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Abstract

Constrained reinforcement learning (CRL) has
gained significant interest recently, since safety
constraints satisfaction is critical for real-world
problems. However, existing CRL methods con-
straining discounted cumulative costs generally
lack rigorous definition and guarantee of safety.
In contrast, in the safe control research, safety
is defined as persistently satisfying certain state
constraints. Such persistent safety is possible only
on a subset of the state space, called feasible set,
where an optimal largest feasible set exists for a
given environment. Recent studies incorporate
feasible sets into CRL with energy-based meth-
ods such as control barrier function (CBF), safety
index (SI), and leverage prior conservative esti-
mations of feasible sets, which harms the per-
formance of the learned policy. To deal with this
problem, this paper proposes the reachability CRL
(RCRL) method by using reachability analysis
to establish the novel self-consistency condition
and characterize the feasible sets. The feasible
sets are represented by the safety value function,
which is used as the constraint in CRL. We use the
multi-time scale stochastic approximation theory
to prove that the proposed algorithm converges
to a local optimum, where the largest feasible set
can be guaranteed. Empirical results on differ-
ent benchmarks validate the learned feasible set,
the policy performance, and constraint satisfac-
tion of RCRL, compared to CRL and safe control
baselines.
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Figure 1. The intuitive relationship among the state space, the safe
states, feasible sets and the largest feasible set.

1. Introduction
Constrained reinforcement learning (CRL) has gained grow-
ing attention due to the safety requirements in the practical
applications of RL. The safety specifications in common
CRL methods are expected discounted cumulative costs
(Altman, 1999; Achiam et al., 2017; Tessler et al., 2019;
Yang et al., 2020). However, the main deficiency of expected
costs is averaging the potential danger at a state to the whole
trajectory. For example, the autonomous vehicle should
always keep a safe distance to other traffic participants but
not keep the cumulative or average distance during a period
when the collision might happen at a single time step. There-
fore, constraints imposed on expected cumulative costs lack
rigorous definition and guarantee of safety.

Meanwhile, the persistent state constraint satisfaction in the
safe control research clarifies the safety of states with rigor-
ous definitions (Liu & Tomizuka, 2014; Ames et al., 2019;
Choi et al., 2021). Rich theoretical and practical techniques
for ensuring safety in such settings are provided, where an
important fact is that only a subset of states can be guaran-
teed safe persistently, called the feasible set. Outside of the
feasible set, even temporally safe states will violate the con-
straints inevitably in the future, no matter what policies to
choose, as shown in Figure 1. For example, if a vehicle with
high speed is too close to a front obstacle, it is doomed to
crash since the deceleration capability is limited. Therefore,
accurately identifying feasible sets in CRL can significantly
affect the performance and safety of the learned policy.

Some recent RL studies adopt energy-based methods to
handle persistent safety and characterize feasible sets. Rep-
resentatives include control barrier function (CBF) (Ames
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et al., 2019; Ma et al., 2021a) and safety index (SI) (Liu &
Tomizuka, 2014; Ma et al., 2022). However, these methods
rely on prior formulation of the energy function, which re-
sults in conservative feasible sets (as Figure 1 shows), caus-
ing unsatisfying performance sacrifice. Hamilton-Jacobi
(HJ) reachability analysis is another branch in the safe con-
trol research, which identifies the theoretical largest feasi-
ble set (Lygeros et al., 1999; Mitchell et al., 2005; Bansal
et al., 2017). Recently, some pioneering studies migrated HJ
reachability analysis to model-free RL (Fisac et al., 2019;
Hsu et al., 2021). However, these works obtain only the
safest policies, leaving the performance criterion (e.g., re-
ward optimization) unconsidered. This safety-only design
significantly limits broader applications of HJ reachability
analysis in RL.

This paper proposes reachability constrained reinforcement
learning (RCRL), which learns the optimal safe policy satis-
fying persistent safety within the identified largest feasible
set. We leverage reachability analysis to establish the novel
self-consistency condition and characterize the feasible sets.
The feasible sets are represented by the safety value func-
tion. Intuitively, the function describes the worst constraint-
violation in the long term, and its sub-zero level set is the
feasible set. We use the multi-time scale stochastic approxi-
mation theory (Borkar, 2009; Chow et al., 2017) to prove
that the proposed algorithm converges to a local optimum.
Empirical results on low-dimensional problems validate
the correctness of the learned feasible sets. Further exper-
iments conducted on complex benchmarks such as safe-
control-gym (Yuan et al., 2021) and Safety-Gym (Achiam
& Amodei, 2019) indicate that RCRL achieves competitive
performance while maintaining constraint-satisfaction. Our
main contributions are:

• We are the first to introduce reachability constraints
into CRL, which is critical for learning a nearly opti-
mal and persistently safe policy upon its corresponding
feasible set. Compared to other feasible set characteri-
zation methods, RCRL enlarges the feasible sets and
reduces the policy conservativeness.

• We use the multi-time scale stochastic approximation
theory to prove that RCRL converges to a locally op-
timal policy, which also persistently satisfies the state
constraints across the entire largest feasible set if the
initialization of states is general.

• Comprehensive experiments demonstrate that the pro-
posed RCRL method outperforms CRL and safe con-
trol baselines in terms of final performance and con-
straint satisfaction.

2. Related Work
Constrained reinforcement learning (CRL) problems are
usually formulated as constrained Markov decision pro-

cess (CMDP) (Altman, 1999; Brunke et al., 2021). Con-
strained optimization approaches are adopted to solve CRL
problems: (1) penalty function (Guan et al., 2022); (2) La-
grangian methods (Tessler et al., 2019; Chow et al., 2017;
Duan et al., 2021b; Ma et al., 2021b); (3) trust-region meth-
ods (Achiam et al., 2017; Yang et al., 2020) and (4) other
approaches such as conservative updates (Bharadhwaj et al.,
2021). CMDP relies on the expected discounted cumulative
costs and a hand-crafted threshold to improve the safety of
policies. However, a proper threshold relies on engineering
intuitions and varies in different tasks (Qin et al., 2021).

Characterizing feasible sets is a critical and open problem
in safe control research (Brunke et al., 2021). Feasible sets,
also called recoverable sets (Thomas et al., 2021), are usu-
ally represented by safety certificates. Representative safety
certificates include energy functions such as CBF (Ma et al.,
2021a; Choi et al., 2021; Luo & Ma, 2021) and SI (Liu &
Tomizuka, 2014). The core idea of the energy function is
that the energy of a dynamical system dissipates when it is
approaching the safer region (Ames et al., 2019). Never-
theless, energy-based methods suffer from conservative or
inaccurate feasible sets (Ma et al., 2022). HJ reachability
analysis is a promising way towards general and rigorous
derivation of feasible sets (Lygeros et al., 1999; Mitchell
et al., 2005). However, it is quite difficult to obtain the
largest feasible set because it is represented by a non-trivial
partial differentiable equation, whose analytical solution is
often intractable (Bansal et al., 2017). Machine learning,
especially RL approaches, is adopted to deal with this prob-
lem (Fisac et al., 2019; Bansal & Tomlin, 2021; Hsu et al.,
2021). However, most of the existing reachability studies
only care about safety while ignoring other metrics, espe-
cially the optimality criterion, limiting reachability analysis
approaches from broader applications. Thananjeyan et al.
(2021) pretrain a feasible set indicator for switching between
the optimal policy and a back-up safe controller during train-
ing. A recent CRL study utilizes reachability analysis to
learn a purely safe back-up policy (Chen et al., 2021). Then
the agent switches between the safe and optimal policies
when interacting with the environment. Different from these
switching-based methods, we only learn one policy tackling
safety and optimality simultaneously.

3. When RL Meets Feasible Sets
3.1. Notation

We formulate the CRL problem as an MDP with a deter-
ministic dynamic (a reasonable assumption in safe control
problems), defined by the tuple ⟨S,A, P, r, h, c, γ⟩ where
(1) the state space S and the action space A are bounded
(possibly continuous); (2) unknown transition probability
P : S × A × S 7→ {0, 1} represents the dynamics; (3)
r : S × A 7→ R is the reward function; (4) h : S 7→ R
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is the state constraint. c is called the cost signal where
c(s) = 1h(s)>0, indicating we get 1 if h(s) ≤ 0 is violated
and otherwise 0. (5) γ ∈ (0, 1) is the discount factor. A
deterministic policy π : S 7→ A chooses action at at state
st at time t. The initial state distribution is denoted as d0(s)
while dπ(s, a) is the state-action marginals following π. We
denote the initial state set as S0 ≜ {s | d0(s) > 0}.

The objective of standard RL is to find a policy max-
imizing the expected return (discounted cumulative re-
wards) J (π) = Est,at∼dπ

∑
t[γ

tr(st, at)]. A value func-
tion V π(s) ≜ Est,at∼dπ

∑
t[γ

tr(st, at)|s0 = s] repre-
sents the potential return in the future from state s, sat-
isfying V π(s) = r(s, π(s)) + γEs′∼P [V π(s′)]. One
can easily find that J (π) = Es∼d0(s)[V π(s)]. In CRL,
one can define discounted cumulative costs as cost return
Jc(π) = Est,at∼dπ

∑
t[γ

tc(st)] and cost value function
V πc (s) = c(s) + γEs′∼P [V π(s′)] similarly.

