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Abstract
Neural networks (NNs) with intensive multipli-
cations (e.g., convolutions and transformers) are
capable yet power hungry, impeding their more
extensive deployment into resource-constrained
devices. As such, multiplication-free networks,
which follow a common practice in energy-
efficient hardware implementation to parameter-
ize NNs with more efficient operators (e.g., bit-
wise shifts and additions), have gained growing
attention. However, multiplication-free networks
usually under-perform their vanilla counterparts
in terms of the achieved accuracy. To this end,
this work advocates hybrid NNs that consist of
both powerful yet costly multiplications and effi-
cient yet less powerful operators for marrying the
best of both worlds, and proposes ShiftAddNAS,
which can automatically search for more accu-
rate and more efficient NNs. Our ShiftAddNAS
highlights two enablers. Specifically, it integrates
(1) the first hybrid search space that incorpo-
rates both multiplication-based and multiplication-
free operators for facilitating the development
of both accurate and efficient hybrid NNs; and
(2) a novel weight sharing strategy that enables
effective weight sharing among different opera-
tors that follow heterogeneous distributions (e.g.,
Gaussian for convolutions vs. Laplacian for add
operators) and simultaneously leads to a largely
reduced supernet size and much better searched
networks. Extensive experiments and ablation
studies on various models, datasets, and tasks con-
sistently validate the efficacy of ShiftAddNAS,
e.g., achieving up to a +7.7% higher accuracy or
a +4.9 better BLEU score compared to state-of-
the-art NN, while leading to up to 93% or 69%
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energy and latency savings, respectively. Codes
and pretrained models are available at https://
github.com/RICE-EIC/ShiftAddNAS.

1. Introduction
The unprecedented performance achieved by neural net-
works (NNs), e.g., convolutional neural networks (CNNs)
and Transformers, requires intensive multiplications and
thus prohibitive training and inference costs, contradicting
the explosive demand for embedding various intelligent
functionalities into pervasive resource-constrained edge de-
vices. In response, multiplication-free networks have been
proposed to alleviate the prohibitive resource requirements
by replacing the costly multiplications with lower-cost oper-
ators for boosting hardware efficiency. For example, Adder-
Net (Chen et al., 2020) utilizes mere additions to design
NNs; and ShiftAddNet (You et al., 2020a) follows a com-
monly used hardware practice to re-parameterize NNs with
both bitwise shifts and additions. Despite their promising
performance in hardware efficiency, multiplication-free NNs
in general under-perform their CNN and Transformer coun-
terparts in terms of task accuracy for both computer vision
(CV) and natural language processing (NLP) applications.

To marry the best of both worlds, we advocate hybrid
multiplication-reduced network architectures that integrate
both multiplication-based operators (e.g., vanilla convolu-
tion (Krizhevsky et al., 2012) and attention (Vaswani et al.,
2017)) and multiplication-free operators (e.g., shift and
add (You et al., 2020a)) to simultaneously boost task ac-
curacy and efficiency. Thanks to the amazing success of
neural architecture search (NAS) in automating the process
of designing state-of-the-art (SOTA) NNs, it is natural to
consider NAS as the design engine of the aforementioned
hybrid NNs for various applications and tasks, each often
requiring a different performance-efficiency trade-off. How-
ever, there still exist a few challenges in leveraging NAS
to design the hybrid NNs. First, existing NAS methods
mostly consider the search for either efficient CNNs (Wan
et al., 2020), Transformers (Chen et al., 2021b), or hybrid
CNN-Transformers (Ding et al., 2021; Li et al., 2021), and
there still is a lack of a seminal work that searches for
multiplication-reduced hybrid networks, especially for the
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hardware-inspired networks that incorporate both bitwise
shifts and additions. Second, a hybrid search space could
make it more challenging to achieve effective NAS and fur-
ther aggravate the search burden, due to the enlarged search
space imposed by the newly introduced multiplication-free
operators. It is worth noting that existing weight sharing
strategies of NAS cannot directly be applied to the target
hybrid search space, because weights of different operators
follow heterogeneous distributions, leading to a dilemma of
either inefficient search or inconsistent architecture rank-
ing. Specifically, weights in convolutional and adder layers
follow Gaussian and Laplacian distributions, respectively,
as also highlighted by (Chen et al., 2020; Xu et al., 2020).
As such, forcing weight sharing among heterogeneous op-
erators could hurt the capacity and thus the achieved accu-
racy of the resulting NNs, while treating them separately
could explode the search space and make it more difficult to
achieve effective NAS, i.e., the dilemma mentioned above.

To tackle the aforementioned challenges towards more ac-
curate and efficient NNs, this work makes the following
contributions:

1. We propose a generic NAS framework dubbed Shif-
tAddNAS, which for the first time can automatically
search for efficient hybrid NNs with both superior ac-
curacy and efficiency. Our ShiftAddNAS integrates a
hybrid hardware-inspired search space that incorporates
both multiplication-based operators (e.g., convolution
and attention) and multiplication-free operators (e.g.,
shift and add), and can serve as a play-and-plug module
to be applied on top of SOTA NAS works for further
boosting their achievable accuracy and efficiency.

2. We develop a new weight sharing strategy for effective
search with hybrid search spaces, which only incurs a
negligible overhead when searching for hybrid opera-
tors with heterogeneous (e.g., Gaussian vs. Laplacian)
weight distributions as compared to the vanilla NAS with
merely multiplication-based operators, alleviating the
dilemma mentioned above regarding either inefficient
search or inconsistent architecture ranking.

3. We conduct extensive experiments and ablation studies
to validate the effectiveness of ShiftAddNAS against
SOTA works. Results on multiple benchmarks demon-
strate the superior accuracy and hardware efficiency of
its searched NNs as compared to both (1) manually de-
signed multiplication-free networks, CNNs, Transform-
ers, and hybrid CNN-Transformers, and (2) SOTA NAS
works, on both CV and NLP tasks.

2. Related Works
Multiplication-free NNs. Many efficient NNs aim to
reduce their intensive multiplications that dominate the
time/energy costs. One important trend is to replace the

multiplications with lower-cost operators: BNNs (Cour-
bariaux et al., 2016; Juefei-Xu et al., 2017) binarize both
the weights and activations and reduce multiplications to
merely sign flips at non-negligible accuracy drops; Adder-
Nets (Chen et al., 2020; Xu et al., 2020; Wang et al., 2021b)
fully replace the multiplications with lower-cost additions
and further develop an effective backpropagation scheme
for efficient AdderNet training; Shift-based NNs leverage
either spatial shift (Wu et al., 2018) or bit-wise shift op-
erations, e.g., DeepShift (Elhoushi et al., 2021), to reduce
the amount of multiplications; and ShiftAddNet (You et al.,
2020a) draws inspirations from efficient hardware designs
to reparamatize NNs with mere bitwise shifts and addi-
tions. While multiplication-free NNs under-perform their
vanilla NN counterparts in terms of achieved accuracy, Shif-
tAddNAS aims to automatically search for multiplication-
reduced NNs that incorporate both multiplication-based and
multiplication-free operators for marrying the best of both
worlds, i.e., boosted accuracy and efficiency.

