMM), the latent
cluster membership variables Z = (Z1, Z2, . . . , Zn) are
distributed according to a Chinese restaurant process (CRP)
(Pitman, 1995; Neal, 2000), which is defined through the
following conditional distributions or a Pólya urn scheme
(Blackwell & MacQueen, 1973)

Pr(Zi = c|Zj , j < i;α) ∝

{
|c|, c for existing cluster label
α, otherwise,

(2.6)

where |c| refers to the size of cluster labeled c, and α is the
concentration parameter of the underlying Dirichlet pro-
cess (DP). While CRP allows for simultaneous estimation
on the number of clusters and the cluster configuration, it
has been proved that CRP can produce extraneous clus-
ters in the posterior leading to inconsistent estimation of
the number of clusters even with sample size approaching
infinity (Miller & Harrison, 2018).

To mitigate the inconsistency in estimating the number of
clusters caused by CRP, Miller & Harrison (2018) proposed
to modify CRP with the Mixture of finite mixtures (MFM)
model. An alternative model which will be used as a bench-
mark for comparison is the MFM of NHPP (MFM-NHPP)
(Geng et al., 2021).

2.3. Incorporating Spatial Homogeneity

Spatial events typically obey the so-called first law of
geography, “everything is related to everything else, but
near things are more related than distant things” (Tobler,
1970). This means spatial smoothness, also known as spa-
tial homogeneity. To incorporate such spatial homogene-
ity, we impose a Markov random field constraint (Besag
et al., 1995; Orbanz & Buhmann, 2008) M(λ1, . . . , λn) :=
1

ZH
exp {−H(λ1, . . . , λn)} on λ to encourage the inten-

sity parameters in nearby regions to be similar

G ∼ DP(α,G0)

(λ1, . . . , λn) ∼ M(λ1, . . . , λn)

n∏
i=1

G(λi)

N(Ai) | λ1, . . . , λn ∼ Poisson(λiµ(Ai)) i = 1, . . . , n,

(2.7)

The cost function H(λ1, . . . , λn) :=
∑

C∈C HC(λC),
where C denotes the set of all cliques, or completely con-
nected subsets in the underlying neighborhood graph N =
(VN , EN ,WN ) with vertices VN = (v1, . . . , vn) repre-
senting n random variables, EN denoting a set of edges
representing the statistical dependence structure among
vertices, and WN denoting the edge weights representing
the magnitude of the respective dependence.

By the Hammersley—Clifford theorem (Hammersley &
Clifford, 1971), the corresponding conditional distribu-
tions enjoy the Markov property, i.e., M(λi|λ−i) =
M(λi|λ∂(i)), where ∂(i) := {j|(i, j) ∈ EN } represents
the neighbors of i. In this work, we consider only pairwise
interactions by letting

H(λi|λ−i) := −η
∑

j∈∂(i)

I(λi = λj) = −η
∑

j∈∂(i)

I(zj = zi)

(2.8)
where η is a parameter controlling the extent of spatial ho-
mogeneity with larger values dictating larger extent of spa-
tial homogeneity. We note that the resulting model defines
a valid MRF distribution Π, which can be written as

Π(λ1, . . . , λn) ∝ M(λ1, . . . , λn)P (λ1, . . . , λn) (2.9)
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and such a constrained model can be shown to only change
the finite component of model (2.7) as shown in Theorem
2.1 below. The proof is deferred to the Appendix A.

Theorem 2.1. Let K∗ denote the number of clusters ex-
cluding the i-th observation and n

(−i)
k denote size of the

k-th cluster excluding λi, and assume H(λi|λ−i) to be a
valid cost function for MRF. The conditional distribution of
(2.9) takes the following form

Π(λi|λ−i) ∝
K∗∑
k=1

n
(−i)
k

1

ZH
exp(−H(λi|λ−i))δλ∗

k
(λi)

+
α

ZH
G0(λi).

Although, there are rich literature discussing constraint
based nonparametric Bayesian prior such as the distance
dependent Chinese Restaurant Process (Blei & Frazier,
2011), the PPMx prior (Müller et al., 2011), and the Ewens-
Pitman attraction distribution (Dahl et al., 2017). Our pro-
posed DPM-MRF prior enjoys attractive properties. First,
ddCRP does not hold exchangeability, and its conditional
distributions reflect the relationship between observations.
However, DPM-MRF is exchangeable since the cohesion
function is invariant under permutation (it only depends on
the clustering configuration), which by de Finetti’s theo-
rem and the conditional distribution directly reflects rela-
tionship between the observations with existing clusters.
Compared with PPMx prior and EPA distribution, our prior
starts from Dirichlet process and incorporate a Markov ran-
dom field (MRF) structure on partition distribution. Our
proposed method inherits the ability of clustering since it
provides a full support over the entire space of partitions.

The definition of neighborhood ∂(i) is subject to the nature
of the data and the modeler’s choice. Common choices in-
clude the rook contiguity (i.e., the regions which share a
border of some length with region i), and the queen con-
tiguity (i.e., the regions which share at least a point-length
border with region i) (Orbanz & Buhmann, 2008). The
MRF-DPM-NHPP model (2.7) reduces to the DPM-NHPP
model (2.4) when η = 0.