We need a few extended notations beyond standard ones.
We denote (sπt | s0 = s, π), t ∈ N as the state trajectory
{sπ0 , sπ1 , · · · | s0 = s, π} induced by π from s0 = s. Let
h(sπt | s0 = s), t ∈ N specify the state constraint sequence
of the trajectory {h(sπ0 ), h(sπ1 ), h(sπ2 ), · · · | s0 = s, π}. We
also denote h(sπt | s0 = s) ≤ 0, t ∈ N as persistently
satisfying the constraint, i.e. h(sπt ) ≤ 0,∀t ∈ N.

3.2. Definition of Feasible Sets

Generally speaking, a state is considered safe if it satisfies
the state constraint h(s) ≤ 0, such as keeping distance from
obstacles. The safe set is defined by the set of all safe states:
Definition 3.1 (Safe set).

Sc ≜ {s | h(s) ≤ 0}.

However, as stated in Section 1, some safe states would go
dangerous no matter what policy we choose, such as a high-
speed vehicle close to a front obstacle. Therefore, what
really matters for meaningful safety guarantee is not the
temporary safety but the persistent safety, i.e., h(sπt | s0 =
s) ≤ 0, t ∈ N. Otherwise, the system will be dangerous
sooner or later. In other words, we need to characterize those
states starting from which the policy π is able to keep the
system constraint-satisfactory. We define the feasible set as
the set of all the states which are able to be safe persistently.
Definition 3.2 (Feasible set). The feasible set of a specific
policy π can be defined as

Sπf ≜ {s ∈ S | h(sπt | s0 = s) ≤ 0, t ∈ N}.

A policy π is feasible if Sπf ̸= ∅ and otherwise it is infeasible.
The largest feasible set Sf is a subset of S composed of
states from which there exists at least one policy that keeps
the system satisfying the constraint, i.e.,

Sf ≜ {s ∈ S | ∃π, h(sπt | s0 = s) ≤ 0, t ∈ N}.

To guarantee that all the states in the trajectory {sπt | s0 =
s, π}, t ∈ N are safe, we only need to guarantee that the
worst-case i.e., the maximum violation in the trajectory is
below zero, which brings the following definition:
Definition 3.3 (Safety value function).

V πh (s) ≜ max
t∈N

h(sπt | s0 = s), (1)

is the worst constraint violation in the long term.

The safety value of a given state s varies when the policy
π changes. The best value we can get is the one where we
choose the policy minimizing the constraint violation and
we call it the optimal safety value function:

V ∗
h (s) ≜ min

π
max
t∈N

h(sπt | s0 = s).

One can easily observe that the (largest) feasible set is the
sub-zero level set of the (optimal) safety value function, i.e.,

Sπf = {s | V πh (s) ≤ 0}, Sf = {s | V ∗
h (s) ≤ 0}.

and clearly Sπf ⊆ Sf for ∀π.

Safety problems in reality are more about the worst-case
through time other than the cumulative or average costs
(Fisac et al., 2019), where the latter is often the case in pre-
vious CRL. The safety value function measures the safety
of the most dangerous state on the trajectory generated by
π. Specifically, if V πh (s) ≤ 0, the most dangerous state is
safe, so the safety of the system can be guaranteed. Other-
wise, the policy π would definitely cause state constraint
violations in the future. Therefore, once V πh (s) ≤ 0, which
we call that the reachability constraint is fulfilled, the agent
is guaranteed to be inside the feasible set since the state
constraint could be satisfied persistently.

3.3. Computation of the Safety Value Function

Although the safety value function does not use the dis-
counted cumulative formulation like the common value
functions in RL, we can still use the temporal difference
learning technique to get it. Fisac et al. (2019) proposes the
following lemma about the optimal safety value function:
Lemma 3.4 (Safety Bellman equation (SBE)).

V ∗
h (s) = max

{
h(s),min

a∈A
V ∗
h (s

′)

}
(2)

holds for ∀s ∈ S , where s′ is the successive state of state s.

We extend Lemma 3.4 to a general form applicable to any
policy, which is called the self-consistency condition:
Theorem 3.5 (Self-consistency condition of the safety value
function).

V πh (s) = max {h(s), V πh (s′)} (3)
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holds for ∀s ∈ S and ∀π, where s′ is the successive state at
state s following π.

Proof. See Appendix B.1.

Remark 3.6 (Optimality). The largest feasible set can be
obtained by solving SBE (2) for the optimal safety value
function. However, this will lead to a policy always pursu-
ing the lowest constraint violation, i.e., a purely safe policy.
The purely safe policy does not tackle the optimality spec-
ifications. For example, a robotic arm should catch the
objects as quickly as possible with only bounded torques.
We do not need to choose the safest action at states which
are interior points of the feasible set (non-safety-critical)
(Asayesh et al., 2021). Intuitively, the safest action has to
be taken only at states on the boundary of the feasible set
(safety-critical states). To address this issue, some studies
design the switching rules between the purely safe policy
and optimal policy (Chen et al., 2021). In contrast, this
paper learns only one policy tackling safety and optimal-
ity simultaneously. Theorem 3.5 could compute the safety
value for this unified policy.
Remark 3.7 (Scalability). Besides characterizing the per-
sistent safety of agents, reachability constraints are also
scalable to constraints on cumulative quantities (i.e., safe
budget) similar to conventional CRL, enabling it to be a
general constraint formulation. A safe budget for the whole
trajectory can be seen as the remaining budget constraint
on any state during the trajectory. Let the budget constraint
be

∑
t c(st|s)− η(s) ≤ 0, where c(st) is the consumption

of one step and η(s) is the remaining budget at state s. We
define h(s) = −η(s) and thus V πh (s) equals the worst-case
over-budget whose being greater than 0 is unacceptable.

4. Reachability Constrained Reinforcement
Learning

In this section, we formally propose the novel RCRL prob-
lem which guarantees the persistent safety of the policy. Fur-
thermore, if the initialization of the state covers the largest
feasible set, the feasible set solved by RCRL equals the
largest one defined in Definition 3.2. Then the RCRL algo-
rithm with a convergence guarantee will be devised.

4.1. Problem Statement

Given an MDP defined in Section 3.1 and an initial state
distribution d0, RCRL aims to find the optimal policy π∗ to
the following optimization problem:

max
π

Es∼d0(s)[V
π(s) · 1s∈Sf

− V πh (s) · 1s/∈Sf
]

subject to V πh (s) ≤ 0,∀s ∈ Sf ∩ S0,
(RCRL)

where 1A = 1 holds when the event A is true and oth-
erwise 1A = 0. Intuitively, for initial states inside the

largest feasible set, i.e. s ∈ S0 ∩ Sf , (RCRL) aims to max-
imize the expected return and ensure the persistent safety
when following this policy. However, for initial states out-
side the largest feasible set, i.e., s ∈ S0 \ Sf ≜ {s | s ∈
S0, s /∈ Sf}, the state constraint h(s) ≤ 0 will be violated
sooner or later and it is impossible to satisfy the reachability
constraint. Thus, it is meaningless to optimize the return
of these infeasible states, and we only try to find the safest
actions by minimizing the safety value functions.

The formulation in (RCRL) is different from the common
CRL formulations in (Achiam et al., 2017; Tessler et al.,
2019; Yang et al., 2020) where the constraint is imposed on
the expectation of cost return:

max
π

Es∼d0(s)[V
π(s)]

subject to Es∼d0(s)[V
π
c (s)] ≤ η,

(4)

where η is the cost threshold, V πc is the cost value function.
However, as stated in Section 2, choosing η is tricky and it
is hard to migrate the expectation-based CRL formulation
to CRL problems with state constraints, such as (RCRL).

Specially, if the the initial states cover the largest feasible
set, the solution to (RCRL) also has the largest feasible set,
which is given by the following proposition:

Proposition 4.1 (The largest feasible set). Assuming S0 ∩
Sf ̸= ∅, for any feasible π of problem (RCRL), we have
Sπf = Sf if Sf ⊆ S0.

Proof. See Appendix B.2.

Overall, (RCRL) has three significant advantages: (1) Com-
pared to conventional CRL approaches, (RCRL) considers
the vital persistent safety of the system because every sin-
gle time step in the future is guaranteed to be safe when
reachability constraints are satisfied. (2) Compared to HJ
reachability analysis studies, RCRL considers performance
optimality besides safety. (3) Compared to other RL meth-
ods with feasible sets, any feasible policy of (RCRL) renders
the largest feasible set if the initial states cover the feasible
sets. The largest feasible sets brings less conservativeness
and better performance because the policy could drive the
system towards states with higher return.

