
Position Prediction as an Effective Pretraining Strategy

Shuangfei Zhai 1 Navdeep Jaitly 1 Jason Ramapuram 1 Dan Busbridge 1 Tatiana Likhomanenko 1

Joseph Yitan Cheng 1 Walter Talbott 1 Chen Huang 1 Hanlin Goh 1 Joshua Susskind 1

Abstract
Transformers (Vaswani et al., 2017) have gained
increasing popularity in a wide range of appli-
cations, including Natural Language Processing
(NLP), Computer Vision and Speech Recognition,
because of their powerful representational capac-
ity. However, harnessing this representational ca-
pacity effectively requires a large amount of data,
strong regularization, or both, to mitigate over-
fitting. Recently, the power of the Transformer
has been unlocked by self-supervised pretraining
strategies based on masked autoencoders which
rely on reconstructing masked inputs, directly, or
contrastively from unmasked content. This pre-
training strategy which has been used in BERT
models in NLP (Devlin et al., 2019), Wav2Vec
models in Speech (Baevski et al., 2020) and, re-
cently, in MAE models in Vision (Bao et al., 2021;
He et al., 2021), forces the model to learn about re-
lationships between the content in different parts
of the input using autoencoding related objectives.
In this paper, we propose a novel, but surprisingly
simple alternative to content reconstruction – that
of predicting locations from content, without pro-
viding positional information for it. Doing so
requires the Transformer to understand the po-
sitional relationships between different parts of
the input, from their content alone. This amounts
to an efficient implementation where the pretext
task is a classification problem among all possible
positions for each input token. We experiment
on both Vision and Speech benchmarks, where
our approach brings improvements over strong su-
pervised training baselines and is comparable to
modern unsupervised/self-supervised pretraining
methods. Our method also enables Transformers
trained without position embeddings to outper-
form ones trained with full position information.

1Apple Inc. Correspondence to: Shuangfei Zhai
<szhai@apple.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
Transformers (Vaswani et al., 2017) have become a unified
architecture in NLP, Computer Vision and Speech. Their
high capacity and lack of domain specific inductive biases
means Transformers require large amounts of training data
to achieve good generalization. One effective remedy, first
developed in the NLP community, is unsupervised pretrain-
ing. For example, BERT (Devlin et al., 2019) trains a Trans-
former with unlabeled text by solving masked token predic-
tion. This greatly benefits downstream applications, and has
become the standard approach for various NLP tasks.

Recently, there have been a few attempts to apply the BERT
pretraining idea to Computer Vision, with Vision Transform-
ers (ViTs) (Dosovitskiy et al., 2021) being the backbone
architecture. In particular, BEiT (Bao et al., 2021) converts
image patches to discrete tokens with a separately trained
VQVAE (van den Oord et al., 2017). This makes it possi-
ble to use the same cross entropy loss for masked image
patch prediction as for token prediction in BERT. MAE (He
et al., 2021) further simplifies the recipe of BEiT by directly
predicting the masked patches with a regression loss in the
pixel space.

In this paper, we propose a simple and effective approach
for Transformer pretraining that removes the need for re-
constructing dense patch values. Our idea is inspired by
the observation that Transformers are relatively insensitive
to the order of input tokens. In (Naseer et al., 2021), it is
shown that pretrained ViTs demonstrate strong robustness to
image patch shuffling perturbation at test time. (Sinha et al.,
2021) shows that training the BERT model with randomly
shuffled word order gives surprisingly competitive perfor-
mance. (Chen et al., 2021) also suggests that a ViT without
positional embeddings shows only a small degradation in
the linear probing task for self-supervised learning. This
evidence suggests that much of the power of Transformers
results from the ability to reason about the co-occurrence of
the set of unordered input tokens. We thus ask the question:
How much can unsupervised pretraining learn using only
contents for prediction? This motivates us to formulate a
novel pretraining strategy, explained as follows.

