Efficient PAC Learning from the Crowd with Pairwise Comparisons

Shiwei Zeng 1 Jie Shen 1

Abstract

We study crowdsourced PAC learning of threshold function, where the labels are gathered from a pool of annotators some of whom may behave adversarially. This is yet a challenging problem and until recently has computationally and query efficient PAC learning algorithm been established by Awasthi et al. (2017). In this paper, we show that by leveraging the more easily acquired pairwise comparison queries, it is possible to exponentially reduce the label complexity while retaining the overall query complexity and runtime. Our main algorithmic contributions are a comparison-equipped labeling scheme that can faithfully recover the true labels of a small set of instances, and a label-efficient filtering process that in conjunction with the small labeled set can reliably infer the true labels of a large instance set.

1. Introduction

The recent years have witnessed an unprecedented growth of demands in annotating large-scale data sets via crowdsourcing. On the empirical side, crowdsourcing has been serving as a successful tool to harness the crowd wisdom for annotating images (Deng et al., 2009) and natural language (Callison-Burch & Dredze, 2010), evaluating and debugging machine learning models (Chang et al., 2009), performing hybrid intelligent system diagnosis (Gomes et al., 2011; Tamuz et al., 2011), aiding our understanding in the conversation between human and intelligent systems (Doshi-Velez & Kim, 2017), to name a few (Vaughan, 2017).

Compared to the practical success, on the theoretical side, less is known about how to learn a hypothesis class with desired error rate from the noisy crowd annotations. This has motivated a flurry of recent studies on improving the quality of the annotations, such as pruning low-quality workers (Dekel & Shamir, 2009), adaptive task assignment (Khetan & Oh, 2016), and self-correction (Shah & Zhou, 2016).

Orthogonal to these approaches, in this paper, we consider the generalization ability of learning algorithms when instances are annotated by the crowd. In the standard probably approximately correct (PAC) learning model of Valiant (1984), it is assumed that there is a perfect hypothesis that incurs zero misclassification error (also known as the realizable setting), and the learner is always given correctly labeled data. In the context of crowdsourcing, the correct labels are not available but the learner has access to a large pool of workers and can give a task to multiple workers to aggregate the results, since some workers may behave adversarially (Karger et al., 2011; Ho et al., 2013).

For example, the learner is allowed to query \(k \) workers on any instance \(x \) to gather a collection of noisy labels \(Y(x) := \{y_1(x), \ldots, y_k(x)\} \) and may, for example, take the majority vote as the final label for \(x \). The goal is to find a hypothesis close to the perfect one without requesting too many crowd annotations. The crowdsourced PAC learning model was recently put forward by Awasthi et al. (2017b), where they showed that any hypothesis class that can be efficiently learned in the standard PAC model can also be efficiently learned from the crowd even facing a high level of label noise. More importantly, it was shown that a carefully designed crowdsourcing algorithm collects an amount of labels that is only within a constant multiplicative factor of that needed in the standard PAC setting, which is called a constant labeling overhead.

Generally speaking, the approach of Awasthi et al. (2017b) crucially explores the wisdom of the crowd by adaptively gathering a manageable number of labels that can be aggregated into a set of correct labels, thus reducing the problem to the standard PAC learning setting. In this work, we consider the broad setting that the learner may additionally request comparison tags of any pair of instances to reduce the labeling cost, since in practice it is relatively easier to compare than to label. For example, in a recommendation application, an annotator may be asked which one of two movies she likes more; this is an easier task than to provide an exact rating, say, from 1 to 10 (Fürnkranz & Hüllermeier, 2010; Park et al., 2015). In general, we may consider that there is an underlying real-valued function \(f^*(x) \) that indicates the user’s preference to an instance \(x \);
the label query mathematically reads as “is \(f^*(x) > 0? \)” and the comparison query on two instances \((x, x')\) reads as “is \(f^*(x) > f^*(x')? \)”. Such comparison-based models have been investigated in a variety of recent works in the context of PAC learning, aiming to mitigate the labeling cost or even break the label complexity lower bound known for the label-only setting; see, e.g. Kane et al. (2017); Hopkins et al. (2020b) and the references therein for algorithms designed under the non-crowdsourcing model.

In light of the above, our goal is to develop an efficient crowdsourcing algorithm that: 1) returns a hypothesis with low error rate, namely, the PAC guarantee; 2) significantly mitigates the labeling cost through the more easily acquired pairwise comparisons, say, an \(o(1) \) labeling overhead; and 3) achieves overall query complexity that is of the same order of that under the standard PAC learning model of Valiant (1984), i.e. an overall \(O(1) \) overhead.

Simultaneously achieving the three properties is highly non-trivial, since some natural approaches such as annotation followed by learning would lead to overhead blowing up with the sample size. In fact, we show that if the comparison overhead were not constrained, i.e. for each pair to be compared we can query as many workers as we want, then there would be a simple algorithm that achieves the first two properties, under the assumption that the majority of the crowd workers annotate according to the perfect hypothesis.

Theorem 1 (Theorem 5, informal). Let \(n \) be the sample size. Assume the majority of the crowd are perfect. Then any hypothesis class \(H \) can be learned from the crowd with \(o(1) \) labeling overhead and \(O(\log^2 n) \) comparison overhead as long as \(H \) is PAC-learnable in the standard setting.

One salient feature of the above result is that the labeling overhead becomes \(o(1) \), whereas in the label-only crowdsourced PAC model of Awasthi et al. (2017b) this bound is \(O(1) \). However, we note that the comparison overhead grows with the sample size \(n \). Even growing logarithmically, such phenomenon is counter-intuitive and undesirable in large-scale learning problems.

1.1. Main results: an interleaving algorithm

In this paper, we present a novel algorithm which well-controls the comparison overhead while retaining the labeling efficiency and PAC guarantee of Theorem 1.

Theorem 2 (Theorem 8, informal). There is an efficient crowdsourcing algorithm that learns \(H \) with \(o(1) \) labeling overhead and \(O(1) \) comparison overhead provided that the majority of the crowd are perfect.

In stark contrast to the sample-size-varying comparison overhead of Theorem 1, the constant overhead we obtain here ensures that no matter what the size of data set is, the annotation cost remains unchanged.

1.2. Overview of techniques

Our main algorithm is inspired by that of Awasthi et al. (2017b), where the high-level idea is to utilize a celebrated boosting framework of Schapire (1990) for interleaving annotation and learning. It works as follows: first, train a good hypothesis \(h_1 \) on a small set of correctly labeled instances; second, identify and label a set of instances that \(h_1 \) may misclassify and train another good hypothesis \(h_2 \); last, feed \(h_1 \) and \(h_2 \) to the boosting framework to obtain a hypothesis with the desired error rate.

Our main algorithmic contributions fall into new label-efficient processes to construct the data sets needed to train \(h_1 \) and \(h_2 \) by leveraging pairwise comparisons. We highlight the new techniques below and refer the readers to Section 4 for a detailed description.

1) **Comparison-equipped labeling.** The first ingredient of our algorithm is a randomized sorting algorithm (Algorithm 1) which can sort all the instances in a given set \(S \) with an \(O(|S| \cdot \log |S|) \) pairwise comparisons. It then suffices to perform binary search to find a “threshold instance” across which the labels shift, which consumes \(O(\log |S|) \) label queries. We run this routine on a small set \(S \) to train the hypothesis \(h_1 \) with desired error rate while keeping a low labeling and comparison overhead.

2) **Label-efficient filtering with pairwise comparisons.** The second ingredient, also the core component of our algorithm, is a label-efficient filtering process (Algorithm 4) to identify instances that \(h_1 \) may make mistakes on. We construct an interval characterized by two “support instances” \(x^- \) and \(x^+ \) with the properties that a) with high probability, \(x^- \) is negative and \(x^+ \) is positive; b) instances outside the interval \([x^-, x^+]\) are likely to be good cases to test the performance of \(h_1 \), in the sense that their true labels can be inferred by combining a few comparison tags from the crowd and the label of \(x^- \) or \(x^+ \). To this end, given an instance set \(S \), we sub-sample a set \(U \) and apply the comparison-equipped labeling to find proper support instances. The size of \(U \) is carefully chosen, such that i) it is large enough so that the size of the interval \([x^-, x^+]\) is small and thus most instances in \(S \) can be tested; and ii) it is not too large to blow up the overhead. We then show that the comparison complexity for identifying whether an instance is inside the interval, or outside that \(h_1 \) misclassifies, or outside that \(h_1 \) is correct on, is low. Since there are sufficient instances being tested, we are able to gather enough data to train \(h_2 \).

2. Related Works

We discuss three research lines that are closely related to this work. In particular, we clarify the crucial connection
and difference from noise-tolerant PAC learning, describe prominent crowd models and known results, as well as recent advances in PAC learning with comparisons.

Noise-tolerant learning. In real-world applications, the labels are often corrupted randomly or adversarially. To tackle such practical challenges, a variety of label noise models have been investigated in the literature, such as the random classification noise (Angluin & Laird, 1987), the Massart noise (Sloan, 1992; Massart & Nédélec, 2006), the Tsybakov noise (Tsybakov, 2004), and the agnostic/adversarial noise (Haussler, 1992; Kearns et al., 1992). It is, however, known that without distributional or large-margin assumptions on the instances, learning even the fundamental class of linear threshold functions is computationally hard (Feldman et al., 2006; Guruswami & Raghavendra, 2006; Diakonikolas & Kane, 2020). The only noise model that allows efficient and (almost) assumption-free algorithms is the random classification noise (Blum et al., 1996), yet it is recognized to be of little practical interest. Under distributional assumptions, a fruitful set of efficient PAC algorithms have been established, typically for the class of linear threshold functions; see, e.g. Kalai et al. (2005); Awasthi et al. (2017a); Zhang et al. (2020); Diakonikolas et al. (2020; 2021); Shen & Zhang (2021); Shen (2021a;b); Zhang & Li (2021) and the references therein. Notably, all these works approach the problem of learning linear threshold functions under the non-crowdsourcing scenario: for any given x, no matter how many times the learner queries its label, the obtained label is persistent even with noise. Orthogonal to these developed algorithms, we study the problem in the crowdsourcing setting and show that annotation aggregation enables a design of powerful PAC algorithms in the sense that our performance guarantee holds for general threshold functions without distributional assumptions on the instances (though we do need mild conditions on the crowd).

Learning from the crowd. Unlike traditional learning settings, a crowdsourced learner always has access to a large pool of workers who can provide annotations for a given instance. The noise in crowd mainly comes from the imperfection of the workers. There are several types of crowd models considered in the literature. For example, one fundamental model assumes that a certain fraction of the workers are perfect, i.e. always labeling according to the true hypothesis, and the remaining could behave adversarially (Karger et al., 2011; Awasthi et al., 2017b), sometimes called the hammer-spammer model. Other works, such as Welinder et al. (2010); Ho et al. (2013); Khetan & Oh (2016), studied a more general crowd model where no perfect labeler exists, and the probability that a worker makes mistake depends on the given instance. The trouble of the latter model is that the annotators are too powerful and the algorithms had to either require golden labels (Ho et al., 2013), or only showed weak guarantee that as the sample size n goes to infinity, the misclassification error is small on average (Karger et al., 2011; Khetan & Oh, 2016); this could be vacuous since it is possible that the label of \sqrt{n} instances can be entirely incorrect. To the best of our knowledge, the only known algorithm that offers PAC guarantee is due to Awasthi et al. (2017b) under the fundamental crowd model (and a Massart-noise model).

Learning with comparisons. Pairwise comparisons have been widely applied in practical problems such as preference learning in recommender systems (Fürnkranz & Hüllermeier, 2010; Park et al., 2015; Xu & Davenport, 2020) and ranking (Jamieson & Nowak, 2011; Heckel et al., 2019; Pananjady et al., 2020; Shah et al., 2019). More in line with this work is learning threshold functions with pairwise comparisons (Kane et al., 2017; Xu et al., 2017; Hopkins et al., 2020; Pananjady et al., 2020; Shah et al., 2019), though these works are based on the non-crowdsourcing setting. The main finding is that it is possible to break the label complexity lower bound of label-only learning algorithms while still achieving PAC guarantees. We show similar phenomenon for crowdsourced PAC learning but will incorporate the comparison queries in a quite different way.