4.2. Lagrangian-based Algorithm with Statewise
Constraints

We leverage the Lagrange multiplier method to solve prob-
lem (RCRL), which is a common approach to CRL (Chow
et al., 2017; Achiam & Amodei, 2019; Tessler et al., 2019).
The key idea of Lagrangian-based methods is to descend
in π and ascend in the multiplier λ using the gradients
of the Lagrangian L(π, λ) w.r.t. π and λ and to finally
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reach the optimal policy which satisfies the constraints. No-
tably, constraints in (RCRL) are imposed on each state
in S0 ∩ Sf , which is significantly different from typical
ones on only the expectation among the states in (Achiam
et al., 2017; Chow et al., 2017; Tessler et al., 2019). We
call these type of constraints as statewise constraints. In
this case, the multiplier is not longer a scalar but a vector
(infinite-dimension in infinite states cases). Some prelim-
inary studies discuss statewise constraints on the density
of the state distribution (Chen & Ames, 2019; Qin et al.,
2021). A more general Lagrangian-based solution for state-
wise constraints with an approximation to the multipliers
is discussed recently in (Ma et al., 2021b; 2022). Without
loss of generality, we denote the statewise multiplier as a
function λ : S 7→ [0,+∞) ∪ {+∞}. Then the Lagrangian
of (RCRL) can be formulated as:

L(π, λ) =Es∼d0
[
−V π(s) · 1s∈Sf

+ V πh (s) · 1s/∈Sf

]
+

∫
Sf∩S0

λ(s)V πh (s)ds

(5)
The most significant issue when we are tackling (5) is that
we cannot obtain the largest feasible set Sf in advance,
which means Sf ∩ S0 is unknown. However, the initial dis-
tribution d0 is usually accessible and we propose a surrogate
Lagrangian in the form of expectation w.r.t. d0 instead:

L̂(π, λ) = Es∼d0 [−V π(s) + λ(s)V πh (s)] (6)

A common choice of the initial distribution is the uniform
distribution in the safe set Sc which covers the largest feasi-
ble set. However, it is inevitable that there are initial states
outside Sf . The constraint V πh (s) ≤ 0 can never be satisfied
for those states outside Sf . Thus, each corresponding mul-
tiplier λ(s) will go to +∞ because λ(s) tries to maximize
the product of itself and a positive scalar V πh (s), resulting in
the divergence of (6). We can set a large upper bound λmax

to the statewise multiplier to avoid the divergence. We claim
that when λmax → +∞, solving the surrogate Lagrangian
is equivalent to solving the original one:

Proposition 4.2 (Equivalent Lagrangian). Assume both (5)
and (6) have the unique optimal solution. If we denote
π∗ = argminπmaxλ L, π̂∗ = argminπmaxλ L̂, we have
limλmax→+∞ π̂∗ = π∗.

Proof. See Appendix B.3.

Remark 4.3. The surrogate Lagrangian can be regarded
as an expected weighted sum of −V π(s) and V πh (s) using
weights λ(s). We separate the surrogate Lagrangian into two
parts here, the expectations on feasible and infeasible initial
states. For those feasible initial states, λ(s) is finite and
the surrogate Lagrangian calculates the expected weighted
sums of −V π(s) and V πh (s). For those infeasible initial
states, λ(s) → +∞, so −V π(s) is ignored in the weighted

Algorithm 1 Template for actor-critic RCRL
Input: MDP M with constraint h(·), critic and safety
value function learning rate β1(k), actor learning rate
β2(k), multiplier learning rate β3(k)
Initialization: q-function parameters ω = ω0, safety q-
function parameters ϕ = ϕ0, policy parameters θ = θ0,
multiplier parameters ξ = ξ0
for k = 0, 1, . . . do

Initialize state s0 ∼ d0.
for t = 0 to T − 1 do

Select action at = πθ(st), observe next state st+1,
reward rt and constraint h(st)
Critic update ωk+1 = ωk − β1(k)∇̂ωJQ(ω)
Safety value update

ϕk+1 = ϕk − β1(k)∇̂ϕJQh
(ϕ)

Actor update θk+1 = ΓΘ

(
θk − β2(k)∇̂θJπ(θ)

)
Multiplier update

ξk+1 = ΓΞ

(
ξk + β3(k)∇̂ξJλ(ξ)

)
end for

end for
return parameters ω, ϕ, θ, ξ

sums and the surrogate Lagrangian is only dominated by the
expected V πh (s).

Hence, solving problem (RCRL) can be approximated by
finding the saddle point of the surrogate (6):

min
π

max
λ

L̂(π, λ). (7)

Consider the common actor-critic framework with state-
action value functions. We have the state-action (safety)
value Q(s, π(s)) = V π(s) and Qh(s, π(s)) = V πh (s) due
to the deterministic dynamics and policy. We also adopt pa-
rameterized Q-function Q(s, a;ω), safety Q-value function
Qh(s, a;ϕ), a policy π(s; θ), and the statewise multiplier
λ(s; ξ). The Lagrangian thus becomes L̂(θ, ξ). Note that
sometimes we use Qω, πθ, λξ for short. Now we derive the
objectives of the parameterized functions.

The Q-value function update is the standard one in popu-
lar RL (Sutton & Barto, 2018), which can be seen in Ap-
pendix A. The safety Q-value function of the current policy
is updated according to the self-consistency condition in
Theorem 3.5, i.e., minimizing the mean squared error:

JQh
(ϕ) = Es∼D

[
1/2

(
Qh(s, a;ϕ)− Q̂h(s, a)

)2
]
, (8)

where

Q̂h(s, a) = (1− γ)h(s)

+ γEs′∼P [max{h(s), Qh(s′, π(s′);ϕ)}],
(9)
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D is the distribution of previously sampled states and ac-
tions (i.e., dπ), or a replay buffer, and a is the action taken
at s. Note that the discounted version of self-consistency
condition is for convergence in Appendix B.4, as in (Fisac
et al., 2019).

As aforementioned, the purpose of policy πθ is to descend
the Lagrangian while the multiplier tries to ascend it:

Jπ(θ) = Jλ(ξ)
= Es∼D[−Q(s, πθ(s);ω) + λξ(s)Qh(s, πθ(s);ϕ)].

(10)

Algorithm 1 provides the pseudo-code of an actor-critic
version of RCRL. The algorithm alternates between in-
teracting with the environment and updating the parame-
ter vectors with stochastic gradients ∇̂ωJQ(ω), ∇̂θJπ(θ),
∇̂θJπ(θ), and ∇̂ξJλ(ξ), whose derivation can be seen in
Appendix A. In the algorithm, the ΓΨ(ψ) operator projects
a vector ψ ∈ Rκ to the closet point in a compact and convex
set Ψ ⊆ Rκ, i.e., ΓΨ(ψ) = argminψ̂∈Ψ ∥ψ̂−ψ∥2 where ψ
is denoted as any one of θ, ξ. These projection operators are
necessary for the convergence of the actor-critic algorithm
(Chow et al., 2017). A policy-gradient version of RCRL is
designed similarly in Algorithm 2.

5. Convergence Analysis
Under moderate assumptions, we can provide a convergence
guarantee of Algorithm 1. The convergence analysis fol-
lows heavily from the convergence proof of multi-time scale
stochastic approximation algorithms (Chow et al., 2017).
We also utilize theorems of combining the ODE (ordinary
differential equation) viewpoint and stochastic approxima-
tion from (Borkar, 2009). We first introduce the necessary
assumptions.

Assumption 5.1 (Finite MDP). The MDP is finite (finite
state and action space, i.e., |S| <∞, |A| <∞), and S and
A are both bounded. The first-hitting time of the MDP Tπ,s
is bounded almost surely over all policy π and all initial
states s ∈ S0. We refer the upper bound as T . The reward
function and constraint value of a single step are bounded
by rmax and hmax, respectively. Hence, the value function
is upper bounded by rmax/(1− γ).

Assumption 5.2 (Strict Feasibility). There exists a policy
π(·; θ) such that V πθ

h (s) ≤ 0,∀s ∈ S0 ∩ Sf ̸= ∅.

Assumption 5.3 (Differentiability). For any state-action
pair (s, a), Q(s, a;ω) and Qh(s, a;ϕ) are continuously
differentiable in ω and ϕ, respectively. Moreover,
∇aQ(s, a;ω) and ∇aQh(s, a;ϕ) are Lipschitz functions
in a, for ∀s ∈ S,∀ω ∈ Ω, and ∀ϕ ∈ Φ. For ∀s ∈
S,∀a ∈ A, ∇aQ(s, a;ω) is a Lipschitz function in ω and
∇aQh(s, a;ϕ) is a Lipschitz function in ϕ. For any state
s, π(s; θ) is continuously differentiable in θ and ∇θπ(s; θ)

is a Lipschitz function in θ. For any state s, λ(s; ξ) is con-
tinuously differentiable in ξ and ∇ξλ(s; ξ) is a Lipschitz
function in ξ.

Assumption 5.4 (Step Sizes). The step size schedules
{β1(k)}, {β2(k)}, and {β3(k)} satisfy∑

k

β1(k) =
∑
k

β2(k) =
∑
k

β3(k) = ∞∑
k

β1(k)
2,
∑
k

β2(k)
2,
∑
k

β3(k)
2 <∞

β3(k) = o (β2(k)) , β2(k) = o (β1(k)) .