3. Bayesian Inference
In this section, we present an efficient MCMC sampling
algorithm for our proposed method, post MCMC infer-
ence, and model selection criteria for identifying the op-
timal value of the smoothing parameter.

3.1. A Collapsed Gibbs Sampler

We introduce latent indicator variables Z = (Z1, . . . , Zn)
and denote the parameters in (2.7) as Θ = {λ,Z}. The

posterior density of Θ is

π(Θ|S) ∝ L(Θ|S)π(Θ),

where π(Θ) is the prior density of Θ, and the likelihood
L(Θ|S) takes the form of (2.1).

We first derive the full conditional distribution of Zi, which
is given by Proposition 3.1.

Proposition 3.1. Suppose the result of Theorem 2.1 holds.
Then, under the model and prior specification (2.7), the full
conditional distribution of Zi, i = 1, . . . , n, is

Pr(Zi = c | S,Z−i,λ,β)

∝


nc(Z−i) exp

(
η
∑

j∈∂(i) dij1(Zj = c)
)
(λcµ(Ai))

N(Ai)

exp(λcµ(Ai))
,

αbaΓ(N(Ai) + a)µ(Ai)
N(Ai)

(b+ µ(Ai))N(Ai)+aΓ(a)
,

(3.1)

for existing labels and new label, respectively, where Z−i

is Z with zi removed, and µ(Ai) is the area of region Ai.

For the full conditional distribution of λk, only data points
in the kth component should be considered for simplicity.
The full conditional density of λk, k = 1, . . . ,K, is

q(λk | S,Z,λ−k)

∝
∏

ℓ:sℓ∈Aj ,Zj=k λ(sℓ)

exp(
∫⋃

j:Zj=k Aj
λ(s)ds)

λa−1
k exp (−bλk)

=

∏
ℓ:sℓ∈Aj ,Zj=k λk

exp

(∫⋃
j:Zj=k Aj

λkds

)λa−1
k exp (−bλk)

∝ λNk+a−1
k exp

−

b+
∑

j:Zj=k

µ(Aj)

λk

 ,

(3.2)

which is the kernel of Gamma
(
Nk + a, b +∑

j:Zj=k µ(Aj)
)
, where Nk =

∑
ℓ:sℓ∈Aj ,Zj=k 1 is

the number of data points in the regions belonging to
the kth component. The detailed steps of a Gibbs sam-
pling algorithm using the full conditional distributions
from (3.1)–(3.2) is given in Appendix C.

Convergence check for the auxiliary variables
(Z1, . . . , Zn) can be done with the help of the Rand
Index (RI) (Rand, 1971). The auxiliary variables them-
selves are nominal labels which cannot be compared
from iteration to iteration. The RI is the proportion of
concordant pairs between two clustering results with
value of 1 indicating the two results are exactly the same.
The trajectory of the RI for successive MCMC iterations
provides a visual check for convergence. Further, RI values
closer to 1 indicate good agreement in the clustering in the
MCMC samples.
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We carry out posterior inference on the group memberships
using Dahl’s method (Dahl, 2006) (details in Appendix C).
Therefore, the posterior estimates of cluster memberships
Z1, . . . , Zn and model parameters Θ can be based on the
draws identified by Dahl’s method.

3.2. Selection of Smoothing Parameter

We recast the choice of smoothing parameter η ⩾ 0
as a model selection problem. In particular, we con-
sider the deviance information criterion (DIC; Spiegelhal-
ter et al. (2002)), logarithm of the Pseudo-marginal likeli-
hood LPML; Gelfand & Dey (1994)) and Bayesian infor-
mation criterion (BIC; Schwarz (1978)) as candidates.

The DIC for spatial point process can be derived from the
standard DIC in a straightforward manner as

Dev(Θ) = −2

(
N∑
i=1

log λ(si)−
∫
B
λ(s)ds

)
,

DIC = 2Dev(Θ)− Dev(Θ̂),

where Dev(Θ) is the average deviance evaluated using
each posterior sample of Θ, and Dev(Θ̂) is the deviance
calculated using the point estimation of parameter using
Dahl’s method.

The LPML for spatial point process can be approximated
using the MCMC samples (Hu et al., 2019)

L̂PML =

N∑
i=1

log λ̃(si)−
∫
B
λ(s)ds,

λ̃(s)i =

(
1

M

M∑
t=1

λ(si | Θt)
−1

)−1

,

λ(s) =
1

M

M∑
t=1

λ(s | Θt),

where Θt denotes the t-th posterior sample of parameters
with a total length of M .

The BIC is derived naturally from its general definition

BIC(Θ) = −2 logL(Θ) + K̂ logN,

logL(Θ) =

N∑
i=1

log λ(si)−
∫
B
λ(s)ds,

where K̂ denotes the estimated number of components of
the piecewise constant intensity function.

4. Simulation Studies
In this section, we report simulation studies to examine the
performance of the MRF-DPM-NHPP model and the pro-

posed Gibbs sampling algorithm. In each setting, we com-
pare the results to that of MFM-NHPP and other methods
listed in Table 1 to show that the MRF-DPM-NHPP model
can yield better performance.

Table 1: Alternative methods for comparison.

