
Topology-Aware Network Pruning using Multi-stage Graph Embedding and
Reinforcement Learning

Sixing Yu 1 Arya Mazaheri 2 Ali Jannesari 1

Abstract

Model compression is an essential technique for
deploying deep neural networks (DNNs) on power
and memory-constrained resources. However, ex-
isting model-compression methods often rely on
human expertise and focus on parameters’ local
importance, ignoring the rich topology informa-
tion within DNNs. In this paper, we propose
a novel multi-stage graph embedding technique
based on graph neural networks (GNNs) to iden-
tify DNN topologies and use reinforcement learn-
ing (RL) to find a suitable compression policy.
We performed resource-constrained (i.e., FLOPs)
channel pruning and compared our approach with
state-of-the-art model compression methods. We
evaluated our method on various models from typ-
ical to mobile-friendly networks, such as ResNet
family, VGG-16, MobileNet-v1/v2, and Shuf-
fleNet. Results show that our method can achieve
higher compression ratios with a minimal fine-
tuning cost yet yields outstanding and compet-
itive performance. The code is open-sourced
at https://github.com/yusx-swapp/
GNN-RL-Model-Compression.

1. Introduction
The demand for deploying DNN models on edge devices
(e.g., mobile phones, robots, and self-driving cars) is expand-
ing rapidly. However, the increasing memory and comput-
ing power requirements of DNNs make their deployment on
edge devices a grand challenge. Thus, various custom-made
DNN models have been introduced by experts to accommo-
date a DNN model with reasonably high accuracy on mobile

1Department of Computer Science, Iowa State University, Iowa,
US 2Department of Computer Science, Technical University of
Darmstadt, Darmstadt, Germany. Correspondence to: Sixing
Yu <yusx@iastate.edu>, Arya Mazaheri <arya.mazaheri@tu-
darmstadt.de>, Ali Jannesari <jannesar@iastate.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

devices (Howard et al., 2019; Tan & Le, 2019; Zhang et al.,
2018b; Ma et al., 2018; Mehta et al., 2020; Huang et al.,
2018). In addition to mobile-friendly deep networks, model
compression methods such as network pruning, have been
considerably useful by introducing sparsity or eliminating
channels or filters. Nevertheless, it requires extensive knowl-
edge and effort to find the perfect balance between accuracy
and model size.

The main challenge of network pruning is to find the best
pruning schedule or strategy. Furthermore, a pruning strat-
egy for a given DNN is not transferable to a different
DNN, demanding a customized per-network pruning strat-
egy. Recently, various pruning methods (He et al., 2018b;
Yu et al., 2021) have been proposed to automatically com-
press DNNs. However, they either use manually defined
rules/embeddings, ignoring rich topological information, or
do not consider topology changes while model compression.
Moreover, since RL-based methods (Liu et al., 2020; He
et al., 2018b; Yu et al., 2021) usually use the pruned model
accuracy as RL agent’s reward function, a negative corre-
lation emerges between the compression ratio and reward.
Consequently, without any constraint, the RL agent tends
to search for a tiny compression ratio to get a better reward.
To address this problem and get the desired model size re-
duction, existing RL-based methods often need additional
heuristic algorithms to adjust the pruning ratio.

The computational representation of DNNs often contains
various patterns (a.k.a. motifs) repeated throughout the net-
work topology. For instance, MobileNetV2 involves 17
blocks, each following a similar graph and operation struc-
ture. The topology of such blocks can represent their states,
allowing us to exploit their redundancy level and impor-
tance. Such structural information inspired us to model a
given DNN as hierarchical computational graphs and pro-
pose multi-stage graph neural networks (m-GNN) for DNN
embedding. Additionally, we equipped m-GNN with a rein-
forcement learning agent (GNN-RL) to automatically search
for the compression policy (i.e., pruning ratios). To avoid
tiny compression ratios due to the negative correlation be-
tween the compression ratio and the RL agent’s reward, we
created a DNN-Graph environment for the GNN-RL agent.
Such an environment allows the agent to continuously com-

https://github.com/yusx-swapp/GNN-RL-Model-Compression
https://github.com/yusx-swapp/GNN-RL-Model-Compression

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

press the DNNs until it satisfies the model size constraint.
For each step of the compression, the DNN-Graph environ-
ment converts the compressed DNN to a graph. The graph
is the environment state input to the GNN-RL agent. Once
the compressed DNN satisfies the desired model size, the
DNN-Graph ends the search episodes and uses the pruned
DNN’s accuracy as a reward for the agent. We successfully
performed FLOPs-constraint network pruning on various
DNNs and achieved competitive results with the state-of-the-
arts pruning methods. More importantly, the experiments
showed that the learned topology of a given DNN could
be transferred to another DNN. Such a feature proves that
graph embedding is applicable to network pruning.

In essence, this paper makes the following contributions:

• A novel method for modeling DNNs as hierarchical
graphs to exploit their topological and structural infor-
mation for topology-aware network pruning.

• An efficient multi-stage GNN (m-GNN) to learn hier-
archical and transferable graph embeddings.

• A simpler yet efficient RL method based on the PPO
algorithm for adaptive network pruning.

• Competitive results with the state-of-the-art model
compression methods on various DNN models.