3. Preliminaries

We study the problem of learning threshold functions, with access to both labels and pairwise comparison tags from the crowd. Let \mathcal{X} be the instance space, and $\mathcal{Y} := \{-1, 1\}$ be the label space. Let D be the joint distribution over $\mathcal{X} \times \mathcal{Y}$, and denote by D_X the marginal distribution over \mathcal{X}. Let $\mathcal{F} := \{ f : \mathcal{X} \to \mathbb{R} \}$ be the class of real-valued functions. The class of threshold functions is given by $\mathcal{H} \equiv \{ h : \mathcal{X} \to \mathbb{R} \}$, where the hypothesis class \mathcal{H} is the class of halfspaces (also known as linear threshold functions). We focus on the classical realizable setting of Valiant (1984) where there exists a perfect hypothesis $h^* \in \mathcal{H}$ that incurs zero error, i.e. for any (x, y) drawn from D, $y = h^*(x)$. For any hypothesis $h : \mathcal{X} \to \mathcal{Y}$, its error rate is defined as $\text{err}_{D_X} (h) := \text{Pr}_{x \sim D_X} (h(x) \neq h^*(x))$. Let $f^* \in \mathcal{F}$ be the real-valued function associated with the perfect classifier h^*. For any pair of instances $(x, x') \in \mathcal{X} \times \mathcal{X}$, the underlying comparison function is thus given by $Z(x, x') = \text{sign} (f^*(x) - f^*(x'))$. For the purpose of presentation transparency, for a given comparison function $Z(\cdot, \cdot)$, we will often write $x >_x x'$ and $x <_x x'$ in place of $Z(x, x') = 1$ and $Z(x, x') = -1$ respectively. When the function Z is clear from the context, we omit the subscript and just write $x > x'$ or $x < x'$.

Standard PAC learning. The terminology “standard PAC learning” is reserved for the setting of Valiant (1984), that is, there exists a perfect hypothesis h^* with zero error rate, and the learner is always given correctly labeled data $(x, h^*(x))$ where $x \sim D_X$. We are interested in the classes \mathcal{H} that are
efficiently learnable in the standard PAC learning model.

Assumption 3. There exists an efficient algorithm \(A_H \) which takes as input a target error rate \(\epsilon \in (0, 1) \), confidence \(\delta \in (0, 1) \), a set of \(m_{\epsilon, \delta} \) correctly labeled instances \(S \) randomly drawn from \(D \), and returns a hypothesis \(h \) such that, with probability at least \(1 - \delta \), \(\text{err}_{D_S}(h) \leq \epsilon \). We call \(A_H \) a standard PAC learner.

For example, when \(\mathcal{H} \) is the class of halfspaces, a linear program that fits the training data is also a standard PAC learner (Maass & Turán, 1994). Note that in Assumption 3, we did not impose distributional assumptions on \(D_X \).

The quantity \(m_{\epsilon, \delta} \) in Assumption 3 characterizes the query complexity of \(A_H \). In view of the classic result (Kearns & Vazirani, 1994), it suffices to pick

\[
m_{\epsilon, \delta} = K \cdot \frac{1}{\epsilon} \left(d \log \frac{1}{\epsilon} + \log \frac{1}{\delta} \right),
\]

(3.1)

where \(d \) is the Vapnik–Chervonenkis dimension of the hypothesis class \(\mathcal{H} \) and \(K > 1 \) is some absolute constant\(^2\). We reserve \(m_{\epsilon, \delta} \) for the above expression. In our analysis, we will also need the following quantity

\[
n_{\epsilon, \delta} := K \cdot \frac{1}{\epsilon} \left(d \log \frac{1}{\epsilon} + \left(\frac{3}{\delta} \right)^{\frac{1}{100}} \right),
\]

(3.2)

which will characterize the query complexity of a comparison-equipped algorithm. The additive term \(\left(\frac{3}{\delta} \right)^{\frac{1}{100}} \) is due to the fact that the failure probability of the sorting algorithm, specifically the randomized Quicksort algorithm we will use, only decays to zero in a rate inversely polynomial in the sample size. If there were sorting algorithms with failure probability decaying exponentially fast with the sample size, we would be able to choose \(n_{\epsilon, \delta} = m_{\epsilon, \delta} \). Note also that there is nothing special on the exponent \(\frac{1}{100} \) of \(\frac{1}{\epsilon} \); it can be made to be a constant arbitrarily close to 0 with the cost of increasing the comparison complexity with a constant multiplicative factor (see, e.g. Lemma 32).

Crowdsourced PAC learning. Let \(P_L \) be the uniform distribution over the pool of crowd workers who provide labels, and \(P_C \) be the uniform distribution of those providing comparisons. In the context of crowdsourcing, the learner does not have access to the correct labels but has instances randomly drawn from \(D_X \), and it is allowed to query a worker \(t \sim P_L \) on the label of an instance, or worker \(t' \sim P_C \) on the comparison tag of two instances. For a given input (either a single instance or a pair), by querying multiple workers, it is possible to collect a set of different (noisy) annotations to aggregate (say, via majority voting). We say a crowdsourcing algorithm PAC learns \(\mathcal{H} \) if for any given \(\epsilon, \delta \in (0, 1) \), by drawing \(m_S \) instances and collecting \(m_L \) labels and \(m_C \) comparison tags, it outputs a hypothesis \(h : \mathcal{X} \rightarrow \mathcal{Y} \) such that with probability at least \(1 - \delta \), \(\text{err}_{D_X}(h) \leq \epsilon \). We call \(m_L \) the label complexity, and \(m_C \) the comparison complexity. The query complexity refers to the sum of \(m_L \) and \(m_C \). The labeling complexity and comparison overhead are respectively defined as

\[
\Lambda_L := \frac{m_L}{m_{\epsilon, \delta}} \quad \text{and} \quad \Lambda_C := \frac{m_C}{m_{\epsilon, \delta}},
\]

(3.3)

which characterize how the query complexity of a crowdsourced PAC learner compares to that of a standard PAC learner \(A_H \). We say a crowdsourced PAC learner is query efficient if \(\Lambda_L + \Lambda_C = O(1) \); if additionally \(\Lambda_L = o(1) \), we say the learner is label efficient.

Crowd model. We consider the following fundamental model for the crowd: there exists a large pool of crowd workers, at least \(\frac{1}{2} + \alpha \) fraction of whom are perfect that always return correct labels (i.e. they label according to \(h^* \)), while the other \(\frac{1}{2} - \alpha \) fraction may perform adversarially. In other words, for a given instance, each time the learner queries a randomly chosen worker on its label, the obtained label is correct with probability at least \(\frac{1}{2} + \alpha \). Likewise, we assume that \(\frac{1}{2} + \beta \) fraction of the workers are perfect when providing the comparison tag. Throughout the paper, we assume that \(\alpha \in \{0, \frac{1}{2}\} \) and \(\beta \in \{0, \frac{1}{2}\} \), which ensures the correctness of the majority. It is worth mentioning that all of our analysis essentially holds for a much stronger noise model where the perfect workers can be replaced by reliable workers; we defer such extension to Appendix A.

Given a set of annotations \(A = \{a_1, \ldots, a_n\} \) (either the labels or comparison tags), we define \(\text{Maj}(A) \) as the outcome of majority voting. Specifically, suppose \(h_1, h_2, h_3 \) are three classifiers in \(\mathcal{H} \). The function \(\text{Maj}(h_1, h_2, h_3) \) maps any instance \(x \) to a label \(y \), which is the outcome of the majority vote of \(h_1(x), h_2(x), h_3(x) \). Let \(Z_{1,t}, \ldots, Z_{t} \) be \(t \) comparison functions. We denote the set of the comparison tags given by them on a pair \((x, x')\) by \(Z_{1:t}(x, x') \), namely,

\[
Z_{1:t}(x, x') = \{Z_1(x, x'), \ldots, Z_t(x, x')\}.
\]

We will use \(\hat{O}(f) \) to denote \(O(f \cdot \text{polylog}(f)) \), use \(\hat{\Omega}(f) \) to denote \(\Omega(f \cdot \text{polylog}(f)) \), and use \(\hat{\Theta}(f) \) to denote a quantity that is between them. The notation \(\hat{O}(f) \) means we treat the parameter \(\delta \) as a constant, which will be useful to simplify our discussion on the overhead.

3.1. A natural approach and the limitation

In order to utilize the comparison queries, we consider a natural primitive of “compare and label” (Ailon & Mohri, 2008; Xu et al., 2017). The idea is to use pairwise comparisons along with the well-known RANDOMIZED QUICKSORT to sort all the instances. It then remains to perform binary search of a threshold instance across which labels shift from
Algorithm 1 \textsc{Compare-and-Label}

\textbf{Require:} A set of instances $S = \{x_i\}_{i=1}^n$, confidence δ.

\textbf{Ensure:} A labeled set \overline{S}.

1: $k_1 \leftarrow \frac{1}{2\sqrt{n}} \cdot \log \frac{3000|S| \log |S|}{\frac{n}{\delta}}$ and $k_2 \leftarrow \frac{1}{2\sqrt{n}} \cdot \log \frac{3\log |S|}{\delta}$.
2: Apply \textsc{Randomized Quicksort} on \overline{S}: for each pair (x, x') being compared, query k_1 workers and take the majority. Let $\overline{S} = (\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_n)$ be the sorted list.
3: $t_{\min} \leftarrow 1$, $t_{\max} \leftarrow n$.
4: \textbf{while} $t_{\min} < t_{\max}$ \textbf{do}
5: \hspace{1em} $t \leftarrow (t_{\min} + t_{\max})/2$.
6: \hspace{1em} Query k_2 workers to obtain their labels on \hat{x}_t, and let \hat{y}_t be the majority vote.
7: \hspace{1em} \textbf{if} $\hat{y}_t = 1$ \textbf{then} $t_{\max} \leftarrow t - 1$; \textbf{else} $t_{\min} \leftarrow t + 1$.
8: \textbf{end while}
9: \textbf{for} all $t' \geq t$, $\hat{y}_{t'} \leftarrow 1$; for all $t' < t$, $\hat{y}_{t'} \leftarrow -1$.
10: \textbf{return} $\overline{S} \leftarrow \{(\hat{x}_1, \hat{y}_1), (\hat{x}_2, \hat{y}_2), \ldots, (\hat{x}_n, \hat{y}_n)\}$.

\begin{algorithmic}
-1 to 1; this step is label-efficient.

The success of the above approach hinges on the correctness of the comparison tags and labels. To this end, for each input, the crowdsourcing algorithm may aggregate the annotations from multiple workers in order to ensure that the majority vote is correct with high probability. The details of \textsc{Compare-and-Label} are presented in Algorithm 1.

\textbf{Proposition 4.} Consider the \textsc{Compare-and-Label} algorithm. If $|S| \geq (\frac{1}{\alpha})^{1/1000}$, then with probability at least $1 - \delta$, it correctly sorts and labels all the instances in S. The label complexity is $O\left(\frac{1}{\alpha} \cdot \log |S| \cdot \log \log |S|\right)$, and the comparison complexity is given by $O\left(\frac{1}{\alpha^2} \cdot |S| \cdot \log^2 |S|\right)$.

Equipped with the labeled set, it is straightforward to learn a classifier using the standard PAC learner $A_{H,\delta}$ as follows, where we recall that $n_{\epsilon,\delta}$ was defined in (3.2).

\textbf{Natural Approach:} Draw a set S of size $n_{\epsilon,\delta}$ from D_X. Let $\overline{S} \leftarrow \textsc{Compare-and-Label}(S)$. Return $A_{H,\delta}(\overline{S}, \epsilon, \delta)$.

We have the following performance guarantee.

\textbf{Theorem 5} \textbf{(Natural approach).} With probability at least $1 - \delta$, the natural algorithm runs in time $\text{poly}(d, \frac{1}{\epsilon})$ and returns a classifier h with error rate $\text{err}_{D_X}(h) \leq \epsilon$. The label complexity is $O\left(\frac{1}{\alpha} \cdot \log n_{\epsilon,\delta} \cdot \log \log n_{\epsilon,\delta}\right)$ and the comparison complexity is $O\left(\frac{1}{\alpha^2} \cdot n_{\epsilon,\delta} \cdot \log^2 n_{\epsilon,\delta}\right)$. Moreover, the labeling overhead $\Lambda_L = \frac{1}{\alpha} \cdot \tilde{O}\left(\frac{\log(d/\epsilon)}{d/\epsilon}\right)$ and the comparison overhead $\Lambda_C = O_{\delta}(\frac{1}{\alpha^2} \cdot \log^2 n_{\epsilon,\delta})$.