Neural architecture search. NAS has achieved an amazing
success in automating the design of efficient NN architec-
tures. For searching for CNNs, early works (Tan & Le,
2019; Tan et al., 2019; Howard et al., 2019) adopt rein-
forcement learning based methods that require a prohibitive
search time and computing resources, while recent works
(Liu et al., 2018; Wu et al., 2019a; Wan et al., 2020; Yang
et al., 2021) utilize differentiable search to greatly improve
the search efficiency. More recently, some works adopt
one-shot NAS (Guo et al., 2020; Cai et al., 2019; Yu et al.,
2020; Wang et al., 2021a) to decouple the architecture search
from supernet training and then evaluate the performance of
sub-networks whose weights are directly inherited from the
pretrained supernet. For searching better Transformers, re-
cently emerging works (Wang et al., 2020a; Su et al., 2021;
Chen et al., 2021b;a) take one-shot NAS and an evolutionary
algorithm to obtain optimal Transformer architectures for
both NLP and CV tasks. Additionally, BossNAS (Li et al.,
2021) and HR-NAS (Ding et al., 2021) further search for
hybrid CNN-Transformer architectures.

Nevertheless, little effort has been made to explore NAS
methods especially their search strategies for multiplication-
reduced NNs. Furthermore, it is not clear whether existing
efficient NAS methods are applicable to search for such
multiplication-reduced NNs. As such, it is highly desirable
to develop NAS methods, e.g., ShiftAddNAS, dedicated for
hardware-inspired multiplication-reduced NNs to increase
achievable accuracy and efficiency.

Transformers. Transformers (Vaswani et al., 2017) were
first proposed for NLP tasks, which have inspired many
interesting works. Some advance Transformer architec-
ture by improving the attention mechanism (Chen et al.,
2018), training deeper Transformers (Wang et al., 2019),
and replacing the attention with convolutional modules
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(Wu et al., 2019b); and others strive to reduce Transform-
ers’ computational complexity by adopting sparse attention
mechanisms (Zaheer et al., 2020), low-rank approximation
(Wang et al., 2020b), or compression techniques (Wu et al.,
2020). Recently, there has been a growing interest in devel-
oping Transformers for CV tasks. Vision Transformer (ViT)
(Dosovitskiy et al., 2021) for the first time successfully ap-
plies pure Transformers to image classification and achieves
SOTA task accuracy, which yet relies on pretraining on giant
datasets. Following works including DeiT (Touvron et al.,
2021), the authors in T2T-ViT (Yuan et al., 2021) develop
new training recipes and tokenization schemes, for achiev-
ing comparable accuracy without the necessity of costly
pretraining; and another trend is to incorporate CNN mod-
ules into Transformer architectures for better accuracy and
efficiency tradeoffs (Wu et al., 2021; Graham et al., 2021).
In contrast, we advocate hybrid multiplication-reduced NNs
and develop an automated search framework that can auto-
matically search for such hardware inspired hybrid models.

3. The Proposed ShiftAddNAS Framework
In this section, we first introduce the hybrid search space
from both algorithmic and hardware cost perspectives, pro-
viding high-level background and justification for motivat-
ing ShiftAddNAS; Sec. 3.2 elaborates the one-shot search
method of ShiftAddNAS by first analyzing the dilemma of
either inefficient search or inconsistent architecture rank-
ing and then introducing the proposed novel heteroge-
neous weight sharing strategy tackling the aforementioned
dilemma.

3.1. ShiftAddNAS: Hybrid Search Space

Candidate blocks. The first step of developing Shif-
tAddNAS is to construct a hybrid search space incorporating
suitable building blocks that exhibit various performance-
efficiency trade-offs. Specifically, we hypothesize that in-
tegrating both multiplication-based and multiplication-free
blocks into the search space could lead to both boosted ac-
curacy and efficiency, and consider blocks from two trends
of designing NNs: (1) capable NNs, e.g., vanilla CNNs
and Transformers, leverage either convolutions (Conv) or
multi-head self-attentions (Attn) that comprise of inten-
sive multiplications to capture local or global correlations,
achieving a SOTA accuracy in both CV and NLP tasks; and
(2) efficient multiplication-free NNs, e.g, ShiftAddNet, draw
inspirations from hardware design practices to incorporate
two efficient and complementary blocks, i.e., coarse-grained
Shift and fine-grained Add, for favoring hardware effi-
ciency, while maintaining a decent accuracy. While our
constructed general hybrid search space for both NLP and
CV tasks are shown in Fig. 2, we next analyze the building
blocks from both algorithmic and hardware costs perspec-
tives.

Attn is a core component of Transformers (Vaswani et al.,
2017), which consists of a number of heads H with each
capturing different global-context information by measuring
pairwise correlations among tokens as defined below:

OAttn=Concat(H1, · · · ,Hh) ·WO, where

Hi=Softmax(
QWQ

i · (KWK
i )T√

dk
) · VWV

i ,
(1)

where h denotes the number of heads, Q,K, V ∈ Rn×d

are the query, key, and value embeddings of hidden dimen-
sion d obtained by linearly projecting the input sequence
of length n. In this way, the Attn block first computes
dot-products between key-query pairs, scales to stabilize
the training, uses Softmax to normalize the resulting atten-
tion scores, and then computes a weighted sum of the value
embeddings corresponding to different inputs. Finally, the
results from all heads are concatenated and further projected
with a weight matrix WO ∈ Rd×d to generate the outputs.

Conv is a key operator of CNNs, which models the local-
context information of high-dimensional inputs such as im-
ages through sliding kernel weights W on top of inputs X
to measure their similarity (Gu et al., 2018), as defined in
Eq. (2). Its translation invariant and weight sharing ability
leads to various SOTA CNNs (He et al., 2016) or hybrid
CNN-Transformer models (Xiao et al., 2021). However, the
computational complexities of CNNs can be prohibitive due
to their intensive multiplications. For example, one forward
pass of ResNet-50 (He et al., 2016) requires 4G floating
point multiplications.