2. Related Work
Various studies focus on model compression and efficient
deployment of DNNs, such as network pruning (Han et al.,
2016; He et al., 2018b; Li et al., 2020a; Chin et al., 2020;
Guo et al., 2020; Ye et al., 2020; Zhuang et al., 2020; Tang
et al., 2020; Ning et al., 2020a; Chen et al., 2021; Lai et al.,
2021; Gao et al., 2021; Liu et al., 2021; Wang et al., 2021;
Chen et al., 2020), knowledge distillation (Hinton et al.,
2015), and network quantization (Gholami et al., 2021).
Within the scope of this paper, we mainly focus on struc-
tured network pruning (Anwar et al., 2017), as it is not
bound to special AI accelerators (Zhang et al., 2018a; Guo
et al., 2016). Uniform, shallow, deep empirical structured
pruning policies (He et al., 2017; Li et al., 2016), the hand-
crafted structured pruning methods, such as SPP (Wang
et al., 2017), FP (Li et al., 2016), and RNP (Lin et al., 2017)
fall into the structured pruning category. However, such
pruning policies often fail to work properly on new mod-
els and might lead to sub-optimal performance. Recently,
AutoML pruning algorithms (Li et al., 2020a; Chin et al.,
2020; Ye et al., 2020; Chen et al., 2020; Li et al., 2020c;
Chin et al., 2020; Lin et al., 2020; Li et al., 2020b) offered
better results with higher versatility, particularly the RL-
based methods (Liu et al., 2020; He et al., 2018b; Yu et al.,
2021). Liu et al. (Liu et al., 2020) proposed an ADMM-
based (Boyd et al., 2011) structured weight pruning method

and an innovative additional purification step for further
weight reduction. He et al. (He et al., 2018b) proposed AMC
and used RL to predict each hidden layer’s compression pol-
icy. However, they manually defined DNN embeddings,
such as the number of input/output channels, parameter size,
and FLOPs for the RL environment state vectors, and ig-
nored the neural network’s essential structural information.
Yu et al. (Yu et al., 2021) modeled DNNs as graphs and
introduced a GNN-based graph encoder-decoder to embed
DNNs’ hidden layers. Nevertheless, they performed layer-
wise pruning based on simple layer embeddings, ignoring
the global topology changes when pruning. Moreover, they
construct simplified computational graphs for DNNs and do
not take advantage of motifs in DNNs.

Graph Neural Networks (GNN). GNN and its vari-
ants (Kipf & Welling, 2017; Schlichtkrull et al., 2018) can
learn the graph embeddings and have been successfully used
for link prediction (Liben-Nowell & Kleinberg, 2007) and
node classification. However, these methods are mainly
focused on node embedding and are inherently flat, which
is inefficient to deal with the hierarchical data. In this pa-
per, we aim to learn the global topology information from
DNNs. Thus, we proposed multi-stage GNN (m-GNN),
which takes advantage of the repetitive motifs available in
DNNs. m-GNN considers the edge features and has a novel
learning-based pooling strategy to learn the global graph
embedding.

Graph-based Neural Architecture Search (NAS). Al-
though this paper is not directly related to NAS, it is an
active area of research wherein the computationally expen-
sive operations are replaced with a more efficient alterna-
tive (Li et al., 2021a;b; Yao et al., 2021; Wang et al., 2020).
Particularly, graph-based NAS methods apply GNN and
use graph-based neural architecture encoding schemes to
exploit neural network’s topology. They model neural ar-
chitecture’s search spaces as graphs and aim to search for
the best performing neural network structure (Guo et al.,
2019; Shi et al., 2019; Dudziak et al., 2021; Chatzianastasis
et al., 2021; Ning et al., 2020b). Such methods inspired us to
exploit compression policy from the topology information
of DNNs.

3. Approach
To prune a given DNN, the user provides the model size
constraint (i.e., FLOPs constraint). Although we perform
FLOPs-constraint filter pruning, our method is not limited
to FLOPs-constraint and can be easily extended to latency,
MACs, or sparsity constraint compression.

Figure 1 illustrates the DNN-Graph search episode, which
is essentially a model compression iteration. Red arrows
show that the process starts from the original DNN. The

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

Figure 1. An overview of DNN-Graph environment search
episode.

model size evaluator first evaluates the size of the DNN. If
the size is not satisfied, the graph generator converts the
DNN into a hierarchical computational graph. Then, the
GNN-RL agent leverages m-GNN to learn pruning ratios
from the graph. The pruner prunes the DNN with the prun-
ing ratios and begins the next iteration from the compressed
DNN. Each step of the compression will change the network
topology. Thus, the DNN-Graph environment reconstructs
a new hierarchical computational graph for the GNN-RL
agent corresponding to the current compression state. Once
the compressed DNN satisfies the size constraint, the eval-
uator will end the episode, and the accuracy evaluator will
assess the pruned DNN’s accuracy as an episode reward for
the GNN-RL agent. As opposed to the existing RL-based
methods (He et al., 2018b; Yu et al., 2021; Liu et al., 2020),
with the DNN-Graph environment, the GNN-RL can learn
to reach the desired model size in the reinforcement learning
stage. Hence, it prevents us from adjusting pruning ratios
and obtaining tiny compression ratios. In the following, we
will explain the details of the m-GNN and RL agent within
our approach.

3.1. Hierarchical Graph Representation

Computational graphs with their rich topological informa-
tion may involve billions of operations (He et al., 2016),
making them bloated and hard to understand. Neverthe-
less, such graphs often contain repetitive sub-graphs (a.k.a.
motifs), such as 3×3 convolutions or custom blocks in the
state-of-the-art networks. We aim to simplify computational
graphs by extracting the motifs and modeling them as hier-
archical computational graphs. Additionally, we coarsen the
graph by replacing primitive operations such as add, multi-
ple, and minus with machine-learning high-level operations
(e.g., convolution, pooling).

We formally model a given DNN as an l-level hierarchi-
cal computational graph, such that at the lth level (the top
level), we would have the hierarchical computational graph
set Gl = {Gl}, where each item is a computational graph
Gl = (V l, E l,Gl−1). V l is the graph nodes correspond-
ing to hidden states. E l is the set of directed edges with a
specific edge type associated with the operations. Lastly,
Gl−1 = {Gl−1

0 , Gl−1
1 , ...} is the computational graph set

at the (l − 1)-level as well as the operation set at layer l.
The hierarchical computation graph’s size depends on the

primitive operations we choose in G0. In this paper, we
opted for commonly used machine-learning operations as
the primitive operations for G0. As an example, Figure 2
illustrates the idea behind generating hierarchical compu-
tational graphs using a sample graph G, where the edges
are operations and the nodes are hidden states. In the input
graph, we choose three primitive operations G0 = {1×1
conv, 3×3 conv, 3×3 max-pooling} corresponding to the
three edge types. Then, we extract the repetitive subgraphs
(i.e., G1

1, G1
2 and G1

3), each denoting a compound operation,
and decompose the graph G into two hierarchical levels, as
shown in Figure 2 (b) and (c).