These step-size schedules satisfy the standard conditions
for stochastic approximation algorithms, and ensure that the
critic update is on the fastest time scale {β1(k)}, the policy
update is on the intermediate time scale {β2(k)}, and the
multiplier is on the slowest one {β3(k)}. Now we come to
the position where the convergence of actor-critic RCRL
can be provided.

Theorem 5.5. Under Assumption 5.1 to 5.4, the policy
sequence updated in Algorithm 1 converges almost surely
to a locally optimal policy for the reachability constrained
policy optimization problem (RCRL).

Proof. See Appendix B.4.

The conditions for convergence may be strict and ideal such
that we have to make some simplification and approxima-
tion to make the RCRL algorithm tractable and scalable for
high-dimensional and continuous problems. We discuss the
gap between the necessary assumptions and the practical sit-
uation in Appendix C.1. More details about implementation
can be found in Appendix C.

6. Experiments
We aim to answer the following through our experiments:

• Can RCRL learn the largest feasible sets using neural
networks approximation of safety value functions?

• Does RCRL outperform CRL methods based on cost
value constraints in terms of fewer violations?

• Does RCRL perform better than methods based on
energy function with respect to performance optimality
benefiting from the largest feasible set?

Benchmarks. We implement both on- and off-policy RCRL
and compare them with different CRL baselines. Experi-
ments include that: (1) use double-integrator (Fisac et al.,
2019) which has an analytical solution to check the correct-
ness of feasible set learned by RCRL; (2) validate the scala-
bility of RCRL to nonlinear control problems, specifically,
a 2D quadrotor trajectory tracking task in safe-control-gym
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(Yuan et al., 2021), and (3) classical safe learning bench-
mark Safety-Gym (Achiam & Amodei, 2019). Details about
each benchmark will be introduced per subsection.

Baseline Algorithms. Details about algorithms can be seen
in Appendix C. Besides RCRL, we test following base-
lines: (1) Lagrangian-based algorithms whose constraint
is about the discounted cumulative costs (an implementa-
tion of RCPO (Tessler et al., 2019)); (2) Reward shaping
method with a fixed coefficient penalty added to the re-
ward; (3) CBF-based algorithms whose constraint is about
B(s) ≜ ḣ(s) + µh(s) ≤ 0 where µ ∈ (0, 1) is a hyper-
parameter; and (4) SI-based methods that defines an SI
φ(s) = σ − (−h(s))n + kḣ(s) and sets constraints

φ(s′)−max{φ(x)− ηD, 0} ≤ 0, (11)

where σ, n, k, ηD are hyperparameters.

6.1. Double Integrator: Comparison to Ground Truth

We demonstrate that RCRL can learn the largest feasible sets
when controlling the double integrator. The reason why we
choose the double integrator is that it is a simple dynamical
system where we can use numerical solution by the level set
toolbox to obtain the ground truth about the largest feasible
sets (also called HJ viability kernels) (Mitchell, 2008). Dou-
ble integrator is a 2D dynamical system, where the system
states and the dynamics are denoted as

s = [x1, x2]
T , ṡ = [x2, a], (12)

where the control limits of action a is a ∈ [−0.5, 0.5]. The
safety constraint is ∥s∥∞ ≤ 5. The reward is designed as
rt = ∥s∥2 + a2t .

Baselines. In addition to the ground truth using the level
set toolbox (Mitchell, 2008), we introduce two discrete ap-
proximations of feasible sets using model predictive control
(MPC) utilizing CBF constraints and terminal constraints,
respectively (Ma et al., 2021a; Mayne et al., 2000). These
two MPC baselines are named as MPC-CBF and MPC-
Terminal, respectively.

MPC-CBF

MPC-Terminal

HJ Viability Kernel

Learned Sf

x1

x2

-4 -2 0 2 4
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30

Figure 2. Learned Sπ
f of the double integrator.

The learned result is shown in Figure 2. It depicts that
the learned Sπf exactly approximate the largest feasible set

or the HJ viability kernel given by the level set toolbox.
MPC-Terminal also identifies the feasible sets with some
discretization error. MPC-CBF has a smaller feasible set
since the conservativeness of energy-based methods.

6.2. Safe-control-gym: Quadrotor Trajectory Tracking

The 2D quadrotor trajectory tracking task comes from safe-
control-gym (Yuan et al., 2021) and is shown in Figure 3(a),
where the circle trajectory is marked as red and the con-
straint for the quadrotor is to keep itself between the two
black lines. Schematics of the 2D quadrotor are shown in
Figure 3(b), where (x, z) and (ẋ, ż) are the position and
velocity of the COM (center of mass) of the quadrotor in the
xz-plane, and θ and θ̇ are the pitch angle and pitch angle
rate, respectively. The task for the quadrotor is to track the
moving waypoint on the circle trajectory by controlling the
normalized thrusts while maintaining its altitude z between
[0.5, 1.5], i.e.,

h(s) = max{0.5− s(2), s(2) − 1.5}.

Details about the state and action space, reward function
can be seen in Appendix D.1.

(a) Snapshot of environ-
ment, where red line
is the reference and
black lines are constraint
boundaries.

𝑇1 

𝑇2 

𝜃 

𝐱 =  𝑥, 𝑥 , 𝑧, 𝑧 ,𝜃,𝜃  
𝑇
 

𝐮 =  𝑇1,𝑇2 
𝑇 

(b) Schematics, state and in-
put of the 2D quadrotor

Figure 3. safe-control-gym environment

Baselines. We implement an off-policy version of RCRL
in safe-control-gym based on SAC (Haarnoja et al., 2018),
forming our Reachable Actor Critic (RAC). Other off-policy
baselines are all implemented based on SAC for fairness, in-
cluding: (1) SAC-Lagrangian, (2) SAC-Reward Shaping,
(3) SAC-CBF, and (4) SAC-SI.

Figure 4 demonstrates performance with respect to the aver-
age return and constraint violation rate of the five algorithms.
RAC (blue line) learns a zero-violation policy and reaches
near-optimal tracking accuracy. In contrast, though SAC-
CBF does not violate the constraint as well, the tracking
error is quite large because it just moves horizontally due
to a conservative policy. The constraints of SAC-SI require
the SI to be below zero and to decrease when it is beyond
zero, which explains that it makes the quadrotor fly beyond
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Figure 4. Performance of algorithms on safety-control-gym. The
first two figures are training curves on the quadrotor trajectory
tracking task. All results are averaged on 5 independent runs and
the shaded regions are the 95% confidence intervals.
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Figure 5. Trajectories of final policies trained by different algo-
rithms in a run.

the upper bound and move horizontally in the safe set, cor-
responding to the feasible set in Figure 6(c). The other
two algorithms reach higher returns at the cost of unaccept-
able constraint violation. In this task, keeping z between
[0.5, 1.5] will definitely bring tracking error, which leads to
a lower return. Trajectories in Figure 5 indicate that RAC
keeps the quadrotor in the safe set strictly and tracks the
trajectory accurately inside the safe set while others fail to.

1 0 1

0.5

1.0

1.5

z = -1.0

0

0

1 0 1

0.5

1.0

1.5

z = 0.0

0

0

1 0 1

0.5

1.0

1.5

z = 1.0

0

0

1.2
0.6

0.0
1.2
2.4
3.6
4.8

x

z

(a) RAC safety value function slices

1 0 1

0.5

1.0

1.5

z = -1.0

1 0 1

0.5

1.0

1.5

z = 0.0

1 0 1

0.5

1.0

1.5

z = 1.0

0.06
0.04
0.02

0.00
0.20
0.60
1.00
1.20

x

z

(b) SAC-CBF control barrier function slices

1 0 1

0.5

1.0

1.5

z = -1.0

1 0 1

0.5

1.0

1.5

z = 0.0

1 0 1

0.5

1.0

1.5

z = 1.0

1.2
0.8
0.4

0.0
0.4
0.8
1.2

x

z

(c) SAC-SI safety index slices

Figure 6. The learned feasible set slices on the 2D xz-plane with
different ż. Values below zero mean that the states are feasible.

Figure 6 shows the slices on xz-plane of the feasible sets
learned by RAC, SAC-CBF, and SAC-SI with ż = −1, 0, 1.
The sub-zero level set of each constrained function repre-
sents the learned feasible sets, i.e. {s | Fπ(s, a;ϕ) ≤ 0}
where F = Qh, B, or φ. In Figure 6(a), the feasible sets of
RAC (inside the zero-contour) is smaller than Sc because
when the quadrotor at the boundary of Sc with a velocity
pointing outside, it is doomed to fly out of the space, leading
to constraint violation. Thus, such states are supposed to
be potentially dangerous and must have a super-zero safety
value. Characterizing the feasible set helps RAC track the
trajectory accurately inside the safe set (optimality) and sat-
isfy the constraint strictly (safety). In contrast, an energy
function like CBF or SI relies on prior knowledge about the
dynamical system. When we choose empirical hyperparam-
eters, the algorithms will possibly learn the wrong feasible
set, which leads to either constraint violation or poor per-
formance. As shown in Figure 6(b) and 6(c), when ż ̸= 0,
the whole safe set is considered unsafe because of conser-
vativeness. SAC-CBF considers ż = 0 as safe, leading to
a horizontal-moving policy while SAC-SI leans a wrong
feasible set when ż = 0, leading to its poor performance.