Method Implementation

CAR prior constrained spatially varying Poisson nimble
Log Gaussian Cox process inlabru
Bayesian additive regression trees BayesTree
Kernel density estimate spatstat
Nonhomogeneous Poisson process (B-spline, order= 3) spatstat

4.1. Design

Consider a study region B = [0, 20] × [0, 20] partitioned
into n = 400 squares of unit area, {Ai}ni=1. The data gen-
erating model was set to be NHPP(λ(s)) with a piecewise
constant intensity λ(s) over B. Three settings were con-
sidered for λ(s); see Table 2. The “ground-truth” intensity
surfaces of the three settings are displayed in the leftmost
column of Figure 1. The first two settings with the different
numbers of clusters are similar with the simulation setups
in Geng et al. (2021). The third setting contains both spa-
tially contiguous and discontinuous clusters. The point pat-
terns were generated using the rpoispp() function from
package spatstat (Baddeley & Turner, 2005). For each
setting, we generated 100 replicates.

The prior distributions were specified as in (2.7), with hy-
perparameters a = b = α = 1. The smoothing pa-
rameter η ⩾ 0 took values on an equally-spaced grid
η = {0, 0.5, . . . , 7}, of which the optimal value is chosen
via the model selection criteria introduced in Section 3.2.
The neighboring structure was defined based on rook con-
tiguity, and we treat all neighbors equally by letting dij =
1,∀j ∈ ∂i. Each MCMC chain was run for a total of 5000
iterations with random starting values, where the first 2000
draws were discarded as burn-in (see Appendix G for tra-
ceplots justifying this choice). The remaining 3000 draws
were thinned by 3 and stored for posterior inference. We
used Dahl’s method (Dahl, 2006) to identify the most rep-
resentative draw from the retained posterior draws as the
posterior point estimate.

Table 2: Simulation settings for the piecewise constant in-
tensity function.

Grid size λ Number of grid boxes

Setting 1 20× 20 (0.2, 4, 12) (90, 211, 99)
Setting 2 20× 20 (0.2, 1, 4, 8, 16) (80, 80, 80, 80, 80)
Setting 3 20× 20 (0.2, 4, 10, 20) (90, 145, 66, 99)
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4.2. Results

We evaluate the results of simulation studies on the follow-
ing aspects, (i) probability of choosing the correct number
of clusters, (ii) clustering accuracy quantified by the ad-
justed Rand index (Hubert & Arabie, 1985), and (iii) esti-
mation accuracy of the intensity surface.

Table 3 (left block) shows the proportion of times the true
number of components is identified under different model
selection criteria for each simulation setting. Obviously,
η = 0 never recovered the true number of clusters, sug-
gesting that taking spatial contiguity information into ac-
count is crucial. For MRF-DPM-NHPP, BIC appears to be
better than DIC and LPML as the BIC-selected optimal η
recovered the true number of clusters more frequently. Al-
though MFM-NHPP seems to be very competitive in terms
of identifying the true number of components under set-
ting 1, MRF-DPM-NHPP with smoothing parameter η se-
lected by BIC offers substantially better performance un-
der all other settings. A further investigation revealed that
setting η = 0 always produced overly large numbers of re-
dundant clusters, while DIC and LPML failed more grace-
fully with wrong numbers of clusters that often fall into the
approximate range (A histogram of K̂ is available in the
Appendix F).

To assess the clustering performance, we examine the av-
erage adjusted RI (calculated using function arandi in
R package mcclust (Fritsch, 2012)) over the 100 repli-
cates. Because the “ground-truth” class labels are known in
the simulation studies, the adjusted RIs were calculated by
comparing the posterior samples with the truth as a measure
of clustering accuracy. As shown in Table 3 (right block),
MRF-DPM-NHPP with smoothing parameter η selected by
BIC yields the highest clustering accuracy. Despite being
more capable of identifying the true number of clusters,
the clustering accuracy of MFM-NHPP is worse than that
of MRF-DPM-NHPP with BIC under setting 1, which sug-
gests that MFM-NHPP might happen to get the number of
clusters right by allocating the regions into wrong clusters.
For the remainder of this paper, we focus on the results that
correspond to optimal η selected by BIC.

We next summarize accuracy in estimating the intensity
surfaces. Figure 1 displays the averages of the median,
2.5th percentile, and 97.5th percentile of the estimated in-
tensity surface obtained with the optimal η selected by BIC
from the 100 replicates, in comparison with the true sur-
faces, for the three settings. The median surface agrees
with true surface well in all three settings. The 2.5th and
97.5th percentiles of the estimated intensity surfaces over
100 replicates have higher uncertainties occasionally at the
boundaries where the true intensities jump, but in general
are not far from the true surfaces. The frequency coverage
rates of the posterior 95% credible intervals for a represen-

Truth 2.5% quantile Median 97.5% quantile

S
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S
etting 2

S
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Figure 1: Simulation configurations for intensity surfaces
under grid size of 20 × 20, with fitted intensity surfaces.
Element-wise median and quantiles are calculated out of
100 replicates.

tative pixel (18, 10) are 0.92, 0.93 and 0.94 for setting 1,
2 and 3, respectively, which are very close to the nominal
level. Figure 2 shows the absolute value of relative bias
of element-wise posterior mean estimates under the MFM-
DPM-NHPP and other competing methods. The proposed
method leads to substantially smaller bias than the compet-
ing methods, especially for grids with low true underlying
intensity values and/or grids at the boundaries.