In practice, a 2-layer hierarchy is suitable for representing
a DNN when our target is a convolutional layer. In the
first layer, we represent the convolution operation and con-
struct motifs, and in the second layer, we use the motifs to
construct the DNN we aim to prune.

3.2. Multi-stage GNN

Standard GNN and its variants (Kipf & Welling, 2017) are
inherently flat (Ying et al., 2018). Since we model a given
DNN as an l−level hierarchical computational graph, we
propose a multi-stage GNN (m-GNN), which embeds the
hierarchical graph in l-stages according to its hierarchical
levels and analyzes the motifs. As depicted in Figure 2,
m-GNN initially learns the lower level embeddings and
uses them as the corresponding edge features in high-level
computation graphs. Instead of learning node embeddings,
m-GNN aims to learn the global graph representation. We
further introduced a novel learning-based pooling strategy
for every stage of embedding. With m-GNN, we only need
embedding once for each motif on the computational graph.
It is much more efficient and uses less memory than embed-
ding a flat computation graph with standard GNN.

Multi-stage embedding. For the computational graphs
Gt = {Gt

0, G
t
1, ..., G

t
Nt

} in the tth hierarchical level, we
embed the computational graph Gt

i = (V t
i , Et

i ,Gt−1), i =
{1, 2, ..., Nt} as:

eti = EncoderGNNt(G
t
i, Et−1), (1)

where eti is the embedding vector of Gt
i, Et−1 =

{et−1
j }, j = {1, 2, ..., Nt−1} is the embedding of the com-

putational graphs at level t− 1. We use Et−1 as edge fea-
tures at level t. For level-1, E0 contains the initial features
(e.g., one-hot, and random standard) of the primitive opera-
tions G0 that we manually select. In the hierarchical compu-
tational graphs, each edge corresponds to a computational
graph of the previous level and uses its graph embedding
as the edge feature. Furthermore, the graphs at the same
hierarchical level share the GNN’s parameter. At the top
level (lth level) of the hierarchical graph Gl = {Gl}, we
only have one computational graph and its embedding is the

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

Figure 2. A two-level hierarchical computational graph and m-GNN. The sub-graphs are painted with red, blue, and green colors.

j i

hj ek

Figure 3. Message passing from node j to node i.

DNN’s final embedding g:

g = EncoderGNNl(G
l, El−1) (2)

Message passing. In the multi-stage hierarchical embed-
ding, we consider the edge features. However, in the stan-
dard graph convolutional networks (GCN) (Kipf & Welling,
2017), it only passes the node features and the message
passing function can be formulated as follows:

hl+1
i =

∑
j∈Ni

1

ci
W lhl

j , (3)

where h is nodes’ hidden states, ci is a constant coefficient,
Ni is node i neighbors, and W l is GNN’s learnable weight
matrix. Instead of standard message passing, in the multi-
stage GNN, we add the edge features:

hl+1
i =

∑
j∈Ni

1

ci
W l(hl

j ◦ el−1
k), (4)

where el−1
k is the features of edge (i, j) and is also the

embeddings of the kth graph at level l−1, such that the edge
(i, j) corresponds to the operation Gl−1

k . The operation ◦
denotes the element-wise product.

Many message-passing strategies exist, such as MP-
GNN (Gilmer et al., 2017), in which they utilized a multi-
layer perceptron. In this work, assuming the scenario de-
picted in Figure 3, the message passing between hj and ek
should essentially capture the amount of information in the
node j (i.e., the node feature hj) that can flow to the node
i by using the factor ek. Thus, we selected element-wise
product as the message passing function to assure that the
same edge type can flow the same amount of information.
Additionally, element-wise product satisfies the associative
property in multi-stage message passing.

Learning-based pooling. A typical GNN aims to learn the
node embeddings of a graph (e.g., learning node representa-
tion and perform node classification). However, our goal is

to learn the graph representation of a given DNN. Thus, we
introduced a learning-based pooling method for multi-stage
GNN to learn the graph embedding from node embeddings.
We define the graph embedding e as:

e =
∑
i∈N

αihi +
∑
j∈D

αj 0⃗, (5)

where N is the set of nodes, hi is the ith node embed-
ding, D is the set of pruned nodes, and αi is the learnable
weight coefficient. In the multi-stage GNN, the computa-
tional graphs at the same hierarchical level share the GNN’s
parameters, but in the pooling, each computational graph
has its own learnable pooling parameters α. This parame-
ter contains shared weights before and after pruning, and
its dimension will not change. However, the number of
nodes is not fixed after pruning, causing matrix dimension
mismatch between the learning parameter α and the node
features h (i.e, |α| ≠ |h|). As a remedy, we keep the size of
h constant by replacing the pruned node’s features with a
zero vector.

Training. In GNN-RL, m-GNN is part of the actor-critic
network inside the RL’s policy network and will be updated
end-to-end using the PPO algorithm (see section 3.3 for
detail).

3.3. Network Pruning Using Reinforcement Learning
and m-GNN

We employed m-GNN together with reinforcement learning
(RL) to find suitable network pruning strategies. In the
following, we explain the details of the RL agent.

Environment states. We use the generated hierarchical
computational graph Gl for representing the DNN’s state
and the RL agent’s environment state. Since pruning the
model causes its underlying graph topology to change, the
DNN-Graph environment constantly updates the graph Gl

after each pruning step to help the RL agent find the pruning
policy on the current state.

Action space. The actions made by the RL agent are
pruning ratios within a continuous space. Specifically, the
GNN-RL agent’s action space A ∈ RN×1, where N is
the number of pruning layers, is the pruning ratios for hid-

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

den layers: A = [a1, a2, . . . , aN]T , where ai ∈ [0, 1) and
i = {1, 2, ..., N} is the pruning ratio for ith layer. GNN-RL
agent makes the actions directly from the topology states:

g = GraphEncoder(Gl), (6)

A = MLP (g), (7)

where Gl is the environment states, g is the graph represen-
tation, and MLP is a multi-layer perceptron neural network.
The graph encoder learns the topology embedding, and the
MLP projects the embedding into hidden layers’ pruning
ratios. To bound the network’s output within the action
space, we apply a clamping (a.k.a. clipping) function within
the range of [0,1) to the actions.