6.3. Safety-Gym: Moving with Sensor Inputs

All previous tasks have full knowledge of the exact system
states in the observations. In this section, we demonstrate
the effectiveness of RCRL in complex safe control tasks
with only high-dimensional sensor inputs, such as Lidar, on
Safety-Gym. Safety-Gym is a widely used safe RL/CRL
benchmark. In Figure 7, point, car or doggo agents
(red) are controlled to reach goal (green) while avoiding
hazards (blue, non-physical) or pillars (purple, phys-
ical). The tasks are named as {Agent}-{Obstacles}.
The first two tasks have 76D observations space and the last
task has 112D observation space and 12D action space.

(a) Car-Hazards (b) Point-Pillars (c) Doggo-Hazards

Figure 7. Safety-Gym tasks.

Baselines. We name the on-policy version of RCRL as
Reachability Constrained Optimization (RCO). Baseline
algorithms in Safety-Gym tasks include traditional CRL
baseline PPO-Lagrangian (Schulman et al., 2017; Achiam
& Amodei, 2019) and two constrained version of PPO with
energy-function based constraints (named as PPO-CBF and
PPO-SI), and unconstrained baseline PPO. The distance
and relative speed are approximated from the Lidar and
speedometer sensors. For multiple obstacles, we select the
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one with the closest distance (in RCO) or the safety energy
decreases (in PPO-SI and PPO-CBF) to compute the safety
value functions or energy functions used for constraints.
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Figure 8. Training results of Safety-Gym tasks.

The training results are shown in Figure 8. The violation rate
figures indicate that RCO has the best constraint satisfaction
performance, while energy-based baselines PPO-CBF, PPO-
SI oscillate around zero violation, indicating RCO learns
the feasible sets more exactly. On the contrary, the prior
parameters of SI and CBF fail to characterize the exact
feasible sets. Meanwhile, RCO has comparable or better
return performance, further verifying that RCO reduces the
conservativeness compared to energy-based methods.

7. Concluding Remarks
We study the novel reachability constraint in CRL, where the
safety value function is constrained, guaranteeing persistent
constraint-satisfaction. We establish the self-consistency
condition of the safety value function, which enables us to
characterize the largest feasible set in CRL and consider
performance optimality besides safety, avoiding the safety-
oriented policies in prior HJ reachability analysis methods.
We also prove the convergence of the proposed RCRL with
multi-time scale stochastic approximation theory under mild
assumptions. Experiments on common benchmarks indi-
cate that RCRL is able to capture the approximate feasible
sets, which further guarantees the persistent safety and the
competitive performance w.r.t. baselines.

Although empirical results show that RCRL generates per-
sistently safe agents after the convergence of training, like

many other Lagrangian-based methods such as (Tessler
et al., 2019; Ma et al., 2021b), RCRL focuses on safety
after convergence rather than that during learning, while
the latter is significant for real-world application of RL al-
gorithms. Furthermore, RCRL explores the boundary of
the feasible sets instead of conservatively staying inside
them, leading to more violations during the early training
stage, which can be seen in Figure 4 and 8. We are work-
ing on improving RCRL with different approaches such as
model-based methods for safer exploration and learning.
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A. Loss Function and Gradients Derivation
The Q-value loss is the mean square error between the approximated Q function and its target (Lillicrap et al., 2016):

JQ(ω) = Es∼D[1/2(Q(s, a;ω)− Q̂(s, a))2] (13)

where

Q̂(s, a) = r(s, a) + γEs′∼P [Q(s
′, π(s′);ω)].

Therefore, we are able to derive the stochastic gradients of each objective w.r.t. the parameter vectors in the approximate
function. A sample (st, at, st+1) at time step t is leveraged to compute the stochastic gradients. First, (13) and (8) can be
optimized with stochastic gradients descent (SGD):

∇̂ωJQ(ω) =∇ωQ(st, at;ω) · [Qω(st, at)− (r(st, at) + γQ(st+1, at+1;ω))] ,

∇̂ϕJQh
(ϕ) =∇ϕQh(st, at;ϕ) · [Qh(st, at;ϕ)− ((1− γ)h(s) + γmax{h(s), Qh(st+1, at+1;ϕ)})] ,

(14)

where at+1 = π(st+1).

Combining results from (Silver et al., 2014; Lillicrap et al., 2016), the estimated deterministic policy gradient (DPG) is

∇̂θJπ(θ) =∇a [−Qω(st, at) + λξ(st)Qh(st, at;ϕ)] |a=at · ∇θπθ(st). (15)

Then the stochastic gradient of the multiplier is used to ascend (10):

∇̂ξJλ(ξ) = Qh(st, πθ(st);ϕ)∇ξλξ(st). (16)

B. Proofs
B.1. Proof of Theorem 3.5

We only prove the self-consistency condition because the SBE can be proven similarly. From the definition of the safety
value function, we know that

V πh (s) = max
t∈N

h(sπt | s0 = s)

= max{h(s),max
t∈N+

h(sπt |s0 = s)}

= max{h(s),max
t∈N+

h(sπt |s1 = s′)}

= max{h(s),max
t∈N

h(sπt |s0 = s′)}

= max{h(s), V πh (s′)},

(17)

where s′ ∼ P (· | s, π(s)).

B.2. Proof of Proposition 4.1

It is obvious that Sπf ⊆ Sf , we only need to prove that Sf ⊆ Sπf . When Sf ⊆ S0, we have Sf ∩ S0 = Sf . Therefore, the
constraint in (RCRL) becomes

V πh (s) ≤ 0,∀s ∈ Sf . (18)

Thus we have s ∈ Sπf by Definition 3.2. In other words, we can conclude that if s ∈ Sf , we will get s ∈ Sπf , which means
Sf ⊆ Sπf .



Reachability Constrained Reinforcement Learning

B.3. Proof of Proposition 4.2

We start from decomposing the surrogate Lagrangian (6):

min
π

max
λ

L̂(π, λ)

=min
π

max
λ

Es∼d0 [−V π(s) + λ(s)V πh (s)]

=min
π

max
λ

{
Es∼d0

[
(−V π(s) + λ(s)V πh (s)) · 1s∈Sf

]
+ Es∼d0

[
(−V π(s) + λ(s)V πh (s)) · 1s/∈Sf

]}
=min

π
max
λ

Es∼d0
[
(−V π(s) + λ(s)V πh (s)) · 1s∈Sf

]
+min

π
max
λ

Es∼d0

(−V π(s) + λ(s)V πh (s)︸ ︷︷ ︸
>0

) · 1s/∈Sf


=min

π
max
λ

Es∼d0
[
(−V π(s) + λ(s)V πh (s)) · 1s∈Sf

]
︸ ︷︷ ︸

Part 1

+min
π

Es∼d0
[
(−V π(s) + λmaxV

π
h (s)) · 1s/∈Sf

]
︸ ︷︷ ︸

Part 2

.

(19)

Note that from line 3 to line 4 the minmax can be decomposed into two parts because the policy (or the multiplier) is
statewise and the results π(s) (or λ(s)) of states inside and outside Sf are independent.

One the one hand, when λmax → +∞, Part 2 will be dominated by V πh (s) > 0. Thus, limλmax→+∞ π̂∗ tries to minimize
the expected safety value function of initial states outside the largest feasible set. On the other hand, Part 1 is to find the
saddle point of the lagrangian of the constrained optimization problem: maximizing the expected return while satisfying the
reachability constraint for all initial states inside Sf . In other words,

min
π

max
λ

Es∼d0
[
(−V π(s) + λ(s)V πh (s)) · 1s∈Sf

]
⇐⇒ maxπ Es∼d0(s)[V π(s) · 1s∈Sf

]
subject to V πh (s) ≤ 0,∀s ∈ Sf ∩ S0

.

Overall, limλmax→+∞ π̂∗ aims to (1) maximize the expected return while satisfy reachability constraints for initial states
inside Sf and (2) minimize the safety value function of initial states outside Sf . This is exactly what problem (RCRL) does.
Therefore, we have limλmax→+∞ π̂∗ = π∗.

B.4. Proof of Theorem 5.5

The proof borrows heavily from (Chow et al., 2017) and (Ma et al., 2022) which both follow the convergence proof of
multi-time scale stochastic approximation algorithms in (Borkar, 2009). A high level overview of the proof structure is
shown as follows.

1. By utilizing policy evaluation techniques, we show the critic and safety value function update converge (in the fastest
time scale) almost surely to a fixed point solution (ω∗, ϕ∗).

2. Then, with convergence properties of multi-time scale discrete stochastic approximation algorithms, we show that each
update (θk, ξk) converges almost surely to a stationary point (θ∗, ξ∗) of the corresponding continuous time system but
with different speeds.

