
GraphFM: Improving Large-Scale GNN Training via Feature Momentum

Haiyang Yu* 1 Limei Wang* 1 Bokun Wang* 2 Meng Liu 1 Tianbao Yang 2 Shuiwang Ji 1

Abstract
Training of graph neural networks (GNNs) for
large-scale node classification is challenging. A
key difficulty lies in obtaining accurate hidden
node representations while avoiding the neigh-
borhood explosion problem. Here, we propose a
new technique, named feature momentum (FM),
that uses a momentum step to incorporate his-
torical embeddings when updating feature repre-
sentations. We develop two specific algorithms,
known as GraphFM-IB and GraphFM-OB, that
consider in-batch and out-of-batch data, respec-
tively. GraphFM-IB applies FM to in-batch sam-
pled data, while GraphFM-OB applies FM to
out-of-batch data that are 1-hop neighborhood of
in-batch data. We provide a convergence analy-
sis for GraphFM-IB and some theoretical insight
for GraphFM-OB. Empirically, we observe that
GraphFM-IB can effectively alleviate the neigh-
borhood explosion problem of existing meth-
ods. In addition, GraphFM-OB achieves promis-
ing performance on multiple large-scale graph
datasets.

1. Introduction
Graph neural networks (GNNs) achieve promising perfor-
mance on many graph learning tasks, such as node clas-
sification (Kipf & Welling, 2017; Hamilton et al., 2017;
Velickovic et al., 2018; Liu et al., 2020), graph classifica-
tion (Xu et al., 2018; Gao & Ji, 2019; Gao et al., 2021),
link prediction (Zhang & Chen, 2018; Cai & Ji, 2020),
and molecular property prediction (Gilmer et al., 2017;
Liu et al., 2022a). In general, GNNs learn from graphs
by the popular message passing framework (Gilmer et al.,
2017). Specifically, we usually perform a recursive aggre-
gation scheme in which each node aggregates representa-

*Equal contribution 1Department of Computer Science & En-
gineering, Texas A&M University, TX, USA 2Department of
Computer Science, The University of Iowa, IA, USA. Correspon-
dence to: Shuiwang Ji <sji@tamu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

tions from all 1-hop neighbors. Various GNNs (Kipf &
Welling, 2017; Velickovic et al., 2018; Xu et al., 2018;
Li et al., 2019) mainly differ in the employed aggregation
functions. Such recursive aggregation scheme has been
shown to be effective for learning graph representations.
However, it leads to the inherent neighborhood explosion
problem (Hamilton et al., 2017), since the number of neigh-
bors grows exponentially with the depth of GNNs.

Due to such inherent problem, we have difficulties to ap-
ply GNNs to large-scale graphs. Notably, many real-world
graphs, such as citation networks, social networks, and
co-purchasing networks, are large-scale graphs (Hu et al.,
2021) with massive numbers of nodes and edges. Thus, it
is hard to obtain the complete computational graph, which
contains the exploded neighborhood, with limited GPU
memory when training on large-scale graphs. To tackle
this, efficient training algorithms (Huang et al., 2018; Gao
et al., 2018; Bojchevski et al., 2020; Chen et al., 2020a;
Huang et al., 2021; You et al., 2020; Li et al., 2021; Wan
et al., 2022; Liu et al., 2022b) have been developed to
update model parameters with reasonable computational
complexity and memory consumption. They aim to obtain
accurate hidden node representations and gradient estima-
tions while avoiding the neighborhood explosion problem.
The mainstream efficient training algorithms are sampling
methods. They perform node-wise, layer-wise, or graph
sampling to alleviate the neighborhood explosion problem.
However, sampling incurs unavoidable errors in estimation
on hidden node embedding and gradients. In section 3, we
formulate GNNs as recursive nonlinear functions and show
that the gradients of the sampling methods suffer from esti-
mation error due to the nonlinearity. In addition, establish-
ing a convergence guarantee of Adam-style algorithms is
another challenge for sampling based methods (Cong et al.,
2021).

In this work, we propose a novel technique, known as fea-
ture momentum (FM), to address these problems. FM ap-
plies a momentum step on historical node embeddings for
estimating accurate hidden node representations. Based
on FM, we develop two algorithms based on sub-sampled
node estimation and pseudo-full neighborhood estimation,
respectively. The first algorithm, known as GraphFM-IB,
applies FM after sampling the in-batch nodes. GraphFM-
IB samples the 1-hop neighbors of target nodes recursively

GraphFM: Improving Large-scale GNN training via Feature Momentum

and then updates historical embeddings of them with ag-
gregated embeddings from their sampled neighbors us-
ing a momentum step. The second algorithm, known
as GraphFM-OB, uses cluster-based sampling to draw in-
batch nodes and employs the FM to update historical em-
beddings of 1-hop out-of-batch nodes with the message
passing from in-batch nodes. The operations of GraphFM-
OB are given in Figure 1. GraphFM-IB was shown theo-
retically to converge to a stationary point with enough it-
erations and a constant batch size. GraphFM-OB is shown
to have some theoretical insight of possibly alleviating the
staleness problem of historical embeddings.

We perform extensive experiments to evaluate our meth-
ods on multiple large-scale graphs. Results show that
GraphFM-IB outperforms GraphSAGE and achieves com-
parable results with other baselines. Importantly, when
sampling only one neighbor, GraphFM-IB achieves simi-
lar performance as when large batch sizes are used, thus
alleviating the neighborhood explosion problem. We also
show that GraphFM-OB outperforms current baselines on
various large-scale graph datasets.

2. Related Work
GNNs are powerful methods for learning graph representa-
tions (Gori et al., 2005; Scarselli et al., 2008). Commonly
used GNNs include GCN (Kipf & Welling, 2017), GCNII
(Chen et al., 2020b), and PNA (Corso et al., 2020). Due
to the neighborhood explosion problem, full-batch train-
ing of GNNs on large-scale graphs incurs prohibitive GPU
memory consumption. Therefore, it is practically desir-
able to develop efficient training strategies on large-scale
graphs. Recently, several categories of sampling methods
have been proposed to reduce the size of the computational
graph during training, including node-wise, layer-wise, and
graph sampling methods.

Node-wise sampling methods uniformly sample a fixed
number of neighbors when performing recursive aggrega-
tion and usually learn model parameters using gradients on
a batch of nodes instead of all nodes. Such training strat-
egy is originally proposed in GraphSAGE (Hamilton et al.,
2017). Then VR-GCN (Chen et al., 2018b) integrates his-
torical embeddings with GraphSAGE to reduce the estima-
tion variance. Moreover, it provides a convergence anal-
ysis, which demonstrates that VR-GCN can converge to a
local optimum with infinite iterations. However, the analy-
sis assumes the unbiasedness of stochastic gradients, which
is usually unrealistic. In addition, although node-wise sam-
pling methods reduce memory requirement to some extend,
they still suffer from the neighborhood explosion problem.

Layer-wise sampling methods select a fixed number of
nodes in each layer according to their defined sampling

distribution. They overcome the neighborhood explosion
problem because the number of neighbors grows only lin-
early with depths. FastGCN (Chen et al., 2018a) performs
such sampling independently in each layer. In contrast,
LADIES (Zou et al., 2019) moves one step forward to con-
sider the dependency of sampled nodes between layers.
They both provide the unbiasedness and variance analy-
sis of node embedding for one-layer GNNs without non-
linear function. MVS-GCN (Cong et al., 2020) further ana-
lyzes multi-layer GNNs with nonlinearity. It formulates the
training of GNNs as a stochastic compositional optimiza-
tion problem. Since the stochastic estimator of the gradi-
ent is biased, a large batch size is required to eliminate the
bias and variance for the convergence guarantee. Layer-
wise sampling methods can effectively alleviate the mem-
ory bottleneck. Nonetheless, layer-wise sampling meth-
ods have incurred computational overhead since we have
to perform extensive sampling during training.

Graph sampling methods sample subgraphs or clusters to
construct minibatches before training. Note that we only
need to obtain such subgraphs or clusters once as a pre-
processing step. Specifically, GraphSAINT (Zeng et al.,
2019) samples nodes, edges or random walks to construct
subgraphs. SHADOW (Zeng et al., 2021) samples sub-
graphs according to PageRank scores of local neighbors for
each node. It builds subgraphs for each node and converts
a node classification task into a graph classification task.
ClusterGCN (Chiang et al., 2019) aims to reduce the ef-
fect of cutting graphs by spliting a graph into separate clus-
ters with clustering algorithms. GNNAutoScale (Fey et al.,
2021) proposes to incorporate historical embeddings of the
dropped edges among the clusters, thereby obtaining more
accurate full-batch neighborhood estimation.

Another orthogonal direction for large-scale graph training
is precomputing methods (Wu et al., 2019; Frasca et al.,
2020; Liu & Ji, 2022). They aggregate the multi-hop fea-
tures for each node on the raw input features by precom-
puting and then feed them into subsequent models. Since
the precomputing procedure does not involve any learnable
parameters, the training of each node is independent. They
are efficient but do not employ powerful GNNs with non-
linearity.

3. The Proposed Feature Momentum Method
In this section, we present the proposed methods. We
first introduce some notations, then present the motivation
of the proposed algorithmic design, and then discuss two
methods for improving GNN training.