Reward function. The reward function is Rerr =
−Error, where Error is the compressed DNN’s Top-1
error on the validation set. In computing the reward, we do
not consider the model size, as the graph environment will
automatically stop the search episode when the RL agent
reaches the desired size.

RL policy. Various RL policies aim to search within a
continuous action space, such as proximal policy optimiza-
tion (PPO) (Schulman et al., 2017) and deep deterministic
policy gradient (DDPG) (Lillicrap et al., 2016). Although
various state-of-the-art methods use the DDPG RL policy
to search for the best pruning policy, we opted for the PPO
RL policy, as it provided much better performance. m-GNN
is part of the actor-critic network inside the GNN-RL agent
and will be updated end-to-end using the PPO algorithm.
Equation 8 shows the objective function that we used in the
PPO update policy. m-GNN is then trained by minimizing
the objective function using the gradient descent algorithm.

L(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1−ϵ, 1+ϵ)Ât)], (8)

where θ is the policy parameter of the RL agent, which
includes the m-GNN’s parameters, Êt denotes the empirical
expectation over time steps, rt(θ) is the ratio of the proba-
bility under the new and old policies, Ât is the estimated
advantage at time t, and ϵ is a clip hyperparameter, usually
set to 0.1 or 0.2.

4. Experimental Results
To show the effectiveness of the GNN-RL, we evaluate our
approach on various deep networks and compare our method
with the following methods:

• Traditional channel reduction methods, such as uni-
form empirical policies, SPP (Wang et al., 2017),
FP (Li et al., 2016), RNP (Lin et al., 2017), FPGM (He
et al., 2019), SFP (He et al., 2018a), DSA (Ning et al.,
2020a) and PFP (Liebenwein et al., 2020).

• AutoML methods, such as NetAdapt (Yang et al.,
2018), AutoPruner (Jian-Hao Luo, 2020), EagleEye (Li
et al., 2020a), AutoSlim (Yu & Huang, 2019), Meta-
Pruning (Liu et al., 2019), AMC (He et al., 2018b),
AGMC (Yu et al., 2021), and random search (RS) with
RL.

4.1. Implementation Details

Graph representation settings. We model a given DNN as
2-layer hierarchical graphs, the primitive operations G0 =
{k × k conv, depth-wise conv, point-wise conv, k × k max-
pooling}. When pruning, instead of using a one-hot vector,
we initialized the hierarchical computational graph’s node
and edge features using the standard distribution with a
feature size of 20.

RL agent settings. We use the Adam optimizer to update
the RL agent’s actor-critic network, where the learning rate
is 3 ×10−4 and the β = (0.9, 0.999). Moreover, we update
the policy every 100 search episodes, and in each updating
round, we train the RL agent for 20 epochs. The discount
factor is γ = 0.99, the clip parameter is 0.2, and the standard
deviation of actions is 0.5. Actor and critic networks contain
a graph encoder with (hidden, embedding) size of (50,50)
units and a multi-layer perceptron with a hidden size of 200
units. Although the output dimension of the actor-network
is the number of actions, the critic-network’s MLP has only
one output dimension.

Dataset settings. The experiment involves multiple datasets,
including CIFAR-10/100 (Krizhevsky & Hinton, 2009), and
ImageNet (Russakovsky et al., 2015). In the CIFAR-10/100
dataset, we sample 5K images from the test set as the vali-
dation set. In ImageNet (ILSVRC-2012), we split 10K im-
ages from the test set as the validation set. When searching,
the DNN-Graph environment uses the compressed model’s
Rerr on the validation set as the GNN-RL agent’s reward.

Network settings. Since ResNet contains residual con-
nections between convolutional layers, different pruning
ratio among residual connected layers leads to feature maps
mismatch. Instead of removing the residual connections,
we share the pruning ratio between residual connected lay-
ers (i.e., equal pruning ratio in residual connected layers).
For MobileNet networks, applying regular filter pruning on
depth-wise/point-wise convolution layers causes informa-
tion loss. Thus, instead of pruning such filters separately,
we only prune linear expansion layers and point-wise filters
within MobileNet blocks. Since residual connections are
between linear expansion layers in MobileNet-v2, we share
the linear expansion layers’ pruning ratio. Lastly, to prune
ShuffleNet networks, we consider its blocks together and
perform channel pruning inside the blocks. In a ShuffleNet
block, we do not prune the expansion layer (the output layer
of the block), which can preserve the number of output

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

Table 1. Top-1 accuracy results for pruned ResNets on CIFAR-10
and ShuffleNet on CIFAR-100. ∆Top-1 shows the top-1 accuracy
gap between the pruned and the original model.

Model Method FLOPs ↓ Top-1 ∆Top-1

Res110
AGMC 50% 93.08 −0.60

RS 50% 87.26 −6.42
PFEC 39% 93.30 −0.20
SFP 41% 93.38 +0.16

FPGM 52% 93.74 −0.60
GNN-RL 52% 94.31 +0.63

Res56

Uniform 50% 87.5 −5.89
AMC 50% 90.20 −3.19
FPGM 59% 93.26 −0.02
AGMC 50% 92.00 −1.39

EagleEye 50% 94.66 N/A
GNN-RL 54% 93.49 +0.10

Res32
AGMC 50% 90.96 −1.67

RS 50% 89.57 −3.06
SFP 42% 92.08 −0.55

FPGM 50% 91.93 −0.70
GNN-RL 51% 92.58 −0.05

Res20

Uniform 50% 84.00 −7.73
AMC 50% 86.40 −5.33

AGMC 50% 88.42 −3.31
SFP 42% 90.83 −1.37

FPGM 42% 91.09 −1.11
DSA 50% 91.38 −0.79

GNN-RL 51% 91.31 -0.42

Shuff-v1
AGMC 40% 65.26 −3.38

RS 40% 63.70 −4.94
GNN-RL 42% 67.10 −2.84

Shuff-v2
AGMC 40% 66.28 −2.57

RS 40% 65.74 −3.11
GNN-RL 46% 66.64 −2.21

channels.