\textbf{Remark 6} \textbf{(Label complexity and labeling overhead).} Awasthi et al. (2017b) considered label-only crowdsourced PAC learning and obtained a label complexity bound of $O(m_{\sqrt{d/\epsilon}} \log m_{\sqrt{d/\epsilon}} + m_{\epsilon,\delta})$ and a labeling overhead $\Lambda_L = O(\sqrt{\epsilon} \log \frac{m_{\epsilon,\delta}}{\delta} + 1) = \tilde{O}_\delta(\sqrt{\epsilon} \log(d/\epsilon) + 1)$ under the condition that $\alpha \geq \Omega(1)$. First, observe that our label complexity scales as $\log(d/\epsilon)$, while theirs is proportional to d/ϵ which is exponentially worse. Second, in terms of labeling overhead, our results show that it tends to zero as ϵ/d goes to zero, while their labeling overhead stays as a non-zero constant: this is precisely what we mean by $\alpha(1)$ labeling overhead in Theorem 1.

However, we observe that the comparison overhead Λ_C grows with the sample size. This is undesirable because when we demand a small error rate ϵ, the sample size will increase and hence the comparison cost per pair.

\textbf{4. Main Algorithm and Performance Guarantee}

The natural approach separates learning and annotation by first labeling all the data and then training a classifier. In this section, we present a more involved algorithm that interleaves learning and annotation to achieve constant comparison overhead. Inspired by the work of Awasthi et al. (2017b), we will use the celebrated boosting algorithm of Schapire (1990) as the starting point.

\textbf{Theorem 7} \textbf{(Boosting).} For any $p < \frac{1}{2}$ and distribution D_X, consider three classifiers $h_1(x)$, $h_2(x)$, $h_3(x)$ satisfying the following. 1) $\text{err}_{D_X}(h_1) \leq p$; 2) $\text{err}_{D_2}(h_2) \leq p$ where $D_2 := \frac{1}{2}D_C + \frac{1}{2}D_1$, D_C denotes the distribution D_X conditioned on $\{x : h_1(x) = h^*(x)\}$, and D_1 denotes D_X conditioned on $\{x : h_1(x) \neq h^*(x)\}$; 3) $\text{err}_{D_3}(h_3) \leq p$ where D_3 is D_X conditioned on $\{x : h_1(x) \neq h_2(x)\}$, then $\text{err}_{D_X}(\text{Maj}(h_1, h_2, h_3)) \leq 3p^2 - 2p^3$.

There are two salient features that we will exploit from the theorem. First, the theorem implies that in order to learn a hypothesis with a target error rate $\epsilon \in (0, 1)$, it suffices to learn three weak hypotheses each of which has error rate less than $p = \frac{\sqrt{2}}{\alpha}$. Second, the framework is fairly flexible in the sense that one can apply any algorithm to obtain the three nontrivial hypotheses, as long as it enjoys PAC guarantee in the distribution-independent regime. In view of Assumption 3, it suffices to gather $m_{\sqrt{2d/\epsilon}}/3$ correctly labeled instances from D_X, D_2 and D_3 respectively and invoke the standard PAC learner $A_{H,\delta}$. Our main algorithm, Algorithm 2, is designed in such a way that such an amount of high-quality labels are gathered without suffering an overwhelming query complexity (or, overhead).

Our main theoretical results are as follows.

\textbf{Theorem 8} \textbf{(Main results).} Consider Algorithm 2. Assume $\beta \geq c_0$ for some absolute constant $c_0 \in (0, 1/2]$. For any $\epsilon, \delta \in (0, 1)$, with probability at least $1 - \delta$, it runs in time $\text{poly}(d, \frac{1}{\epsilon})$ and returns a classifier \hat{h} such that $\text{err}_{D_X}(\hat{h}) \leq \epsilon$. The label complexity is $\frac{1}{\alpha^2} \cdot \tilde{O}(\log \frac{d}{\epsilon} + 1)$.
and the comparison complexity is $\tilde{O}(\frac{d+1/\epsilon}{\sqrt{\epsilon}} \cdot \frac{\Delta}{\epsilon})$. Moreover, the labeling overhead is $\frac{1}{2\epsilon} \cdot \frac{2}{\Delta} \cdot \tilde{O}(\log \frac{d}{\Delta})$, and the comparison overhead is $O_{\delta}(\sqrt{\epsilon} \cdot \log\frac{d}{\delta} + 1)$.

Remark 9. The label complexity and labeling overhead are similar to what we obtained in Theorem 5, hence inheriting all the improvements over Awasthi et al. (2017b) as we described in Remark 6.

Remark 10. A crucial message of the main theorem is that the comparison overhead can now be upper bounded by a constant; this occurs when ϵ is sufficiently small relative to the VC dimension d, i.e. $\epsilon \leq (\log d)^{-4}$. This is a mild condition since given a learning problem, the hypothesis class will be fixed and hence is the VC dimension d. Therefore, in the most interesting regime that ϵ is close to zero, i.e. $\epsilon \in (0, (\log d)^{-4})$, our algorithm PAC learns H with $o(\frac{1}{\epsilon^2})$ labeling overhead and $O_{\delta}(1)$ comparison overhead. Here, we use $o(\frac{1}{\epsilon^2})$ to emphasize that the labeling overhead may decay to zero as ϵ tends to zero. It is easy to see that if α is also lower bounded by some absolute constant, then the labeling overhead reads as $o(1)$.

Remark 11. Our results demonstrate a useful tradeoff between the complexity of the two query types: though the overall query complexity is comparable to that of Awasthi et al. (2017b), our algorithm needs drastically fewer labels. This is especially useful for label-demanding applications such as what we introduced in Section 1. One interesting question is the possibility to simultaneously reduce the label and overall query complexity. Unfortunately, there is evidence showing that this is in general impossible, though under the non-crowdsourcing setting; see e.g. Theorem 4.11 of Kane et al. (2017) and Theorem 11 of Xu et al. (2017).

Remark 12. Observe that in our definition of the overheads (see Eq. (3.3)), we compare the query complexity to that of a standard PAC learner that uses only labels. Hence, the notion of overheads highlights the savings of labels with pairwise comparisons. Another natural way to define the overheads is to compare the query complexity of a crowdsourcing algorithm to that of a non-crowdsourcing one which uses both labels and pairwise comparisons. This, however, appears subtle since it is unclear how the query complexity scales under the distribution-free setting. For example, combining Theorem 4.11 and Corollary 4.12 of Kane et al. (2017) results in a query complexity lower bound of $\Omega(d + \frac{1}{\epsilon^2})$, yet its sharpness is open. We remark that if the query complexity were $\Theta(d + \frac{1}{\epsilon})$, our main results would still follow for fixed VC dimension d. See Remark 31 in Appendix F for more details.

In the following, we elaborate on the design of the main algorithm, along with the performance guarantees. To reduce clutter, we omit the confidence parameter δ in the discussion and write $n_{e\delta} := n_{e,\delta}$; it will be more convenient for the readers to further think of this quantity as being roughly $\Theta(\frac{1}{\epsilon^2})$.

Algorithm 2 Main Algorithm

Require: Hypothesis class H, target error rate ϵ, confidence δ, a standard PAC learner A_H.

Ensure: A hypothesis $h : \mathcal{X} \to \mathcal{Y}$.

Phase 1:
1. $S_1 \leftarrow \text{COMPARE-AND-LABEL}(S_1, \delta/6)$, for an instance set S_1 of size $n_{\sqrt{\epsilon}/2, \delta/6}$ from D_X.
2. $h'_1 \leftarrow A_H(S_1, \sqrt{\epsilon} \cdot \frac{\delta}{6})$.
3. $h_1 \leftarrow \text{ANTI-ANTI-CONCENTRATE}(h'_1, \sqrt{\epsilon} \cdot \frac{\delta}{6})$.

Phase 2:
4. $S_I \leftarrow \text{FILTER}(S_2, h_1, \delta/12)$, for an instance set S_2 of size $\Theta(n_{\epsilon, \delta/12})$ drawn from D_X.
5. $S_C \leftarrow \Theta(n_{\sqrt{\epsilon}, \delta/12})$ instances from D_X.
6. $S_{\text{AB}} \leftarrow \text{COMPARE-AND-LABEL}(S_I \cup S_C, \delta/12)$.
7. $W_I \leftarrow \{(x, y) \in S_{\text{AB}} : y \neq h_1(x)\}$, $W_C \leftarrow S_{\text{AB}} \setminus W_I$.
8. Draw a sample set W of size $n_{\sqrt{\epsilon}/2, \delta/12}$ from a distribution that equally weights W_I and W_C.
9. $h_2 \leftarrow A_H(W, \sqrt{\epsilon} \cdot \frac{\delta}{2}, \frac{\delta}{6})$.

Phase 3:
10. $S_3 \leftarrow \text{COMPARE-AND-LABEL}(S_3, \delta/6)$, for an instance set S_3 of size $n_{\sqrt{\epsilon}/2, \delta/6}$ from D_X conditioned on $h_1(x) \neq h_2(x)$.
11. $h_3 \leftarrow A_H(S_3, \sqrt{\epsilon} \cdot \frac{\delta}{2}, \frac{\delta}{6})$.

return $\hat{h} \leftarrow \text{Max}\{h_1, h_2, h_3\}$.

The precise form of $n_{e, \delta}$ (defined in Eq. (3.2)) and the concrete choices of the confidence parameter will appear in the statements of all theorems and algorithms. It will also be useful to keep in mind that feeding COMPARE-AND-LABEL with a set of size n_e would lead to comparison overhead growing with the sample size, but a set of size $n_{\sqrt{\epsilon}}$ would not since in this case the comparison complexity is $\tilde{O}(\frac{1}{\sqrt{\epsilon}})$ (see Theorem 5) because $n_{e, \delta} = \tilde{O}(\frac{1}{\sqrt{\epsilon}})$.

4.1. Analysis of Phase 1

In Phase 1, we aim to learn a nontrivial classifier h_1 with error rate at most $\sqrt{\epsilon}$ on D_X. This can easily be fulfilled since D_X is available to the learner. In fact, this phase is very similar to the natural approach, except for the number of instances being used: here we draw $n_{\sqrt{\epsilon}/2} = \tilde{O}(\frac{1}{\sqrt{\epsilon}})$ samples from D_X and feed them to COMPARE-AND-LABEL, resulting in a nontrivial hypothesis h'_1 with $\text{err}_{D_X}(h'_1) \leq \sqrt{\epsilon}$ and an $O(1)$ comparison overhead.

We then invoke ANTI-ANTI-CONCENTRATE (Algorithm 3) to prevent the performance of h'_1 from being too good. In particular, the new classifier h_1 is constructed in such a way that most of the time, it predicts as h'_1 does but with a small chance, it predicts as $-h'_1$. This would make sure that $\text{err}_{D_X}(h_1) = \Theta(\sqrt{\epsilon})$. While this step seems counter-intuitive, it is inherently important for our algorithm, es-
We summarize the performance guarantee of Phase 1 below.

Algorithm 3 **ANTI-ANTI-COMPONENT**

Require: A classifier h', a quantity $\eta \leq 1$ such that $\text{err}_{D_X}(h') \leq \eta$, an absolute constant $c \leq 1$ with $\eta \leq c$.

Ensure: A classifier h with $\text{err}_{D_X}(h) \in [\sqrt{\frac{\epsilon}{c}}, \sqrt{\frac{\epsilon}{c}}]$ where $c_1 = \min\left\{ \frac{1}{2}, \frac{1}{2c - c} \right\}$, $c_2 = \max\left\{ 1, c + \frac{1}{2} \right\}$.

1: Pick bias $\lambda \in [0, 1]$ such that $(1 - \lambda)(1 - \frac{1}{2}\eta) = \frac{1}{2}\eta$.
2: Let h be as follows: for any given x, independently toss a coin; if outcome is HEADS (which happens with probability λ), then $h(x) \leftarrow h'(x)$, else $h(x) \leftarrow -h'(x)$.

return h.

Algorithm 3 is novel algorithm termed FILTER (Algorithm 4). On the other hand, obtaining S_C is relatively easy: since the error rate of h_1 is upper bounded by $\frac{\sqrt{\epsilon}}{c}$, it makes correct prediction on most of the instances. Therefore, it suffices to draw $\Theta(n_{\sqrt{\epsilon}})$ samples from D_X and call COMPARE-AND-LABEL to obtain the correct label of all these data, which can be used to test the performance of h_1. By the Chernoff bound, it is guaranteed that we can find at least $(1 - \frac{\sqrt{\epsilon}}{c}) n_{\sqrt{\epsilon}} \geq \frac{1}{2} n_{\sqrt{\epsilon}}$ such instances to form S_C. In the following, we elaborate on the design of the FILTER algorithm, which is the key technical contribution of the paper.