In the pretraining phase, the model (e.g., a ViT) receives a
set of tokens (e.g., image patches) but not their positions,

Position Prediction as an Effective Pretraining Strategy

Masked
Transformer

input tokens with positions

predict position for each token

co
nt

ex
t t

ok
en

s

0 1 2

3 4 5

6 7 8

3

6

1

7

4

2

5

8

0

remove positions & select random context tokens

Figure 1. Illustration of our method MP3 on images. MP3 removes the position information for all tokens (image patches); it then
randomly select a subset of tokens as context tokens. A Masked Transformer is used, where in each attention layer only context tokens
contribute to the keys and values, and all tokens contribute to the queries. Each token predicts its position with a linear classifier head.

and the pretext task is to recover the position of each input
token, cast as a classification problem among all positions.
By doing so, we formulate a special case of masked autoen-
coder, where the positions, rather than tokens, are removed
from the input and predicted by the model. This training
objective can also be interpreted as training a Set Trans-
former (Lee et al., 2019) to solve a Jigsaw puzzle (Noroozi
& Favaro, 2016). In order to solve the task, the Transformer
needs to reason about the high order interaction of the input
tokens, which amounts to understanding the underlying se-
mantics (e.g., part-whole relationship of the given object)
represented by the inputs. Empirically, we have found that
large Transformers can often achieve near perfect accuracy
on the position prediction task1. We then propose to increase
the task’s difficulty by selecting a random subset of tokens
as context, and modify the attention layers such that only
context tokens are used as keys and values. In this way, the
Transformer not only needs to order the context tokens, but
also infer the positions for masked out tokens by querying
into the context. We hence dub our method MP3, denoting
Masked Patch Position Prediction.

During finetuning, we disable token masking and add ab-
solute positional embeddings in the same way as standard
Transformers. We then remove the linear position prediction
head and replace it with a linear head for the downstream
task (e.g., classification). All the parameters are updated for
a desired number of finetuning steps with the downstream

1Except for Speech, where a patch (audio frame) is a small
part of the full sequence, and it is much more challenging without
providing some reference points with known positions.

task’s training objective.

MP3 amounts to a simple implementation. In the pretraining
phase, no additional modules are needed other than a linear
head with d× n parameters, where d is the model’s feature
dimension and n is the number of positions. The training
objective is simply the cross entropy loss. Also, thanks to
the context masking, full self-attention is reduced to sparse
attention, which effectively makes the pretraining cost lower
than that of finetuning.

We conduct experiments on both Vision and Speech tasks.
MP3 consistently improves the performance of Transformer
models compared to strong supervised training baselines,
and matches other more sophisticated unsupervised/self-
supervised pretraining methods, despite is simplicity. Re-
markably, MP3 enables strong finetuning performance even
without using position embeddings, sometimes outperform-
ing the supervised training baselines by a large margin.

2. Related Work
Denoising Autoencoders (DAEs). DAEs (Vincent et al.,
2010) are well studied models in the context of unsupervised
pretraining. The idea is to reconstruct the inputs given noisy
versions of themselves. Masked autoencoder (MAE) is a
special case of DAE, where part of the inputs are masked
out (with a multiplicative Bernoulli noise). When combined
with Transformers, MAEs have shown great success as an
unsupervised pretraining technique, with BERT (Devlin
et al., 2019), BEiT (Bao et al., 2021) and MAE (He et al.,

Position Prediction as an Effective Pretraining Strategy

2021) as notable examples. MP3 can also be viewed as
a special case of MAEs, but it masks out the positional
information (and optionally input tokens), rather than input
tokens. The reconstruction objective is then turned into
a sorting task, which has very different implications than
reconstructing missing tokens given positions.

Self-supervised learning with order prediction. Unsu-
pervised feature learning with order prediction of image
patches is first proposed in (Noroozi & Favaro, 2016), and
then extended in followup works such as (Lee et al., 2017;
Ahsan et al., 2019; Xu et al., 2019; Santa Cruz et al., 2018;
El-Nouby et al., 2019). What these works share is that they
often adopt a CNN based encoder for an image patch or a
video clip, and an MLP based prediction network to output
the correct order of a set of inputs (except (El-Nouby et al.,
2019) which uses order prediction to approximate future
prediction in videos). The output of these methods is then
a local representation for image patches or video clips, as
the order prediction network is discarded. This is in stark
contrast with our work, MP3 focuses on learning the global
representation via attention. This is only made possible by
the powerful Transformer architecture, which focuses on
learning the interactions between input elements, and the
same global knowledge is transferred to downstream tasks
in the finetuning step.