Notations. Let V = {1, . . . , n} denote a set of nodes with
input features denoted by xv ∈ Rd0 for node v. For any
node v, we denote by Nv the neighboring nodes of v that

GraphFM: Improving Large-scale GNN training via Feature Momentum

have connections with v. Let hk
v ∈ Rdk denote the feature

vector of the v-th node at the k-th layer, where h0
v = xv and

hk
v ,∀k = 1, . . . ,K are recursively computed. Let W k de-

note the model parameters at the k-th layer. For simplicity,
we consider supervised learning tasks, where at the output
layer we optimize the following loss:

min
W1,...,WK+1

F (W) =
∑
v∈S

ℓ(W ;hK
v) (1)

where S ⊂ V denotes a subset of nodes that of interest for
supervised learning. Let Hk = [hk

1 , . . . , h
k
n] ∈ Rn×dk de-

note concatenated representations of all nodes at k-th layer.
We can write F (W) = fK+1(H

K) for some non-linear
function fK+1.

Motivation of Algorithmic Design. The feature represen-
tations of all nodes at each layer are recursively computed.
We can express Hk as

Hk = fk(H
k−1),

where fk is a parameterized non-linear function. As a re-
sult, we can write the optimization problem as a multi-level
nested function:

F (W) = fK+1 ◦ fK ◦ . . . ◦ f1(H0). (2)

The two challenges in solving GNN optimization prob-
lem are (i) the representation of a node at a higher layer
hk
v might depend on the representations of a large num-

ber nodes in the previous layer; (ii) not all nodes’ repre-
sentations can be re-computed at every iteration when the
total number of nodes is large. To this end, the GNN train-
ing is usually companioned with sampling of nodes at each
layer. However, using sub-sampled nodes to compute the
feature representations at each layer might lead to a large
optimization error when the sampled neighborhood of each
node is not large enough. Historical embeddings of non-
sampled neighboring nodes have been used to reduce this
error. However, depending on the mini-batch size, the his-
torical embeddings could be outdated and might also have
a large error. To address these issues, we introduce node-
wise momentum features. To motivate this idea, we con-
sider the following two-level functions:

F (w) = f1 ◦ f2(w).

We assume that f1, f2 and their gradients are expensive to
evaluate but unbiased stochastic versions are readily com-
puted. In particular, we let f1(·; ξ) and f2(·; ζ) denote the
stochastic versions of f1 and f2 depending on random vari-
able ξ and ζ, such that

E[f1(·; ξ)] = f1(·), E[∇f1(·; ξ)] = ∇f1(·)
E[f2(·; ζ)] = f2(·), E[∇f2(·; ζ)] = ∇f2(·)

The gradient of F (w) is given by ∇F (w) =
∇f2(w)⊤∇f1(f2(w)). An unbiased estimation is give by
∇F̂ (w) = ∇f2(w; ζ)⊤∇f1(f2(w); ξ). It is notable that if
f2(w) inside f1 is simply replaced by f2(w; ζ), it will lead
to a biased estimator due to non-linearity of f1 and hence
suffers from a large estimator error. To address this issue,
existing works for two-level stochastic compositional op-
timization problems have proposed to use the momentum
estimator (i.e., moving average) of f2(w) by

f̂2,t = (1− β)f̂2,t−1 + βf2(wt; ζ). (3)

While this idea seems straightforward in light of multi-level
stochastic compositional optimization, there are still sev-
eral challenges to be addressed in the customization for
GNN training: (i) the non-linear function fi in (2) does
not have an unbiased estimator except for fK+1; hence a
different perspective of decomposition is required by view-
ing fk(H

k−1) = σ(f̂k(H
k−1)), where σ is a simple de-

terministic activation function and f̂k(·) is a linear function
of input; (ii) we cannot obtain unbaised estimators for all
nodes in Hk−1; hence coordinate-wise sampling needs to
be considered for the analysis; (iii) if historical embeddings
of out-of-batch nodes are used, which do not give unbiased
estimator for each in-batch node, ad-hoc methods using the
momentum averaging for out-of-batch nodes need to be
developed; (iv) last but not least, how to provide theoret-
ical analysis (e.g., convergence analysis) for the proposed
methods by using Adam-style update, which is mostly used
for GNN training. To the best of our knowledge, no con-
vergence analysis of an Adam-style method has been given
for multi-level compositional optimization.

In the following two subsections, we will address these
issues. We consider two representative GNN training
methods, i.e., sub-sampled neighborhood estimation and
pseudo-full neighborhood estimation, where the former
uses only sub-sampled neighbors for estimating the fea-
ture representations of in-batch nodes, and the latter uses
all neighbors for estimating the feature representations of
in-batch nodes except that for the out-of-batch neighbors
historical embeddings are used. For sub-sampled neigh-
borhood estimation, we develop a stochastic method by us-
ing feature momentum and provide a convergence analysis
for the Adam-style method. For pseudo-full neighborhood
estimation, we develop an ad-hoc method on top of a state-
of-the-art method GNNAutoScale and also provide some
theoretical analysis for the estimation error.

3.1. Feature Momentum for In-Batch Nodes

Let us consider the computation of one node’s representa-
tion. A basic operator in GNN training is to compute new
feature embeddings of each node from its neighborhood
nodes using their lower level feature embeddings. This op-

GraphFM: Improving Large-scale GNN training via Feature Momentum

Algorithm 1 GraphFM-IB

Require: η, {β0,k}, β1, β2, h̃
k,0
v = 0,∀v ∈ V

Ensure: wT

1: for t = 1, ...T do
2: for k = 1, . . . ,K do
3: Draw a batch of nodes Dk

4: for v ∈ Dk do
5: Sample a neighborhood denoted by Bv

6: Compute h̃k,t
v according to (8)

7: Compute ĥk,t
v according to (9)

8: Normalize ĥk,t
v appropriately (in practice)

9: end for
10: end for
11: Compute the stochastic gradient estimator Gt by

Gt =
1

|DK |
∑
v∈Dk

∇ℓ(Wt; ĥ
K,t
v)

12: Compute vt+1
1 = (1− β1)v

t
1 + β1Gt

13: Compute vt+1
2 = (1− β2)v

t
2 + β2G

2
t

14: Update W t+1 = W t − η√
vt+1
2 +ϵ0

vt+1
1

15: end for

erator can be expressed by the following two steps:

hk
Nv

= Aggregatek({hk−1
u ,∀u ∈ N (v)}) (4)

hk
v = σ(W k · Concat(hk−1

v , hk
Nv

)), (5)

where the first step aggregates the representations of the
nodes in the immediate neighborhood of node v into a
single vector hk

N (v), and the second step concatenates the
node’s current representation hk−1

v , with the aggregated
neighborhood vector and passes it through a non-linear
layer with an activation function σ(·) and weights Wk. Of
particular interest, we consider the mean aggregator.

A({hk−1
u : u ∈ Nv ∪ {v}}) = 1

|Nv|+ 1

∑
u∈N (v)∪{v}

hk−1
u

hk
v = σ

(
W k · A({hk−1

u : u ∈ Nv ∪ {v}})
)
,

where A(·) denotes the mean operator. To tackle the first
challenge that involves a large neighborhood size, we use
feature momentum with stochastic sampling to estimate the
aggregated feature vector (before taking sigmoid) at the t-
th iteration. To this end, we let Bv ⊂ Nv denote a sub-
sampled neighborhood of node v, and let B̄v = Bv ∪ {v}.
Then, we estimate the aggregated feature vector by

h̃k,t
v = (1− β0,k)h̃

k,t−1
v + β0,kÂ({ĥk−1,t

u , u ∈ B̄v}), (6)

where β0,k ∈ (0, 1) is a momentum parameter, and
Â({hk−1

u , u ∈ B̄v}) denotes an unbiased estimator of

Algorithm 2 GraphFM-OB

Require: η, {β0,k}, β1, β2, h̃
k,0
v = 0,∀v ∈ V

Ensure: wT

1: for t = 1, ...T do
2: Draw a batch of nodes Dt

3: for k = 1, . . . ,K do
4: Compute h̃k,t

v for v ̸∈ Dt according to (11)
5: for v ∈ Dt do
6: Compute hk,t

v according to (12)
7: Normalize hk,t

v appropriately (in practice)
8: end for
9: end for

10: Compute the stochastic gradient estimator Gt by

Gt =
1

|Dt|
∑
v∈Dt

∇ℓ(Wt;h
K,t
v)

11: Compute vt+1
1 = (1− β1)v

t
1 + β1Gt

12: Compute vt+1
2 = (1− β2)v

t
2 + β2G

2
t

13: Update W t+1 = W t − η√
vt+1
2 +ϵ0

vt+1
1

14: end for

A({hk−1
u : u ∈ Nv ∪ {v}}). We can compute it by

Â({ĥk−1,t
u , u ∈ B̄v}) =

1

|Nv + 1|
ĥk−1,t
v (7)

+
|Nv|

|Nv|+ 1

1

|Bv|
∑
u∈Bv

ĥk−1,t
u .

To tackle the second challenge that computing h̃k
v for all

nodes v ∈ V is expensive, we only compute it for a sub-
sampled set of nodes denoted by Dk (in-batch nodes), i.e.,

h̃k,t
v = (8){
h̃k,t−1
v if v ̸∈ Dk

(1− β0,k)h̃
k,t−1
v + β0,kÂ({ĥk−1,t

u , u ∈ B̄v}) o.w.

With these momentum features, we can update the next
layer feature by

ĥk,t
v = σ(W t

k · h̃k,t
v). (9)

The above procedure will be repeated for K times for
computing the output feature representations ĥK,t

v for sub-
sampled v ∈ DK .

We present the detailed steps of the proposed method based
on sub-sampled neighborhood estimation in Algorithm 1,
to which we refer as GraphFM-IB. The model parameter
wt+1 is updated by the Adam-style update.