In order to show the robustness of our proposed method,
we fit kernel density estimate to the Durant’s shot loca-
tion data and use that smooth intensity surface to generate
random locations and evaluate the performance of different
methods. The simulation results are shown in Table 7 (in
Appendix J). We see that the proposed method can yield
comparable performance to other methods under this sce-
nario.

In summary, the simulation studies confirm the advantages
of the MRF-DPM-NHPP model and the validity of the pro-
posed Gibbs sampling algorithm. The results also suggest
that BIC is better than DIC and LPML in selecting the
smoothing parameter η in the studied settings. Compared
to other methods, the proposed MRF-DPM-NHPP is su-
perior in estimating the intensity surfaces, especially when
the transition between different spatially homogeneous re-
gions is not smooth.
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Table 3: Proportion of times the true number of cluster is identified, and average adjusted RI across 100 replicates for each
simulation setting, under MFM-NHPP, and MRF-DPM-NHPP with η = 0, optimal η selected by BIC, DIC and LPML.

Accuracy of K̂ Average adjusted RI

MRF-DPM-NHPP MFM-NHPP MRF-DPM-NHPP MFM-NHPP

η = 0 BIC DIC LPML η = 0 BIC DIC LPML

Setting 1 0.00 0.68 0.23 0.26 0.97 0.026 0.940 0.768 0.770 0.802
Setting 2 0.00 0.79 0.59 0.59 0.17 0.045 0.974 0.937 0.944 0.402
Setting 3 0.00 0.70 0.10 0.11 0.60 0.056 0.981 0.833 0.833 0.676

5. Professional Basketball Data Analysis
We applied the MRF-DPM-NHPP model to study the shot
data for NBA players in the 2017-2018 NBA regular sea-
son (visualized in Appendix D). In particular, we focus on
20 all-star level players that are representative of their po-
sitions (Table 5). The study region is a rectangle covering
the first 75% of the half court (50 ft × 35 ft) as the shots
made outside this region are often not part of the regular
tactics. This rectangle was divided into 50 × 35 = 1750
equally-sized grid boxes of 1ft × 1ft following Miller et al.
(2014). For each player, we run parallel MCMC chains
with η ∈ {0, 0.5, . . . , 6} for 5000 iterations using random
intial values, where the first 2000 were discarded as burn-
in and the remainder was thinned by 3 (see Appendix G for
traceplots). In this section, we mainly focus on interpreting
the results from MRF-DPM-NHPP, and we assess the per-
formance of several alternative methods at the end from a
prediction perspective.

Table 5 in Appendix E summarizes the optimal η selected
by BIC and the resulting number of clusters. None of the
selected η̂ lies on the boundary, which assures the valid-
ity of candidate values of η. For comparison, the number
of clusters from the MFM-NHPP model under the same
MCMC setting is also included, and we note that MFM-
NHPP leads to higher numbers of clusters for most of the
players than that of MFM-DPM-NHPP.

Figure 3 shows the estimated shooting intensity surfaces
of selected players under KDE, MFM-NHPP and MRF-
DPM-NHPP. Compared to the results of MFM-NHPP, it is
clear that the MRF-DPM-NHPP model is capable of cap-
turing distant regions that share similar shooting intensities
while preserving the spatial contiguity, which greatly facili-
tates the interpretability. Taking Karl-Anthony Towns as an
example, the estimated shooting intensity surface yielded
by MFM-NHPP appears to be too scattered to highlight
his preferred shooting regions; the results from the MRF-
DPM-NHPP model, however, shows much clearer pattern.

More interesting observations are seen from the estimated
shooting intensity surfaces (see Figure 5 in Appendix), and

we summarize these observations by the preferred positions
of selected players. Among those players with preferred
position as center, DeAndre Jordan never makes shots out-
side the low post, while Dwight Howard seems to have
made more shots from the regions between short corner and
the restricted area. On the contrary, Joel Embiid and Karl-
Anthony Towns are more versatile as attackers in terms of
their shot locations — Joel Embiid can attack from low
post, high post, top of the key as well as the point (i.e., right
outside the middle of the arc); Karl-Anthony Towns’ shots
are mainly initiated either from the low block or outside the
arc (right corner and from point to the wing).

The selected power-forward (PF) players show fairly dif-
ferent shooting styles. The shot locations of Kristaps
Porziņ ‘gis are similar to those of Joel Embiid, and Kristaps
Porziņ ‘gis seems to be less confined to shooting from low
post regions compared to Joel Embiid. Both Giannis An-
tetokounmpo and LaMarcus Aldridge all make substantial
amounts of mid-range shots and seldomly make three-point
shots, but it is worth highlighting their differences as Gian-
nis Antetokounmpo appears to be more inclined to make
shots from the right while LaMarcus Aldridge’s mid-range
shots are more spread. Interestingly, the former champion
of slam dunk contest, Blake Griffin has higher intensity of
shooting outside the arc (in particular, from the right cor-
ner, and the regions between the wing and the point).