3. By using Lyapunov analysis, we show that the continuous time system is locally asymptotically stable at the stationary
point (θ∗, ξ∗).

4. Since the Lyapunov function used in the above analysis is the Lagrangian function L(θ, ξ), we conclude that the
stationary point (θ∗, ξ∗) is a local saddle point. Finally by the local saddle point theorem, we deduce that θ∗ is a locally
optimal solution for the reachability constrained RL problem.

Time scale 1 (Convergence of ω- and ϕ-updates) The step size Assumption 5.4 tells that {ωk} and {ϕk} converges on a
faster time scale than {θk} and {ξk}. According to (Borkar, 2009, Lemma 1, Chapter 6), we can treat (θ, ξ) as arbitrarily
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fixed quantities during updating {ωk} and {ϕk}. Therefore, we take (θ, ξ) = (θk, ξk), which means the policy and the
multiplier are fixed and we are performing policy evaluation to computeQπθk (s, a) andQ

πθk

h (s, a). With the standard policy
evaluation convergence results in (Sutton & Barto, 2018), one can easily know that Q(s, a;ωk) → Q(s, a;ω∗) = Qπθk (s, a)
as k → ∞ because the operator B defined by

B[Q(s, a)] = r(s, a) + γEs′∼P [Q(s′, π(s′))]

is a γ contraction mapping. Thus, all we need to do is to prove that the safety value evaluation in (9) is a γ-contraction
mapping as well, which is stated in the following Lemma.

Lemma B.1 (γ-contraction Mapping). Under Assumption 5.1, the operator Bh introduced by Bh[Qh(s, a)] = (1−γ)h(s)+
γmax{h(s),Es′∼P [Qh(s′, π(s′))]} is a γ-contraction mapping.

Proof. We study the supremum norm of Bh. For any Qh and Q̂h, the following holds:

∥Bh[Qh(s, a)]− Bh[Q̂h(s, a)]∥∞ = γ∥max{h(s),Es′∼P [Qh(s′, π(s′))]} −max{h(s),Es′∼P [Q̂h(s′, π(s′))]}∥∞
≤ γ∥Es′∼P [Qh(s′, π(s′))]− Es′∼P [Q̂h(s′, π(s′))]∥∞
= γ∥Es′∼P [Qh(s′, π(s′))− Q̂h(s

′, π(s′))]∥∞
≤ γ∥Qh(s, a)− Q̂h(s, a)∥∞.

According to (Bertsekas, 2016, Proposition A.26), we can conclude that Qh(s, a;ϕk) will converge to Qh(s, a;ϕ∗) =
Q
πθk

h (s, a) as k → ∞. Hence, both ωk and ϕk converge to ω∗ and ϕ∗, respectively and the convergence of Time scale 1 is
proved.

Time scale 2 (Convergence of θ-update) Due to the faster convergence speed of θk than ξk, we can take ξ = ξk when
updating θ according to (Borkar, 2009, Lemma. 1, Chapter 6). Furthermore, since ω and ϕ converge on a faster speed than
θ, we have ∥Q(s, a;ωk)−Qπθk (s, a)∥ → 0 and ∥Qh(s, a;ϕk)−Q

πθk

h (s, a)∥ → 0 almost surely. Assume that the sample
distribution is the same as D. The θ-update from (15) is

θk+1 = ΓΘ [θk − β2(k)∇a(−Qωk
(st, a) + λξk(st)Qh(st, a;ϕk))|a=at · ∇θπθ(st)|θ=θk ] . (20)

(20) can also be rewritten as:

θk+1 = ΓΘ [θk + β2(k)(−∇θL(θ, ξ)|θ=θk + δθk+1 + δθϵ)] .

where
δθk+1 =Es∼D

[
∇a(−Qωk

(s, a) + λ(s; ξk)Qh(s, a;ϕk))|a=π(s;θk)∇θπ(s; θ)|θ=θk
]

−∇a(−Qωk
(st, a) + λξk(st)Qh(st, a;ϕk))|a=at · ∇θπ(st; θ)|θ=θk

and
δθϵ = Es∼D[−∇a(−Q(s, a;ωk) + λ(s; ξk)Qh(s, a;ϕk))|a=π(s;θk)∇θπ(s; θ)|θ=θk

+∇a(−Qπθk (s, a) + λ(s; ξk)Q
πθk

h (s, a))|a=π(s;θk)∇θπ(s; θ)|θ=θk ]

1. We will show that δθk+1 is square integrable first, specifically,

E[∥δθk+1∥2 | Fθ,k] ≤ 4 ·
[
∥∇θπθ(s)|θ=θk∥2∞ × (∥∇aQ(s, a;ωk)∥2∞ + ∥λ(s; ξk)∥2∞ · ∥∇aQh(s, a;ϕk)∥2∞)

]
.

Assumption 5.3 implies that
∥∇θπθ(s)|θ=θk∥2∞ ≤ K1(1 + ∥θk∥2∞),

∥∇aQ(s, a;ωk)∥2∞ ≤ K2(1 + max
a∈A

∥a∥2∞),

∥∇aQh(s, a;ϕk)∥2∞ ≤ K3(1 + max
a∈A

∥a∥2∞).

where K1,K2,K3 is three sufficiently large scalars. Furthermore, λ(s; ξk) can be bounded by λmax due to the
multiplier upper bound. Because of the aforementioned conditions, we can conclude that E[∥δθk+1∥2 | Fθ,k] ≤
4K1(1 + ∥θk∥2∞)[K2(1 + maxa∈A ∥a∥2∞) + λmax(K3(1 + maxa∈A ∥a∥2∞)] <∞. Thus δθk+1 is square integrable.
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2. Second, we will show δθϵ → 0. Specifically,

δθϵ = Es∼D[∇a(−Qπθk (s, a) +Q(s, a;ωk) + λ(s; ξk)(Q
πθk

h (s, a)−Qh(s, a;ϕk)))|a=π(s;θk)∇θπ(s; θ)|θ=θk ]
= Es∼D[∇a(−Q(s, a;ω∗) +Q(s, a;ωk) + λ(s; ξk)(Qh(s, a;ϕ

∗)−Qh(s, a;ϕk)))|a=π(s;θk)∇θπ(s; θ)|θ=θk ]
≤ Es∼D[∇θπ(s; θ)|θ=θk ] · (K4∥ωk − ω∗∥∞ + λmaxK5∥ϕk − ϕ∗∥∞) → 0

where K4,K5 is the Lipschitz constant. The limit comes from the convergence of the parameters in Time scale 1.

3. Because ∇̂θJπ(θ)|θ=θk is a sample of ∇θL(θ, ξ)|θ=θk , we can conclude that E[δθk+1 | Fθ,k] = 0, where Fθ,k =
σ(θm, δθm,m ≤ k) is the filtration generated by different independent trajectories (Chow et al., 2017).

Based on the three facts, the θ-update given by (20) is a stochastic approximation of the continuous system θ(t) (Borkar,
2009), described by an ODE:

θ̇ = Υθ[−∇θL(θ, λ)], (21)

where

Υθ[F (θ)] ≜ lim
η→0+

ΓΘ(θ + ηF (θ))− ΓΘ(θ)

η

is the left directional derivative of the function ΓΘ(θ) in the direction of F (θ). The purpose of the directional derivative
is to guarantee the update Υθ[−∇θL(θ, λ)] will point in the descent direction along the boundary of Θ when the θ-
update hits the boundary. Invoking the Step 2 in (Chow et al., 2017, Appendix A.2), one can know that dL(θ, ξ)/dt =
−∇θL(θ, λ)T ·Υθ[−∇θL(θ, λ)] ≤ 0 and the value will be non-zero if ∥Υθ[−∇θL(θ, λ)]∥ ≠ 0.

Let us consider the continuous system. For a given ξ, define a Lyapunov function

Lξ(θ) = L(θ, ξ)− L(θ∗, ξ)

where θ∗ is a local minimum point. Therefore, there exists a scalar r such that ∀θ ∈ Br(θ
∗) = {θ | ∥θ − θ∗∥ ≤ r},

Lξ(θ) ≥ 0. Moreover, according to (Bertsekas, 2016, Proposition 1.1.1), we obtain Υθ[−∇θL(θ, λ)]|θ=θ∗ = 0, which
means θ∗ is a stationary point. Due to the non-positive property of dL(θ, ξ)/dt and refer to the (Khalil & Grizzle, 2002,
Chapter 4), aforementioned contents show that for any given initial condition θ ∈ Br(θ

∗), the continuous trajectory of θ(t)
of (21) converges to θ∗, i.e. L(θ∗, ξ) ≤ L(θ(t), ξ) ≤ L(θ(0), ξ) for ∀t ≥ 0.

Finally, because of the following properties:

1. From (Chow et al., 2017, Proposition 17), ∇θL(θ, ξ) is a Lipschitz function in θ;

2. The step size schedules follow Assumption 5.4;

3. δθk+1 is a square Martingale difference sequence and δθϵ is a vanishing error;

4. θk ∈ Θ, which implies that sup
k

∥θk∥ <∞ almost surely,

one can invoke (Borkar, 2009, Theorem 2, Chapter 6) (multi-time scale stochastic approximation theory) to know that the
sequence {θk}, θk ∈ Θ converges almost surely to the solution of (21), which further converges almost surely to the locally
minimum point θ∗.