Importance of positional embedding in Transformers.
Positional embeddings (PEs) are of unique importance to
Transformers, and improving PEs is an active research area,
see (Dufter et al., 2021) for an overview. However, it is
empirically observed that the performance of Tranformers
is surprisingly robust to the order of the inputs. For ViTs,
(Naseer et al., 2021) shows that pretrained ViTs suffer much
less from patch shuffling perturbations than CNNs. (Sinha
et al., 2021) shows that masked language models perform
well even when trained with shuffled sentences. (Chen et al.,
2021) also shows that a Transformer without PEs shows only
a small degradation when evaluated with linear probing in
a contrastive learning setup. MP3 confirms the hypothesis
that much of the Transformer’s power lies in its ability to
model the co-occurrence of input tokens. In particular, our
pretraining method does not use or train PEs at all (instead
of randomly shuffling input tokens while using PE), and still
performs competitively compared to other baselines.2

Contrastive Learning. This is a family of methods for self-
supervised learning, where the learning objective is to assign
high similarity to augmented views from the same example
(van den Oord et al., 2018; Chen et al., 2020; 2021; Caron
et al., 2021). MP3 differs as it does not rely on data augmen-
tation as the source of training signal, which gives it much
more flexibility. Besides, MP3 does not enforce clustering

2Note that for Speech some positions are needed to be added –
otherwise, the pretraining task is too hard for the model to solve.

of the representation for different positions within an input,
which makes it not suitable for linear probing tasks. These
differences also suggest a possibility of combining MP3
and contrastive learning to achieve the best of both worlds.
There has also been attempts combining contrastive learn-
ing with predictive tasks (Dangovski et al., 2021), which
suggests possible ways of combining MP3 with contrastive
learning in a similar fashion.

Position prediction in NLP. In concurrent works, the idea
of position prediction has also been explored in the NLP
domain (Cui et al., 2022; Brüel-Gabrielsson & Scarvelis,
2022). These works, combined with MP3, suggest that
position prediction is a promising technique across a wide
range of problems.

3. Method
3.1. Architecture

For Vision, our architecture is based on ViTs (Dosovitskiy
et al., 2021). In a nutshell, ViTs divide an image into non-
overlapping patches of a given size (e.g., 16× 16). A linear
projection with shared weights to all image patches to obtain
a sequence of image tokens is then applied. Token vectors
are additively combined with their respective positional em-
beddings to form the input sequence. Standard self-attention
layers are then applied to process the input sequence.

For Speech, our architecture is based on the vanilla Trans-
former. The input to the model is a sequence of frames of
40 mel filterbank cepstral coefficients (MFCCs), computed
from 30ms of raw waveforms, strided by 10ms between
frames, following (Choi et al., 2019). Each frame is trans-
formed by the same linear projection into the dimension of
the transformer model (thus, each frame is treated as a 1D
patch). A fixed sinusoidal positional embedding (Vaswani
et al., 2017) is added to these projected representation and
the result is fed into an 8 layer Transformer. As with ViTs,
we add a learnable “cls” token frame at the beginning of
the model input sequence. Compared to Vision, in Speech
we have a patch that is 1D rather than 2D as we ignore the
structure in the frequency domain. Later in the text, we refer
to a frame as a patch in the context of Speech tasks.

3.2. Masked Position Prediction Pretraining

In the pretraining phase, we apply the same patch projection
as standard ViTs but remove the positional embeddings
from all the patch representations. This results in a set
of patch representations. We next randomly select 1 − η
fraction of patches as “context patches”, where η denotes
the masking ratio. We then modify the self-attention layers
accordingly, where only the context patches take part in the
computation of keys and values; queries are computed for
all patches. In other words, we perform cross attention from

Position Prediction as an Effective Pretraining Strategy

Table 1. Overview of datasets and baseline models. The ViT-S and ViT-B architectures are defined according to (Touvron et al., 2021).

Dataset Input size #Examples #Classes Model config Patch size Patch stride #Positions

CIFAR-100 32× 32 50K 100 ViT-S 4× 4 4 64
Tiny ImageNet 64× 64 100K 200 ViT-B 8× 8 8 64
ImageNet-1K 224× 224 1.3M 1K ViT-B 16× 16 16 196
Google Speech Commands 1s 22246 12 8 layer Transformer 30ms 10ms 100

all input patches to the context patches. With η > 0, the
Transformer needs to formulate a good representation of
the input given only a subset of the input patches, while
ordering all the input patches. This forces the model to
reason about the relationship of the context patches and
infer masked patches at the same time. As a byproduct, a
high masking ratio effectively reduces the computational
cost of the Transformer in the pretraininig phase.

We attach a linear prediction head after the last attention
layer, with input and output dimensions being the feature
dimension d and number of patches n, respectively. The
outputs of the linear head are passed to Softmax to form a
distribution over patch positions. The position prediction
loss is obtained with the cross entropy between the position
index and the prediction head’s outputs. See Figure 1 for an
illustration, and Appendix A for a sketch implementation.