The selected small-forward (SF) players show versatile
shot locations but they differ substantially in their three-
point shot locations and the intensity of making shots
around restricted area. Speaking about the three-point
shots, Kevin Durant prefers shooting around left and right
wings, both Paul George and Jimmy Butler prefer shooting
around the right corner but the former is clearly more com-
fortable with launching long-range shots, while LeBron
James prefers shooting around the left wing. Compared to
the other two SF players, LeBron James have substantially
higher intensity of making shots around the restricted area.

The difference in the shooting patterns among backcourt
(PG and SG) players is even more sizable. James Harden,
Stephen Curry, Damian Lillard and Kyrie Irving all launch
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Figure 2: Absolute value of relative bias of element-wise
posterior mean estimates for intensity surfaces. Dark grey
values correspond to regions with absolute bias beyond 3.5.

considerable amounts of shots within the restricted area
and outside the arc, while James Harden makes shots in
almost all regions from right wing to left wing outside
the arc, Stephen Curry and Kyrie Irving make more shots
around left wing rather than right wing, Damian Lillard
makes more shots around right wing rather than left wing.
Compared to the former three players, Chris Paul, Russell
Westbrook, DeMar DeRozan and Klay Thompson make
more mid-range shots, but from different angles. Specif-
ically, Russell Westbrook makes shots almost everywhere
in the middle, Chris Paul’s shots are also mainly located
in the middle but slightly biased towards the right, Demar
DeRozan’s shots are closer to the rim and more spread
to the corners, while Klay Thompson’s shots are almost
evenly distributed across the entire study region.

In addition, as we can see from Figure 4 in Appendix D,
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Figure 3: Estimated shooting log-intensity surfaces of
selected players (one for each position) based on KDE,
MFM-NHPP and MRF-DPM-NHPP. The selected players
are Stephen Curry, DeMar DeRozan, Blake Griffin, LeBron
James and Karl-Anthony Towns.

most of the shots are made either close to the rim or right
outside the arc (i.e., 3-point line). The intensity surface of
shot locations is not smooth over basketball court. This is
in line with the recent trend in the basketball development
since it is more efficient for players to pursue higher suc-
cess rates near the rim or go after higher rewards by making
3-point shots. These patterns confirm that the spatial MRF
in our prior will encourage spatial smoothness in the cluster
labels to achieve local contiguity, while DPMM in our prior
will the globally distant intensity to be clustered together.

Admittedly, the above analysis is far from being exhaus-
tive. We believe, however, that basketball professionals
may leverage the proposed method to better understand
the shooting patterns of the players and, therefore, design
highly targeted offense and defense tactics.

More model assessment results compared with several
benchmark methods are given in Appendix I. Based on
the results shown in Appendix I, we find that the pro-
posed method is comparable to BART and MFM-NHPP
and clearly superior to all other methods. Moreover, we
run a simulation study using the fitted intensity of James
Harden (Figure 5) under the grid size of 50ft × 35ft, and the
results also confirm the advantage of the proposed method
over a wide range of alternative methods.
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6. Discussion
The NBA shot location data appear to be modeled by
the spatially constrained nonparametric Bayesian model,
MRF-DPM-NHPP, reasonably well incorporating local
spatial homogeneity. Building upon a combination of
Dirichlet process and Markov random field, the proposed
method relies on a smoothing parameter η to effectively
control the relative contribution of local spatial homogene-
ity in estimating the globally heterogeneous intensity sur-
face. Statistical inferences are facilitated by a Gibbs sam-
pling algorithm. Selection of the smoothing parameter η is
casted as a model selection problem which is handled us-
ing standard model selection criteria. Simulation studies
show the accuracy of the proposed algorithm and the com-
petitiveness of the model relative to the benchmark MFM-
NHPP model (Geng et al., 2021) under several settings
in which spatial contiguity is present in the intensity sur-
face. In application to the shot locations of NBA players,
the model effectively captures spatial contiguity in shoot-
ing intensity surfaces, and provide important insights on
their shooting patterns which cannot be obtained from the
MFM-NHPP model.

There are several possible directions for further investiga-
tions. More sophisticated definition of neighborhood (e.g.,
higher-order neighborhood, incorporating covariates) than
the rook contiguity, which was used in this study and found
to be sufficient here, may be useful for more complex data
structure. BIC was found to perform well for the purpose
of selecting smoothing parameter η, but it is of substan-
tial interest to develop a fully automated procedure that en-
ables the smoothing parameter to be inferred along with
the intensity values and the group membership indicators
through a single MCMC run. The NBA players shot pattern
modeling admits a natural partition for the region of inter-
est. In general settings, however, it is worth investigating
how to effectively partition the space such that the piece-
wise constant assumption is more plausible. As the number
of parameters is proportional to the number of grid boxes,
developments of more scalable inference algorithms (e.g.,
variational inference) are critical for finer grid. A player’s
field goal attempts will vary considerably with respect to
several other covariates such time left on shot clock, dis-
tance to nearest defender, and score differential. Incorpo-
rating non-spatial covariates will help us have better under-
standing of players’ choices. Zero-inflation is a common
pattern for some players such as center players attempt very
few three-point shots. Considering a zero-inflated model
will extend applications of the proposed method. Finally,
building a group learning model with pooled data from
multiple players merits future research from both method-
ological and applied perspectives.
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A. Proof of Theorem 1
We note that the full conditionals Π(λi|λi) can be determined up to a constant as the product of the full conditionals of
each part