OConv =
∑

XT ∗W (2)

Shift is a well-known efficient hardware primitive, moti-
vating the recent development of shift-based efficient NNs.
For example, DeepShift (Elhoushi et al., 2021) parametrizes
NNs with bitwise shifts and sign flips, as formulated in
Eq. (3), with W = S · 2P denoting weights in the shift
blocks, where S ∈ {−1, 0, 1} are sign flip operators and
the power-of-two parameter for P represents the bitwise
shifts. However, NNs built with shift blocks and quantized
weights are observed to be inferior to multiplication-based
NNs in terms of expressiveness (accuracy) as validated in
(You et al., 2020a).

OShift =
∑

XT ∗ (S · 2P ) (3)

Add is another efficient hardware primitive which moti-
vates recent works (Chen et al., 2020; Wang et al., 2021b;
Song et al., 2021) to design efficient NNs using merely ad-
ditions to measure the similarity between kernel weights
W and inputs X , as shown in Eq. (4). Such add-based
NNs (Chen et al., 2020; Xu et al., 2020) in general have
a better expressive capacity than their shift-based counter-
parts. For example, AdderNets (Chen et al., 2020) achieve
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Figure 1: Unit energy comparisons.

Table 1: The search space for NLP tasks.

Encoder block types [Attn, Attn+Conv, Attn+Shift]
[Attn+Add, Conv, Shift, Add]

Decoder block types [Attn, Attn+Conv]
[Attn+Shift, Attn+Add]

Num. of decoder blocks [6, 5, 4, 3, 2, 1]
Elastic embed. dim. [1024, 768, 512]
Elastic head num. [16, 8, 4]
Elastic MLP dim. [4096, 3072, 2048, 1024]

Arbitrary Attn [3, 2, 1]

a 1.37% higher accuracy than DeepShift under similar or
even lower FLOPs on ResNet-18 with the ImageNet dataset.
However, add-based operators (i.e., repeated additions) are
not parameter-efficient as compared to bitwise shift opera-
tions (You et al., 2020a). While NNs combining shfit and
add achieve a boosted accuracy, efficiency, and robustness
than NNs using merely either of them, their accuracy still
compares unfavorably in contrast to vanilla CNNs or Trans-
formers.

OAdd = −
∑

∥X −W∥1 (4)

Based on the above introduction, the search space in Shif-
tAddNAS incorporates all the four different types of blocks
(i.e., Attn, Conv, Shift, and Add), aiming to push forward
both NNs’ accuracy and efficiency. Note that we refer to
all operators as blocks, and adopt block based search space
because it has been evidenced and proven that block based
ones can reduce the search space size and lead to more
accurate architecture ranking/rating (Li et al., 2020b;a).

Hardware cost. As mentioned, multiplication-based opera-
tors (e.g., Attn and Conv) favor a superior accuracy yet is
not hardware efficient, while multiplication-free operators
(e.g., Shift and Add) favor a better hardware efficiency
yet can hurt the achievable accuracy. Specifically, as shown
in Fig. 1, bitwise shifts can save as high as 196× and 24×
energy costs over multiplications, when implemented in a
45nm CMOS technology and SOTA FPGA (Xilinx Inc.),
respectively; with a 16-bit precision, bitwise shifts may
achieve at least 9.7× and 1.45× average power and area sav-
ings than multipliers (Elhoushi et al., 2021); and similarly,
additions can save up to 196× and 31× energy costs over
multiplications in 32-bit fixed-point (FIX32) formats, and
47× and 4.1× energy costs in 32-bit floating-point (FP32)
formats, when implemented in a 45nm CMOS technology
and SOTA FPGA (Xilinx Inc.), respectively, while leading

Table 2: The search space for CV tasks.
Block types [Attn, Conv, Shift, Add]

Num. of 562 × 128 blocks [1, 2, 3, 4]
Num. of 282 × 256 blocks [1, 2, 3, 4]
Num. of 142 × 512 blocks [3, 4, 5, 6, 7]
Num. of 72 × 1024 blocks [4, 5, 6, 7, 8, 9]

to 1.84×, 25.5×, and 7.83× area savings than multiplica-
tions in a 45nm CMOS technology with FP32, FIX32, and
FIX8 formats, respectively (Chen et al., 2021c).

Supernet for NLP tasks. Based on the above search space,
we construct a supernet for the convenience of search fol-
lowing SOTA one-shot NAS methods (Cai et al., 2018;
Guo et al., 2020) by estimating the performance of each
candidate hybrid model (i.e., subnet) without fully training
it. As shown in Fig. 2 (a), each macro-block in the supernet
includes all the aforementioned four candidate blocks and
three multi-branch combinations (e.g., Attn+Conv) along
the channel dimension for capturing both global and local
context information following (Wu et al., 2020), where the
candidate blocks in the same layer are isolated with each
followed by two-layer MLPs and enable elastic embedding
dimension, head numbers, and MLP hidden dimension for
fine-grained search for efficient NNs as (Wang et al., 2020a).
Overall, our supernet for NLP tasks contains about 1014

subnet candidates, and the searchable choices are listed in
Tab. 1. During training, all possible subnets are uniformly
sampled and only one path is activated for each layer at
run-time considering the practical concern on memory con-
sumption for supernet training. For ease of evaluation, we
incorporate common treatments of NAS in our suppenet
design. First, for the elastic dimensions mentioned above,
all subnets share the front portion of weight channels or at-
tention heads of the largest dimension. Second, all decoder
blocks can take the last one, two, or three encoder blocks
as inputs for abstracting both high-level and low-level in-
formation (Wang et al., 2020a). Note that the number of
decoder blocks are also searchable and the conv, shift and
add operators are disabled for decoder blocks, as they are
observed to be sensitive and activating those paths might
hurt the accuracy (You et al., 2020a; Wu et al., 2019b).

Supernet for CV tasks. Different from the commonly
used elastic hidden dimension design for NLP tasks, vari-
ous spatial resolutions or scales are essential for CV tasks.
As such, to ensure more capable feature description of the
searched NNs, we adopt a multi-resolution supernet design.
As shown in Fig. 2 (b), the supernet incorporates flexible
downsampling options, where the spatial resolution for each
layer can either stay unchanged or be reduced to half of its
previous layer’s scale until reaching the smallest resolution.
In this way, the four candidate blocks can work collabora-
tively to deliver the multiscale features required by most
CV tasks. Overall, our supernet contains about 109 subnets,
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Figure 2: Supernets for NLP and CV tasks: (a) For NLP, we adopt a multi-branch structure for each block of the supernet,
where Attn+Conv represents the channel-wise concatenation of these two blocks, and (b) for CV tasks, we consider a
multi-resolution pipeline for each block of the supernet.

for which the detailed searchable choices are summarized
in Tab. 2. Note that the Attn block is followed by two-layer
MLPs and we also include a residual connection for each
block as inspired by (Srinivas et al., 2021). During training,
the supernet performs uniform sampling and only activates
one path of the chosen resolution and block type for each
layer as for the NLP tasks.