3.3. Supervised Finetuning

After the unsupervised pretraining step, we finetune the
network with labels. Specifically, we remove the position
prediction head, and attach a linear classifier head after the
“cls” token, as in standard ViTs. We also apply randomly
initialized (learned) positional embeddings (or fixed sinu-
soidal) to the patch embeddings, also following standard
ViTs. Random masking is disabled during this stage and
full self-attention is used. The remaining setting of the fine-
tuning step largely resembles that of the supervised training.

4. Evaluations
4.1. Experimental Setting

While there has been a lot of interest in scaling Transform-
ers on large datasets in the literature, their performance on
small datasets remains under explored. As Transformers
tend to overfit easily with pure supervised learning, we be-
lieve that it is of great importance to investigate the power
of unsupervised pretraining in scarce data settings. In the
domain of vision, we experiment with small to medium
sized datasets: CIFAR-100 (Krizhevsky et al., 2009), Tiny
ImageNet 3 and ImageNet-1K (Deng et al., 2009). In the
Speech domain we did not attempt a full blown applica-
tion of MP3 to Automatic Speech Recognition because the

3http://cs231n.stanford.edu/tiny-imagenet-200.zip

notion of locations is vague, with the streaming nature of
the data. Instead we opted here to show proof of concept
by applying MP3 to the keyword spotting task, which is a
classification problem on a fixed length snippet of audio.
We use the Google Speech Commands dataset v1 (Warden,
2018) and implemented our models using the publicly avail-
able implementation of TC-ResNet (Choi et al., 2019) 4,
keeping their audio preprocessing routines, data splits and
other details intact. For each dataset above, we choose a
baseline Transformer model configuration, the details of
which are summarized in Table 1.

4.2. Pretraining and Finetuning on Vision Data

Implementation details. For CIFAR-100, Tiny ImageNet
and ImageNet-1k, both our pretraining and finetuning set-
tings largely follow DeiT (Touvron et al., 2021), which uses
AdamW (Loshchilov & Hutter, 2017) optimizer, weight de-
cay of 0.05, drop path (Ghiasi et al., 2018) rate of 0.1, Ran-
dAugment (Cubuk et al., 2020), CutMix (Yun et al., 2019),
MixUp (Zhang et al., 2017), Random Erasing (Zhong et al.,
2020), Repeated Augmentation (Hoffer et al., 2020) and
label smoothing. In the pretraining phase, we do not use
CutMix, MixUP, Random Erasing, Repeated Augmentation
and label smoothing. The finetuning phase follows exactly
the same protocol as the supervised training recipes sug-
gested in (Touvron et al., 2021). We search for optimal η for
each dataset in the pretraining phase, which is 0.5, 0.8, 0.75
for CIFAR-100, Tiny ImageNet and ImageNet-1K, respec-
tively. The batch size is 256, 512 and 2048, respectively.

Baselines. On each dataset, the supervised baseline is
trained with strong regularizations. We fix the total training
epoch to 400 epochs for CIFAR-100 and Tiny ImageNet,
and 300 for ImageNet-1K. We also consider two additional
supervised training baselines, one without positional embed-
dings and another with 2D relative position biases (Shaw
et al., 2018). We also consider two Transformer based self-
supervised pretraining methods, MOCO V3 (Chen et al.,
2021) and MAE (He et al., 2021). In both cases, we use
the official code bases and search for the optimal hyper pa-
rameter for each case (data augmentation, learning rate for
MOCO V3; masking ratio and learning rate for MAE).

4https://github.com/hyperconnect/TC-ResNet

Position Prediction as an Effective Pretraining Strategy

co
nt

ex
t

=0.0

in
pu

t
re

co
n

0.25 0.5 0.75

Figure 2. An image from the ImageNet validation set (top left corner) and its reconstructed images for a model trained with η = 0.75.
Column 1 - 4: different η used at test time, ranging in {0, 0.25, 0.5, 0.75}. Row 1: the random context patches, placed in their original
locations. Row 2: the unordered inputs to the model, with the context patch tokens outlined in green. Row 3: each patch is placed in the
predicted position, and patches falling in the same position are averaged. The content in the reconstructed images are still apparent despite
distortions. See Appendix F for additional examples.