Π(λi|λi) ∝ M(λi|λ−i)P (λi|λ−i)

∝ M(λi|λ−i)

K∗∑
k=1

n
(−i)
k δλ∗

k
(λi) +M(λi|λ−i)αG0(λi)

∝ M(λi|λ−i)

K∗∑
k=1

n
(−i)
k δλ∗

k
(λi) +

α

ZH
G0(λi)

∝
K∗∑
k=1

n
(−i)
k

1

ZH
exp(−H(λi|λ−i))δλ∗

k
(λi) +

α

ZH
G0(λi)

(A.1)

As we only consider pairwise interactions H(λi|λ−i) := −η
∑

j∈∂(i) I(λi = λj), the support of cost function H is the
set of existing cluster parameters λ∗

1, . . . , λ
∗
K∗ . As a result, we have H(λi|λ−i) = 0 and hence M(λi|λ−i) when λi is

generated from the base distribution G0, which allows us to proceed from the second line to the third line. To reach the
final line, we simply plug in the definition of M(λi|λ−i).

B. Proof of Proposition 1
Following the results of Theorem 1, the full conditional probability that region Ai belongs to an existing component c, i.e.,
∃j ̸= i, Zj = c, can be derived by plugging-in the definition of likelihood and priors

Pr(Zi = c | S,Z−i,λ) ∝
nc(Z−i) exp

(
η
∑

j∈∂(i) dij1(Zj = c)
)

n− 1 + α

(λcµ(Ai))
N(Ai)

exp(λcµ(Ai))
. (B.1)

The full conditional probability that Ai belongs to a new component, i.e., ∀j ̸= i, Zj ̸= c, is

Pr(Zi = c | S,Z−i,λ)

∝ α

n− 1 + α

∫
(λcµ(Ai))

N(Ai))

exp (λcµ(Ai))

ba

Γ(a)
λa−1
c e−bλcdλc

=
α

n− 1 + α

ba

Γ(a)
µ(Ai)

N(Ai)

∫
λN(Ai)+a−1
c e−(b+µ(Ai))λcdλc

=
αbaΓ(N(Ai) + a)µ(Ai)

N(Ai)

(n− 1 + α)(b+ µ(Ai))N(Ai)+aΓ(a)

(B.2)

C. Gibbs sampling algorithm and Dahl’s method
The Dahl’s method is given as

1. Define membership matrices H(l) = (H(l)(i, j))i,j∈{1,...,n} = (1(Z
(l)
i = Z

(l)
j ))n×n, where l = 1, . . . , L indexes the

number of retained MCMC draws after burn-in, and 1(·) is the indicator function.

2. Calculate the average membership matrix H = 1
L

∑L
l=1 H(l) where the summation is element-wise.

3. Identify the most representative posterior sample as the one that is closest to H with respect to the element-wise
Euclidean distance

∑n
i=1

∑n
j=1(H(l)(i, j)−H(i, j))2 among the retained l = 1, . . . , L posterior samples.



Bayesian Nonparametric Learning for Point Processes

Algorithm 1 Collapsed Gibbs sampler for MRF-DPM-NHPP.

Input:
Data: event locations S = {s1, s2, . . . , sN} where si = (xi, yi), i = 1, . . . , N ; regions and their neighbors
{Ai, ∂(i) : i = 1, . . . , n}.
Prior hyperparameters : a, b, α.
Tuning parameter: η.
Burn-in MCMC sample size: B, post-burn-in MCMC sample size: L.
Initial values: K, Z1, . . . , Zn, λ = (λ1, . . . , λK), iter = 1.

1: while iter ⩽ B + L do
2: Update λk|·, k = 1, . . . ,K as

λk|· ∼ Gamma

Nk + a, b+
∑

j:Zj=k

µ(Aj)


where Nk =

∑
ℓ:sℓ∈Aj ,Zj=k 1 is the number of points belonging to the kth component.

3: Update Zi|·, i = 1, . . . , n following Proposition 3.1.
4: iter = iter + 1.
5: end while

Output: Posterior samples Z(l)
1 , . . . , Z

(l)
n , λ(l), l = B + 1, . . . , B + L. =0

D. NBA Shot Location Data
Shot chart data for NBA players from the 2017–2018 regular season were retrieved from the official website of NBA
stats.nba.com. The data for each player contain information about all his shots in regular season including game
date, opponent team name, game period when each shot was made (4 quarters and a fifth period representing extra time),
minutes and seconds left, success indicator (0 represents missed and 1 represents made), action type (like “Cutting dunk
shot”, “Jump shot”, etc.), shot type (2-point or 3-point shot), shot distance, and shot location coordinates. From the data,
the half court is positioned on a Cartesian coordinate system centered at the center of rim, with x ranging from −250 to
250 and y ranging from −50 to 420, both with unit of 0.1 foot (ft), as the size of an actual NBA basketball half court is
50 ft × 47 ft.

Figure 4: Shot data Display. On half court image, each point represents one shot. From left to right: Stephen Curry, Kevin
Durant, James Harden, DeMar DeRozan.