Time scale 3 (Convergence of ξ-update) The parameter ξ of multiplier is on the slowest time scale so we can assume that
during the ξ-update, the policy has converged to the local minimum point, i.e. ∥θk − θ∗(ξk)∥ = 0 and the safety value
has converged to a fixed quantity such that ∥Qh(s, a;ϕk)−Q

πθk

h (s, a)∥ = 0. With the continuity of ∇ξL(θ, ξ), we have
∥∇ξL(θ, ξ)|θ=θk,ξ=ξk −∇ξL(θ, ξ)|θ=θ∗(ξk),ξ=ξk∥ = 0 almost surely. Thus, the ξ-update can be expressed as:

ξk+1 = ΓΞ (ξk + β3(k)Qh(st, πθk(st);ϕk)∇ξλ(st)|ξ=ξk)
= ΓΞ

(
ξk + β3(k)(∇ξL(θ, ξ)|θ=θ∗(ξk),ξ=ξk + δξk+1)

) (22)
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where
δξk+1 = −∇ξL(θ, ξ)|θ=θ∗(ξk),ξ=ξk +Qh(st, πθk(st);ϕk)∇ξλ(st)|ξ=ξk

= −Es∼D[Q
πθ∗
h (s, πθ∗(s))∇ξλ(s; ξ)|ξ=ξk ] +Qh(st, πθk(st);ϕk)∇ξλ(st)|ξ=ξk

= −Es∼D[Q
πθ∗
h (s, πθ∗(s))∇ξλ(s; ξ)|ξ=ξk ]+

(Qh(st, πθk(st);ϕk)−Q
πθk

h (st, πθ(st)) +Q
πθk

h (st, πθ(st)))∇ξλ(st)|ξ=ξk .
Similar with θ-update, we need to prove the followings:

1. δξk+1 is square integrable because

E[∥δξk+1∥2 | Fξ,k] ≤ 2×max
s∈S

|h(s)|2 ×K6(1 + ∥ξk∥2∞) <∞

where K6 is a sufficiently large number.

2. Since ∥Qh(st, πθ(st);ϕk) − Q
πθk

h (st, πθ(st)∥∞ → 0 and Q
πθk

h (st, πθ(st))∇ξλ(st)|ξ=ξk is sample of
∇ξL(θ, ξ)|θ=θ∗(ξk),ξ=ξk , one can conclude that E[δξk+1 | Fξ,k] = 0 almost surely, where Fξ,k = σ(ξm, δξm,m ≤ k)
is the filtration of ξ generated by different independent trajectories.

Therefore, the ξ-update is a stochastic approximation of the continuous system

ξ̇ = ΥΞ[∇ξL(θ, ξ)|θ=θ∗(ξ)] (23)

with a Martingale difference error δξk, where ΥΞ is the left directional derivative similarly defined in Time scale
2. Analogous to Time scale 2 and in (Chow et al., 2017, Appendix B.2), dL(θ∗(ξ), ξ)/dt = ∇ξL(θ, ξ)|θ=θ∗(ξ)

T ·
ΥΞ[∇ξL(θ, ξ)|θ=θ∗(ξ)] ≥ 0, which is non-zero if ∥ΥΞ[∇ξL(θ, ξ)|θ=θ∗(ξ)]∥ ≠ 0.

For a local maximum point ξ∗, define a Lyapunov function

L(ξ) = L(θ∗(ξ), ξ∗)− L(θ∗(ξ), ξ).

There exists a scalar r′ such that for ∀ξ ∈ Br′(ξ
∗) = {ξ ∈ Ξ | ∥ξ − ξ∗∥ ≤ r′}, L(ξ) ≥ 0. Moreover, dL(ξ(t))/dt =

−dL(θ∗(ξ), ξ)/dt ≤ 0 and the equal sign only holds when ΥΞ[∇ξL(θ, ξ)|θ=θ∗(ξ)] = 0. This means ξ∗ is a stationary point.
One can invoke (Khalil & Grizzle, 2002, Chapter 4) and conclude that given any initial condition ξ ∈ Br′(ξ

∗), the trajectory
of (23) convergences to ξ∗, which is a locally maximum point.

Now with (1) {ξk} is a stochastic approximation to ξ(t) with a Martingale difference error; (2) the step size schedules in
Assumption 5.4; (3) the convex and compact property in projection and (4) ∇ξL(θ∗(ξ), ξ) is a Lipschitz function in ξ. we
can apply the multi-time scale stochastic approximation theory again and show that {ξk} converges to a local maximum
point ξ∗ almost surely, i.e. L(θ∗(ξ∗), ξ∗) ≥ L(θ∗(ξ), ξ).

Local Saddle Point. From Time scale 2 and 3 we know that L(θ∗(ξ∗), ξ∗) ≥ L(θ∗(ξ), ξ) and L(θ∗, ξ) ≤ L(θ, ξ). Thus,
L(θ∗, ξ) ≤ L(θ∗, ξ∗) ≤ L(θ, ξ∗), which means (θ∗, ξ∗) is a local saddle point of L(θ, ξ). With the saddle point theorem
(Bertsekas, 2016, Proposition 5.1.6), we finally come to the conclusion that π(·; θ∗) is a locally optimal policy to the RCRL
problem (RCRL).

C. Implementation Details of Algorithms
C.1. The Gap between Assumptions and Practical Implementations

Finite MDP. The boundness of S , A, and reward function can be guaranteed in common RL tasks. However, it is in most of
the cases that S and A are continuous such that they are infinite. One can discretize the space to get a finite one at the cost
of inaccuracy but we will keep the space continuous.

Parameterized approximation. A popular choice of function approximators is deep neural networks (NN) that is
differentiable w.r.t. its parameters. However, the general conclusion about the continuity and Lipschitz constant of a NN is
still an open problem (Kim et al., 2021). We still adopt NN in our experiments and leverage clipped gradient update (Zhang
et al., 2020) as the projection operator to keep the parameters of NNs in compact sets as mentioned in Section 4.2. Moreover,
a Lagrange multiplier network introduced by (Ma et al., 2021b) is used for statewise constraint-satisfaction.
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Step sizes. Actually we cannot make any schedule of learning rates to make their sum goes to infinity due to a limited
number of steps but the sum of the square of learning rates are finite. Furthermore, we utilize β1(k) > β2(k) > β3(k),∀k
to approximate the relationships among the learning rates.

Exploration issue for deterministic policies. Deterministic policies may lack exploration due to overestimation error
(Lillicrap et al., 2016; Fujimoto et al., 2018) but this can be mitigated by off-policy updates with a replay buffer, where the
learning and the exploration is treated independently. Hence, we construct a stochastic policy giving means and variances of
a multivariate Gaussian distribution but only take the means during evaluation.

C.2. Off-policy Parts

Implementation details about off-policy RL algorithms compared in safe-control-gym are covered in this section. For fair
comparison, all methods are implemented under the same code base, see (Guan et al., 2021). The only differences among
them is the constrained function and some hyperparameters, which will be explained in detail in the following content.

C.2.1. ALGORITHMS

RAC implementation is similar to common off-policy Lagrangian-based CRL methods but with a different constrained
function, i.e. the safety value function. As shown in Algorithm 1, at each update step gradients of the critic, the safety value
function, the actor and the multiplier are computed through samples collected from the environment. The actor is updated
on an intermediate frequency and the multiplier at the slowest frequency, correspond to Assumption 5.4.

SAC-Lagrangian is a SAC-based implementation of RCPO (Tessler et al., 2019). The constraint imposed on the RL
problem is J π

c = Es∼D,a∼π[Q
π
c (s, a)] ≤ η, where Qπc (s, a) =

∑
t γ

tc(st|s0 = s, a0 = a, π) and η is the constraint
threshold. Bsecause the constraint is about expectation rather than statewise, the multiplier λ is a scalar here, but updated
with dual ascent similarly with (10).

SAC-Reward Shaping is a SAC-based implementation of fixed penalty optimization (FPO) mentioned in (Achiam et al.,
2017; Tessler et al., 2019). It only adds an additional term in the reward function to punish constrain violation, without
any constrained optimization approaches. The reward function during training is modified into r′(s, a) = r(s, a)− ρh(s),
where ρ > 0 is a fixed penalty coefficient. Then the networks are updated through standard RL and here SAC. Choosing an
appropriate ρ is engineering-intuitive and sometimes the tuning process will be time-consuming.

SAC-CBF is inspired by CBF for safe control in control community (Dawson et al., 2021; Ma et al., 2021a; Choi et al., 2021).
The core idea is to make potential unsafe behaviors smooth out exponentially as the agent approaches the safe boundary.
The constrained function is called barrier function B(s, a) ≜ ḣ(s) + µh(s) ≤ 0 where µ ∈ (0, 1) is a hyperparameter.