3.2. ShiftAddNAS: Search Method

3.2.1. BACKGROUND AND FORMULATION OF
ONE-SHOT NAS

We adopt one-shot NAS for improved search efficiency, i.e.,
assuming that the subnet candidates can directly inherit their
weights from the supernet, following SOTA NAS works.
Such a strategy is commonly referred as weight sharing.
Specifically, the supernet N with parameters W is trained
to obtain the weights for all subnets within the search space
S. Since the supernet training and architecture search are
decoupled in one-shot NAS, it usually requires two-level
optimization: supernet training and architecture evaluation
as defined below:

WS = argmin
W

Ltrain(N (S,W)), (5)

a∗ = argmax
a∈S

ACCval(N (a,WS(a))). (6)

where N (S,W) represents all possible candidate subnets
within the search space. We first train the supernet by uni-
formly sampling different subnets a from S as formulated in
Eq. (5), after which all subnet candidates a directly inherit
their corresponding weights WS(a) from the supernet WS .
Finally, we evaluate the accuracy ACCval(.) of each path
on the validation set and search for the best subnet with the
highest accuracy as formulated in Eq. (6).

3.2.2. PROPOSED HETEROGENEOUS WEIGHT SHARING
STRATEGY

Dilemma of vanilla ShiftAddNAS. The target hybrid
search space of ShiftAddNAS inevitably enlarges the super-

(a) Weights in Conv (b) Weights in Add

Gaussian Laplacian

Figure 3: Heterogeneous weight distributions in supernets.

net due to the newly considered operators. As such, acti-
vating all block choices without weight sharing as (Gong
et al., 2019; Cai et al., 2018) can easily explode the memory
consumption of NAS. On the other hand, directly sharing
weights among different operators as (Chen et al., 2021b)
will lead to biased search, especially for our hardware-
inspired hybrid search space where weights and activations
of different operators follow heterogeneous distributions,
e.g., weights of the Conv and Add blocks follow a Gaus-
sian and Laplacian distribution, respectively, as shown in
Fig. 7 and also highlighted in (Chen et al., 2020) (more
visualization can be found at Appendix B). Specifically, if
we follow the existing weight sharing strategy to enforce
a homogeneous weight distribution among different opera-
tors during training the supernet, the resulting weights will
not match the heterogeneous weight distributions of inde-
pendently trained optimal hybrid subnets. That is to say,
for NAS with the target hybrid search space, there exists
an optimization gap between the goals of weight sharing
optimization and individual subnet optimization, where the
former is approximated while the latter is accurate (Xie
et al., 2020). Hence, naively adopting the homogeneous
weight sharing strategy can lead to inconsistent architecture
ranking, which is a major issue associated with one-shot
NAS as pointed out by (Chu et al., 2019; You et al., 2020b).

Proposed solution: heterogeneous weight sharing. To
tackle the aforementioned dilemma, we propose a hetero-
geneous weight sharing strategy that can simultaneously
reduce the supernet size corresponding to the target hybrid
search space and allow weights of different blocks to fol-
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Figure 4: (a) Illustration of the proposed heterogeneous
weight sharing strategy, where weights of shift blocks are
quantized to powers of two; (b) visualization of the adopted
learnable transformation kernel T (·) for mapping the shared
weights of Gaussian distribution to a Laplacian distribution.

low heterogeneous distributions. Specifically, the learning
objective for the supernet includes both the traditional cross-
entropy loss and a KL-divergence loss that is to regularize
weight distributions to be close to either a standard Gaussian
distribution N (0, I) or Laplacian distribution Lp(0, λ) (Xie
et al., 2020; Chen et al., 2020)( I is the identity matrix and
λ = 1), dedicated for the Conv and Add blocks, respec-
tively, for reducing the aforementioned optimization gap as
formulated in Eq. (7):

LS = LCE + LKL = − 1

N

N∑
i=1

P (yi|xi) log(P (ŷi|xi))

+D(PConv(WS)||N (0, I))+D(PAdd(T (WS))||Lp(0, λ)),

(7)

where {(xi, yi)}Ni=1 are training data, ŷ denotes the output
prediction, and DKL(p||q)=−

∫
p(z)p(z)q(z)dz measures the

KL-divergence between two distributions. During training,
we maintain a shared weight pool for each layer to share
weights across all the Conv, Add, and Shift blocks, as
illustrated in Fig. 4 (a). Meanwhile, weights of the Conv
blocks directly leverage the corresponding ones in the shared
weight pool for both forward and backpropagation, while
being encouraged to follow a Gaussian distribution by the
objective function; weights of the Shift blocks quantize
the shared weights of Gaussian distribution to powers of
two before multiplying with the input features, we follow
(Elhoushi et al., 2021) to backpropogate the gradients; and
for the Add blocks, we make use of a learnable transfor-
mation kernel T (·) to map the shared weights of Gaussian
distribution to a Laplacian distribution. For the learnable
transformation kernel as captured by Eq. (8), the core idea
is to apply a piece-wise linear transformation after flattening
and sorting the weights in a descending order, and then to
reshape and rearrange the transformed weights back to their
positions before sorting.

T (W ) =

d−1∑
i=0

αi ×W[s×i:s×(i+1)], (8)

where {αi}di=1 denote the learnable parameters in T (·),
{Wi}ni=1 represent the sorted weights (a total of n) in the

pool, s = n/d denotes an interval within which the transfor-
mation is linear, as illustrated in Fig. 4 (b). As validated in
our visualization of supernet weights (e.g., Fig. 7), such a
transformation kernel can successfully transform the shared
weights of Gaussian to the desired Laplacian distribution,
which is consistent with previous observations about kernel
learning via linear transformation (Jain et al., 2012). In our
design, each layer has its own learnable kernel T (·) with
a dimension d of 200 throughout all the experiments as
we observed that such a dimension is adequate to learn the
transformation across all the models and datasets, leading
to over 40% supernet size reduction while only incurring a
negligible (< 0.01% of the supernet size and computational
costs) search overhead. After the supernet is well trained,
evolution search is applied to find the optimal subnets.