Fine-tuning settings. As we observed a direct correla-
tion between the pre-/post-fine-tuning accuracy, when prun-
ing on CIFAR-10/100, we perform fine-tuning after prun-
ing. However, the validation accuracy on the ImageNet
dataset is sensitive to the compression ratio, particularly for
the MobileNet-v1/2. Without fine-tuning, high compres-
sion ratios lead to a considerable accuracy drop. Thus, on
MobileNet-v1/2 trained on ImageNet, we perform one addi-
tional fine-tuning epoch before we compute the reward to en-
sure that the RL agent gets a valuable reward (as depicted in
Figure 5, one epoch of fine-tuning can recover the majority
of accuracy loss). After pruning, a 150-epochs fine-tuning
process is applied to the pruned DNNs on ImageNet/CIFAR-
100, and a 100-epochs fine-tuning is applied on CIFAR-10.
We use the SGD optimizer, where the α = 5 × 10−3,
B = 512, and the weight decay is 5 × 10−4. In each epoch,
the cosine learning rate decay is applied.

Table 2. Top-1 accuracy results for pruned models on ImageNet.
∆Top-1 shows the top-1 accuracy gap

Model Method FLOPs ↓ Top-1 ∆ Top-1

VGG16

FP 80% 55.90 −14.6
RNP 80% 66.92 −3.58
SPP 80% 68.20 −2.30

AMC 80% 69.10 −1.40
AutoPruner 74% 69.20 −2.39
GNN-RL 80% 70.99 +0.49

Res18

FPGM 42% 68.41 -1.87
SFP 42% 67.10 -3.18

PFP-B 43% 65.65 -4.09
GNN-RL 51% 68.66 -1.10

Res50

AutoPruner 44% 73.84 -2.31
Meta-Pruning 50% 73.40 -3.20

AutoSlim 50% 74.00 -2.10
EagleEye 50% 74.20 N/A
GNN-RL 53% 74.28 -1.82

MB-v1

Uniform 25% 68.40 −2.20
NetAdapt 34% 69.10 −1.50

AMC 34% 70.50 −0.40
Meta-Pruning 35% 70.60 0

EagleEye 25% 70.90 N/A
GNN-RL 30% 70.70 −0.20

AMC 60% 68.90 −2.00
GNN-RL 60% 69.50 −1.40

MB-v2
AMC 27% 70.80 −1.00

Meta-Pruning 27% 71.20 −3.50
NetAdapt 25% 70.00 N/A
GNN-RL 42% 70.04 −1.83

4.2. Comparisons with State-of-the-art

Tables 1 and 2 compare the pruning efficiency of GNN-RL
with state-of-the-art methods trained on CIFAR-10/100 and
ImageNet datasets. Results show that GNN-RL achieves
competitive results compared with state-of-the-art methods
and even outperforms many of them either by higher accu-
racy or pruning ratio. Pruning ResNet-110/56 models even
caused higher test accuracy than the original model, which
could be due to over-fitting, as the accuracy on the training
set was 100%. To verify our assumption, we explored the
relationship between the FLOPs constraints and the accu-
racy. Figure 4 shows that the 66%-FLOPs Resnet-110 can
get the highest test accuracy. When the FLOPs reduction
ratio exceeds 0.66, the test accuracy drops intensively.

We further analyzed the redundancy and the importance of
ResNet layers. Figure 6 shows the hidden layers’ pruning
ratios on ResNet-110 and ResNet-56. GNN-RL agent au-
tomatically learns that the residual connection layers with
ResNet are redundant. Thus, it applies more pruning on such
layers. Moreover, GNN-RL’s results are inconsistent with
previous handcrafted pruning works, which assume that the
deeper layers are more important for final predictions and
tend to prune less. However, GNN-RL applies more prun-

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

0.15 0.29 0.4 0.59 0.66 0.77
FLOPs Ratio

93.3

93.4

93.5

93.6

93.7

93.8

93.9

Te
st

 A
cc

ur
ac

y

ResNet-110

Figure 4. Test accuracy of ResNet-110 using various FLOPs ratios.

0 5 10 15 20 25 30 35 40 45 50
Epochs

40
45
50
55
60
65
70
75

To
p-

1
Te

st
 A

cc
ur

ac
y

ResNet-50
ResNet-18
MobileNet-v2

Figure 5. Accuracy recovery after different fine-tuning epochs.

ing to the middle (layers 45 to 65) and deep (layers 90 to
109) layers within ResNet-110. Such an observation proves
that handcrafted rules are not generalizable to all DNNs,
particularly those with residual connections.

4.3. Ablation Study

Recoverability. A noteworthy feature of the models
pruned by GNN-RL is that they can rapidly recover from ac-
curacy loss. Figure 5 demonstrates the fine-tuning learning
curve for ResNet-50/18 and MobileNet-v2. We noticed that
after only one epoch of fine-tuning, we can recover from
the accuracy loss caused by pruning. We only needed less
than 50 epochs for further accuracy improvement, which is
far less than the number of fine-tuning epochs used by other
state-of-the-art methods.

Effectiveness of reinforcement learning policy. To the
best of our knowledge, existing RL-based pruning methods
(e.g., AMC) employ the DDPG policy for implementing
their RL agent. However, we found out that PPO policy
offers better performance and converges faster than DDPG.
Figure 7 shows the RL agents’ learning curve, comparing
GNN-RL implemented with DDPG and PPO with AMC.
In addition to better performance, PPO has less tunable
hyperparameters, making PPO easier to configure and tune.

Additionally, the RL policy network of GNN-RL is a tiny
neural network that contains a graph encoder and a two-
layer perceptron with limited action and environment space,

Table 3. ResNet-110 node classification results using GCN and
m-GNN.