We visualize and summarize the shot data of four key players, Stephen Curry, James Harden, Kevin Durant and DeMar
DeRozan. Figure 4 shows their field goal attempts’ locations and Table 4 summarizes their other field goal attempts
information. As we can see from the plots, most of the shots are made either close to the rim or right outside the arc (i.e.,
3-point line). This is in line with the recent trend in the basketball development since it is more efficient for players to
pursue higher success rates near the rim or go after higher rewards by making 3-point shots.

stats.nba.com
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Table 4: Shot data summary. Period is for the 1st, 2nd, 3rd, 4th quarter and the extra time. The 2PT shot percentage (%)
column gives the percentage of all shots that are 2 PT shots.

Player Shot Count 2PT shot percentage (%) Period percentage (%)

Stephen Curry 753 42.6 (35.0, 20.6, 34.3, 9.7, 0.4)
James Harden 1306 50.2 (28.7, 22.4, 27.9, 20.8, 0.3)
Kevin Durant 1040 66.5 (30.8, 23.8, 30.6, 14.6, 0.3)

DeMar DeRozan 1274 79.9 (29.1, 28.6, 33.3, 17.3, 1.6)

E. More real data results

F. Histograms of K̂ in simulation study
F.1. Simulation study, grid size: 20× 20
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Figure 7: Histograms of K̂ from the 100 replicates for each simulation setting (grid size: 20 × 20), under MFM-NHPP,
and MRF-DPM-NHPP with η = 0, optimal η selected by BIC, DIC and LPML. The blue vertical line indicates the true
number of clusters (K).
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Table 5: Basic information (name and the preferred position) of players and the number of clusters given by MRF-DPM-
NHPP with the smoothing parameter selected by BIC, and by MFM-NHPP. Player positions: point guard (PG), shooting
guard (SG), small forward (SF), power forward (PF), center (C).

MRF-DPM-NHPP MFM-NHPP

Player Position K̂BIC η̂BIC K̂

DeAndre Jordan C 7 2.5 5
Joel Embiid C 7 3.5 10

Karl-Anthony Towns C 12 3.0 12
Dwight Howard C 6 3.0 5

Giannis Antetokounmpo PF 8 3.0 16
Blake Griffin PF 6 3.0 4

LaMarcus Aldridge PF 7 4.0 11
Kristaps Porziņ ‘gis PF 6 3.0 11

Stephen Curry PG 6 3.0 9
Damian Lillard PG 8 3.0 9

Chris Paul PG 6 5.0 8
Kyrie Irving PG 8 3.0 9
Kevin Durant SF 9 3.5 10
LeBron James SF 8 3.0 14
Paul George SF 9 3.0 9

Jimmy Butler SF 8 3.5 12
James Harden SG 7 4.0 11

DeMar DeRozan SG 10 3.0 10
Russell Westbrook SG 7 3.0 13

Klay Thompson SG 6 3.0 14
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Figure 5: Estimated shooting log-intensity surfaces of selected players based on MRF-DPM-NHPP.
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Figure 6: Estimated shooting log-intensity surfaces of selected players based on MFM-NHPP.



Bayesian Nonparametric Learning for Point Processes

F.2. Simulation study, grid size: 50× 35
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Figure 8: Histograms of K̂ from the 100 replicates for simulation setting ((grid size: 50 × 35)), under MFM-NHPP, and
MRF-DPM-NHPP with η = 0, optimal η selected by BIC, DIC and LPML. The blue vertical line indicates the true number
of clusters (K).
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G. Traceplots of RI between ground truth and each partition in simulation study
G.1. Simulation study, grid size: 20× 20

Figure 9: Overlaid trace plots of RI between the truth and the partition obtained at each iteration from 100 replicates for
each simulated setting under grid size 20× 20. The thick lines are the average traces over the 100 replicates.
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G.2. Simulation study, grid size: 50× 35

Figure 10: Overlaid trace plots of RI between the truth and the partition obtained at each iteration from 100 replicates for
the simulation setting under grid size 50× 35. The thick lines are the average traces over the 100 replicates.
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G.3. Traceplots of estimated intensity at pixel (25,6) in NBA data analysis - full data

Figure 11: Traceplots of estimated intensity at pixel (25,6) for NBA data analysis after burnin and thinning for two inde-
pendent chains.
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G.4. Traceplots of Adjusted RI between successive partitions in NBA data analysis - full data

Figure 12: Traceplots of adjusted RI between successive partitions for NBA data analysis after burnin and thinning for two
independent chains.
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G.5. Traceplots of estimated intensity at pixel (25,6) in NBA data analysis - training data

Figure 13: Traceplots of estimated intensity at pixel (25,6) for NBA data analysis, training data, after burnin and thinning
for two independent chains.
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G.6. Traceplots of Adjusted RI between successive partitions in NBA data analysis - training data

Figure 14: Traceplots of adjusted RI between successive partitions for NBA data analysis, training data, after burnin and
thinning for two independent chains.