4. Experiment Results
In this section, we first describe our experiment setups, and
then benchmark ShiftAddNAS over SOTA CNNs, Trans-
formers, and previous NAS frameworks on both NLP and
CV tasks. After that, we conduct ablation studies regarding
ShiftAddNAS’s heterogeneous weight sharing strategy.

4.1. Experiment Setups
Datasets, baselines, and evaluation metrics.
For NLP tasks, we consider two machine translation
datasets, WMT’14 English to French (En-Fr) and English
to German (En-De), which consist of 36.3M and 4.5M pairs
of training sentences, respectively. The train/val/test splits
follow the tradition as in (Wang et al., 2020a; Gehring et al.,
2017). We consider five baselines: Transformer (Vaswani
et al., 2017), Lightweight Conv (Wu et al., 2019b), Lite
Transformer (Wu et al., 2020), and two previous NAS works
including Evolved Transformer (So et al., 2019) and HAT
(Wang et al., 2020a). We evaluate in terms of five evaluation
metrics: the number of parameters/FLOPs, achieved
BLEU, and hardware energy and latency measured on a
SOTA accelerator Eyeriss (Chen et al., 2016) clocked at
250MHz, where the BLEU is calculated with case-sensitive
tokenization following (Wang et al., 2020a). For CV tasks,
we consider the ImageNet dataset and four kinds of SOTA
baselines: four multiplication-free CNNs (Chen et al., 2020;
Xu et al., 2020; Courbariaux et al., 2016; Elhoushi et al.,
2021), two CNNs (He et al., 2016; Hu et al., 2018), five
Transformers (Dosovitskiy et al., 2021; Touvron et al.,
2021; Yuan et al., 2021; Han et al., 2021; Srinivas et al.,
2021), and four NAS works (i.e., HR-NAS (Ding et al.,
2021), BossNAS (Li et al., 2021), AutoFormer (Chen et al.,
2021b), and VITAS (Su et al., 2021)). Similar to those for
the NLP tasks, we adopt five evaluation metrics: the number
of parameters/MACs, achieved accuracy, and hardware
energy and latency.

Search and training settings. For NLP tasks, after training
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Table 3: ShiftAddNAS vs. SOTA baselines in terms of accuracy and efficiency on NLP tasks.
WMT’14 En-Fr WMT’14 En-De

Params FLOPs BLEU Latency Energy Params FLOPs BLEU Latency Energy
Transformer 176M 10.6G 41.2 130ms 214mJ 176M 10.6G 28.4 130ms 214mJ
Evolved Trans. 175M 10.8G 41.3 - - 47M 2.9G 28.2 - -
HAT 48M 3.4G 41.4 49ms 81mJ 44M 2.7G 28.2 42ms 69mJ
ShiftAddNAS 46M 3.0G 41.8 43ms 71mJ 43M 2.7G 28.2 40ms 66mJ
HAT 46M 2.9G 41.1 42ms 69mJ 36M 2.2G 27.6 34ms 56mJ
ShiftAddNAS 41M 2.7G 41.6 39ms 64mJ 33M 2.1G 27.8 31ms 52mJ
HAT 30M 1.8G 39.1 29ms 48mJ 25M 1.5G 25.8 24ms 40mJ
ShiftAddNAS 29M 1.8G 40.2 16ms 45mJ 25M 1.6G 26.7 24ms 40mJ
Lite Trans. (8-bit) 17M 1G 39.6 19ms 31mJ 17M 1G 26.5 19ms 31mJ
ShiftAddNAS (8-bit) 11M 0.2G 41.5 11ms 16mJ 17M 0.3G 28.3 16ms 24mJ
Lite Trans. (8-bit) 12M 0.7G 39.1 14ms 24mJ 12M 0.7G 25.6 14ms 24mJ
ShiftAddNAS (8-bit) 10M 0.2G 41.1 10ms 15mJ 12M 0.2G 26.8 9.2ms 14mJ
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Figure 5: BLEU scores vs. FLOPs of ShiftAddNAS over
SOTA baselines on NLP tasks.

the supernet for 40K steps, we adopt an evolutionary algo-
rithm (Wang et al., 2020a) to search for subnets with various
latency and FLOPs constraints. During search, we follow
(Wang et al., 2020a) to adopt a three-layer NN to measure
the latency, which is accurate with an average prediction
error of < 5%. The searched subnets are then retrained
from scratch for another 40K steps. For CV tasks, we fol-
low (Chen et al., 2021b) to conduct an evolutionary search
with FLOPs constraints for 20 steps. We train both the
supernet and searched subnets using the same recipe and
hyperparameters as DeiT (Touvron et al., 2021). More de-
tails regarding search and training settings can be found in
Appendix E.

4.2. ShiftAddNAS vs. SOTA Methods on NLP Tasks
We compare ShiftAddNAS with SOTA language models on
two NLP tasks to evaluate its efficacy. Fig. 5 shows that Shif-
tAddNAS consistently outperforms all the baselines in terms
of BLEU scores and FLOPs. Specifically, ShiftAddNAS
with full precision achieves 11.8% ∼ 73.6% FLOPs reduc-
tions while offering a comparable or better BLEU score
(-0.3 ∼ +1.1), over all the full precision baselines. To bench-
mark with Lite Transformer (8-bit) which is dedicated for
mobile devices, we refer to a SOTA quantization technique
(Banner et al., 2018) for quantizing ShiftAddNAS to 8-bit
fixed point: ShiftAddNAS (8-bit) achieves +1.8 ∼ +4.9
BLEU scores improvements over Lite Transformer (8-bit),

-64.4%

+4.7 Acc.

-93.0% Energy 

Figure 6: Accuracy vs. energy costs of ShiftAddNAS over
baselines when tested on ImageNet.

while offering 5.0% ∼ 82.7% FLOPs reductions, and ag-
gressively reduces 91.6% ∼ 98.4% FLOPs as compared
to all the full-precision baselines with comparable BLEU
scores (-0.1 ∼ +0.3). Note that for quantized models, we
follow (Zhou et al., 2016) to use FLOPs × (Bit/32)2 for
calculating the effective FLOPs which is proportional to
the number of bit-operations. We further compare various
aspects of ShiftAddNAS with all baselines in Tab. 3. As
illustrated in this Table, ShiftAddNAS consistently outper-
forms the baselines, e.g., achieves up to +2 BLEU scores
improvement when comparing ShiftAddNAS (8-bit) with
Lite Transformer on WMT’14 En-Fr and 69.1% and 69.2%
energy and latency savings when comparing ShiftAddNAS
with Transformer on WMT’14 En-De, with a comparable
or even fewer model parameters and FLOPs.