We summarize the performance guarantee of Phase 1 below.

Proposition 13. In Phase 1, with probability $1 - \frac{\epsilon}{3}$, $\text{err}_{D_X}(h_1) \in \left[\sqrt{\frac{\epsilon}{c}}, \sqrt{\frac{\epsilon}{c}} \right]$. The label complexity is $O\left(\frac{1}{\sqrt{\epsilon}} \cdot \log n_{\sqrt{\epsilon}}, \delta \cdot \log \log n_{\sqrt{\epsilon}}, \delta \right)$ and the comparison complexity is $O\left(\frac{1}{\sqrt{\epsilon}} \cdot \log n_{\sqrt{\epsilon}}, \delta \cdot \log^2 n_{\sqrt{\epsilon}}, \delta \right)$.

4.2. Analysis of Phase 2

Phase 2 aims to obtain instances obeying the distribution D_2 as defined in Theorem 7. To this end, we need to find a set S_1 of $\Theta(n_{\sqrt{\epsilon}})$ instances that h_1 will misclassify, and $\Theta(n_{\sqrt{\epsilon}})$ instances that h_1 will predict correctly. It then suffices to call the standard PAC learner A_H to learn h_2. As we discussed in the preceding section, in order to guarantee the existence of S_1 with such size, we have to draw a set S_2 of $\Theta(n_{\sqrt{\epsilon}})$ instances from D_X. In order to identify them, we have to design a computationally efficient algorithm. We remind that, with $\Theta(n_\tau)$ instances in S_2, we could not directly apply COMPARE-AND-LABEL on S_2 to identify S_1 since it would lead to an undesirable overhead similar to that of the natural approach. We tackle this challenge by designing a
and invoke the \textbf{COMPARE-AND-LABEL} algorithm to obtain a correctly sorted and labeled set \overline{U}, enabling us to find two support instances x^- and x^+. Roughly speaking, x^- is the negative instance that is "closest" to positive instances in U, and x^+ is the positive instance that is "closest" to negative. One important consequence of this step is that the label of the instances outside the interval $[x^-, x^+]$ can be inferred provided that we have truthful comparison tags. On the other hand, we are uncertain about the label of those inside the interval. Since our objective is to collect a sufficient number of instances to form S_I, we need to constrain the size of the points residing in the interval. While it seems that a constant length (i.e. it contains a constant fraction of points in S) suffices, we will show that it needs to be as small as $\sqrt{\frac{2}{\epsilon}}$ - this will be clarified when we explain the comparison complexity of the filtering step. Observe that such narrow interval can be guaranteed when the size of U is as large as $\frac{1}{\sqrt{\epsilon}} \log \frac{1}{\delta}$; see Lemma 24 in Appendix D.

The filtering stage is devoted to identifying good cases to test the performance of h. In particular, we hope to find instances whose true label can be inferred from a few noisy comparison tags, which can then be compared to the label predicted by h. In view of the availability of the support instances x^- and x^+, it suffices to gather comparison tags for (x, x^-) and (x, x^+) for all $x \in S \setminus U$. When x resides in the interval, we store it in S_m and invoke \textbf{COMPARE-AND-LABEL} on S_m after all instances in $S \setminus U$ have been visited. This step is query-efficient since U is constructed in such a way that $|S_m| \leq O(\sqrt{\epsilon} |S|) = O(n_{\sqrt{\epsilon}})$.

For those outside the interval, we think of them as good cases to test h. This is because Proposition 4 guarantees that U will be annotated correctly with high probability and hence, instances left to x^- are likely to be negative (likewise instances right to x^+ are likely to be positive). In other words, the labels of x^- and x^+ together with the comparison model we considered (see Section 3) would help infer the label of the instances outside the interval; these \textit{inferred labels} will then be contrasted to the predictions made by h. Indeed, Step 10 of \textbf{FILTER} is exactly testing the matching between the inferred label and the predicted label from h. Such procedure would truthfully identify S_I provided that the comparison to the support instances returned by the crowd has good quality. In this regard, each instance x will be assigned to multiple workers, and the underlying question is how many times are sufficient to justify the correctness of $h(x)$. A straightforward approach is to acquire $N = O(\frac{1}{\sqrt{\epsilon}} \log |S|)$ comparison tags per instance x to guarantee that the majority votes $\text{Maj}(Z_{1:N}(x, x^-))$ and $\text{Maj}(Z_{1:N}(x, x^+))$ are correct for all $x \in S$ with high probability. This, however, leads to a comparison complexity bound of $O(|S| \log |S|) = O(n_{\epsilon} \log n_{\epsilon})$, which is comparable to the natural approach. In our algorithm, we explore the structure of the crowd and the error rate of the learned classifier to reduce it to $O(|S|) = O(n_{\epsilon})$. In particular, since $\epsilon_{DS_2}(h) = \Theta(\sqrt{\epsilon})$, the classifier essentially performs well on most of the data in S. Therefore, if there is one time stamp t such that the inferred label matches the predicted label from h, then it implies that h is correct on such instance x with high probability. On the other hand, if after N steps, the algorithm never found any group of workers whose majority vote combined with the label of x^- and x^+ agrees with the predicted label from h, then this is strong evidence that h classifies the current instance. Now we are in the position to spell out how to obtain the $O(n_{\sqrt{\epsilon}})$ comparison complexity. For those x that h classifies correctly, it follows that the algorithm will run only a few steps to find a group of workers whose comparison tags in allusion to the label of the support instances would agree with h. In fact, we show that for any such x, the number of comparison queries stays as a constant provided that $\beta \geq \Omega(1)$, say, 70% of the workers are perfect when providing comparison tags. Since all of such x consist of $1 - \frac{\sqrt{2}}{\epsilon}$ fraction of S (recall that $\epsilon_{DS_2}(h) \leq \frac{\sqrt{2}}{\epsilon}$), the comparison complexity is $O(|S|)$. For those x that h misclassifies, the algorithm will need N comparison queries; since they consist of $\frac{\sqrt{2}}{\epsilon}$ fraction, we need a total of $O(\sqrt{\epsilon} |S| N)$ comparison queries. Lastly, for those inside the interval, the algorithm also runs N steps; yet, as the sub-sampling stage guarantees that the fraction is $O(\sqrt{\epsilon})$, it ends up with $O(\sqrt{\epsilon} |S| N)$ comparisons as well.

We summarize the performance guarantee of \textbf{FILTER} below.

Lemma 14. Consider the \textbf{FILTER} algorithm. Assume that U is correctly labeled and $\beta \geq c_0$ for some absolute constant $c_0 \in (0, 1/2)$. Consider any given instance $x \in S$ outside the interval $[x^-, x^+]$. If $h(x) = h^*(x)$, it will be added to S_I with probability at most $\frac{1}{2} - \frac{\sqrt{2}}{\epsilon}$; if $h(x) \neq h^*(x)$, it goes to S_I with probability at least $\frac{1}{2} + \frac{\sqrt{2}}{\epsilon}$. For any instance $x \in S$ that falls into the interval $[x^-, x^+]$, it will be added to S_I with probability at most $\frac{1}{2} + \frac{\sqrt{2}}{\epsilon}$.

Proposition 15. Consider the \textbf{FILTER} algorithm with $|S| = \Theta(n_{\epsilon, \delta})$. Assume $\beta \geq c_0$ for some absolute constant $c_0 \in (0, 1/2]$. Then, with probability at least $1 - \delta$, the algorithm returns an instance set S_I with size $\Theta(n_{\sqrt{\epsilon}, \delta})$. The label complexity is $O\left(\frac{1}{\sqrt{\epsilon}} \cdot \log n_{\sqrt{\epsilon}, \delta} \cdot \log \log n_{\sqrt{\epsilon}, \delta}\right)$, and the comparison complexity is $O\left(n_{\sqrt{\epsilon}, \delta} \cdot \log^2 n_{\sqrt{\epsilon}, \delta} + n_{\epsilon, \delta}\right)$.

These observations together lead to the following performance guarantee of Phase 2 in Algorithm 2. Readers may refer to Appendix D for a detailed proof.

Proposition 16. Assume $\beta \geq c_0$ for some absolute constant $c_0 \in (0, 1/2]$. In Phase 2, with probability $1 - \delta$, $\epsilon_{DS_2}(h_2) \leq \frac{\sqrt{2}}{\epsilon}$. The label complexity is $O\left(\frac{1}{\sqrt{\epsilon}} \cdot \log n_{\sqrt{\epsilon}, \delta} \cdot \log \log n_{\sqrt{\epsilon}, \delta}\right)$, and the comparison complexity is $O\left(n_{\sqrt{\epsilon}, \delta} \cdot \log^2 n_{\sqrt{\epsilon}, \delta} + n_{\epsilon, \delta}\right)$.

4.3. Analysis of Phase 3

Given the hypotheses \(h_1 \) and \(h_2 \), we can draw instances from the disagreement region via rejection sampling.

Proposition 17. In Phase 3, with probability \(1 - \frac{\delta}{7} \), \(\text{err}^{\text{D}_T(h_3)} \leq \frac{\sqrt{n}}{2} \). In addition, the label complexity is \(O\left(\frac{1}{\alpha^{\gamma}} \cdot \log n \cdot \sqrt{\beta} \cdot \log \log n \cdot \sqrt{\beta} \right) \) and the comparison complexity is \(O\left(\frac{1}{\alpha^{\gamma}} \cdot n \cdot \sqrt{\beta} \cdot \log^2 n \cdot \sqrt{\beta} \right) \).

Observe that now Theorem 8 follows from Propositions 13, 16, 17, and Theorem 7; see Appendix F for the full proof.

5. Conclusion

We have shown that for any class of threshold functions that is efficiently PAC learnable under the standard setting, it is possible to efficiently learn it from the noisy crowd annotations, with an \(o(1) \) labeling overhead and \(O(1) \) comparison overhead. To this end, we have developed a set of new techniques, including a comparison-equipped labeling primitive and a label-efficient filtering process. It would be interesting to study agnostic crowdsourced PAC learning, or to study other query types (Balcan & Hanneke, 2012).

Acknowledgements

We thank the anonymous reviewers and meta-reviewer for valuable comments on improving the presentation. This work is supported by NSF-IIS-1948133 and the startup funding from Stevens Institute of Technology.

References

A. From Perfect Workers to Reliable Workers

Crowd model with perfect workers. All of the theoretical results in this paper are established based on the existence of perfect workers: \(\frac{1}{2} + \alpha \) fraction of the pool of workers are perfect when providing labels, in the sense that they always label according to the perfect hypothesis \(h^* \), while the remaining \(\frac{1}{2} - \alpha \) may behave adversarially. Likewise, \(\frac{1}{2} + \beta \) fraction always provide comparison tags according to \(Z^* \) and the remaining \(\frac{1}{2} - \beta \) may behave adversarially.

In this section, we show that it is easy to relax the requirement of perfectness to reliability.

Definition 18 (Reliable worker). A reliable worker \(t \) who provides labels is defined by a function \(g_t : \mathcal{X} \to \mathcal{Y} \) satisfying the following condition: given any instance \(x \sim D_X \),

\[
\Pr(g_t(x) = h^*(x)) \geq 1 - \eta_t(x),
\]

where the function \(\eta_t(x) \in [0, \eta_L] \) for some given parameter \(\eta_L < 1/2 \). Likewise, a reliable worker \(t' \) who provides comparison tags is defined by a function \(g'_t : \mathcal{X} \times \mathcal{X} \to \{-1, 1\} \) satisfying the following condition: given any pair of instances \((x, x') \),

\[
\Pr(g'_t(x, x) = Z^*(x, x')) \geq 1 - \eta'_t(x, x'),
\]

where the function \(\eta'_t(x, x') \in [0, \eta_C] \) for some given parameter \(\eta_C < 1/2 \).

Note that the function \(\eta_t(x) \) (likewise for \(\eta'_t(x, x') \)), namely the probability that a worker \(t \) will flip a given instance, may vary across workers and instances, and the only restriction is that the flipping probabilities are upper bounded by a parameter \(\eta < 1/2 \); thus this is a very flexible and strong noise model. In fact, such noise model is exactly the Massart noise (Sloan, 1988; Massart & Nédélec, 2006) which has been broadly studied in the literature under the non-crowdsourcing setting and only until recently have polynomial-time algorithms been established under distributional assumptions (Zhang et al., 2020; Diakonikolas et al., 2020); in addition, under the non-crowdsourcing setting, there is evidence that efficient learning with Massart noise without distributional assumptions is computationally hard (Diakonikolas & Kane, 2020).