SAC-SI leverages a human-designed safe index (SI) as the energy function. The control policy needs to keep the system
energy low (φ ≤ 0) and dissipate the energy when the system is at high energy (φ > 0) (Ma et al., 2022). Hence, the
constraint is ∆(s, a) ≜ φ(s′)−max{φ(x)− ηD, 0} ≤ 0, where ηD is a slack variable controlling the decent rate of SI. A
commonly used SI is in the form of φ(s) = σ − (−h(s))n + kḣ(s) (Zhao et al., 2021), which is chosen in this paper.

C.2.2. HYPERPARAMETERS

Table 1 shows the hyperparameters of algorithms evaluated in safe-control-gym.

C.3. On-policy Parts

Implementation details about on-policy RL algorithms including the on-policy version of RCRL benchmarked in Safety-Gym
are covered in this section. For fair comparison, all methods are implemented under the same code base, see (Achiam &
Amodei, 2019).

C.3.1. ALGORITHMS

RCO. The advantages function for reward value and safety value are denoted as Aπ and Aπh . Denote policy parameterization
as πθ, the loss function of RCO when policy parameters, θ = θk is

J (θ, ξ) = Es,a∼πθk

{
Aπθk (s, a) + λξ(s)A

πθk

h (s, a)
}

(24)
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Table 1. Off-policy Algorithms Hyperparameters in safe-control-gym

Parameter Value

Shared
Optimizer Adam (β1 = 0.99, β2 = 0.999)
Approximation function Multi-layer Perceptron
Number of hidden layers 2
Number of neurons in a hidden layer 256
Nonlinearity of hidden layer ELU
Nonlinearity of output layer of multiplier Softplus
Critic/Constrained function learning rate Linear annealing 1e-4 → 1e-6
Actor learning rate Linear annealing 2e-5 → 1e-6
Temperature coefficient α learning rate Linear annealing 8e-5 → 8e-6
Reward discount factor (γ) 0.99
Policy update interval (mπ) 4
Multiplier ascent interval (mλ) 12
Target smoothing coefficient (τ ) 0.005
Max episode length (N ) 360
Expected Entropy (H̄) -2
Replay buffer size 50,000
Replay batch size 512

RAC
Multiplier learning rate Linear annealing 6e-7 → 1e-7

SAC-Lagrangian
Multiplier learning rate 3e-4

SAC-SI
Multiplier learning rate Linear annealing 1e-6 → 1e-7
σ, n, k 0.1, 2, 1
ηD 0.1

SAC-CBF
Multiplier learning rate Linear annealing 1e-6 → 1e-7
µ 0.1

SAC-Reward Shaping
Critic learning rate Linear annealing 3e-5 → 3e-6
Actor learning rate Linear annealing 8e-5 → 8e-6
Policy update interval (mπ) 1
ρ 0.5

where

Aπθk (s, a) = min

(
πθ(a | s)
πθk(a | s)

Aπθk (s, a), g (ϵ, Aπθk (s, a))

)
, g(ϵ, A) =

{
(1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0

Aπθ

h (s, a) has a similar computation.

PPO-CBF, PPO-SI. Constraint functions of these baselines are the same as the off-policy version, only the base algorithm
is replaced with PPO (Schulman et al., 2017). Compared with Algorithm 2, only the computation of cost-to-go is replaced
with the energy-function-based versions.

C.3.2. HYPERPARAMETERS

See Table 2.
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Algorithm 2 Reachable Constrained Optimization (RCO)
Require: Initial policy parameters θ0, value and cost value function parameters ω0, ϕ0, multiplier network parameters ξ0

1: for k = 0, 1, 2, . . . do
2: Collect set of trajectories Dk = {τi} with policy πθk , where τi is a T -step episode.
3: Compute reward-to-go R̂t

.
=

∑T
i=t γ

iri and cost-to-go Ĥt
.
= maxt ht.

4: Compute advantage functions Aπθk , A
πθk

h , according to the value function Vωk
and safety value function Vhϕk

.
Compute the multiplier λξ.

5: Fit value function, safety value function by regression on mean-square error.
6: Update the policy parameters θ by minimizing (24).
7: Update the multiplier parameters ξ by maximizing (24).
8: end for

Table 2. Detailed hyperparameters of on-policy algorithm and baselines.

Algorithm Value
Shared

Optimizer Adam (β1 = 0.9, β2 = 0.999)
Approximation function Multi-layer Perceptron
Number of hidden layers 2
Number of hidden units per layer 64
Nonlinearity of hidden layer ELU
Nonlinearity of output layer (other than multiplier net) linear
Critic learning rate Linear annealing 3e−4 → 0
Reward discount factor (γ) 0.99
Cost discount factor (γc) 0.99
GAE parameters 0.95
Batch size 8000
Max episode length (N ) 1000
Actor learning rate Linear annealing 3e−4 → 0
Clip ratio 0.2
KL margin 1.2

RCO, PPO-CBF, PPO-SI
Nonlinearity of output layer, multiplier net softplus
Multiplier learning rate Linear annealing 1e−4 → 0

PPO-Lagrangian
Init λ 0.268(softplus(0))

PPO-SI
σ, n, k 0.1, 2, 1

PPO-CBF
µ 0.1

D. Details about Experiments
D.1. Quadrotor Trajectory Tracking in safe-control-gym

Details about the quadrotor trajectory tracking task and training will be covered in this section. The task for the quadrotor
is to track a counter-clockwise circle trajectory as accurately as possible while keeping its altitude z between [0.5, 1.5],
meaning the lower and upper bound of a tunnel. Note that only the next waypoint is accessible to the quadrotor at each time
step, so no planning or predictive control in advance exists in this task.

Elements of the RL setting. The state space S ⊆ R12 consists of the current state of the quadrotor x = [x, ẋ, z, ż, θ, θ̇]T

and the information of the next waypoint xref , thus st = [xt;x
ref
t ]. The action is the thrusts given by the two motors on
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both sides [T1, T2], whose value will be normalized to [0, 1]× [0, 1]. The system dynamics and information about the whole
trajectory are inaccessible to the agent. The circle center is at (0, 1) and its radius is 1. The circle is discretized into 360 points
so at each time step the reward function is the weighted sum of the difference between (x, a) and the reference (xref , aref),
specifically, r(st, at) = −(xt−xref

t )TQ(xt−xref
t )−(at−areft )TR(at−areft ) whereQ = diag(10, 1, 10, 1, 0.2, 0.2), R =

diag(1e− 4, 1e− 4). The constraint is 0.5 ≤ z ≤ 1.5.

Initialization. For better exploration and generality of the learned feasible set and policy, we initialize the quadrotor
uniformly in a rectangle in the xz-plane with uniformly distributed vertical and horizontal speed, pitch angle and pitch
angle rate, specific ranges in Table 3. The nearest discrete waypoint on the trajectory to the initial location of the quadrotor
is assigned as the start waypoint. In other words, the start waypoints change as the initial location changes. Quadrotor
initialized at the center will be assigned a start waypoint randomly.

Table 3. The Initialization Range of Each Variable

Variable Range

x [−1.5,+1.5]
ẋ [−1.0,+1.0]
z [0.25,+1.75]
ż [−1.5,+1.5]
θ [−0.2,+0.2]

θ̇ [−0.1,+0.1]

Training. At each time step, the quadrotor outputs the two torques based on its state, including the waypoint next to the
one in the last time step in the counter-clockwise direction. Then it receives the state transition, the reward and constraint
function or cost signal. The (s, a, r, s′, h, c) will be sent to the replay buffer. Simultaneously, the learner gets batches of
samples from the replay buffer and compute gradients to update the function approximators. The maximum length T of an
episode equals to the number of the discrete waypoints, i.e. 360. The episode will be ended and reset when the maximum
length is reached or the quadrotor flies out of the bounded region {s | |x| ≤ 2, |z| ≤ 3}.

Evaluation. The policy is evaluated for four runs at one time. It is initialized statically at (1, 1), (−1, 1), (0, 0.53), (0, 1.47)
respectively in a run where safety can be guaranteed by hovering so the four initial states are feasible. Then the average

return
∑T−1
t=0 r(st, at) and constraint violation rate

∑T−1
t=0 c(st)
T are taken as the performance and constraint-satisfaction

metrics, respectively.

Feasible sets slices. The approximated constrained function in each algorithm (Qπh(s, a), B
π(s, a),∆(s, a) in RAC, SAC-

CBF, SAC-SI, respectively) is a function f : R12 7→ R. Hence, we need to project the high-dimensional state to a lower one
to visualize the constrained function. Because the imposed constraints is about the z-coordinate, we choose to project each
state onto the xz-plane and observe the changing trend with varying ż. Coordinates in x- and z-axis are uniformly sampled
from the set {(x, z) | |x| < 1.5, 0.5 < z < 1.5} while ż is chosen among {−1, 0, 1} and ẋ, θ and θ̇ are all set to zero. The
tracking waypoint of each sample is the nearest one on the circle trajectory to the (x, z) sample. Then we generate state s
for a given (x, z) tuple according to the aforementioned rules and get action a from the trained policy. The constrained
value can be calculated with f(s, a).