Convergence Analysis. Next, we provide convergence
analysis of GraphFM-IB. We show that GraphFM-IB con-
verges to a stationary solution after a large number of iter-
ations without using a large neighborhood size, which can

GraphFM: Improving Large-scale GNN training via Feature Momentum

Figure 1: Comparsion of GrpahFM-OB with GNNAutoScale. (a) shows the original graph with in-batch nodes, one-hop
out-of-batch nodes in blue and orange, respectively. (b) denotes the forward propagation in GNNAutoScale composed of
two steps. The fist step fetches the historical embeddings for the one-hop out-of-batch nodes. Then it saves the in-batch
nodes activation to their historical embeddings. Next, pseudo-full neighborhood propagation can be done to estimate the
node embeddings of in-batch nodes in the next layer. (c) is the forward procedures in GraphFM-OB. It contains four steps.
The first step is to calculate the message passing from the in-batch nodes to the out-batch nodes. Then we apply feature
momentum to update the historical embeddings of the one-hop out-of-batch nodes, and save them into the corresponding
historical embeddings. The third and last step is the same as the forward procedure in GNNAutoScale.

effectively avoid the neighbor explosion issue of existing
node-wise sampling methods for large-scale GNN training.
The detailed proof is provided in Appendix C.1.
Theorem 1. Under proper conditions, with η =
O(ϵK), β1 = O(ϵK), 0 < β2 < 1, β0,k = O(ϵK−k), T =
O(ϵ−(K+2)), GraphFM-IB ensures to find an ϵ-stationary
solution such that E[∥∇F (wτ)∥] ≤ ϵ for a randomly se-
lected τ ∈ {1, . . . , T}.

3.2. Feature Momentum for Out-of-Batch Nodes

In this subsection, we present a method based on GNNAu-
toScale by applying Feature Momentum to out-of-batch
nodes. To this end, we first describe GNNAutoScale (Fey
et al., 2021). It is based on pseudo-full neighborhood es-
timation that uses all neighbors for computing the new
feature representation of an in-batch node. However, not
all neighbors have updated their feature representations in
the previous layer due to that some are not in the sam-
pled batch. To address this issue, historical embeddings
of those out-of-batch nodes are used. Let Dt denote the
in-batch nodes. Then for each node v ∈ Dt, we denote
its neighborhood including itself by Nv = Nv ∪ {v}. We
can decompose it into two subsets, St

v = Nv ∩ Dt and
Ot

v = Nv \ St
v . In GNNAutoScale, the k-th layer embed-

ding of node v ∈ Dt is computed as:

ĥk,t
v = W t

k · A({hk−1,t
u : u ∈ St

v} ∪ {h̃k−1,t
u : u ∈ Ot

v})

hk,t
v = σ(ĥk,t

v) (10)

where h̃k−1,t
u denotes the fetched historical embedding of

the out-batch node u ∈ Ot
v . We denote by τu (τu < t) the

last iteration before t that u is sampled, i.e., u ∈ Dτu . Due
to the update rule of GNNAutoscale, it is worth noting that
the historical embedding h̃k−1

u of u in layer k − 1 is not
updated between iteration τu and t, i.e., h̃k−1,t

u = . . . =
h̃k−1,τu
u = hk−1,τu

u . Depending on the batch size and the
size of the graph, the last updated feature representation
of node u could happen a large number of iterations ago
τu ≪ t, hence h̃k−1,t

u = hk−1,τu
u might have a large esti-

mation error compared to hk−1,t
u . In practice, cluster-based

sampling has been shown to be helpful to reduce t−τu (Fey
et al., 2021).

To further mitigate this issue, we notice that for those in
out-of-batch (at layer k) such that their 1-hop neighbors are
in the sampled batch (at layer k − 1), we can use their in-
batch neighbors to update their historical embeddings using
moving average similar to that in (6). Then we update the
historical embedding h̃k,t

v for v /∈ Dt by

h̃k,t
v = (1− β0,k)h̃

k,t−1
v

+ β0,kσ(W
t
k · A({hk−1,t

u : u ∈ St
v})).

(11)

Indeed, we do not need to update h̃k,t
v for all v ̸∈ Dt. We

only need to consider those such that St
v ̸= ∅, v ̸∈ Dt.

Then, we can update hk,t
v for v ∈ Dt by

ĥk,t
v = A({hk−1,t

u : u ∈ St
v} ∪ {h̃k−1,t

u : u ∈ Ot
v})

hk,t
v = σ(W t

k · ĥk,t
v).

(12)

We present a formal description of the proposed method
GraphFM-OB in Algorithm 2. A computational graph of

GraphFM: Improving Large-scale GNN training via Feature Momentum

Table 1: Statistics and properties of the datasets. The “m” denotes the multi-label classification task, and “s” denotes single
label classification task.

Dataset # of nodes # of edges Avg. degree # of features # of classes Train/Val/Test

Flickr 89,250 899,756 10.0813 500 7(s) 0.500/0.250/0.250
Yelp 716,847 6,997,410 9.7614 300 50(m) 0.750/0.150/0.100
Reddit 232,965 11,606,919 49.8226 602 41(s) 0.660/0.100/0.240
ogbn-arxiv 169,343 1,166,243 6.8869 128 40(s) 0.537/0.176/0.287
ogbn-products 2,449,029 61,859,140 25.2586 100 47(s) 0.100/0.020/0.880

1 2 4 8 16 32
Neighbor size

0.93

0.94

0.95

0.96

F1
-m

icr
o

sc
or

e

2-layer GraphSAGE
2-layer GraphFM-IB + SAGE

(a) Comparison between GraphSAGE
and graphFM-IB + SAGE on Reddit.

1 2 4 8 16 32
Neighbor size

0.49

0.50

0.51
F1

-m
icr

o
sc

or
e

2-layer GraphSAGE
2-layer GraphFM-IB + SAGE

(b) Comparison between GraphSAGE
and graphFM-IB + SAGE on Flickr.

2 3 4 5 6
Number of layers

0.956

0.958

0.960

0.962

0.964

F1
-m

icr
o

sc
or

e

Neighbor size = 1
Neighbor size = 2

(c) Results for graphFM-IB + SAGE with
different number of layers and neighbor
sizes on Reddit.

Figure 2: Illustration of the difference between GraphSAGE and graphFM-IB + SAGE and the performance of graphFM-
IB + SAGE with different number of layers. Neighbor size denotes the sampled neighbor size for each node at every layer.

GraphFM-OB compred with GNNAutoScale is shown in
Figure 1. Some theoretical insight showing that the up-
dated hk,t

v in (12) by GraphFM-OB could lead to smaller
estimation error than the updated hk,t

v in (10) by GNNAu-
toScale can be found in Appendix B.

4. Experiments
Datasets. We evaluate our proposed algorithms GraphFM-
IB and GraphFM-OB with extensive experiments on the
node classification task on five large-scale graphs, includ-
ing Flickr (Zeng et al., 2019), Yelp (Zeng et al., 2019), Red-
dit (Hamilton et al., 2017), ogbn-arxiv (Hu et al., 2021)
and ogbn-products (Hu et al., 2021). They contains thou-
sands or millions of nodes and edges, and we summarize
the statistics of these datasets in Table 1. The detailed task
description of these datasets can be found in Appendix A.1.

Baselines. We compare with the following five baselines:
1. VR-GCN (Chen et al., 2018b), 2. FastGCN (Chen et al.,
2018a), 3. GraphSAINT (Zeng et al., 2019), 4. Clus-
terGCN (Chiang et al., 2019), 5. SIGN (Frasca et al., 2020).
They cover different categories of efficient algorithms on
large-scale graph training, including node-wise, layer-wise,
graph sampling and precomptuing methods. Comparison
and details about these baselines are provided in Appendix

A.2.

Software and Hardware. The implementation of our
methods is based on the PyTorch (Paszke et al., 2019), and
Pytorch_geometric (Fey & Lenssen, 2019). Our code is im-
plemented in the DIG (Dive into Graphs) library (Liu et al.,
2021), which is a turnkey library for graph deep learning
research and publicly available1. In addition, we conduct
our experiments on Nvidia GeForce RTX 2080 with 11GB
memory, and Intel Xeon Gold 6248 CPU.

4.1. Feature Momentum for In-Batch Nodes

Setup. We first apply our proposed GraphFM-IB algorithm
in the framework of GraphSAGE (Hamilton et al., 2017)
and conduct experiments on five large-scale graph datasets.
GraphSAGE is designed for large-scale graph learning and
provides a general framework with neighbor sampling and
aggregation. The aggregation is implemented in a graph
convolution layer, called SAGEConv. The main idea of the
neighbor sampling is to sample neighbors for each node to
avoid the memory issue caused by considering full neigh-
bors. In practice, the authors use a fixed-size, uniform sam-
pling function to sample neighbors for each node in each
layer. The fixed neighbor sizes can be different among lay-

1https://github.com/divelab/DIG/tree/dig/dig/lsgraph

https://github.com/divelab/DIG/tree/dig/dig/lsgraph

GraphFM: Improving Large-scale GNN training via Feature Momentum

Table 2: Comparison between our GraphFM-IB, GraphFM-OB and other baseline methods. The reported results of
GraphFM-IB have averaged over 5 random runs. The experiments of GraphFM-OB follow the setting of GNNAutoScale
to report the F1-micro scores with fixed random seeds for a fair comparison. The top performance scores are highlighted in
bold. Underline indicates that our methods achieve better performance compared to the corresponding baselines without
feature momentum.