Crowd model with reliable workers. We consider the following crowd model: \(\frac{1}{2} + \alpha' \) fraction of the workers are reliable while the remaining \(\frac{1}{2} - \alpha' \) are adversarial for label queries. Likewise, \(\frac{1}{2} + \beta' \) are reliable while the remaining \(\frac{1}{2} - \beta' \) are adversarial for comparison queries.

We show that all of our analysis based on the perfect version can be easily extended to the reliable version.\(^3\) To simplify the discussion, we show how to do so for workers that provide labels; the case of comparison queries follows exactly the same reasoning.

Indeed, all of our analysis uses the following fact from the perfect version of crowd: for any given instance \(x \), by querying a randomly chosen worker, we are able to obtain the correct label with probability at least \(\frac{1}{2} + \alpha \), namely

\[
\Pr_{t \sim P_L} (h_t(x) = h^*(x)) \geq \frac{1}{2} + \alpha,
\]

where we recall that \(P_L \) is the uniform distribution over the pool of workers that provide labels.

Now we can consider that the perfect workers are replaced with reliable workers, and it suffices to establish a condition similar to (A.3).

Given any instance \(x \sim D_X \), we have

\[
\Pr_{t \sim P_L} (g_t(x) = h^*(x)) \geq \Pr_{t \sim P_L} (g_t(x) = h^*(x), t \text{ is reliable})
\]

\[
= \Pr_{t \sim P_L} (g_t(x) = h^*(x) \mid t \text{ is reliable}) \cdot \Pr_{t \sim P_L} (t \text{ is reliable})
\]

\[
\geq (1 - \eta_t(x)) \cdot \left(\frac{1}{2} + \alpha' \right)
\]

\[
\geq (1 - \eta) \cdot \left(\frac{1}{2} + \alpha' \right)
\]

\[
= \frac{1}{2} + \left[(1 - \eta) \cdot \left(\frac{1}{2} + \alpha' \right) - \frac{1}{2} \right].
\]

\(^3\)The analysis of Awasthi et al. (2017b) for \(\alpha > 0 \) holds for the reliable version of crowd model as well.
Therefore, under the reliable version of the crowd model, all of our analysis holds but with a new parameter \(\alpha = (1 - \eta) \cdot \left(\frac{1}{2} + \alpha' \right) - \frac{1}{2} \), where the parameters \(\eta \in [0, 1/2) \) and \(\alpha' \in (0, 1/2) \) are such that \((1 - \eta) \cdot \left(\frac{1}{2} + \alpha' \right) - \frac{1}{2} \in (0, 1/2) \).

Similarly, the assumption that \(\frac{1}{2} + \beta \) fraction of workers are perfect when providing comparison tags can be relaxed to that \(\frac{1}{2} + \beta' \) fraction are reliable, and all of our analysis holds but with a new parameter \(\beta = (1 - \eta) \cdot \left(\frac{1}{2} + \beta' \right) - \frac{1}{2} \), where the parameters \(\eta \in [0, 1/2) \) and \(\beta' \in (0, 1/2) \) are such that \((1 - \eta) \cdot \left(\frac{1}{2} + \beta' \right) - \frac{1}{2} \in (0, 1/2) \).

B. Omitted Proof from Section 3.1

Proposition 19 (Restatement of Proposition 4). *Consider the COMPARE-AND-LABEL algorithm, i.e. Algorithm 1. If \(|S| \geq (\frac{3}{2})^{1/1000} \), then with probability at least \(1 - \delta \), it correctly sorts and labels all the instances in \(S \). The label complexity is \(O\left(\frac{1}{\beta^2} \cdot \log |S| \cdot \log \log |S| \right) \), and the comparison complexity is given by \(O\left(\frac{1}{\beta^2} \cdot |S| \cdot \log^2 |S| \right) \).

Proof. Recall that given any pair of instances \((x, x') \in \mathcal{X} \times \mathcal{X} \), if we randomly draw a worker \(t \sim \mathcal{P}_C \), with probability at least \(\frac{1}{2} + \beta \), the comparison tag is correct.

Let \(k_1 \) be the number of workers we query for each pair of instances in Algorithm 1. The probability that the majority of the \(k_1 \) tags is incorrect on a given pair \((x, x')\) is

\[
\Pr\left(Z^*(x, x') \cdot \sum_{j=1}^{k_1} Z_t(x, x') \leq 0 \right),
\]

where \(Z_t(x, x') \) is the annotation from the \(j \)-th worker.

Without loss of generality, we assume the ground truth \(Z^*(x, x') = -1 \). It then follows that \(\mathbb{E}_{t \sim \mathcal{P}_C} [Z_t(x, x')] = -2\beta < 0 \). By Hoeffding’s inequality, we have

\[
\Pr\left(\sum_{t=1}^{k_1} Z_t(x, x') \geq k_1 \cdot \mathbb{E}_{t \sim \mathcal{P}_C} [Z_t(x, x')] + t \right) \leq e^{-\frac{2a^2}{k_1 (b-a)^2}}, \tag{B.1}
\]

where \(a = -1 \) and \(b = 1 \) are the corresponding lower and upper bounds of each tag \(Z_t(x, x') \). Let \(t \) be such that \(k_1 \cdot \mathbb{E}_{t \sim \mathcal{P}_C} [Z_t(x, x')] + t = 0 \). Then

\[
\Pr\left(\sum_{t=1}^{k_1} Z_t(x, x') \geq 0 \right) \leq e^{-2k_1\beta^2}. \tag{B.2}
\]

Let \(q_S \) be the total number of comparisons made by algorithm RANDOMIZED QUICKSORT, and denote by \((x_l, x'_l)\) the pair being compared in the \(l \)-th iteration. We apply the union bound and obtain that

\[
\Pr\left(\bigcup_{l=1}^{q_S} \left[Z^*(x_l, x'_l) \sum_{t=1}^{k_1} Z_t(x_l, x'_l) \leq 0 \right] \right) \leq \sum_{l=1}^{q_S} e^{-2k_1\beta^2} \leq q_S \cdot e^{-2k_1\beta^2}. \tag{B.3}
\]

By setting

\[
k_1 = \frac{1}{2\beta^2} \cdot \log \frac{3q_S}{\delta},
\]

we have that with probability at least \(\frac{3}{4} \), the set \(S \) is correctly sorted.

Now we upper bound the quantity \(q_S \). Recall that by Lemma 32, with probability at least \(1 - \frac{\delta}{|S|^2} \), we have \(q_S \leq (c + 2) |S| \log_{8/\gamma} |S| \). By our requirement on the size of \(S \), \(c = 1000 \). Thus, with probability at least \(1 - \frac{\delta}{3} \), \(q_S \leq 1002 \cdot |S| \log_{8/\gamma} |S| \). Thus, it suffices to set

\[
k_1 = \frac{1}{2\beta^2} \cdot \log \frac{3006 |S| \log_{8/\gamma} |S|}{\delta}. \tag{B.4}
\]
to ensure that with probability at least \(1 - \frac{3}{2}\delta\), the set \(S\) is correctly sorted. It is not hard to see that the number of comparisons is upper bounded by

\[
k_1 \cdot q_S \leq \frac{1}{2\beta^2} \cdot \log \frac{3006 |S| \log \beta |S|}{\delta} \cdot 1002 |S| \cdot \log |S| \leq O\left(\frac{1}{\beta^2} |S| \cdot \log^2 |S|\right).
\]

(B.5)

Likewise, for any given instance \(x \in \mathcal{X}\), let \(g_i(x)\) be the label given by a randomly selected worker \(i \sim \mathcal{P}_L\). Recall that \(g_i(x) = h^*(x)\) with probability at least \(\frac{1}{3} + \alpha\). Similar to the previous analysis, by Hoeffding’s inequality and the union bound (over the labeling of the \(|S|\) instances), we have that

\[
\Pr \left(\bigcup_{l=1}^{\log |S|} \left[h^*(x_l) \sum_{i=1}^{k_2} g_i(x_l) \leq 0 \right] \right) \leq \sum_{l=1}^{\log |S|} \Pr \left(h^*(x_l) \sum_{i=1}^{k_2} g_i(x_l) \leq 0 \right) \leq \log |S| \cdot e^{-2k_2\alpha^2} = \frac{\delta}{3},
\]

provided that we set

\[
k_2 = \frac{1}{2\alpha^2} \cdot \log \frac{3 \log |S|}{\delta}.
\]

(B.6)

The total number of calls to the labeling oracle equals

\[
k_2 \cdot \log |S| = \frac{1}{2\alpha^2} \cdot \log \frac{3 \log |S|}{\delta} \cdot \log |S| = O\left(\frac{1}{\alpha^2} \cdot \log |S| \cdot \log \log |S|\right).
\]

(B.7)

By union bound, we have that with probability at least \(1 - \delta\), \(S\) is correctly sorted and labeled, which proves the desired result.

\[\square \]

Theorem 20 (Restatement of Theorem 5). With probability at least \(1 - \delta\), the natural approach runs in time \(\text{poly}(d, \frac{1}{\epsilon})\) and returns a classifier \(h\) with error rate \(\text{err}_{D_h}(h) \leq \epsilon\). The label complexity is \(O\left(\frac{1}{\epsilon^2} \cdot \log n_{e,\delta} \cdot \log \log n_{e,\delta}\right)\) and the comparison complexity is \(O\left(\frac{1}{\beta^2} \cdot \log^2 n_{e,\delta}\right)\). Therefore, the labeling overhead \(\Lambda_L = O\left(\frac{1}{\alpha^2} \cdot \hat{O}\left(\frac{\log(d/\epsilon)}{d/\epsilon}\right)\right)\) and the comparison overhead \(\Lambda_C = O\left(\frac{1}{\beta^2} \cdot \log^2 n_{e,\delta}\right)\).

Proof. We note that by (3.2), \(|S| = n_{e,\delta} \geq (\frac{3}{3})^{1/1000}\). Thus, we can apply Proposition 19 to show that with probability \(1 - \delta\), the set \(S\) is correctly labeled by Algorithm 1. This in allusion to Assumption 3 implies the PAC guarantee of the natural approach.

Now we give the labeling and comparison overhead. To this end, we first note that the label and comparison complexity inherits from Proposition 19. Thus, we have the label complexity and comparison complexity as follows:

\[
m_L = O\left(\frac{1}{\alpha^2} \cdot \log n_{e,\delta} \cdot \log \log n_{e,\delta}\right) = \frac{1}{\alpha^2} \cdot \hat{O}\left(\log \frac{d + \frac{1}{3}}{\epsilon}\right),
\]

(B.8)

\[
m_C = O\left(\frac{1}{\beta^2} \cdot \log^2 n_{e,\delta}\right).
\]

(B.9)

In the above expression, the \(\hat{O}(\cdot)\) notation hides poly-logarithmic factors of the argument.

Thereby, by \(m_{e,\delta} \geq K \cdot \frac{d + \log(1/\delta)}{\epsilon}\), we have

\[
\Lambda_L = \frac{m_L}{m_{e,\delta}} \leq \frac{1}{\alpha^2} \cdot \hat{O}\left(\frac{\epsilon}{d + \log(1/\delta)} \cdot \log \frac{d + 1/\delta}{\epsilon}\right) = \frac{1}{\alpha^2} \cdot \hat{O}\left(\frac{\log(d/\epsilon)}{d/\epsilon}\right),
\]

(B.10)

which goes to zero as \(\epsilon\) goes to 0.

For the comparison overhead, we have

\[
\Lambda_C = O\left(\frac{1}{\beta^2} \cdot \frac{n_{e,\delta} \log^2 n_{e,\delta}}{m_{e,\delta}}\right) = O\left(\frac{1}{\beta^2} \cdot \log^2 n_{e,\delta}\right).
\]

(B.11)

To see that the algorithm runs in polynomial time, first, we recall that Algorithm 1 runs in polynomial time. In addition, the standard PAC learner \(\mathcal{A}_{\mathcal{H}_i}\) is assumed to run in polynomial time. The proof is complete.

\[\square \]
C. Analysis of Phase 1

Proposition 21 (Restatement of Prop. 13). In Phase 1, with probability $1 - \frac{\delta}{3}$, the classifier h_1 is such that $\text{err}_{D_X}(h_1) \in \left[\frac{1}{6\sqrt{c}}, \frac{2}{5\sqrt{c}} \right]$. In addition, the label complexity is $O\left(\frac{1}{\alpha^2} \cdot \log n \sqrt{\epsilon, \delta} \cdot \log \log n \sqrt{\epsilon, \delta} \right)$ and the comparison complexity is $O\left(\frac{1}{\sqrt{\epsilon}} \cdot n \sqrt{\epsilon, \delta} \cdot \log^2 n \sqrt{\epsilon, \delta} \right)$.