Graph Nodes Edges Method Acc.%
Plain 394,412 581,332 GCN 83.50
Hierarchical 12,460 20,221 m-GNN 84.20

leading to efficient training and inference. For instance, in
the experiment conducted on CIFAR-10, GNN-RL could
converge within half a GPU hour using an Nvidia V100.

Topology transferability. The topology transferability
is a key factor to demonstrate whether GNN embeddings
are necessary or even applicable. We aim to prove that
GNN-RL can learn a transferable policy from a given
DNN topology. Intuitively, GNNs trained on a topology
can be transferred to a simpler topology. Thus, we first
trained GNN-RL on ResNet-56 and then transferred the
graph encoder to ResNet-44. When searching for the
pruning policy, we disabled the graph encoder’s gradients
and only updated the MLP component, which projects
the topology embeddings into the action space. Figure 8
shows the RL’s learning curve for direct pruning search
and the transferred policy. We noticed that the transferred
GNN-RL has a similar learning curve to direct search
on ResNet-44, indicating that the learned policy can be
reused for networks with similar topology. Such a feature
offers a rapid pruning process (1.12× faster for each
round) with much less computing time, as we only need
to update the MLP’s parameter. Under the transfer policy,
we achieved 93.23% accuracy with 51% FLOPs reduc-
tion comparable to the original ResNet-44, which is 93.10%.

The impact of hierarchical graph representation (m-
GNN). We realized that motifs frequently appearing in
computation graphs should have the same embedding. With
m-GNN, we only need to embed each motif once. However,
a plain GNN disregards this hypothesis, leading to repetitive
embeddings and incurring unnecessary costs. To further
prove our hypothesis, we experimented with the ResNet-
110’s computational graph and labeled the nodes according
to their hidden layer. Table 3 shows that hierarchical rep-
resentation causes to have smaller graph sizes and helps
our method to achieve a higher node classification accuracy
with fewer graph nodes and edges, saving a considerable
amount of computing resources. Moreover, using m-GNN
led to a faster convergence and as shown in Tables 1 and 2
resulted into more precise pruned models.

4.4. Inference Acceleration and Memory Saving

The inference and memory usage of compressed DNNs
are essential metrics to determine the possibility of DNN
deployment on a given platform. Thus, we evaluated the
pruned models’ inference latency using PyTorch 1.7.1 on an

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

0 10 20 30 40 50 60 70 80 90 100
Layer

0.0

0.1

0.2

0.3

0.4
Pr

un
in

g
Ra

tio

59%FLOPs ResNet-110

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
un

in
g

Ra
tio

49%FLOPs ResNet-56

Figure 6. The hidden layers’ pruning ratio of 59% FLOPs ResNet-110 and 49% FLOPs ResNet-56. The bars that tangent with the dot-line
are the residual connection layers.

0 20 40 60 80 100 120 140 160
Update Round

80

60

40

20

0

Av
er

ag
e

Re
wa

rd

GNN-RL (DDPG)
GNN-RL (PPO)
AMC (DDPG)

Figure 7. Learning curve of RL policies; DDPG vs. PPO.

Nvidia GTX 1080Ti GPU and recorded the GPU memory
usages. The ResNet-110/56/44/32/20, VGG-16, and Mo-
bileNet/ShuffleNet networks are evaluated on the CIFAR-10,
ImageNet, and CIFAR-100 datasets with batch size 32.

Table 4 shows the inference accelerations and memory
savings on our GPU. All the models pruned by GNN-RL
achieve noteworthy inference acceleration and GPU mem-
ory reductions. Particularly, for the VGG-16, the origi-
nal model’s GPU memory usage is 528 MB since it has a
very compact dense layer, which contributes little to FLOPs
but leads to extensive memory requirement. The GNN-RL
prunes convolutional layers and significantly reduces the
feature map size, consuming 141 MB less memory than the
original version. The inference acceleration on VGG-16 is
also noticeable, with 1.38× speed up on the ImageNet.

The inference acceleration for mobile-friendly DNNs may
seem relatively insignificant. However, such models are de-
signed for deployment on mobile devices. Thus, we believe
that our tested GPU, with its extensive resources, does not
take advantage of the mobile-friendly properties.

0 20 40 60 80 100 120 140
Update Round

80

70

60

50

40

30

20

10

Av
er

ag
e

Re
wa

rd

ResNet-44
ResNet-44 (transfer)

Figure 8. Topology transferability.

5. Conclusion
This paper proposed a neural network pruning method called
GNN-RL that utilizes graph neural networks and reinforce-
ment learning to exploit a topology-aware compression pol-
icy. We introduced the DNN-Graph environment that con-
verts compression states to a topology modification process
and allows GNN-RL to learn the desired compression ratio
without human intervention. To efficiently embed DNNs
and take advantage of motifs, we introduced m-GNN, a new
multi-stage graph embedding method. In our experiments,
GNN-RL is validated and verified on over-parameterized
and mobile-friendly networks. For over-parameterized mod-
els pruned by GNN-RL, ResNet-110/56, the test accuracy
even outperformed the original models, i.e. +0.63% on
ResNet-110 and +0.1% on ResNet-56. For mobile-friendly
DNNs, the 40% FLOPs MobileNet-v2 pruned by GNN-RL
with only 1.4% test accuracy loss. Additionally, all the
pruned models accelerated the inference speed and saved a
considerable amount of memory usage. Most importantly,
GNN-RL learns the topology transfer policy, enabling the
GNN-RL to prune various DNNs with transfer learning.

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

Table 4. THE LATENCY AND GPU MEMORY USAGE BEFORE

AND AFTER PRUNING.
MODEL FLOPS LATENCY GPU MEM.