Backbones Methods Flickr Reddit Yelp ogbn-arxiv ogbn-products

VR-GCN 0.482 ± 0.003 0.964 ± 0.001 0.640 ± 0.002 – –
FastGCN 0.504 ± 0.001 0.924 ± 0.001 0.265 ± 0.053 – –
GraphSAINT 0.511 ± 0.001 0.966 ± 0.001 0.653 ± 0.003 – 0.791 ± 0.002
Cluster-GCN 0.481 ± 0.005 0.954 ± 0.001 0.609 ± 0.005 – 0.790 ± 0.003
SIGN 0.514 ± 0.001 0.968 ± 0.000 0.631 ± 0.003 0.720 ± 0.001 0.776 ± 0.001

SAGE GraphSAGE 0.501 ± 0.013 0.953 ± 0.001 0.634 ± 0.006 0.715 ± 0.003 0.783 ± 0.002
GraphFM-IB 0.513 ± 0.009 0.963 ± 0.005 0.641 ± 0.001 0.713 ± 0.002 0.792 ± 0.003

GCN GNNAutoScale 0.5400 0.9545 0.6294 0.7168 0.7666
GraphFM-OB 0.5446 0.9540 – 0.7181 0.7688

GCNII GNNAutoScale 0.5620 0.9677 0.6514 0.7300 0.7724
GraphFM-OB 0.5631 0.9680 0.6529 0.7310 0.7742

PNA GNNAutoScale 0.5667 0.9717 0.6440 0.7250 0.7991
GraphFM-OB 0.5710 0.9712 0.6450 0.7290 0.8047

ers and the authors use a 2-layer GraphSAGE with sam-
pled neighbor sizes as 25 and 10. In the following part,
we use ‘GraphFM-IB + SAGE’ to denote our GraphFM-IB
method with SAGEConv. We explore the feature momen-
tum hyper-parameter β in the range from 0.1 to 0.9.

Results. We start by studying the effects of sampled neigh-
bor size on the performance of GraphSAGE and GraphFM-
IB + SAGE, and show that our proposed GraphFM-IB
can achieve competitive performance with smaller sampled
neighbor sizes. As shown in Fig. 2(a) and Fig. 2(b), the
performance for 2-layer GraphSAGE is highly related to
the sampled neighbor size. It requires to sample at least
8 neighbors per node to guarantee good performance. In
contrast, GraphFM-IB + SAGE achieves good results with
only 1 sampled neighbor. Thus we can reduce the sampled
neighbor size while obtaining competitive performance by
using feature momentum.

In the next step, we explore GNNs with more layers. Since
GrpahFM-IB can perform well with small sampled neigh-
bor sizes, we focus on the cases where the neighbor sizes
are 1 or 2. As shown in Fig. 2(c), models with more lay-
ers outperform the 2-layer one. Note that using more than
5 layers may hurt the performance since deep model may
need carefully designed architecture and training strategies,
which is another research problem (Liu et al., 2020; Li
et al., 2019).

To further evaluate the memory and time efficiency of
the proposed GraphFM-IB, we compare GraphSAGE and

GraphFM-IB with various neighbor sizes in Table 3. We
can observe that GraphFM-IB saves a lot of GPU mem-
ory and training time while achieving similar performance
as GraphSAGE, especially when the GNNs have many lay-
ers. For example, to achieve similar performance with four-
layer SAGE on Reddit, GraphSAGE with neighbor sizes
[25, 10, 10, 10] costs 10, 100M and 53 seconds per epoch,
while GraphFM-IB with neighbor sizes [1, 1, 1, 1] costs
2, 860M and 6.2 seconds per epoch. Note that [1, 1, 1, 1]
denotes sampling one neighbor at each layer in a 4-layer
GNN. In this case, GraphFM-IB only samples one neigh-
bor, thus alleviating the neighborhood explosion problem.
Besides, the incremental GPU memory mainly caused by
historical embeddings is acceptable. On Reddit, the incor-
poration of historical embedding costs 50M for two-layer
SAGE and 160M for four-layer SAGE with neighbor sizes
[1, 1, 1, 1].

Finally, we explore the sampled neighbor size in the set
{1,2,4,8} and the number of layers from 2 to 4. The test-
ing F1-micro scores for GraphSAGE and the model us-
ing GraphFM-IB are summarized in Table 2. The results
for GraphSAGE are taken from the referred papers and
the OGB leaderboards. The results show that using our
GraphFM-IB can consistently outperform GraphSAGE on
all datasets, indicating that feature momentum is helpful
for better feature estimation and improves performance for
large graphs. Note that GraphSAGE with GraphFM-IB
achieves almost the same results as GraphSAGE on ogb-
arxiv since the result of GraphSAGE is full-batch training

GraphFM: Improving Large-scale GNN training via Feature Momentum

Table 3: Comparison between with and without feature momentum of GraphSAGE in terms of model performance, GPU
memory consumption and running time per epoch on Reddit and Flickr. Neighbor sizes are the list of number of
neighbors sampled in each layer and the authors of GraphSAGE use the sampled neighbor sizes as 25 and 10.

Methods Neighbor sizes Reddit Flickr

GraphSAGE 2 layer full-batch OOM 0.513/4,860M/1.7s
GraphSAGE [25,10] 0.957/3,080M/6.5s 0.512/1,740M/1.6s
GraphSAGE [1,1] 0.931/2,250M/3.3s 0.490/1,310M/1.2s
GraphFM-IB + SAGE [1,1] 0.957/2,300M/3.9s 0.503/1,480M/1.4s
GraphSAGE [4,4] 0.955/2,320M/4.0s 0.507/1,390M/1.3s
GraphFM-IB + SAGE [4,4] 0.958/2,450M/4.2s 0.511/1,540M/1.5s

GraphSAGE 4 layer full-batch OOM 0.514/11,000M/5.2s
GraphSAGE [25,10,10,10] 0.962/10,110M/53s 0.514/6,480M/3.6s
GraphSAGE [1,1,1,1] 0.951/2,700M/5.2s 0.502/1,360M/1.7s
GraphFM-IB + SAGE [1,1,1,1] 0.962/2,860M/6.2s 0.513/1,700M/2.0s
GraphSAGE [2,2,2,2] 0.958/2,870M/5.8s 0.509/1,470M/1.8s
GraphFM-IB + SAGE [2,2,2,2] 0.963/3,130M/7.5s 0.513/1,900M/2.4s

with the GraphSAGE convolution layer provided by the
OGB team. We list the number here to keep consistent with
the value in OGB leaderboards and the GraphSAGE result
with neighbor sizes as 25 and 10 is 0.704 ± 0.001, which is
still worse than GraphFM-IB + SAGE.

4.2. Feature Momentum for Out-Batch Nodes

Setup. To evaluate our proposed GraphFM-OB algorithm,
we apply it to three widely used GNN backbones, including
GCN (Kipf & Welling, 2017), GCNII (Chen et al., 2020b)
and PNA (Corso et al., 2020). Then we conduct experi-
ments to evaluate the obatined models on the five large-
scale graphs. We explore the feature momentum hyper-
parameter β in the range from 0.1 to 0.9. We select the
learning rate from {0.01, 0.05, 0.001} and dropout from
{0.0, 0.1, 0.3, 0.5}. Due to the over-fitting problem on the
ogbn-products dataset, we set the edge drop (Rong et al.,
2019) ratio at 0.8 during training for this particular dataset.

Results. The testing F1-micro scores are shown in Table 2.

It can be observed that GraphFM-OB methods with differ-
ent GNN backbones outperform corresponding baselines
on four datasets. In addtion, GraphFM-OB shows enhance-
ment performance with GCNII on all five datasets. With
PNA as backbone, GraphFM-OB achieves the state-of-the-
art performance on the Flickr dataset. These results demon-
strate that GraphFM-OB, with using feature momentum to
alleviate the staleness of historical embeddings, can obtain
more accurate node embedding estimation.

As an exception, the implementation of GNNAutoScale
and GraphFM-OB on Yelp with GCN perform much worse
than the reported score 0.6294. Therefore, we omit the this

result in Table 2.

Measuring the staleness of historical embeddings. In
order to measure the staleness of the historical embed-
dings, we propose a new metric called staleness score. In-
tuitively, if the historical embeddings of nodes are bright
new without any staleness, they are exact the same as the
full-neighborhood propagation embeddings. The staleness
of the historical embeddings is the reason for the biased-
ness estimation of the pseudo full-neighborhood embed-
dings. Here we define the staleness score of node v at k-th
layer as Euclidean distance of its historical embedding at
layer k and full-neighborhood propagation embedding at
k-th layer. Formally,

Sk(v) = ∥h̄k
v − h̃k

v∥, (13)

where h̄k
v is the full-neighborhood propagation embedding

of node v at k-th layer.

Based on the staleness score of node v at layer k, we further
propose the staleness score for the layer k averaged over all
the nodes as

Sk =
1

|V |
∑
v∈V

Sk(v) (14)

Thus, the Sk can reflect the staleness of historical embed-
dings of all the node at layer k. In this way, we can compare
different methods with such metric to evaluate the staleness
of their historical embeddings.

We select the PNA as the backbone with 3, 4, 3 layers on
Flickr, ogbn-arxiv and Yelp, respectively. We split these
datasets into 24, 40 and 40 clusters respectively, and the
batch size is set to 1. For GraphFM-OB, we select fea-
ture momentum hyper-parameter β as 0.5, 0.3 and 0.3 for

GraphFM: Improving Large-scale GNN training via Feature Momentum

Table 4: The staleness scores of the historical embeddings

Datasets Layer GNNAutoScale GraphFM-OB

Flickr 1 3.8929 3.2046
2 3.2185 2.3873

ogbn-arxiv
1 8.2709 5.7088
2 12.5646 12.0062
3 2.0200 1.4884

Yelp 1 3.0186 3.2484
2 4.4013 3.8328

these three datasets respectively. We calculate the staleness
scores for the historical embeddings after the epoch that
achieves the best evaluation result.