Proof. Recall that $|S_1| = n \sqrt{\epsilon/2, \delta/6}$. By Proposition 19, all the instances in $\overline{S_1}$ are correctly labeled with probability $1 - \frac{6}{c}$. Thus, conditioned on this event, with probability at least $1 - \frac{\delta}{6}$, $A_R(S_1, \sqrt{2}, \frac{6}{c})$ returns a classifier h'_1 with $\text{err}_{D_X}(h'_1) \leq \frac{1}{2}\sqrt{c}$. By union bound (over the labeling of S_1 and the learner A_H), we know that with probability at least $1 - \frac{\delta}{3}$, $\text{err}_{D_X}(h_1') \leq \frac{2}{5}\sqrt{c}$. Observe that the classifier h_1' corresponds to the parameters $\eta = \frac{1}{2}\sqrt{c}$ and $c = \frac{1}{2}$ in Algorithm 3. Hence, by Lemma 22, the obtained classifier h_1 is such that $\text{err}_{D_X}(h_1) \in \left[\frac{1}{5\sqrt{c}}, \frac{1}{2}\sqrt{c} \right]$.

Note that we only query workers when training h'_1. Hence, by Proposition 19, the label complexity is $O\left(\frac{1}{\alpha^2} \cdot \log n \sqrt{\epsilon, \delta} \cdot \log \log n \sqrt{\epsilon, \delta} \right)$ and the comparison complexity is $O\left(\frac{1}{\sqrt{\epsilon}} \cdot n \sqrt{\epsilon, \delta} \cdot \log^2 n \sqrt{\epsilon, \delta} \right)$. \square

Lemma 22. Consider Algorithm 3. The returned classifier $h : X \rightarrow Y$ satisfies $\text{err}_{D_X}(h) \in [c_1 \eta, c_2 \eta]$, where $c_1 = \min \left\{ \frac{1}{2}, \frac{1-c}{2-\epsilon} \right\}$ and $c_2 = \max \left\{ 1, c + \frac{1}{2} \right\}$.

Proof. Denote $\xi := \text{err}_{D_X}(h')$. Observe that

$$
\Pr_{x \sim D_X}(h(x) \neq h^*(x)) = \Pr_{x \sim D_X}(h(x) \neq h^*(x) \mid \text{HEADS}) \cdot \Pr(\text{HEADS}) + \Pr_{x \sim D_X}(h(x) \neq h^*(x) \mid \text{TAILS}) \cdot \Pr(\text{TAILS})
$$

$$
= \Pr_{x \sim D_X}(h'(x) \neq h^*(x) \mid \text{HEADS}) \cdot \Pr(\text{HEADS}) + \Pr_{x \sim D_X}(-h'(x) \neq h^*(x) \mid \text{TAILS}) \cdot \Pr(\text{TAILS})
$$

$$
= \xi \cdot \lambda + (1 - \xi)(1 - \lambda).
$$

First, we consider that $\xi < \frac{1}{2}\eta$. Note that since $\xi \cdot \lambda \geq 0$ and $\xi < \frac{1}{2}\eta$, we have

$$
\xi \cdot \lambda + (1 - \xi)(1 - \lambda) \geq 0 + (1 - \frac{1}{2}\eta)(1 - \lambda) = \frac{1}{2}\eta,
$$

where the last step follows from our choice of λ. On the other hand, by using the fact that $0 \leq \xi < \frac{1}{2}\eta$, we have

$$
\xi \cdot \lambda + (1 - \xi)(1 - \lambda) \leq \frac{1}{2}\eta \cdot \lambda + (1 - \lambda) = \frac{1}{2}\eta \left(1 - \frac{1}{2}\eta \right) + \frac{1}{2}\eta = \eta.
$$

Therefore, we prove that the error rate of h falls into the range of $[\frac{1}{2}\eta, \eta]$ when $\xi < \frac{1}{2}\eta$.

Now, we consider that in reality, $\xi \in [\frac{1}{2}\eta, \eta]$. In this case, we have

$$
\xi \cdot \lambda + (1 - \xi)(1 - \lambda) \geq 0 + (1 - \eta)(1 - \lambda) = \frac{1 - \eta}{2 - \eta} \cdot \eta \geq \frac{1 - c}{2 - c} \cdot \eta.
$$

On the other hand, we also have

$$
\xi \cdot \lambda + (1 - \xi)(1 - \lambda) \leq \eta \lambda + (1 - \frac{1}{2}\eta)(1 - \lambda) = \eta \lambda + \frac{1}{2}\eta \leq (c + \frac{1}{2})\eta,
$$

where in the equality we use the setting of λ. Therefore, we prove that when $\frac{1}{2}\eta \leq \xi \leq \eta$, we still have $\text{err}_{D}(h) \in \left[\frac{1}{2c+\eta}, c + \frac{1}{2}\eta \right]$.

The result follows by taking the union of the intervals obtained for the two cases of ξ. \square

D. Analysis of Phase 2

We will first analyze the performance of the FILTER algorithm, i.e. Algorithm 4. Then, we give a full analysis for Phase 2 of Algorithm 2.
We first show that with high probability, U correctly sorts and labels the subset U. The label complexity of the sub-sampling step is $O\left(\frac{1}{\alpha} \cdot \log |U| \cdot \log \log |U|\right)$, and the comparison complexity of the sub-sampling step is $O\left(\frac{1}{\alpha^2} \cdot |U| \cdot \log^2 |U|\right)$.

Proof. Note that $|U| = \frac{4}{\sqrt{\alpha}} \log \frac{16}{\delta} + (\frac{24}{\alpha})^{1/1000} \geq (\frac{24}{\alpha})^{1/1000}$. Hence, the results follow from Proposition 19.

Lemma 24. Consider Algorithm 4. Suppose that the subset U is correctly labeled. With probability at least $1 - \delta/8$, the interval $[x^-, x^+]$ contains less than η fraction of the instances in S provided that $|U| \geq \frac{1}{\eta} \log \frac{16}{\delta}$.

Proof. The algorithm uniformly samples a subset $U \subseteq S$ with b instances. Without loss of generality, let $x_1 < x_2 < \cdots < x_b$ be the instances in U.

Denote by E_i the event that interval $[x_i, x_{i+1}]$ contains more than a η fraction of the instances in S. Let ρ be the distance from x_i to the leftmost instance x_0 (note that all the points are evenly mapped to the interval $[0, 1]$ and hence ρ is exactly the coordinate of x_i after mapping). Let L be the set of instances that are left to x_i, and R be those right to x_{i+1}. Then, E_i happens only if the distance of all cross-group points (i.e. for all $x \in L$ and $x' \in R$) is at least η. In the following, we only consider the case that $\rho \in [0, 1 - \eta]$, because otherwise the fraction of the data contained in $[x_i, x_{i+1}]$ must be less than η. Therefore, for any $1 \leq i \leq b - 1$, we have

$$\Pr(E_i) \leq \int_0^{1-\eta} \rho^{i-1} \cdot (1 - \eta - \rho)^{b-i} d\rho \leq \frac{2(1-\eta)}{b+1} \cdot (1-\eta)^b \leq \frac{2}{b+1} e^{-bn},$$

where the last step follows from the inequality $1 - t \leq e^{-t}$ for all $t \geq 0$ and the fact that $1 - \eta \leq 1$.

By union bound over the intervals, we have

$$\Pr\left(\bigcup_{i=1}^{b-1} E_i\right) \leq \frac{2(b-1)}{b+1} \cdot e^{-bn} \leq 2 \cdot e^{-bn}.$$
D.1.2. Analysis of the Structure of S_I

Lemma 25 (Restatement of Lemma 14). Consider Algorithm 4. Assume that the subset U is correctly labeled and $\beta \geq c_0$ for some absolute constant $c_0 \in (0, 1/2]$. Consider any given instance $x \in S$ outside the interval $[x^-, x^+]$. If $h(x) = h^*(x)$, it will be added to S_I with probability at most $\frac{1}{4} \sqrt{\epsilon}$; if $h(x) \neq h^*(x)$, it goes to S_I with probability at least $\frac{4c_0}{1+2c_0}$. For any instance $x \in S$ that falls into the interval $[x^-, x^+]$, it will be added to S_I with probability at most $\frac{1}{4} \sqrt{\epsilon}$.

Proof. Consider the following two events that were involved in the Filtering step of the algorithm FLITER: (A_t) $\text{Maj}(Z_{1:t}(x, x^-)) = \{x < x^-\}$ and $h(x) = -1$; (B_t) $\text{Maj}(Z_{1:t}(x, x^+)) = \{x > x^+\}$ and $h(x) = 1$.

Case 1. The instance x is outside the interval and $h(x) = h^*(x)$. By assumption, both x^- and x^+ are labeled correctly. On the other hand, the probability that the comparison tag from a random worker $t \sim \mathcal{P}_C$ is correct is at least $\frac{1}{2} + \beta$. Thus, by the Chernoff bound, the majority vote of $N = \frac{1}{\beta} \log \frac{16}{\epsilon}$ comparison tags is correct with probability at least $1 - \frac{1}{4} \sqrt{\epsilon}$, i.e. $\text{Maj}(Z_{1:N}(x, x^-)) = Z^*(x, x^-)$ and $\text{Maj}(Z_{1:N}(x, x^+)) = Z^*(x, x^+)$. Consider that in reality, $Z^*(x, x^-) = \{x < x^-\}$. This immediately implies $\text{Maj}(Z_{1:N}(x, x^-)) = \{x < x^-\}$. On the other hand, this in allusion to the comparison model in Section 3 also implies $h^*(x) = -1$. Since we are considering x such that $h(x) = h^*(x)$, we have $h(x) = -1$. Therefore, the event A_N occurs. Similarly, we can show that if in reality, $Z^*(x, x^+) = \{x > x^+\}$, then the event B_N occurs. Together, we have that either A_t or B_t occurs when $t = N$ if not earlier, and hence we will set ANS to NO and such instance will not be added to S_I.

Case 2. The instance x is outside the interval and $h(x) \neq h^*(x)$. Let $E_t = A_t \cup B_t$. We aim to show that with constant probability, E_t, the complement of E_t, occurs for all $t \leq N$, hence x will be added to S_I. To this end, it suffices to show that there exists at least a time stamp $t \leq N$, such that E_t happens with probability at most $O(1)$, because $\Pr(\neg E_t) \geq 1 - \Pr(\cup E_t)$. Observe we can rewrite A_t and B_t in conjunction with the condition $h(x) \neq h^*(x)$ as follows: (A_t) $\text{Maj}(Z_{1:t}(x, x^-)) = \{x < x^-\}$ and $h^*(x) = 1$; (B_t) $\text{Maj}(Z_{1:t}(x, x^+)) = \{x > x^+\}$ and $h^*(x) = -1$. Recall that when either A_t or B_t occurs, it must be the case that the majority vote of the t workers is incorrect, where we defined the incorrectness of a comparison tag in Section 3. It hence remains to upper bound the probability of such event. This can essentially be formed as a biased random walk, also known as the probability of ruin in gambling (Feller, 2008): we are given a random walk that takes a step to the right with probability $\frac{1}{2} + \beta$ (corresponding to a draw of a perfect worker) and takes a step to the left with probability $\frac{1}{2} - \beta$, and the question is how likely the walk will ever cross the origin to the left while taking N steps. By Lemma 33, we know that such probability is given by

$$
\frac{1 - \left(\frac{1/2 + \beta}{1/2 - \beta}\right)^N}{1 - \left(\frac{1/2 + \beta}{1/2 - \beta}\right)^{N+1}} \leq \frac{1 - \frac{\beta}{\frac{1}{2} + \beta}}{1 + \frac{1 - 2c_0}{1 + 2c_0}} \leq \frac{1 - 2c_0}{1 + 2c_0}
$$

(D.1)

provided that $\beta \geq c_0$ for some absolute constant $c_0 > 0$. Therefore, with probability at least $\frac{4c_0}{1+2c_0}$, x will be added to S_I.

Case 3. The instance x falls into the interval. Using same argument as in Case 1, we know that the majority vote of N workers agrees with Z^* with probability at least $1 - \frac{1}{4} \sqrt{\epsilon}$. Therefore, such instance must be detected after the N-th iteration.