H. Simulation results, grid size: 50× 35

H.1. Estimated intensity surfaces

Figure 15 displays the displays the averages of the median, 2.5th percentile, and 97.5th percentile of the estimated intensity
surface obtained with the optimal η selected by BIC from the 100 replicates, in comparison with the true surfaces, for the
three settings. The median surface agrees with true surface well. The 2.5th and 97.5th percentiles of the estimated intensity
surfaces over 100 replicates have higher uncertainties occasionally at the boundaries where the true intensities jump, but in
general are not far from the true surfaces.
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Figure 15: Simulation configurations for intensity surfaces under grid size of 50 × 35, with fitted intensity surfaces.
Element-wise median and quantiles are calculated out of 100 replicates.

H.2. Absolute value of relative bias

Figure 16 shows the absolute value of relative bias of element-wise posterior mean estimates under the MFM-DPM-NHPP
and other competing methods. We note that MFM-DPM-NHPP yields the smallest biases.
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Figure 16: Absolute value of relative bias of element-wise posterior mean estimates for intensity surfaces (grid size:
50× 35). Dark grey values correspond to regions with absolute bias beyond 3.5.

I. Model assessment for the case study - MAE results
To examine the intensity fitness of the proposed method compared to several classical alternative methods, we consider a
predictive assessment criteria based on p-thinning approach (Illian et al., 2008). Letting p denotes the retention probability,
the p-thinning procedure proceeds by first independently moving each point si, i = 1, . . . , N with probability 1− p from
training data to test data. Given a partition of B, that is, A1, A2, . . . , An, ∪n

i=1Ai = B and Ai ∩ Aj = ∅,∀i ̸= j. We

consider the mean absolute error (MAE) defined as MAE = 1
n

∑n
i=1

∣∣∣ 1−p
p λ̂(Ai)−N(Ai)

∣∣∣ , where λ̂(Ai) is the estimated
intensity of region Ai based on the training data and N(Ai) is the number of observed points falling into region Ai in the
test data. Here we fix p = 0.8 as Geng et al. (2021) and note that the model class with smaller MAE value fits the data
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better from a prediction perspective.

In addition to the methods listed in Table 1, we also consider the method introduced in Miller et al. (2014), where we fit a
non-homogeneous Poisson process with their basis as the trend terms using function ppm from package spatstat. For
MRF-DPM-NHPP and MFM-NHPP, we find the MCMC setting detailed at the beginning of this section can work well for
the training data obtained after p-thinning (see Appendix G for traceplots). The MAE results are summarized in Table 6
and we find that the proposed method is comparable to BART and MFM-NHPP and clearly superior to all other methods.
Moreover, we run a simulation study using the fitted intensity of James Harden (Figure 5) under the grid size of 50ft × 35ft,
and the results also confirm the advantage of the proposed method over a wide range of alternative methods. We summarize
the MAE results in the model assessment section in Table 6, and we note that the proposed method (MRF-DPM-NHPP) is
comparable to BART and MFM-NHPP and clearly superior to all other methods in terms of predictive performance.

J. Additional simulation results when KDE is the true data generating model
We fit kernel density estimate to the Durant’s shot location data and use that model as the proxy to a continuous intensity
surface. We generate synthetic data from this model and evaluate the performance of different methods following the
predictive assessment criteria (Table 7). We see that the proposed method can yield comparable performance to other
methods under this scenario.

K. Sensitivity analysis
We performed analysis on the shot location data under different grid partitions 2ft × 2ft, 2ft × 1ft, 1ft × 1ft, and we con-
verted the resulting intensity surfaces to be under the grid size 2ft × 2ft using function as.im in R package spatstat.
As shown in Figure 17, the results are not sensitive to the grid partitions.
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Table 7: MAE results when the underlying true data generating process is KDE.

MRF-DPM-NHPP LGCP CAR-Poisson BART KDE B-splines Miller
0.228 0.217 0.322 0.216 0.219 0.220 0.220

1ft by 1ft 2ft by 1ft 2ft by 2ft
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Figure 17: Sensitivity analysis based on different grid partitions, 2ft × 2ft, 2ft × 1ft, 1ft × 1ft for the shooting location
data of James Harden.


	Introduction
	Model Specification
	NHPP
	Nonparametric Bayesian Methods for NHPP
	Incorporating Spatial Homogeneity

	Bayesian Inference
	A Collapsed Gibbs Sampler
	Selection of Smoothing Parameter

	Simulation Studies
	Design
	Results

	Professional Basketball Data Analysis
	Discussion
	Proof of Theorem 1
	Proof of Proposition 1
	Gibbs sampling algorithm and Dahl's method
	NBA Shot Location Data
	More real data results
	Histograms of K"0362K in simulation study
	Simulation study, grid size: 20 20
	Simulation study, grid size: 50 35

	Traceplots of RI between ground truth and each partition in simulation study
	Simulation study, grid size: 20 20
	Simulation study, grid size: 50 35
	Traceplots of estimated intensity at pixel (25,6) in NBA data analysis - full data
	Traceplots of Adjusted RI between successive partitions in NBA data analysis - full data
	Traceplots of estimated intensity at pixel (25,6) in NBA data analysis - training data
	Traceplots of Adjusted RI between successive partitions in NBA data analysis - training data

	Simulation results, grid size: 50 35
	Estimated intensity surfaces
	Absolute value of relative bias

	Model assessment for the case study - MAE results
	Additional simulation results when KDE is the true data generating model
	Sensitivity analysis