The staleness scores are shown in Table 4. We can obvi-
ously find that the GraphFM-OB achieves smaller staleness
scores than GNNAutoScale in most cases, indicating that
GraphFM-OB can alleviate the staleness problem.

5. Conclusion
To obtain accurate hidden node representations, we pro-
pose feature momentum (FM) to incorporate historical em-
beddings in an Adam-update style. Based on FM, we
develop two algorithms, GraphFM-IB and GraphFM-OB,
with convergence guarantee and some theoretical insight,
respectively. Extensive experiments demonstrate that our
proposed methods can effectively alleviate the neighbor-
hood explosion and the staleness problems, while achiev-
ing promising results.

Acknowledgments
This work was supported in part by National Science
Foundation grant IIS-1908198 and TRIPODS grant CCF-
1934904 to Texas A&M University, and 2110545 and Ca-
reer Award 1844403 to University of Iowa.

References
Balasubramanian, K., Ghadimi, S., and Nguyen, A.

Stochastic multi-level composition optimization algo-
rithms with level-independent convergence rates. arXiv
preprint arXiv:2008.10526, 2020.

Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais,
M., Rózemberczki, B., Lukasik, M., and Günnemann, S.
Scaling graph neural networks with approximate pager-
ank. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, pp. 2464–2473, 2020.

Cai, L. and Ji, S. A multi-scale approach for graph link

prediction. In Proceedings of the 34th AAAI Conference
on Artificial Intelligence, pp. 3308–3315, 2020.

Chen, J., Ma, T., and Xiao, C. FastGCN: Fast learning
with graph convolutional networks via importance sam-
pling. In International Conference on Learning Repre-
sentations, 2018a. URL https://openreview.net/forum?
id=rytstxWAW.

Chen, J., Zhu, J., and Song, L. Stochastic training of graph
convolutional networks with variance reduction. In Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, pp. 941–949, 2018b.

Chen, M., Wei, Z., Ding, B., Li, Y., Yuan, Y., Du, X., and
Wen, J.-R. Scalable graph neural networks via bidirec-
tional propagation. Advances in neural information pro-
cessing systems, 33:14556–14566, 2020a.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In Proceedings
of the 37th International Conference on Machine Learn-
ing, pp. 1725–1735. PMLR, 2020b.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-GCN: An efficient algorithm for training
deep and large graph convolutional networks. In Pro-
ceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Cong, W., Forsati, R., Kandemir, M., and Mahdavi, M.
Minimal variance sampling with provable guarantees for
fast training of graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1393–1403,
2020.

Cong, W., Ramezani, M., and Mahdavi, M. On the
importance of sampling in training GCNs: Conver-
gence analysis and variance reduction. arXiv preprint
arXiv:2103.02696, 2021. URL https://openreview.net/
forum?id=Oq79NOiZB1H.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Velicković,
P. Principal neighbourhood aggregation for graph nets.
Advances in Neural Information Processing Systems, 33:
13260–13271, 2020.

Fey, M. and Lenssen, J. E. Fast graph representation learn-
ing with PyTorch Geometric. In ICLR Workshop on Rep-
resentation Learning on Graphs and Manifolds, 2019.

Fey, M., Lenssen, J. E., Weichert, F., and Leskovec, J. GN-
NAutoScale: Scalable and expressive graph neural net-
works via historical embeddings. In Proceedings of the
38th International Conference on Machine Learning, pp.
3294–3304. PMLR, 2021.

https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=Oq79NOiZB1H
https://openreview.net/forum?id=Oq79NOiZB1H

GraphFM: Improving Large-scale GNN training via Feature Momentum

Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bron-
stein, M., and Monti, F. SIGN: Scalable inception graph
neural networks. In ICML 2020 Workshop on Graph
Representation Learning and Beyond, 2020.

Gao, H. and Ji, S. Graph U-Nets. In Proceedings of the
36th International Conference on Machine Learning, pp.
2083–2092. PMLR, 2019.

Gao, H., Wang, Z., and Ji, S. Large-scale learnable graph
convolutional networks. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pp. 1416–1424. ACM, 2018.

Gao, H., Liu, Y., and Ji, S. Topology-aware graph pooling
networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(12):4512–4518, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Con-
ference on Machine Learning, pp. 1263–1272. PMLR,
2017.

Gori, M., Monfardini, G., and Scarselli, F. A new model
for learning in graph domains. In Proceedings. 2005
IEEE International Joint Conference on Neural Net-
works, 2005., volume 2, pp. 729–734. IEEE, 2005.

Guo, Z., Xu, Y., Yin, W., Jin, R., and Yang, T. A novel
convergence analysis for algorithms of the adam family.
arXiv preprint arXiv:2112.03459, 2021.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive rep-
resentation learning on large graphs. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pp. 1025–1035, 2017.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y., and
Leskovec, J. OGB-LSC: A large-scale challenge for
machine learning on graphs. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

Huang, Q., He, H., Singh, A., Lim, S.-N., and Benson,
A. Combining label propagation and simple models
out-performs graph neural networks. In International
Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=8E1-f3VhX1o.

Huang, W., Zhang, T., Rong, Y., and Huang, J. Adap-
tive sampling towards fast graph representation learning.
In Advances in Neural Information Processing Systems
(NIPS), 2018.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

Li, G., Muller, M., Thabet, A., and Ghanem, B. Deep-
GCNs: Can GCNs go as deep as CNNs? In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 9267–9276, 2019.

Li, G., Müller, M., Ghanem, B., and Koltun, V. Training
graph neural networks with 1000 layers. In International
conference on machine learning, pp. 6437–6449. PMLR,
2021.

Liu, M. and Ji, S. Neighbor2Seq: Deep learning on mas-
sive graphs by transforming neighbors to sequences. In
Proceedings of the 2022 SIAM International Conference
on Data Mining (SDM), pp. 55–63. SIAM, 2022.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural
networks. In Proceedings of the 26th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data
Mining, pp. 338–348, 2020.

Liu, M., Luo, Y., Wang, L., Xie, Y., Yuan, H., Gui, S., Yu,
H., Xu, Z., Zhang, J., Liu, Y., Yan, K., Liu, H., Fu, C.,
Oztekin, B. M., Zhang, X., and Ji, S. DIG: A turnkey li-
brary for diving into graph deep learning research. Jour-
nal of Machine Learning Research, 22(240):1–9, 2021.
URL http://jmlr.org/papers/v22/21-0343.html.

Liu, Y., Wang, L., Liu, M., Lin, Y., Zhang, X., Oztekin, B.,
and Ji, S. Spherical message passing for 3D molecular
graphs. In International Conference on Learning Repre-
sentations, 2022a. URL https://openreview.net/forum?
id=givsRXsOt9r.

Liu, Z., Zhou, K., Yang, F., Li, L., Chen, R., and Hu,
X. EXACT: Scalable graph neural networks training
via extreme activation compression. In International
Conference on Learning Representations, 2022b. URL
https://openreview.net/forum?id=vkaMaq95_rX.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. PyTorch: An imperative style, high-
performance deep learning library. Advances in Neural
Information Processing Systems, 32, 2019.

Rong, Y., Huang, W., Xu, T., and Huang, J. DropEdge: To-
wards deep graph convolutional networks on node clas-
sification. In International Conference on Learning Rep-
resentations, 2019.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

https://openreview.net/forum?id=8E1-f3VhX1o
http://jmlr.org/papers/v22/21-0343.html
https://openreview.net/forum?id=givsRXsOt9r
https://openreview.net/forum?id=givsRXsOt9r
https://openreview.net/forum?id=vkaMaq95_rX

GraphFM: Improving Large-scale GNN training via Feature Momentum

Wan, C., Li, Y., Wolfe, C. R., Kyrillidis, A., Kim, N. S., and
Lin, Y. PipeGCN: Efficient full-graph training of graph
convolutional networks with pipelined feature commu-
nication. In International Conference on Learning Rep-
resentations, 2022. URL https://openreview.net/forum?
id=kSwqMH0zn1F.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks.
In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2018.

You, Y., Chen, T., Wang, Z., and Shen, Y. L2-GCN: Layer-
wise and learned efficient training of graph convolutional
networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2127–
2135, 2020.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. GraphSAINT: Graph sampling based in-
ductive learning method. In International Conference
on Learning Representations, 2019.

Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich,
A., Kannan, R., Prasanna, V., Jin, L., and Chen, R. De-
coupling the depth and scope of graph neural networks.
Advances in Neural Information Processing Systems, 34,
2021.

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. Advances in Neural Information Pro-
cessing Systems, 31:5165–5175, 2018.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q.
Layer-dependent importance sampling for training deep
and large graph convolutional networks. Advances in
neural information processing systems, 2019.

https://openreview.net/forum?id=kSwqMH0zn1F
https://openreview.net/forum?id=kSwqMH0zn1F

GraphFM: Improving Large-scale GNN training via Feature Momentum

Appendix
A. Experiment Settings
A.1. Dataset Descriptions

We compare the results on the following five large-scale datasets. They cover many real world tasks, which are summarized
as follows. 1. classifying the image tags with image description and edges to images with same properties. (Flickr) 2.
classifying user types with their reviews and edges to their friends. (Yelp) 3. classifying the community of the posts with
the posts content and edges to the posts that have been commented by the same customer. (Reddit) 4. classifying the papers
with the abstract average embedding features and edges to their citation papers. (ogbn-arxiv) 5. classifying categories of
products on Amazon with the product description and edges to other products that are purchased together. (ogbn-products)
We follow the official split of these datasets to conduct our experiments.