We now have the following corollary regarding the size of S_I.

Corollary 26. Consider Algorithm 4 with $|S| = \Theta(n_{x, \delta})$. Assume that the subset U is correctly labeled and $\beta \geq c_0$ for some absolute constant $c_0 \in (0, 1/2]$. With probability at least $1 - \delta/4$, $|S_I| = \Theta(\sqrt{\epsilon} |S|)$.

Proof. For any $x \in S$, let r_x be a random variable that takes value 0 if x was not added to S_I and takes value 1 otherwise. Consider any instance $x \in S$ that is outside the interval $[x^-, x^+]$. By Lemma 25, we have

$$
\Pr(r_x = 1) = \Pr(r_x = 1 \mid h(x) = h^*(x)) \cdot \Pr(h(x) = h^*(x)) + \Pr(r_x = 1 \mid h(x) \neq h^*(x)) \cdot \Pr(h(x) \neq h^*(x)) \leq \frac{1}{4} \sqrt{\epsilon} + 1 \cdot \frac{1}{2} \sqrt{\epsilon} \leq \sqrt{\epsilon}.
$$
On the other hand, it is not hard to see that
\[\Pr(r_x = 1) \geq 0 + \frac{4c_0}{1 + 2c_0} \cdot \frac{1}{6\sqrt{\epsilon}} = \Theta(\sqrt{\epsilon}). \]

Therefore, by the Chernoff bound, with probability \(1 - e^{\Theta(-\sqrt{|S|})} \), we have \(|S_1| = \Theta(\sqrt{|S|} - |S_m|) + M \), where \(M \) denotes the number of instances we added from \(U \cup S_m \). Now by Lemma 24 and our setting with \(|U| \geq \frac{1}{\sqrt{\epsilon}} \log \frac{16}{\delta} \), we have \(0 \leq |S_m| \leq \frac{1}{4}\sqrt{\epsilon} |S| \leq \frac{1}{2} |S| \) with probability at least \(1 - \frac{\delta}{8} \). In addition, \(0 \leq M \leq |U| + |S_m| = \Theta(\sqrt{|S|}) \). These together with \(|S| \geq \Omega(\frac{1}{\sqrt{\epsilon}} \log \frac{\delta}{\epsilon}) \) implies that with probability \(1 - \delta/4 \), \(|S_1| = \Theta(\sqrt{|S|}) \).

D.1.3. Performance Guarantee of Filter

A naive worst-case analysis would give query complexity bound of \(O(|S| N) \). In the following, we show an improved result. The proof follows closely from Awasthi et al. (2017b), where the new ingredient is that we need to examine the instances within and outside the interval respectively. This is where Lemma 24 plays a role in controlling the overall query complexity.

Proposition 27 (Restatement of Prop. 15). Consider the Filter algorithm with \(|S| = \Theta(n_{r, \delta}) \). Assume that \(\beta \geq c_0 \) for some absolute constant \(c_0 \in (0, 1/2] \). Then, with probability at least \(1 - \delta \), the algorithm returns an instance set \(S_I \) with size \(\Theta(n_{\sqrt{\epsilon}, \delta}) \). The label complexity is \(O\left(\frac{1}{\sqrt{\epsilon}} \cdot \log n_{\sqrt{\epsilon}, \delta} \cdot \log \log n_{\sqrt{\epsilon}, \delta}\right) \), and the comparison complexity is \(O(n_{\sqrt{\epsilon}, \delta} \cdot \log^2 n_{\sqrt{\epsilon}, \delta} + n_{r, \delta}) \).

Proof. First, by Lemma 23 and Lemma 24 (and the setting of \(|U| \)), with probability \(1 - \delta/3 \), the sub-sampling step identifies \(x^- \) and \(x^+ \) such that: 1) \(x^- \) is negative and \(x^+ \) is positive; and 2) the interval \([x^-, x^+]\) contains less than \(\frac{1}{4}\sqrt{\epsilon} |S| \) instances. In addition, since \(|U| \leq O(n_{\sqrt{\epsilon}, \delta}) \), the label complexity and comparison complexity of sub-sampling are \(O\left(\frac{1}{\sqrt{\epsilon}} \cdot \log n_{\sqrt{\epsilon}, \delta} \cdot \log \log n_{\sqrt{\epsilon}, \delta}\right) \) and \(O\left(\frac{1}{\sqrt{\epsilon}} n_{\sqrt{\epsilon}, \delta} \cdot \log^2 n_{\sqrt{\epsilon}, \delta}\right) \) respectively.

We condition on these happening and consider comparison complexity for three (overlapping) cases for \(x \in S \): it falls into the interval \([x^-, x^+]\), it is such that \(h(x) \neq h^*(x) \), it is such that \(h(x) = h^*(x) \).

Case 1. For the instances inside the interval, the total number of comparison queries on these points is upper bounded by \(\frac{1}{4}\sqrt{\epsilon} |S| N \).

Case 2. Since the error rate of \(h \) is \(\Theta(\sqrt{\epsilon}) \), we know that with probability at least \(1 - e^{-\sqrt{|S|}} \geq 1 - \delta/8 \), the number of instances in \(S \) on which \(h \) disagrees with \(h^* \) is \(\Theta(\sqrt{\epsilon} |S|) \). Hence, the total number of comparison queries is \(\Theta(\sqrt{\epsilon} |S| N) \).

Case 3. Lastly, we consider \(x \in S \) such that \(h(x) = h^*(x) \). Let \(N_1 \) be the expected number of queries we need until having \(i \) more correct comparison tags than the incorrect ones. Then,
\[
N_1 \leq \left(\frac{1}{2} + \beta\right) \cdot 1 + \left(\frac{1}{2} - \beta\right)(N_2 + 1).
\] (D.2)

This is because with probability at least \(\frac{1}{2} + \beta \), we obtain a correct comparison tag and stop, and with probability at most \(\frac{1}{2} - \beta \), we get an incorrect tag and in the future, we must query the workers until we see 2 more correct tags than incorrect ones. On the other hand, it is not hard to see that \(N_2 = 2N_1 \), since in order to reach the status of \(N_2 \), we just repeat the process of getting \(N_1 \) twice. This combined with (D.2) implies that
\[
N_1 \leq \frac{1}{2\beta} \leq \frac{1}{2c_0}
\]
as long as \(\beta \geq c_0 \). Now using the Bernstein’s inequality (see e.g. Appendix D of Awasthi et al. (2017b)), we know that with probability at least \(1 - e^{-\sqrt{|S|}} \geq 1 - \delta/8 \), the total number of comparison queries on all \(x \) with \(h(x) = h^*(x) \) is \(O(|S|) \).

Combining all three cases and the fact that \(|S| = \Theta(n_{r, \delta}) \) and \(N = \frac{1}{\beta^2} \log \frac{\delta}{\epsilon} \), we have that with probability \(1 - \delta/4 \), the comparison complexity of the “for \(x \in S \setminus U \)” loop is
\[
\frac{1}{4}\sqrt{\epsilon} |S| N + \Theta(\sqrt{\epsilon} |S| N) + O(|S|) \leq O(|S|) = O(n_{r, \delta}).
\] (D.3)
To see why the inequality holds, note that \(\sqrt{\epsilon} \log \frac{1}{\epsilon} \leq O(1) \) and \(\beta \geq \Omega(1) \), hence \(\sqrt{\epsilon} N = \sqrt{\epsilon} \cdot \frac{1}{\beta} \log \frac{1}{\epsilon} \leq O(1) \). Next, the algorithm invokes COMPARE-AND-LABEL on \(S_m \) whose size is upper bounded by \(\sqrt{\epsilon} |S| = O(n_{\sqrt{\epsilon}, \delta}) \) in view of Lemma 24. Therefore, by Proposition 19, the label complexity and comparison of this step is \(O\left(\frac{1}{\beta^{2}} \cdot \log n_{\sqrt{\epsilon}, \delta} \cdot \log n_{\sqrt{\epsilon}, \delta}\right) \) and \(O\left(\frac{\beta}{\sqrt{\epsilon}} \cdot n_{\sqrt{\epsilon}, \delta} \cdot \log^{2} n_{\sqrt{\epsilon}, \delta}\right) \) respectively. These, in conjunction with the label and comparison complexity of the sub-sampling step gives the announced results.

\[\square \]

D.2. Performance guarantee of Phase 2

We now switch to the notation in Algorithm 2.

Lemma 28 (Lemma 4.7 in Awasthi et al. (2017b)). With probability \(1 - \delta/12 \), \(\overline{W}_I \) and \(\overline{W}_C \) both have size \(\Theta(n_{\sqrt{\epsilon}, \delta}) \).

Proposition 29 (Restatement of Prop. 16). Assume that \(\beta \geq c_0 \) for some absolute constant \(c_0 \in (0, 1/2) \). In Phase 2, with probability \(1 - \frac{\delta}{4} \), \(\text{err}_{D_2}(h_2) \leq \frac{1}{2} \sqrt{\epsilon} \). The label complexity is \(O\left(\frac{1}{\beta^{2}} \cdot \log n_{\sqrt{\epsilon}, \delta} \cdot \log \log n_{\sqrt{\epsilon}, \delta}\right) \), and the comparison complexity is \(O\left(n_{\sqrt{\epsilon}, \delta} \cdot \log^{2} n_{\sqrt{\epsilon}, \delta} + n_{\epsilon, \delta}\right) \).

Proof. To see the query complexity in Phase 2, observe that we query the workers when invoking \(\text{FILTER} \) to obtain \(S_I \), and when invoking \(\text{COMPARE-AND-LABEL} \) to obtain \(S_{\text{All}} \) where \(\left| S_{\text{All}} \right| = \Theta(n_{\sqrt{\epsilon}, \delta}) \). Therefore, with probability \(1 - \delta/6 \), we obtain the announced query complexity in view of Proposition 27 and Proposition 19.

It remains to show that \(h_2 \) achieves error rate \(\frac{1}{2} \sqrt{\epsilon} \) on the target distribution \(D_2 \). Let \(d(x) \), \(d_C(x) \) and \(d_I(x) \) be the density functions of \(D, D_C \) and \(D_I \) respectively. Since the error rate of \(h_1 \) is \(\Theta(\sqrt{\epsilon}) \) (see Proposition 21), we have that for any \(i \) with \(h_1(x) = h^*(x) \), \(d(x) = d_C(x) \cdot (1 - \Theta(\sqrt{\epsilon})) \); for any \(i \) with \(h_1(x) \neq h^*(x) \), \(d(x) = d_I(x) \cdot \Theta(\sqrt{\epsilon}) \).

Let \(N_C(x), N_I(x), M_C(x) \) and \(M_I(x) \) be the number of occurrences of \(x \) in the sets \(S_C, S_I, \overline{W}_C \) and \(\overline{W}_I \), respectively. Let \(d'(x) \) be the density function of the distribution \(D' \) underlying the empirical distribution of \(\frac{1}{2} \overline{W}_I + \frac{1}{2} \overline{W}_C \).

We condition on Lemma 28, which occurs with probability \(1 - \delta/12 \).

Case 1. \(x \) is such that \(h_1(x) = h^*(x) \). We have

\[
d'(x) = \frac{1}{2} \mathbb{E} \left[\frac{M_C(x)}{\overline{W}_C} \right] \geq \mathbb{E} \left[\frac{M_C(x)}{\overline{W}_C} \right] \geq \frac{\mathbb{E} \left[N_C(x) \right]}{\Theta(n_{\sqrt{\epsilon}, \delta})} = \frac{|S_C| \cdot d(x)}{\Theta(n_{\sqrt{\epsilon}, \delta})} = \Theta(d_C(x)) \geq \Theta(d_2(x)).
\]

In the above expression, \(\zeta_1 \) follows from Lemma 28, \(\zeta_2 \) holds since \(\overline{W}_C \) was obtained in such a way that the majority vote has high probability to be correct while \(S_C \) was just drawn from \(D_X \), and the last step simply follows from the fact that \(D_2 \) is an equally weighted mixture of \(D_C \) and \(D_I \).