4.2.1. PRETRAINING EFFICIENCY

We first measure the training efficiency of MP3, compared
to MAE as well as the supervised training baseline ViT-B.
In Table 2 we report the training time (seconds per iteration)
and the memory consumption (in gigabytes) on ImageNet-
1K with a single A100 GPU. Compared to ViT-B, MP3 has
significantly lower time and memory cost across different
values of the masking ratio η. Compared to MAE, MP3
has favorable efficiency for most of the η values, espesially
when η is small.

4.2.2. POSITION PREDICTION

Next we examine a Transformer’s ability to solve the posi-
tion prediction task. We show the results for ImageNet-1K
where vary the masking ratio in {0, 0.75} and train for 100
epochs. We measure the position prediction accuracy on the
validation sets with different test η. The results are shown
in Figure 3. Interestingly, when trained with η = 0, the
Transformers are able to solve the task almost perfectly.
Large masking ratio η = 0.75 leads to decreasing accuracy

as expected, but the accuracy remains decent up to a high
masking ratio. This suggests that there is enough informa-
tion in the input patches alone to recover their corresponding
position information.

In order to understand the behavior of MP3 with large η,
we show one example in Figure 2. Specifically, we obtain
a model trained with η = 0.75, and vary η at test time. For
each test η, we generate a random set of context patches,
and show the reconstructed images with the predicted posi-
tions. We see that the model makes sensible reconstructions,
even when the overall accuracy is not high (e.g., with test
η = 0.75). This suggests the model can learn to reason
effectively about the underlying objects given only a small,
positionless subset of input patches. More examples can be
seen in Appendix F.

4.2.3. QUANTITATIVE RESULTS

We report the finetuning accuracy in Table 3 for CIFAR-
100 and Table 4 for ImageNet-1K. In all our experiments,
MP3 significantly improves upon the supervised training

Position Prediction as an Effective Pretraining Strategy

Table 2. Training time and memory efficiency for MP3, MAE and the ViT-B baseline, while varying the masking ratio η. MP3 has
favorable speed and memory efficiency than both MAE and ViT-B in most settings.

Time (Seconds / Iter) Memory (GB / Batch)

η 0.3 0.5 0.75 0.9 0.3 0.5 0.75 0.9

MAE OOM 0.57 0.47 0.41 OOM 35.1 28.0 24.4
MP3 0.52 0.51 0.46 0.44 30.0 27.4 24.2 22.3
ViT-B 0.67 33.5

Table 3. Classification results on CIFAR-100 and Tiny ImageNet. We include a strong ResNeXT baseline (Xie et al., 2017; Li et al., 2021)
as a reference in both cases. For baseline ViT-S, we train three versions with absolute, relative and no positional embeddings. We also
compare to MOCO V3 (Chen et al., 2021) and MAE (He et al., 2021). MP3 achieves much better results than the supervised learning
baseline ViT-S, and is comparable to MOCO V3 and MAE with the same number of pretraining epochs. MP3 without PE achieves
surprisingly competitive results in both cases.

Method PT epochs PE CIFAR-100 Acc Tiny ImageNet Acc

ResNeXT 0 conv 82.7 72.2

ViT-S Baseline 0 absolute 73.4 57.6
ViT-S Baseline 0 2D relative 75.0 59.4
ViT-S Baseline 0 none 64.6 60.0

MOCO V3 2K 2D absolute 83.3 73.4
MAE 2K 2D absolute 84.5 73.7

MP3 2K absolute 84.0 72.8
MP3 2K 2D relative 84.2 73.2
MP3 2K none 82.6 68.2

0.0 0.2 0.4 0.6 0.8
Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

Pa
tc

h
to

p1
 a

cc
 (%

)

Train = 0.00
Train = 0.75

Figure 3. Validation accuracy for the position prediction task on
ImageNet-1K for train masking ratios η ∈ {0.00, 0.75}. The
number of total positions is 196. For train η = 0, the position
prediction task can be solved near perfectly at evaluation masking
ratio η = 0 (which is a standard Jigsaw puzzle), and a large η
consistently leads to decreasing accuracy. Interesting the converse
is true for train η = 0.75, with a patch performance maximum
occurring around evaluation η = 0.55.

baseline’s accuracy, sometimes by a large margin. Note that
we do not change the finetuning hyper parameters, compared
to the supervised training baseline, and the gain comes
completely from effective pretraining.

Compared to other self-supervised pretraining methods,
MP3 achieves comparable results. This is also surprising
to some extent, as MP3 does not use or train positional em-
beddings information in the pretraining phase. We further

performed studies of adding zero initialized relative posi-
tion biases, similar to BEiT (Bao et al., 2021), and not using
PE during finetuning. Relative position bias consistently
improves upon the absolute PE version, though with a small
margin. Interestingly, the version of not using PE shows
strong performance, outperforming all the supervised train-
ing baselines (including ones with relative position biases).