A.2. Baseline Descriptions

We compare the results with five different baselines, including node-wise, layer-wise, subgraph sampling and precomputing
methods. We summarize the baselines as below. VR-GCN (Chen et al., 2018b) is a node-wise sampling method. Compared
to the GraphSAGE, it combines the historical embedding of one-hop neighbors and the estimated embedding of sampled
nodes to reduce the variance of the unbiased estimated target node embedding. FastGCN (Chen et al., 2018a) is a layer-
wise sampling method. For each layer, it will sample fixed number of nodes from the neighborhood union of target nodes
in the next layer with importance sampling to reduce the variance of unbiased estimated target node embeddings. Since
it will sample fixed number of nodes in each layer, the total number of sampled nodes will grow linearly. However, for
node-wise sampling method, each node will sample fixed number of neighbors from the previous layer. Thus, it will lead
to an exponentially growth of sampled nodes. ClusterGCN (Chiang et al., 2019) and GraphSAINT (Zeng et al., 2019)
are subgraph-sampling methods. ClusterGCN will combine fixed number of clusters to form the subgraphs to train the
model. GraphSAINT will take sampled edges or random walks to form subgraphs. Compared to the layer-wise sampling
method, once the subgraph is provided, the nodes in each layer are the same as the input subgraph. Therefore, the sampling
procedure can be done once before training, which can alleviate the overhead of sampling. SIGN (Frasca et al., 2020) is
a precomputing method. It computes the L-hop aggregated features on the raw input features first, then directly feed them
into MLPs to predict the labels. Because the precomputing procedure doesn’t contain any parameter, the training of each
node is independent.

B. Theoretical Insight of GraphFM-OB
Consider one layer of the graph neural network. The hk,t

v representation of a node v in the last layer by full-neighbordhood
forward propagation can be written as:

hk,t
v = σ(ĥk,t

v), ĥk,t
v = W t

k · A({hk−1,t
u : u ∈ N v}).

Instead of full-neighborhood propagation on every nodes, the GNNAutoScale algorithm samples a batch of nodes Dt and
approximate hk,t

v by hk,t
v , which is computed by incorporating the current embedding hk−1,t

u of in-batch node u ∈ St
v and

the historical embedding h̃k−1,t
u of out-batch node u ∈ Ot

v as follows

hk,t
v = σ(ĥk,t

v), ĥk,t
v = W t

k · A({hk−1,t
u : u ∈ St

v} ∪ {h̃k−1,t
u : u ∈ Ot

v}).

Note that h̃k−1,t
u = hk−1,τu

u , and the estimation error
∥∥∥hk,t

v − hk,t
v

∥∥∥ depends on the “staleness” of the historical embedding

hk−1,τu
u compared to the real embedding hk−1,t

u , where u ∈ Ot
v is an out-batch node and τu denotes the last iteration that

node u ∈ Ot
v is sampled, i.e. u ∈ Dτu . Proposition 1 provides an upper bound of the approximation error of one node v

by using GNNAutoScale under some conditions.

Proposition 1. Assume that the activation function σ(·) is Cσ-Lipschitz continuous and the aggregator A(·) is CA-

Lipschitz continuous, the weight W t
k is bounded as ∥W t

k∥ ≤ Ck. Then, the estimation error
∥∥∥hk,t

v − hk,t
v

∥∥∥ of GNNAu-

GraphFM: Improving Large-scale GNN training via Feature Momentum

toScale is upper bounded by its “staleness”. Formally,∥∥∥hk,t
v − hk,t

v

∥∥∥ ≤ CσCkCA
∑

u∈Ok,t
v

∥∥hk−1,τu
u − hk−1,t

u

∥∥
︸ ︷︷ ︸

❤

,

where τu denotes the last iteration that node u ∈ Ok,t
v is sampled, i.e. u ∈ Dτu .

Proof. Based on the definition, the estimation error of hk,t
v compared to h2,t

v can be upper bounded as∥∥∥hk,t
v − hk,t

v

∥∥∥ ≤ Cσ

∥∥W t
k ·
(
A({hk−1,t

u : u ∈ St
v} ∪ {hk−1,τu

u : u ∈ Ot
v})−A({hk−1,t

u : u ∈ N v})
)∥∥

≤ CσCk

∥∥A({hk−1,t
u : u ∈ St

v} ∪ {hk−1,τu
u : u ∈ Ot

v})−A({hk−1,t
u : u ∈ N v})

∥∥ ≤ CσCkCA
∑
u∈Ot

v

∥∥hk−1,τu
u − hk−1,t

u

∥∥ .

The proposition below explains why GraphFM-OB could be helpful to reduce the estimation error in some cases.
Proposition 2. Assume that the activation function σ(·) is Cσ-Lipschitz continuous and the aggregator A(·) is CA-

Lipschitz continuous, the weight W t
k is bounded as ∥W t

k∥ ≤ Ck. Then, the estimation error
∥∥∥hk,t

v − hk,t
v

∥∥∥ of GraphFM-OB
is upper bounded by∥∥∥h̃k−1,t

u − hk−1,t
u

∥∥∥
≤ CσCkCA

∑
u∈Ot

v

(1− β0,k−1)
|T t

u | ∥∥hk−1,τu
u − hk−1

u , t
∥∥+ |T t

u |∑
ι=1

(1− β0,k−1)
ι−1β0,k−1

∥∥∥hk−1,tιu
u − hk−1,t

u

∥∥∥

︸ ︷︷ ︸
❥

+ C2
σCkCk−1CA

∑
u∈Ot

v

|T t
u |∑

ι=1

(1− β0,k−1)
ι−1β0,k−1

∥∥∥A({hk−2,tιu
w : w ∈ Stιu

u })−A({hk−2,tιu
w : w ∈ N u})

∥∥∥

︸ ︷︷ ︸
❦

+ β0,k−1C
2
σCkCk−1CA

∑
u∈Ot

v

(∥∥A({hk−2,t
w : w ∈ St

u})−A({hk−2,t
w : w ∈ N u})

∥∥)
︸ ︷︷ ︸

❧

,

where τu (τu < t) is the last iteration before t that u is sampled, i.e. u ∈ Dτu . Besides, for each u ∈ Ot
v , there exists a

sub-sequence T t
u of {τu, τu + 1, . . . , t} satisfying Stιu

u ̸= ∅ for every ι = 1, . . . , |T t
u |, where tιu is the ι-th element in T t

u .
Remark 1. By comparing Proposition 1 of GNNAutoScale and Proposition 2 of GraphFM-OB, it can be seen that the
❥ term of GraphFM-OB improves upon the ❤ term of GNNAutoScale because h

k−1,tιu
u is less out-dated w.r.t. hk−1,t

u

compared to hk−1,τu
u . As a trade-off, GraphFM-OB also introduces the two extra terms ❦ and ❧, which could be controlled

if Su and N u has more common elements. To ensure this, one might replace the condition in line 8 of Algorithm 2 by
(v /∈ Dt) ∧ (|Dt ∩N v| > c), where c > 0 is a threshold.

Proof. According to the update rule of GraphFM-OB, we can derive that∥∥∥hk,t
v − hk,t

v

∥∥∥
=
∥∥∥σ (W t

k ·
(
A({hk−1,t

u : u ∈ St
v} ∪ {h̃k−1,t

u : u ∈ Ot
v})
))

− σ(W t
k · A({hk−1,t

u : u ∈ N v}))
∥∥∥

≤ CσCk

∥∥∥A({hk−1,t
u : u ∈ St

v} ∪ {h̃k−1,t
u : u ∈ Ot

v})−A({hk−1,t
u : u ∈ N v})

∥∥∥
≤ CσCkCA

∑
u∈Ot

v

∥∥∥h̃k−1,t
u − hk−1,t

u

∥∥∥ .

GraphFM: Improving Large-scale GNN training via Feature Momentum

We denote that τu (τu < t) is the last iteration before t that u is sampled, i.e. u ∈ Dτu . Besides, for each u ∈ Ot
v , there

exists a sub-sequence T t
u of {τu, τu + 1, . . . , t} satisfying Stιu

u ̸= ∅ for every ι = 1, . . . , |T t
u |, where tιu is the ι-th element

in T t
u . Thus, the update rule of historical embeddings in GraphFM-OB leads to

∥∥∥h̃k−1,t
u − hk−1,t

u

∥∥∥
=

∥∥∥∥(1− β0,k−1)h̃
k−1,t

|T t
u|−1

u
u + β0,kσ(W

t
k−1 · A({hk−2,t

w : w ∈ St
u}))− σ(W t

k−1 · A({hk−2,t
w : w ∈ N u}))

∥∥∥∥
≤ (1− β0,k−1)

|T t
u | ∥∥hk−1,τu

u − hk−1
u , t

∥∥+ |T t
u |∑

ι=1

(1− β0,k−1)
ι−1β0,k−1

∥∥∥hk−1,tιu
u − hk−1,t

u

∥∥∥
+ CσCk−1

|T t
u |∑

ι=1

(1− β0,k−1)
ι−1β0,k−1

∥∥∥A({hk−2,tιu
w : w ∈ Stιu

u })−A({hk−2,tιu
w : w ∈ N u})

∥∥∥
+ β0,k−1CσCk−1

∥∥A({hk−2,t
w : w ∈ St

u})−A({hk−2,t
w : w ∈ N u})

∥∥

C. Convergence Analysis of GraphFM-IB
C.1. Setting, Assumptions, and Lemmas

The task of training GNNs can be abstracted as following multi-level stochastic compositional optimization problem.

min
w∈RD

F (w), F (w) = fK+1 ◦ fK ◦ . . . fk . . . ◦ f1(w),

where f1 : RD 7→ Rnd1 , fk : Rndk−1 7→ Rndk , k = 2, . . . ,K, fK+1 : RndK 7→ R. Besides, each fk(·) ∈ Rndk , k =
1, . . . ,K can be splitted into n blocks of dk consecutive coordinates. We denote the i-th block of fk(·) as fk,i(·) ∈ Rdk .
We make the following assumption.