VGG-16 100% 0.11ms 528MB
20% 0.08ms 387MB

RESNET-110 100% 1.04ms 6.9MB
48% 0.98ms 3.4MB

RESNET-56 100% 0.52ms 3.4MB
46% 0.43ms 1.7MB

RESNET-44 100% 0.37ms 2.7MB
49% 0.34ms 1.3MB

RESNET-32 100% 0.33ms 1.9MB
49% 0.26ms 942KB

RESNET-20 100% 0.20ms 1.1MB
49% 0.16ms 548KB

MOBILENET-V1 100% 0.22ms 13MB
79% 0.19ms 7.5MB

MOBILENET-V2 100% 0.34ms 9.3MB
79% 0.32ms 7.4MB

SHUFFLENET-V1 100% 0.45ms 4.1MB
58% 0.43ms 2MB

SHUFFLENET-V2 100% 0.51ms 5.4MB
54% 0.50MS 2.7MB

Acknowledgement
We would like to thank the research IT team of Iowa State
University for their continuous support in conducting the
experiments. Experiments presented in this paper were car-
ried out on the Pronto GPU cluster at ISU. This research
has been supported by publication award of the computer
science department at Iowa State University. Furthermore,
we received support from Software Campus through the Ger-
man Federal Ministry of Education and Research (BMBF),
and the state of Hesse as part of the NHR Program.

References
Anwar, S., Hwang, K., and Sung, W. Structured pruning

of deep convolutional neural networks. Proc. of the J.
Emerg. Technol. Comput. Syst., 13(3), February 2017.
ISSN 1550-4832.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein,
J. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Found.
Trends Mach. Learn., 3(1):1–122, January 2011. ISSN
1935-8237.

Chatzianastasis, M., Dasoulas, G., Siolas, G., and Vazir-
giannis, M. Graph-based neural architecture search with
operation embeddings. In Proc. of the IEEE/CVF In-

ternational Conference on Computer Vision (CVPR), pp.
393–402, 2021.

Chen, J., Chen, S., and Pan, S. J. Storage efficient and
dynamic flexible runtime channel pruning via deep re-
inforcement learning. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M. F., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, volume 33,
pp. 14747–14758. Curran Associates, Inc., 2020.

Chen, T., Ji, B., Ding, T., Fang, B., Wang, G., Zhu, Z.,
Liang, L., Shi, Y., Yi, S., and Tu, X. Only train once: A
one-shot neural network training and pruning framework.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,
and Vaughan, J. W. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 34, pp. 19637–19651.
Curran Associates, Inc., 2021.

Chin, T.-W., Ding, R., Zhang, C., and Marculescu, D. To-
wards efficient model compression via learned global
ranking. In Proc. of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020.

Dudziak, L., Chau, T., Abdelfattah, M. S., Lee, R., Kim, H.,
and Lane, N. D. BRP-NAS: Prediction-based NAS using
gcns, 2021.

Gao, S., Huang, F., Cai, W., and Huang, H. Network Pruning
via Performance Maximization. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 9270–9280, June 2021.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W.,
and Keutzer, K. A survey of quantization methods for
efficient neural network inference, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proc. of International conference on machine
learning, pp. 1263–1272. PMLR, 2017.

Guo, S., Wang, Y., Li, Q., and Yan, J. Dmcp: Differentiable
markov channel pruning for neural networks. In Proc.
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery
for efficient dnns. In Lee, D., Sugiyama, M., Luxburg, U.,
Guyon, I., and Garnett, R. (eds.), Proc. of the Advances
in Neural Information Processing Systems, volume 29,
pp. 1379–1387. Curran Associates, Inc., 2016.

Guo, Y., Zheng, Y., Tan, M., Chen, Q., Chen, J., Zhao,
P., and Huang, J. NAT: Neural architecture transformer
for accurate and compact architectures. In Proc. of the
Advances in Neural Information Processing Systems, vol-
ume 32, pp. 737–748. Curran Associates, Inc., 2019.

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. In Proc. of Interna-
tional Conference on Learning Representations (ICLR),
2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proc. of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for ac-
celerating very deep neural networks. In Proc. of the
IEEE International Conference on Computer Vision, pp.
1389–1397, 2017.

He, Y., Kang, G., Dong, X., Fu, Y., and Yang, Y. Soft
filter pruning for accelerating deep convolutional neural
networks. In International Joint Conference on Artificial
Intelligence (IJCAI), pp. 2234–2240, 2018a.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S.
AMC: AutoML for model compression and acceleration
on mobile devices. In Proc. of the European Conference
on Computer Vision (ECCV), pp. 784–800, 2018b.

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. Filter pruning
via geometric median for deep convolutional neural net-
works acceleration. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowl-
edge in a neural network. In Proc. of NIPS Deep Learning
and Representation Learning Workshop, 2015.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al.
Searching for mobilenetv3. In Proc. of the IEEE/CVF
International Conference on Computer Vision, pp. 1314–
1324, 2019.

Huang, G., Liu, S., Van der Maaten, L., and Weinberger,
K. Q. Condensenet: An efficient densenet using learned
group convolutions. In Proc. of the IEEE conference on
computer vision and pattern recognition, pp. 2752–2761,
2018.

Jian-Hao Luo, J. W. Autopruner: An end-to-end trainable
filter pruning method for efficient deep model inference.
Pattern Recognition, 2020.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In Proc. of the
International Conference on Learning Representations
(ICLR), 2017.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. 2009.

Lai, C.-I. J., Zhang, Y., Liu, A. H., Chang, S., Liao, Y.-L.,
Chuang, Y.-S., Qian, K., Khurana, S., Cox, D., and Glass,
J. Parp: Prune, adjust and re-prune for self-supervised
speech recognition. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 34, pp. 21256–21272. Curran Associates, Inc., 2021.

Li, B., Wu, B., Su, J., and Wang, G. Eagleeye: Fast sub-
net evaluation for efficient neural network pruning. In
Vedaldi, A., Bischof, H., Brox, T., and Frahm, J.-M.
(eds.), Proc. of the Computer Vision – ECCV 2020, pp.
639–654, Cham, 2020a. Springer International Publish-
ing. ISBN 978-3-030-58536-5.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
Pruning filters for efficient convnets, 2016.

Li, Y., Gu, S., Mayer, C., Gool, L. V., and Timofte, R.
Group sparsity: The hinge between filter pruning and
decomposition for network compression. In Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8018–8027, 2020b.