4.3. ShiftAddNAS vs. SOTA Methods on CV Tasks
We further compare ShiftAddNAS over SOTA baselines on
ImageNet to evaluate its effectiveness on the image classifi-
cation task. As shown in Tab. 4, 11, ShiftAddNAS outper-
forms a wide range of baselines. Here we refer MACs as
Multiply–accumulate or Shift-accumulate operations. For
example, ShiftAddNet-T0 (searched with a 4.5G MACs con-
straint) with 3.7G MACs achieves an improved top-1 accu-
racy of (1) +5.3% ∼ +26.3% over SOTA multiplication-free
CNNs, (2) +0.7% ∼ +6.0% over SOTA CNNs, (3) +0.4%
∼ +7.6% over SOTA Transformers, (4) +1.3% ∼ +4.8%
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Table 4: Comparison with SOTA baselines on ImageNet classification task (see Tab. 11 for complete comparisons).
Model Top-1 Acc. Top-5 Acc. Params Res. MACs #Mult. #Add #Shift Model Type
AdderNet 74.9% 91.7% 26M 2242 3.9G 0.1G 7.6G 0 Mult.-free
DeepShift-PS 71.9% 90.2% 52M 2242 3.9G 0.1G 3.9G 3.8G Mult.-free
ShiftAddNet 72.3% - 64M 2242 10G 0.1G 16G 3.9G Mult.-free
ResNet-50 76.1% 92.9% 26M 2242 3.9G 3.9G 3.9G 0 CNN
ResNet-101 77.4% 94.2% 45M 2242 7.6G 7.6G 7.6G 0 CNN
ViT-B/16 77.9% - 86M 3842 18G 18G 17G 0 Transformer
DeiT-S 81.2% - 22M 2242 4.6G 4.6G 4.6G 0 Transformer
VITAS 77.4% 93.8% 13M 2242 2.7G 2.7G 2.7G 0 Transformer
Autoformer-S 81.7% 95.7% 23M 2242 5.1G 5.1G 5.1G 0 Transformer
BoT-50 78.3% 94.2% 21M 2242 4.0G 4.0G 4.0G 0 CNN + Trans.
BossNAS-T0 80.5% 95.0% 38M 2242 3.5G 3.5G 3.5G 0 CNN + Trans.
ShiftAddNAS-T0 82.1% 95.8% 30M 2242 3.7G 2.7G 3.8G 1.0G Hybrid
ShiftAddNAS-T0↑ 82.6% 96.2% 30M 2562 4.9G 3.6G 4.9G 1.4G Hybrid
T2T-ViT-19 81.9% - 39M 2242 8.9G 8.9G 8.9G 0 Transformer
Autoformer-B 82.4% 95.7% 54M 2242 11G 11G 11G 0 Transformer
BoTNet-S1-59 81.7% 95.8% 28M 2242 7.3G 7.3G 7.3G 0 CNN + Trans.
BossNAS-T1 82.2% 95.8% 38M 2242 8.0G 8.0G 8.0G 0 CNN + Trans.
ShiftAddNAS-T1 82.7% 96.1% 30M 2242 6.4G 5.4G 6.4G 1.0G Hybrid
ShiftAddNAS-T1↑ 83.0% 96.4% 30M 2562 8.5G 7.1G 8.5G 1.4G Hybrid

Table 5: Comparison with FBNet on CIFAR-10/100 dataset.
Dataset Methods Accuracy MACs #Mult. #Add #Shift Latency Savings

CIFAR-10
FBNet 95.09% 47M 47M 47M 0 -
ShiftAddNAS 95.83% (+0.74%) 47M 17M 58M 19M 33.80%

CIFAR100
FBNet 77.86% 55M 55M 55M 0 -
ShiftAddNAS 78.64% (+0.58%) 52M 22M 62M 21M 38.60%

over SOTA CNN-Transformers, and (5) +1.3%, +4.7%,
and +0.4% over previous SOTA NAS baselines BossNAS,
VITAS, and Autoformer, respectively, under a comparable
or even less MACs. Moreover, considering looser MACs
constraints, we follow BossNAS to remove the downsam-
pling in the last stage, resulting in ShiftAddNAS-T1 with
a accuracy of 82.7% and 6.4G MACs that surpasses T2T-
ViT and BoTNet-S1-59 by +0.8% and +1.0% at even less
MACs. By directly testing on larger input resolutions with-
out finetuning, ShiftAddNAS-T1↑ (w/ 2562 input resolu-
tion) offers an accuracy of 83.0%, surpassing BossNAS-T1
and Autoformer-B by +0.8% and +0.6% with comparable
or even less MACs, respectively. Finally, we compare Shif-
tAddNAS with representative baselines of various model
types in terms of accuracy and energy cost in Fig. 6, where
each line represents searched/designed models with various
FLOPs constraints. We can see that ShiftAddNAS consis-
tently outperforms all the baselines, on average offering a
+0.8% ∼ +7.7% higher accuracy and 24% ∼ 93% energy
savings. Specifically, our ShiftAddNAS on average achieves
a +0.8% higher accuracy and 30% energy savings against
the most competitive NAS baseline BossNAS. The searched
architecture visualization is supplied to Appendix D.

Table 6: Ablation study of ShiftAddNAS w/ (1) naive and
(2) heterogeneous weight sharing.

ShiftAddNAS Kendall τ Pearson R Spearman ρ

w/ Naive WS 0.49 0.67 0.69
w/ HWS 0.54 0.75 0.74
ShiftAddNAS Top-1 Acc. Energy Latency
w/ Naive WS 81.3% 440mJ 387ms
w/ HWS 82.7% 413mJ 252ms

4.4. ShiftAddNAS vs. SOTA under Small MACs

To fairly compare with baselines with smaller MACs, we
implemented our proposed hybrid search space and het-
erogeneous weight sharing (HWS) techniques on top of
the FBNet search space, and evaluated the performance on
CIFAR-10/100. As shown in the Tab. 5, our ShiftAddNAS
consistently boosts a +0.74% and +0.58% accuracy over
FBNet and leads to 33.8% and 38.6% latency savings on
CIFAR-10 and CIFAR-100, respectively.

4.5. Ablation Studies of Heterogeneous Weight Sharing
We conduct ablation studies on ShiftAddNAS’s heteroge-
neous weight sharing (HWS) strategy, as shown in Tab. 6.
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Table 7: Comparisons of different search space variants.