Assumption 1. Assume that fk,i is Lf -Lipschitz continuous while ∇fk,i is Lg-Lipschitz continuous for k = 1, . . . ,K.
Besides, fK+1 is Lf -Lipschitz continuous while ∇fK+1 is Lg-Lipschitz continuous.

Lemma 1. (Balasubramanian et al., 2020) Given Assumption 1, F is LF -smooth, where LF := L2K+1
f Lg

∑K+1
k=1

1
Lk

f

.

The full gradient of F (w) can be computed as

∇F (w) = ∇f1(w) . . .∇fK(yK−1)∇fK+1(yK), yk = fk ◦ . . . ◦ f1(w).

At each of the k-th layer (k = 1, . . . ,K), we sample a batch of nodes Bk ⊆ {1, . . . , n}. For each node i ∈ Bk, we
approximate the function value fk,i(·) and the Jacobian ∇fk,i(·) by using stochastic estimators f̂k,i(·) and ∇̂fk,i(·) by
sampling the neighborhood of node i. At the (K + 1)-th layer, we approximate ∇fK+1(·) by ∇̂fK+1(·).

Assumption 2. We assume that E
[
f̂k,i(·)

]
= fk,i(·), E

[∥∥∥f̂k,i(·)− fk,i(·)
∥∥∥2] ≤ σ2

f and E
[
∇̂fk,i(·)

]
= ∇fk,i(·),∥∥∥∇̂fk,i(·)

∥∥∥2 ≤ σ2
g for 1 ≤ i ≤ K. Besides, E

[
∇̂fK+1(·)

]
= ∇fK+1(·),

∥∥∥∇̂fK+1(·)
∥∥∥2 ≤ σ2

g .

GraphFM: Improving Large-scale GNN training via Feature Momentum

In each iteration, we update the model parameter w using the following rule.

ut
k,i =

{
(1− β0,k)u

t−1
k,i + β0,kf̂k,i(u

t−1
k−1,i), i ∈ Bt

k

ut−1
k,i , i /∈ Bt

k

, ut
k =

u
t
k,1
...

ut
k,n

 , k = 1, . . . ,K, ut
0 = wt, (15)

mt = (1− β1)m
t−1 + β1

(
K∏

k=1

ĝtk

)
∇̂fK+1(u

t
K), ĝtk =

n∑
i=1

I[i ∈ Bt
k]n

B
∇̂fk,i(u

t
k−1)Ik,i, (16)

vt = (1− β2)v
t−1 + β2

((
K∏

k=1

ĝtk

)
∇̂fK+1(u

t
K)

)2

, (17)

wt+1 = wt − η
mt

√
vt + ϵ0

, (18)

where Ik,i ∈ Rdk×ndk is the indicator matrix that only has one non-zero block (i.e., the i-th block) and B = |Bt
k|. Note

that only the sampled blocks in ĝtk could be non-zero while the other blocks are padded with zeros.

Remark 2. When specialized to the GNN training task, the described update rule is equivalent to GraphFM-IB (Algo-
rithm 1). The scaling factors nK

BK in mt and vt cancel each other out if we re-define m0,
√
v0, ϵ0 to be nK

BK times larger.

Assumption 3. There exist c1, cu > 0 such that cl ≤
∥∥∥ 1√

vt+ϵ0

∥∥∥ ≤ cu.

Lemma 2 (Lemma 5 in Guo et al. 2021). For η ≤ cl
2c2uLF

, we have:

F (wt+1) ≤ F (wt) +
ηcu
2

∥∥∇F (wt)−mt
∥∥2 − ηcl

2

∥∥∇F (wt)
∥∥2 − ηcl

4

∥∥mt
∥∥2 .

We use Ft to denote all randomness occurred up to (include) the t-th iteration of any algorithm. We define Φt :=

∥∇F (wt)−mt∥2, Υt
k :=

∥∥fk(uk−1
t)− ut

k

∥∥2, ∆t :=
∥∥∥∏K+1

k=1 ∇fk(u
t
k−1)−

(∏K
k=1 ĝ

t
k

)
f̂K+1(u

t
K)
∥∥∥2.

Lemma 3. For mt following (16), we have

E
[
Φt+1 | Ft

]
≤ (1− β1)Φ

t +
4η2c2uL

2
F

β1

∥∥mt
∥∥2 + 4β1K

(
K∑

k=1

C2
kΥ

t+1
k

)
+ β2

1C∆, (19)

where Ck := LK
f Lg(1 + Lf + . . .+ LK−k

f), C∆ :=
∑K

k=1

n2kL
2(K+1−k)
f σ2k

Bk +
n2Kσ2(K+1)

g

BK

Proof. Based on the update rule of mt, we have

E
[
Φt+1 | Ft

]
= E

[∥∥∇F (wt+1)−mt+1
∥∥2 | Ft

]
= E

∥∥∥∥∥∇F (wt+1)− (1− β1)m
t − β1

(
K∏

k=1

ĝtk

)
f̂K+1(u

t
K)

∥∥∥∥∥
2

| Ft

= E

[∥∥(1− β1)(∇F (wt)−mt) + (1− β1)(∇F (wt+1)−∇F (wt))

+β1

(
K+1∏
k=1

∇fk(u
t
k−1)−

(
K∏

k=1

ĝtk

)
f̂K+1(u

t
K)

)
+ β1

(
∇F (wt+1)−

K+1∏
k=1

∇fk(u
t
k−1)

)∥∥∥∥∥
2

| Ft

≤ (1− β1)Φ

t +
4η2c2uL

2
F

β1

∥∥mt
∥∥2 + 4β1E

∥∥∥∥∥∇F (wt+1)−
K+1∏
k=1

∇fk(u
t
k−1)

∥∥∥∥∥
2

| Ft

+ β2
1E
[
∆t+1 | Ft

]
.

GraphFM: Improving Large-scale GNN training via Feature Momentum

Note that ∥∥∥∥∥∇F (wt+1)−
K+1∏
k=1

∇fk(u
t
k−1)

∥∥∥∥∥ ≤ LK
f Lg

K∑
k=1

∥∥yt+1
k − ut+1

k

∥∥ ,
where yt+1

k := fk ◦ fk−1 . . . f1(w
t+1). Besides, we also have

∥∥yt+1
k − ut+1

k

∥∥ ≤
k∑

j=1

Lk−j
f

∥∥fj(ut+1
j−1)− ut+1

j

∥∥ .
Then, ∥∥∥∥∥∇F (wt+1)−

K+1∏
k=1

∇fk(u
t
k−1)

∥∥∥∥∥
2

≤ K

(
K∑

k=1

C2
kΥ

t+1
k

)
,

where Υt
k :=

∥∥fk(ut
k−1)− ut

k

∥∥2, Ck := LK
f Lg(1 + Lf + . . .+ LK−k

f).

Based on the definition of ∆t, we have

E
[
∆t+1 | Ft

]
= E

∥∥∥∥∥
K+1∏
k=1

∇fk(u
t+1
k−1)− ĝt+1

1

K+1∏
k=2

∇fk(u
t+1
k−1)

∥∥∥∥∥
2

| Ft

+ E

∥∥∥∥∥ĝt+1
1

K+1∏
k=2

∇fk(u
t+1
k−1)− ĝt+1

1 ĝt+1
2

K+1∏
k=3

∇fk(u
t+1
k−1)

∥∥∥∥∥
2

| Ft

. . .

+ E

∥∥∥∥∥
(

K∏
k=1

ĝt+1
k

)
∇fK+1(u

t+1
K)−

(
K∏

k=1

ĝt+1
k

)
∇̂fK+1(u

t+1
K)

∥∥∥∥∥
2

| Ft

≤

n2σ2
gL

2K
f

B
+

n4σ4
gL

2(K−1)
f L

2(K−1)
f

B2
+ . . .+

n2Kσ2K
g L2

f

BK
+

n2Kσ
2(K+1)
g

BK

=

K∑
k=1

n2kL
2(K+1−k)
f σ2k

Bk
+

n2Kσ
2(K+1)
g

BK︸ ︷︷ ︸
:=C∆

.

Lemma 4. For 0 < β0,k ≤ 1 and Υt
k :=

∥∥ut
k − fk(u

t
k−1)

∥∥2, we have

E
[
Υt+1

k

]
≤
(
1− β0,kB

2n

)
E
[
Υt

k

]
+ β2

0,knσ
2
f +

5η2c2un

2L2
f∥mt∥2

Bβ0,k
, k = 1

5β2
0,k−1n

2σ2
fL

2
f

β0,k
+

5β2
0,k−1nL

2
f

β0,k
E
[
Υt

k−1

]
, 2 ≤ k ≤ K.