Li, Y., Gu, S., Zhang, K., Van Gool, L., and Timofte, R.
DHP: Differentiable meta pruning via hypernetworks,
2020c.

Li, Y., Hao, C., Li, P., Xiong, J., and Chen, D. Generic
neural architecture search via regression. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Process-
ing Systems, volume 34, pp. 20476–20490. Curran Asso-
ciates, Inc., 2021a.

Li, Z., Yuan, G., Niu, W., Zhao, P., Li, Y., Cai, Y., Shen, X.,
Zhan, Z., Kong, Z., Jin, Q., et al. Npas: A compiler-aware
framework of unified network pruning and architecture
search for beyond real-time mobile acceleration. In Proc.
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 14255–14266, 2021b.

Liben-Nowell, D. and Kleinberg, J. The link-prediction
problem for social networks. Journal of the American
Society for Information Science and Technology, 58(7):
1019–1031, 2007.

Liebenwein, L., Baykal, C., Lang, H., Feldman, D., and Rus,
D. Provable filter pruning for efficient neural networks.
In International Conference on Learning Representations,
2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In Proc. of the ICLR
(Poster), 2016.

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

Lin, J., Rao, Y., Lu, J., and Zhou, J. Runtime neural pruning.
In Proc. of the Advances in Neural Information Process-
ing Systems, pp. 2181–2191, 2017.

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., and
Shao, L. Hrank: Filter pruning using high-rank feature
map. In Proc. of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1529–1538, 2020.

Liu, N., Ma, X., Xu, Z., Wang, Y., Tang, J., and Ye, J.
AutoCompress: An automatic dnn structured pruning
framework for ultra-high compression rates. In Proc. of
the Artificial Intelligence Conference (AAAI), pp. 4876–
4883, 2020.

Liu, Y., Liu, L., Lin, C., Dong, Z., and Wang, W. Learnable
Motion Coherence for Correspondence Pruning. In Proc.
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3237–3246, June 2021.

Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.-T.,
and Sun, J. Metapruning: Meta learning for automatic
neural network channel pruning. In Proc. of the IEEE
International Conference on Computer Vision, pp. 3296–
3305, 2019.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. Shufflenet v2:
Practical guidelines for efficient cnn architecture design.
In Proc. of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

Mehta, S., Hajishirzi, H., and Rastegari, M. Dicenet:
Dimension-wise convolutions for efficient networks.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2020.

Ning, X., Zhao, T., Li, W., Lei, P., Wang, Y., and Yang, H.
DSA: More efficient budgeted pruning via differentiable
sparsity allocation. In Proc. of 16th European Computer
Vision Conference, pp. 592–607. Springer, 2020a.

Ning, X., Zheng, Y., Zhao, T., Wang, Y., and Yang, H. A
generic graph-based neural architecture encoding scheme
for predictor-based nas. In Proc. of European Conference
on Computer Vision, pp. 189–204. Springer, 2020b.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg,
R., Titov, I., and Welling, M. Modeling relational data
with graph convolutional networks. In Gangemi, A., Nav-
igli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L.,
Tordai, A., and Alam, M. (eds.), The Semantic Web, pp.

593–607, Cham, 2018. Springer International Publishing.
ISBN 978-3-319-93417-4.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms,
2017.

Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J. T., and Zhang,
T. Bridging the gap between sample-based and one-shot
neural architecture search with BONAS, 2019.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In Proc. of the Interna-
tional Conference on Machine Learning, pp. 6105–6114.
PMLR, 2019.

Tang, Y., Wang, Y., Xu, Y., Tao, D., XU, C., Xu, C., and Xu,
C. Scop: Scientific control for reliable neural network
pruning. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M. F., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 10936–
10947. Curran Associates, Inc., 2020.

Wang, H., Zhang, Q., Wang, Y., and Hu, R. Structured prob-
abilistic pruning for deep convolutional neural network
acceleration. British Machine Vision Conference, 2017.

Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin,
Y., and Han, S. Apq: Joint search for network architecture,
pruning and quantization policy. In Proc. of IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2075–2084, 2020.

Wang, Z., Li, C., and Wang, X. Convolutional neural net-
work pruning with structural redundancy reduction. In
Proc. of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 14913–14922, June
2021.

Yang, T.-J., Howard, A., Chen, B., Zhang, X., Go, A., San-
dler, M., Sze, V., and Adam, H. Netadapt: Platform-aware
neural network adaptation for mobile applications. In
The European Conference on Computer Vision (ECCV),
September 2018.

Yao, L., Pi, R., Xu, H., Zhang, W., Li, Z., and Zhang, T.
Joint-detnas: Upgrade your detector with nas, pruning
and dynamic distillation. In Proc. of IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 10170–10179, 2021.

Ye, M., Gong, C., Nie, L., Zhou, D., Klivans, A., and Liu,
Q. Good subnetworks provably exist: Pruning via greedy
forward selection. In III, H. D. and Singh, A. (eds.),
Proc. of the 37th International Conference on Machine
Learning, volume 119 of Proc. of Machine Learning
Research, pp. 10820–10830. PMLR, 13–18 Jul 2020.

Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. In Proc. of the 32nd Inter-
national Conference on Neural Information Processing
Systems, NIPS’18, pp. 4805–4815, Red Hook, NY, USA,
2018. Curran Associates Inc.

Yu, J. and Huang, T. Autoslim: Towards one-shot architec-
ture search for channel numbers, 2019.

Yu, S., Mazaheri, A., and Jannesari, A. Auto graph encoder-
decoder for neural network pruning. In Proc. of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 6362–6372, October 2021.

Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M.,
and Wang, Y. A systematic DNN weight pruning frame-
work using alternating direction method of multipliers.
ECCV, 2018a.

Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile
devices. In Proc. of the IEEE conference on computer
vision and pattern recognition, pp. 6848–6856, 2018b.

Zhuang, T., Zhang, Z., Huang, Y., Zeng, X., Shuang, K., and
Li, X. Neuron-level structured pruning using polarization
regularizer. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M. F., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 9865–
9877. Curran Associates, Inc., 2020.