Operators
Our Space on ImageNet FBNet Space on CIFAR100

Acc. Mult. Add Shift Acc. Mult. Add Shift
Attn&Conv 81.6% 5.8G 5.8G 0 77.9% 55M 55M 0
Shift&Add 76.8% 0.1G 5.3G 3.2G 71.0% 3M 48M 35M
Attn&Conv&Add 82.4% 5.6G 7.2G 0 78.3% 30M 60M 0
All 82.6% 3.6G 4.9G 1.4G 78.6% 22M 62M 21M

(b) HWS w/o KL (c) HWS
Weights in Conv Weights in Add

(a) w/o WS
Weights in Conv Weights in AddWeights in Conv Weights in AddWeights in Conv Weights in Add

Figure 7: The weight distribution of Conv and Add layers.

First, for searching on ImageNet, we use three ranking cor-
relation metrics: Kendall τ , Pearson R, and Spearman ρ,
to measure the ranking correlation between ShiftAddNAS
w/ and w/o HWS and find that the former leads to a higher
ranking correlation than the naive WS. Second, the proposed
HWS leads to more accurate searched subnets. Specifically,
the searched subnet achieves a +1.4% higher accuracy than
that of naive WS, at comparable or even smaller energy and
latency costs. Also, HWS effectively reduces the supernet
size from 615M (w/o WS) to 364M (41% savings). This
set of ablation studies validate the effectiveness of our pro-
posed HWS strategy. In addition, the search cost analysis of
ShiftAddNAS is placed in Appendix A.

4.6. Ablation Studies of Conv/Add Distribution

We visualize the weight distributions of Conv/Add layers
in Supernets under three scenarios, (1) w/o WS; (2) HWS
w/o KL loss; (3) HWS, as shown in Fig. 7. We consistently
observe that weights of Conv/Add layers follow Gaussian
and Laplacian distribution, especially when applying the
introduced KL loss.

4.7. Ablation Studies of Search Space

To validate the necessity of considered searchable blocks,
we consider three scenarios to breakdown the search space
benefits, i.e., only using: (1) Attn & Conv (i.e., BossNAS);
(2) Shift & Add; and (3) Attn & Conv & Add, respectively.
Additionally, we also conduct such controlled experiments
on top of FBNet search space (ignore Attn). In Tab. 7,
we consistently see that our search space consisting of all
operators outperforms (1) in terms of both accuracy and
efficiency; achieves much higher accuracy than (2); and
gains slightly better accuracy-efficiency trade-offs than (3).

5. Conclusion
We propose ShiftAddNAS for searching for multiplication-
reduced NNs incorporating both powerful yet costly mul-

tiplications and efficient yet less powerful shift and add
operators for marrying the best of both worlds. Shif-
tAddNAS is made possible by integrating: (1) the first
hybrid search space that incorporates both multiplication-
based and multiplication-free operators; and (2) a novel
heterogeneous weight sharing strategy that allows different
operators to follow heterogeneous distributions for alleviat-
ing the dilemma of either inefficient search or inconsistent
architecture ranking when searching hybrid NNs. Extensive
experiments on both NLP and CV tasks demonstrate the su-
perior accuracy and efficiency of ShiftAddNAS’s searched
NNs over various SOTA baselines, opening up a new per-
spective in searching for more accurate and efficient NNs.
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A. Evaluate the Search Cost
We further supply the total search cost of ShiftAddNAS on both NLP tasks and CV tasks in Table 8 and 9, respectively.
For NLP tasks, with one Nvidia V100 GPU, ShiftAddNAS uses on average 9.3 GPU days (Gds) for searching which is
comparable to HAT (Wang et al., 2020a) and 9,821× less than the Evolved Transformer (So et al., 2019). For CV tasks,
ShiftAddNAS uses on average 8.9 Gds for searching which is 11% and 82% less than DARTS (Liu et al., 2018) and
BossNAS (Li et al., 2021), respectively. In addition, we provide a concrete breakdown analysis of ShiftAddNAS search
cost in Table 10. For NLP tasks, ShiftAddNAS needs on average 8.5 Gds for supernet training and 0.8 Gds for architecture
searching; For CV tasks, ShiftAddNAS takes on average 7.7 Gds for supernet training and 1.2 Gds for architecture searching.

Table 8: Search cost on NLP tasks.
Methods Search Cost
Evolved Trans. 91,334 Gds
HAT 9.3 Gds
ShiftAddNAS 9.3 Gds

Table 9: Search cost on CV tasks.
Methods Search Cost
DARTS 50 Gds
BossNAS 10 Gds
ShiftAddNAS 8.9 Gds

Table 10: Breakdown analysis of the
search cost of ShiftAddNAS.

NLP CV
Supernet Train 8.5 Gds 7.7 Gds
Arch. Search 0.8 Gds 1.2 Gds

B. Visualization of the Heterogeneous Weight Distributions
For better understanding of the proposed heterogeneous weight sharing strategy, we further supply the visualization of the
heterogeneous weight distributions in Conv/Add/Shift layers, respectively, as shown in the Fig. 8.

(a) Weights in Conv (b) Weights in Add (c) Weights in Shift

Gaussian Laplacian Discrete

Figure 8: Visualization of the heterogeneous weight distributions in Conv/Add/Shift layers.

C. Complete Comparison between ShiftAddNAS and SOTA on CV Tasks
We further compare ShiftAddNAS over SOTA baselines on ImageNet to evaluate its effectiveness on the image classification
task, and supply the complete comparing results to Tab. 11 below. Note that we report both the rank #1 searched architecture
with the highest accuracy that contains Shift and Conv blocks, and rank #2 searched architecture contains additional two
Add blocks and achieves a 82.8% top-1 accuracy on ImageNet with 8.4G MACs (#Mult: 7.4G; #Add: 9.1G; #Shift: 0.5G).

D. Visualization of the Searched Architecture
For better understanding of the searched architecture, we provide the visualization of the searched architecture ShiftAddNAS-
T1↑1 and ShiftAddNAS-T1↑2 in Fig. 9 and Fig. 10, respectively. The searched architecture ShiftAddNAS-T1↑1 contains
four Shift blocks, and achieves 83% top-1 test accuracy on ImageNet with 8.5G MACs (#Mult: 7.1G; #Add: 8.5G;
#Shift: 1.4G). The searched architecture ShiftAddNAS-T1↑2 contains two Add blocks and one Shift block, and achieves
82.8% top-1 test accuracy on ImageNet with 8.4G MACs (#Mult: 7.4G; #Add: 9.1G; #Shift: 0.5G). Moreover, the searched
architecture prefers Conv as early blocks while consider Attn as later blocks, which is also consistent with the previous
empirical observation that early convolutions help the overall performance (Xiao et al., 2021).