Case 2. \(x \) is such that \(h_1(x) \neq h^*(x) \). Similar to the first case, we can show that

\[
d'(x) = \frac{1}{2} \mathbb{E} \left[\frac{M_I(x)}{\overline{W}_I} \right] = \mathbb{E} \left[\frac{M_I(x)}{\overline{W}_I} \right] \geq \frac{\mathbb{E} \left[N_I(x) \right]}{\Theta(n_{\sqrt{\epsilon}, \delta})} \geq \frac{\frac{4c_0}{1 + 2c_0} |S_2| \cdot d_I(x)}{\Theta(n_{\sqrt{\epsilon}, \delta})} = \Theta(d_I(x)) = \Theta(d_2(x)).
\]

Now by the super-sampling lemma (Lemma 4.2 in Awasthi et al. (2017b)), we know that the obtained \(h_2 \) is such that with probability at least \(1 - \frac{\delta}{12} \), \(\text{err}_{D_2}(h_2) \leq \frac{1}{2} \sqrt{\epsilon} \). The desired success probability of \(1 - \delta/3 \) follows by considering the union bound of all the events.

\[\square \]

E. Analysis of Phase 3

Proposition 30 (Restatement of Prop. 17). In Phase 3, with probability \(1 - \frac{\delta}{4} \), \(\text{err}_{D_3}(h_3) \leq \frac{1}{2} \sqrt{\epsilon} \). In addition, the label complexity is \(O\left(\frac{1}{\beta^{2}} \cdot \log n_{\sqrt{\epsilon}, \delta} \cdot \log \log n_{\sqrt{\epsilon}, \delta}\right) \), and the comparison complexity is \(O\left(\frac{1}{\beta^{2}} \cdot n_{\sqrt{\epsilon}, \delta} \cdot \log^{2} n_{\sqrt{\epsilon}, \delta}\right) \).
Proof. Similar to the proof of Proposition 21, in Phase 3, all instances in S_3 are correctly labeled with probability at least $1 - \frac{\delta}{6}$. The label complexity is $O\left(\frac{1}{\alpha^2} \cdot \log n_{\sqrt{\epsilon},\delta} \cdot \log \log n_{\sqrt{\epsilon},\delta}\right)$ and the comparison complexity is $O\left(\frac{1}{\alpha} \cdot n_{\sqrt{\epsilon},\delta} \cdot \log^2 n_{\sqrt{\epsilon},\delta}\right)$. We condition on this happening. Then with probability $1 - \frac{\delta}{2}$, the base PAC learner A_{H} returns a classifier with error rate $\leq \frac{1}{2} \sqrt{\epsilon}$ in view of Assumption 3. By union bound, with probability at least $1 - \frac{\delta}{3}$, the error rate of h_3 is $\text{err}_{D_3}(h_3) \leq \frac{1}{2} \sqrt{\epsilon}$. □

F. Proof of Theorem 8

Proof. By Proposition 21, Proposition 29, and Proposition 30, we have that with probability at least $1 - \delta$, the error guarantees $\text{err}_{D_3}(h_1) \leq \frac{1}{2} \sqrt{\epsilon}$, $\text{err}_{D_2}(h_2) \leq \frac{1}{2} \sqrt{\epsilon}$ and $\text{err}_{D_3}(h_3) \leq \frac{1}{2} \sqrt{\epsilon}$ hold simultaneously. Therefore, by Theorem 7, it follows that the classifier $h := \text{Maj}(h_1, h_2, h_3)$ is such that $\text{err}_D(h) \leq \frac{2}{3} \epsilon \leq \epsilon$ with probability at least $1 - \delta$.

Note that each phase of Algorithm 2 runs in polynomial time. In particular, the COMPARE-AND-LABEL algorithm runs in polynomial time because its core component is RANDOMIZED QUICKSORT which runs in polynomial time. The FILTER algorithm runs in polynomial time because the sub-sampling step is efficient and the number of iterations for filtering is $N = \frac{1}{\beta^2} \log \frac{1}{\epsilon}$. Last, the base learner A_{H} is assumed to be efficient.

Finally, we consider the query complexity of the main algorithm. By Propositions 21, 29 and 30, the overall label complexity is given by

$$m_L = O\left(\frac{1}{\alpha^2} \cdot \log n_{\sqrt{\epsilon},\delta} \cdot \log \log n_{\sqrt{\epsilon},\delta}\right) = \frac{1}{\alpha^2} \cdot \tilde{O}\left(\log \frac{d + \frac{1}{\epsilon}}{\epsilon}\right), \quad \text{(F.1)}$$

and the overall comparison complexity, under the assumption $\beta \geq c_0$, is given by

$$m_C = O\left(n_{\sqrt{\epsilon},\delta} \cdot \log^2 n_{\sqrt{\epsilon},\delta} + n_{e,\delta}\right) = \tilde{O}\left(\frac{d}{\epsilon} \cdot \log \frac{d}{\epsilon} + \frac{1}{\epsilon} \cdot \log \frac{1}{\delta}\right) = O\left(\frac{d + (1/\delta) \log \frac{1}{\epsilon}}{\epsilon}\right). \quad \text{(F.2)}$$

These in allusion to $m_{e,\delta} = K \cdot \left(\frac{1}{\epsilon} \log(1/\epsilon) + \log(1/\delta)\right)$ immediately give the overheads as follows:

$$\Lambda_L = O\left(\frac{1}{\alpha^2} \cdot \frac{\log n_{\sqrt{\epsilon},\delta}}{m_{e,\delta}} \cdot \log n_{\sqrt{\epsilon},\delta}\right) \leq \frac{1}{\alpha^2} \cdot \frac{\epsilon}{d + \log(1/\delta)} \cdot \tilde{O}\left(\log \frac{d + \frac{1}{\epsilon}}{\epsilon}\right) = \frac{1}{\alpha^2} \cdot \frac{\epsilon}{d} \cdot \tilde{O}\left(\log \frac{d}{\epsilon}\right), \quad \text{(F.3)}$$

and

$$\Lambda_C = O\left(\frac{n_{\sqrt{\epsilon},\delta}}{m_{e,\delta}} \cdot \log^2 n_{\sqrt{\epsilon},\delta} + \frac{n_{e,\delta}}{m_{e,\delta}}\right) \leq O\left(\sqrt{\epsilon} \cdot \frac{d + (1/\delta) \log \frac{1}{\epsilon}}{d + \log(1/\delta)} \cdot \log^2 \left(\frac{d + 1/\delta}{\epsilon}\right) + \frac{d + (1/\delta) \log \frac{1}{\epsilon}}{d + \log(1/\delta)}\right). \quad \text{(F.4)}$$

Recall that by the definition of $n_{e,\delta}$ and $m_{e,\delta}$ in Section 3, we have $m_{e,\delta} = \Theta(n_{e,\delta}) = \Theta\left(\frac{d}{\epsilon} \log \frac{1}{\epsilon}\right)$ when δ is a constant (note that assuming δ as a constant only simplifies our discussion). In this case, we can see that

$$\Lambda_C \leq O_\delta\left(\sqrt{\epsilon} \cdot \log^2 \frac{d}{\epsilon} + 1\right).$$

The theorem is proved. □

Remark 31. Observe that the denominator we use in the analysis, i.e. $\Omega\left(\frac{d}{\epsilon}\right)$, is the query complexity lower bound of a PAC learner that uses only labels, thus highlighting the saving of labels with access to the comparison queries. On the other side, if we were to compare our query complexity to the lower bound of a comparison-equipped algorithm in the non-crowdsourcing setting, we can combine Theorem 4.11 and Corollary 4.12 of (Kane et al., 2017) to get a (probably loose) lower bound $\Omega\left(d + \frac{1}{\epsilon}\right)$. With this bound, it is easy to see that now Eq. (F.3) and Eq. (F.4) become

$$(\text{F.3'}) \quad \Lambda_L \leq \frac{1}{\alpha^2} \cdot \frac{1}{d + 1/\epsilon} \cdot \tilde{O}\left(\log \frac{d}{\epsilon}\right),$$

$$(\text{F.4'}) \quad \Lambda_C \leq O\left(\frac{1}{\sqrt{\epsilon}} \cdot \frac{(d + (1/\delta) \log \frac{1}{\epsilon})}{d + 1/\epsilon} \cdot \log^2 \frac{d + 1/\delta}{\epsilon} + \frac{1}{\epsilon} \cdot \frac{(d + (1/\delta) \log \frac{1}{\epsilon})}{d + 1/\delta} \cdot \log^2 \frac{d + 1/\delta}{\epsilon} + \frac{d/\epsilon}{d + 1/\epsilon}\right) = O_\delta\left(\frac{d/\sqrt{\epsilon}}{d + 1/\epsilon} \cdot \log^2 \frac{d}{\epsilon} + \frac{d/\epsilon}{d + 1/\epsilon}\right).$$

When $\epsilon \to 0$, we have $\Lambda_L = o_\delta(1)$ and for fixed d, $\Lambda_C = O_\delta(1)$. Hence, the performance guarantees we highlighted in Remark 10 still hold for fixed d, as we mentioned in Remark 12.
G. Useful Lemmas

We record some standard results in this section.

Lemma 32 (High-probability bound for RANDOMIZED QUICKSORT). With probability at least $1 − 1/m^c$ for any constant $c > 1$, the following holds. Given an instance set S with m elements, the comparison complexity of sorting all the elements by RANDOMIZED QUICKSORT is $(c + 2)m \log_{8/7} m$.

Proof. QUICKSORT is a recursive algorithm: in each round, it picks a pivot, splits the problem into two subsets, and recursively calls itself on each subset. The program keeps doing this until all the recursive calls contain at most one element. We consider RANDOMIZED QUICKSORT in our algorithm. Note that RANDOMIZED QUICKSORT differs from QUICKSORT only in the way it picks the pivots: in each round, it picks a random element in set S.

Consider a special element $t \in S$. Let L_i be the size of input in the ith level of recursion that contains t. Obviously $L_0 = m$, and we have

$$
\mathbb{E}[L_i | L_{i-1}] < \frac{1}{2} \cdot \frac{3}{4} L_{i-1} + \frac{1}{2} L_{i-1} \leq \frac{7}{8} X_{i-1},
$$

because with probability $\frac{1}{2}$, the pivot ranks between $\frac{1}{2} L_{i-1}$ and $\frac{3}{4} L_{i-1}$; and with probability $\frac{1}{2}$, the size of the subset does not shrink significantly. By the tower rule $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X | Y]]$, it follows that

$$
\mathbb{E}[L_i] = \mathbb{E}[\mathbb{E}[L_i | L_{i-1} = y]] \leq \frac{7}{8} \mathbb{E}[L_{i-1}] \leq \left(\frac{7}{8}\right)^i \mathbb{E}[L_0] = \left(\frac{7}{8}\right)^i m.
$$

Let $M = (c + 2) \cdot \log_{8/7} m$ for some constant $c > 0$. Then, the above inequality gives

$$
\mathbb{E}[L_M] \leq \left(\frac{7}{8}\right)^M m \leq \frac{1}{m^{c+1}} m = \frac{1}{m^{c+1}}.
$$

Applying Markov’s inequality, we have

$$
\Pr[L_M \geq 1] \leq \frac{\mathbb{E}[L_M]}{1} \leq \frac{1}{m^{c+1}},
$$

which denotes the probability that element t participates in more than M recursive calls. Taking a union bound over all m elements, the probability that any element participates in more than M recursive calls is at most $(1/m^{c+1}) \cdot m = 1/m^c$. In other words, with probability at least $1 − 1/m^c$, the total number of pairwise comparisons performed is upper bounded by $m \cdot M = (c + 2)m \log_{8/7} m$.

Lemma 33 (Probability of Ruin (Feller, 2008)). Consider a player who starts with i dollars against an adversary that has N dollars. The player bets one dollar in each gamble, which he wins with probability p. The probability that the player ends up with no money at any point in the game is

$$
\frac{1 − \left(\frac{p}{1-p}\right)^N}{1 − \left(\frac{p}{1-p}\right)^{N+i}}.
$$

Lemma 34 (Chernoff bound). Let Z_1, Z_2, \ldots, Z_n be n independent random variables that take value in $\{0, 1\}$. Let $Z = \sum_{i=1}^n Z_i$. For each Z_i, suppose that $\Pr(Z_i = 1) \leq \eta$. Then for any $\alpha \in [0, 1]$

$$
\Pr(\ Z \geq (1 + \alpha) \eta n) \leq e^{-\frac{\alpha^2 \eta n}{2}}.
$$

When $\Pr(Z_i = 1) \geq \eta$, for any $\alpha \in [0, 1]$

$$
\Pr(Z \leq (1 - \alpha) \eta n) \leq e^{-\frac{\alpha^2 \eta n}{2}}.
$$

The above two probability inequalities hold when η equals exactly $\Pr(Z_i = 1)$.

Efficient PAC Learning from the Crowd with Pairwise Comparisons