(20)

Proof. According to (15), we can derive that

E
[
Υt+1

k

]
= E

[∥∥ut+1
k − fk(u

t+1
k−1)

∥∥2]
= E

[
n∑

k=1

∥∥∥ut+1
k,i − fk,i(u

t+1
k−1)

∥∥∥2]

= E

n∑

k=1

B

n

∥∥∥(1− β0,k)u
t
k,i + β0,kf̂k,i(u

t
k−1)− fk,i(u

t+1
k−1)

∥∥∥2︸ ︷︷ ︸
5

+

n∑
k=1

(1− B

n
)
∥∥ut

k,i − fk,i(u
t+1
k−1)

∥∥2︸ ︷︷ ︸
6

GraphFM: Improving Large-scale GNN training via Feature Momentum

The first term on the R.H.S. can be bounded as

E
[∥∥ 5

∥∥2] = E
[∥∥∥(1− β0,k)(u

t
k,i − fk,i(u

t
k−1)) + (fk,i(u

t
k−1)− fk,i(u

t+1
k−1)) + β0,k(f̂k,i(u

t
k−1)− fk,i(u

t
k−1))

∥∥∥2]
≤ (1− β0,k)E

[∥∥ut
k,i − fk,i(u

t
k−1)

∥∥2]+ 2L2
f

β0,k
E
[∥∥ut+1

k−1 − ut
k−1

∥∥2]+ β2
0,kσ

2
f .

If β ≤ n
B , we have

E
[∥∥ 6

∥∥2] ≤ (1 + β0,kB

2n

)
E
[∥∥ut

k,i − fk,i(u
t
k−1)

∥∥2]+ 3nL2
f

β0,kB
E
[∥∥ut+1

k−1 − ut
k−1

∥∥2] .
Then,

E
[
Υt+1

k

]
≤
(
1− β0,kB

2n

)
E
[
Υt

k

]
+

5n2L2
f

Bβ0,k
E
[∥∥ut+1

k−1 − ut
k−1

∥∥2]+ β2
0,knσ

2
f .

When k = 1, we have E
[∥∥ut+1

k−1 − ut
k−1

∥∥2 | Ft

]
=
∥∥wt+1 −wt

∥∥2 ≤ η2c2u ∥mt∥2. When 2 ≤ k ≤ K, consider that

ut+1
k−1,i = ut

k−1,i if i /∈ Bt+1
k−1.

E
[∥∥ut+1

k−1 − ut
k−1

∥∥2]
= E

 ∑
i∈Bt+1

k−1

∥∥∥ut+1
k−1,i − ut

k−1,i

∥∥∥2
 = β2

0,k−1E

 ∑
i∈Bt+1

k−1

∥∥∥f̂k−1,i(u
t
k−2)− ut

k−1,i

∥∥∥2

= β2
0,k−1E

 ∑
i∈Bt+1

k−1

∥∥∥f̂k−1,i(u
t
k−2)− fk−1,i(u

t
k−2)

∥∥∥2
+ β2

0,k−1E

 ∑
i∈Bt+1

k−1

∥∥fk−1,i(u
t
k−2)− ut

k−1,i

∥∥2

≤ β2
0,k−1Bσ2

f +
β2
0,k−1B

n
E
[∥∥fk−1(u

t
k−2)− ut

k−1

∥∥2] = β2
0,k−1Bσ2

f +
β2
0,k−1B

n
E
[
Υt

k−1

]
.

Thus, we have

E
[
Υt+1

k

]
≤
(
1− β0,kB

2n

)
E
[
Υt

k

]
+ β2

0,knσ
2
f +

5η2c2un

2L2
f∥mt∥2

Bβ0,k
, k = 1

5β2
0,k−1n

2σ2
fL

2
f

β0,k
+

5β2
0,k−1nL

2
f

β0,k
E
[
Υt

k−1

]
, 2 ≤ k ≤ K.

C.2. Proof of Theorem 1

Proof. Take expectation on both sides of Lemma 2 and telescope the recursion from iteration 1 to T .

T∑
t=1

E
[∥∥∇F (wt)

∥∥2] ≤ 2(F (wt)− F ∗)

ηcl
+

cu
cl

T∑
t=1

E
[
Φt
]
− 1

2

T∑
t=1

E
[∥∥mt

∥∥2] , (21)

where F ∗ is the global lower bound of F (w). Using the tower property of conditional expectation and telescoping (19)
leads to

T∑
t=1

E
[
Φt
]
≤

E
[
Φ1
]

β1
+

4η2c2uL
2
F

β2
1

T∑
t=1

E
[∥∥mt

∥∥2]+ 4K

T∑
t=1

K∑
k=1

C2
kΥ

t+1
k + β1TC∆. (22)

GraphFM: Improving Large-scale GNN training via Feature Momentum

Telescope (20) from iteration 1 to T .

T∑
t=1

E
[
Υt

k

]
≤

2nE
[
Υ1

k

]
Bβ0,k

+
2Tn2σ2

fβ0,k

B
+

10Tn3σ2
fL

2
fβ

2
0,k−1

Bβ2
0,k

+
10n2L2

fβ
2
0,k−1

Bβ2
0,k

T∑
t=1

E
[
Υt

k−1

]
, 2 ≤ k ≤ K,

T∑
t=1

E
[
Υt

k

]
≤

2nE
[
Υ1

k

]
Bβ0,k

+
2Tn2σ2

fβ0,k

B
+

10η2c2un
3L2

f

B2β2
0,k

T∑
t=1

∥∥mt
∥∥2 , k = 1.

We can further derive that

T∑
t=1

E
[
Υt

k

]
≤

k∑
ι=1

2nβ0,ιE
[
Υ1

ι

]
Bβ2

0,k

(
10n2L2

f

B

)k−ι

+

k∑
ι=1

2Tn2σ2
fβ

3
0,ι

Bβ2
0,k

(
10n2L2

f

B

)k−ι

+

k∑
ι=2

10Tn3σ2
fL

2
fβ

2
0,ι−1

Bβ2
0,k

(
10n2L2

f

B

)k−ι

+

(
10n2L2

f

B

)k−1
10η2c2un

3L2
f

B2β2
0,k

T∑
t=1

E
[∥∥mt

∥∥2] .
Then,

T∑
t=1

K∑
i=1

C2
kΥ

t+1
k

≤
K∑

k=1

k∑
ι=1

2C2
knβ0,ιE

[
Υ2

ι

]
Bβ2

0,k

(
10n2L2

f

B

)k−ι

+

K∑
k=1

k∑
ι=1

2C2
kTn

2σ2
fβ

3
0,ι

Bβ2
0,k

(
10n2L2

f

B

)k−ι

+

K∑
i=1

k∑
ι=2

10C2
kTn

3σ2
fL

2
fβ

2
0,ι−1

Bβ2
0,k

(
10n2L2

f

B

)k−ι

+

(
T+1∑
t=2

E
[∥∥mt

∥∥2]) K∑
k=1

C2
k

(
10n2L2

f

B

)k−1
10η2c2un

3L2
f

B2β2
0,k

.

Plug the inequality above into (22).

T∑
t=1

E
[
Φt
]
≤

E
[
Φ1
]

β1
+

4η2c2uL
2
F

β2
1

T∑
t=1

E
[∥∥mt

∥∥2]+(T+1∑
t=2

E
[∥∥mt

∥∥2]) K∑
k=1

C2
k

(
40Kn2L2

f

B

)k−1
10η2c2un

3L2
f

B2β2
0,k

+

K∑
k=1

k∑
ι=1

8KC2
knβ0,ιE

[
Υ2

ι

]
Bβ2

0,k

(
10n2L2

f

B

)k−ι

+

K∑
k=1

k∑
ι=1

8KC2
kTn

2σ2
fβ

3
0,ι

Bβ2
0,k

(
10n2L2

f

B

)k−ι

+

K∑
k=1

k∑
ι=2

40KC2
kTn

3σ2
fL

2
fβ

2
0,ι−1

Bβ2
0,k

(
10n2L2

f

B

)k−ι

+ β1TC∆.

Next, we plug the inequality above into (21) and divide T on both sides.

1

T

T∑
t=1

E
[∥∥∇F (wt)

∥∥2]

≤ 2(F (wt)− F ∗)

ηTcl
+

cuE
[
Φ1
]

β1Tcl
+

K∑
k=1

k∑
ι=1

8KC2
kncuβ0,ιE

[
Υ2

ι

]
clBβ2

0,kT

(
10n2L2

f

B

)k−ι

− 1

2T

T∑
t=1

E
[∥∥mt

∥∥2]+ 4η2c3uL
2
F

clβ2
1T

T∑
t=1

E
[∥∥mt

∥∥2]+(1

T

T+1∑
t=2

E
[∥∥mt

∥∥2]) K∑
k=1

C2
k

(
40Kn2L2

f

B

)k−1
10η2c3un

3L2
f

clB2β2
0,k

+

K∑
k=1

k∑
ι=1

8KcuC
2
kn

2σ2
fβ

3
0,ι

clBβ2
0,k

(
10n2L2

f

B

)k−ι

+

K∑
k=1

k∑
ι=2

40cuKC2
kn

3σ2
fL

2
fβ

2
0,ι−1

clBβ2
0,k

(
10n2L2

f

B

)k−ι

+
β1cuC∆

cl
.

We can make 1
T

∑T
t=1 E

[
∥∇F (wt)∥2

]
≤ ϵ2 if we set η = O(ϵK), β1 = O(ϵK), β2 ∈ (0, 1), β0,k = O(ϵK−k),

1 ≤ k ≤ K, and T = O(ϵ−(K+2)).

	Introduction
	Related Work
	The Proposed Feature Momentum Method
	Feature Momentum for In-Batch Nodes
	Feature Momentum for Out-of-Batch Nodes

	Experiments
	Feature Momentum for In-Batch Nodes
	Feature Momentum for Out-Batch Nodes

	Conclusion
	Experiment Settings
	Dataset Descriptions
	Baseline Descriptions

	Theoretical Insight of GraphFM-OB
	Convergence Analysis of GraphFM-IB
	Setting, Assumptions, and Lemmas
	Proof of Theorem 1