More discussion for the searched architectures. The performance of the searched top architectures are quite close (e.g.,
the accuracy difference between rank #1 and rank #2 is smaller than 0.2%), and we also quantitatively measure the ratio
breakdown of different operators in our searched top-10 architectures (Attn: 30%; Conv: 43%; Shift: 15%; Add: 12%).
We see that the overall ratio of Add operators is quite comparable with that of Shift operators, thus our understanding
is that the searched top architectures benefit from a relatively more balanced combination/contribution of all operators to
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Table 11: Comparison with SOTA baselines on ImageNet classification task.
Model Top-1 Acc. Top-5 Acc. Params Res. MACs #Mult. #Add #Shift Model Type
BNN 55.8% 78.4% 26M 2242 3.9G 0.1G 3.9G 3.8G Mult.-free
AdderNet 74.9% 91.7% 26M 2242 3.9G 0.1G 7.6G 0 Mult.-free
AdderNet-PKKD 76.8% 93.3% 26M 2242 3.9G 0.1G 7.6G 0 Mult.-free
DeepShift-Q 70.7% 90.2% 26M 2242 3.9G 0.1G 3.9G 3.8G Mult.-free
DeepShift-PS 71.9% 90.2% 52M 2242 3.9G 0.1G 3.9G 3.8G Mult.-free
ShiftAddNet 72.3% - 64M 2242 10G 0.1G 16G 3.9G Mult.-free
ResNet-50 76.1% 92.9% 26M 2242 3.9G 3.9G 3.9G 0 CNN
ResNet-101 77.4% 94.2% 45M 2242 7.6G 7.6G 7.6G 0 CNN
SENet-50 79.4% 94.6% 26M 2242 3.9G 3.9G 3.9G 0 CNN
SENet-101 81.4% 95.7% 45M 2242 7.6G 7.6G 7.6G 0 CNN
ViT-B/16 77.9% - 86M 3842 18G 18G 17G 0 Transformer
ViT-L/16 76.5% - 304M 3842 64G 64G 63G 0 Transformer
DeiT-T 74.5% - 6M 2242 1.3G 1.3G 1.3G 0 Transformer
DeiT-S 81.2% - 22M 2242 4.6G 4.6G 4.6G 0 Transformer
VITAS 77.4% 93.8% 13M 2242 2.7G 2.7G 2.7G 0 Transformer
Autoformer-S 81.7% 95.7% 23M 2242 5.1G 5.1G 5.1G 0 Transformer
BoT-50 78.3% 94.2% 21M 2242 4.0G 4.0G 4.0G 0 CNN + Trans.
BoT-50 + SE 79.6% 94.6% 21M 2242 4.0G 4.0G 4.0G 0 CNN + Trans.
HR-NAS 77.3% - 6.4M 2242 0.4G 0.4G 0.4G 0 CNN + Trans.
BossNAS-T0 80.5% 95.0% 38M 2242 3.5G 3.5G 3.5G 0 CNN + Trans.
BossNAS-T0 + SE 80.8% 95.2% 38M 2242 3.5G 3.5G 3.5G 0 CNN + Trans.
ShiftAddNAS-T0 82.1% 95.8% 30M 2242 3.7G 2.7G 3.8G 1.0G Hybrid
ShiftAddNAS-T0↑ 82.6% 96.2% 30M 2562 4.9G 3.6G 4.9G 1.4G Hybrid
T2T-ViT-19 81.9% - 39M 2242 8.9G 8.9G 8.9G 0 Transformer
TNT-S 81.3% 95.6% 24M 2242 5.2G 5.2G 5.2G 0 Transformer
Autoformer-B 82.4% 95.7% 54M 2242 11G 11G 11G 0 Transformer
BoTNet-S1-59 81.7% 95.8% 28M 2242 7.3G 7.3G 7.3G 0 CNN + Trans.
BossNAS-T1 82.2% 95.8% 38M 2242 8.0G 8.0G 8.0G 0 CNN + Trans.
ShiftAddNAS-T1 82.7% 96.1% 30M 2242 6.4G 5.4G 6.4G 1.0G Hybrid
ShiftAddNAS-T1↑1 83.0% 96.4% 30M 2562 8.5G 7.1G 8.5G 1.4G Hybrid
ShiftAddNAS-T1↑2 82.8% 96.2% 30M 2562 8.4G 7.4G 9.1G 0.5G Hybrid

push forward the frontier of accuracy-efficiency tradeoff. Furthermore, showing such a ratio breakdown in searched top
architectures further validates the necessity of adopting a hybrid search space. Finally, another insight from the general
trends of the operator ratio breakdown is that, as the ranking of searched architectures drops, the ratio of Shift and Add
operators will increase, which is consistent with our experiments, i.e., a purely ShiftNet or AdderNet will inevitably lead to
accuracy drop. The above analysis also helps to validate the correctness of our search algorithm.

E. Detailed Search and Training Settings
For NLP tasks, after training the supernet for 40K steps, we adopt an evolutionary algorithm (Wang et al., 2020a) to search
for subnets with various latency and FLOPs constraints ranging from 1.5G to 4.5G for 30 steps with a population of 125, a
crossover population of 50, and a mutation population of 50 with a probability of 0.3. During search, measuring latency for
each chosen subnet can be time-consuming. Instead, we estimate the latency using a three-layer NN trained with encoding
architecture parameters as features and measured latency as labels following (Wang et al., 2020a). The latency predictor is
accurate with an average prediction error of < 5%. The searched subnets are then retrained from scratch for another 40K
steps with an Adam optimizer and a cosine learning rate (LR) scheduler, where the LR is linearly warmed up from 10−7

to 10−3 and then annealed (same for training supernets). For CV tasks, we conduct an evolutionary search with FLOPs
constraints for 20 steps with a population of 50, a crossover population of 25, and a mutation population of 25 with a
probability of 0.2 following (Chen et al., 2021b). We train both the supernet and searched subnets using the same recipe and
hyperparameters as DeiT (Touvron et al., 2021). Note that the position encoding in the attention blocks is replaced with a
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Figure 9: Visualization of the searched architecture ShiftAddNAS-T1↑1 with 83% top-1 test accuracy on ImageNet.
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Figure 10: Visualization of the searched architecture ShiftAddNAS-T1↑2 with 82.8% top-1 test accuracy on ImageNet.

depthwise convolution following (Li et al., 2021) for reducing the computational complexity.