Finally, on our largest dataset ImageNet-1K, MP3 requires
only 100 pretraining epochs to outperform the supervised
trainining baseline, where the total number of epochs are
equated. Due to the large masking ratio (η = 0.75) and the
use of masked attention, this results in an effective reduction
of total training costs (see Table 2 for efficiency measures).
We have also experimented with a larger backbone ViT-L.
With 150 epochs of pretraining, we are able to outperform
the supervise training baseline by 1 point, as well as MAE
pretrained with 200 epochs (number taken from the paper).

Note that although MP3 does not outperform the state of
the art MAE’s performance, we believe that MP3 learns
complementary representations. To show this, we performed
a simple ensembling test by averaging the outputs of an MP3
and MAE finetuned model from Tab 4 (the ones with 83.0%
and 82.7% top 1 accuracy, respectively). This results in a
strong classifier with 84.0% accuracy, outperforming MAE
pretrained with 1600 epochs. This suggests great potential
of potentially combining MP3 and MAE and achieve even
greater benefits from pretraining.

Position Prediction as an Effective Pretraining Strategy

Table 4. Classification results on ImageNet-1K. MP3 outperforms the supervised training ViT-B baseline with the same number of total
training epochs, which is less overall training cost due to the efficiency of the pretraining phase. Remarkably, MP3 finetuned without any
positional information outperforms the full ViT model. MP3’s finetuning performance is on par with competitive methods, while with
much fewer pretraining epochs.

Method PT Epochs FT Epochs PE Acc

ViT-B (Touvron et al., 2021) 0 300 absolute 81.8
ViT-B (Touvron et al., 2021) 0 300 none 79.1
ViT-B DINO (Caron et al., 2021) 300 300 absolute 82.8
ViT-B MOCO V3 (Chen et al., 2021) 300 150 2D absolute 83.2
ViT-B BEiT (Bao et al., 2021) 800 100 2D relative 83.2
ViT-B MAE (He et al., 2021) 1600 100 2D absolute 83.6
ViT-B MAE (He et al., 2021) 150 150 2D absolute 82.7
ViT-B MP3 100 150 absolute 83.0
ViT-B MP3 100 300 none 81.9

ViT-L (He et al., 2021) 0 200 absolute 82.6
ViT-L MAE (He et al., 2021) 200 50 2D absolute 83.3
ViT-L MAE (He et al., 2021) 1600 50 2D absolute 85.1
ViT-L MP3 150 150 absolute 83.6

10
2

10
3

Pretraining epochs (logarithm scale)

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

A
cc

ur
ac

y
(%

)

MP3 w/ PE in finetuning (ours)
MP3 w/ Rel Pos Bias in finetuning (ours)
MP3 w/o PE in finetuning (ours)
MAE
Supervised training w/ PE
Supervised training w/ Rel Pos Bias
Supervised training w/o PE

10
2

10
3

Pretraining epochs (logarithm scale)

45

50

55

60

65

70

75

A
cc

ur
ac

y
(%

)

MP3 w/ PE in finetuning (ours)
MP3 w/ Rel Pos Bias in finetuning (ours)
MP3 w/o PE in finetuning (ours)
MAE
Supervised training w/ PE
Supervised training w/ Rel Pos Bias
Supervised training w/o PE

Figure 4. Finetuning accuracy of MP3 on CIFAR-100 (left) and Tiny ImageNet (right) as the pretraining epochs are varied.

4.2.4. ABLATIONS

Pretraining epochs. We vary the total number of pretrain-
ing epochs with everything else fixed, and show the resultant
accuracy in Figure 4. We see that MP3 works well with a
small number of epochs (e.g., 100) but consistently benefits
from more pretraining.

Finetuning epochs. For MP3, the position embeddings are
not learned or used during pretraining, which suggests that
it can potentially benefit from longer finetuning epochs. To
see this, we take a ViT-B based MP3 model pretrained at
100 epochs (see Table 4) and vary the finetuning epochs. In
Figure 5, we see that this is indeed the case. Moreover, MP3
is able to outperform the supervised training baseline with
as few as 60 finetuning epochs (which amounts to 160 total
training epochs). This corresponds to an approximate 50%
reduction on the training time.

50 75 100 125 150
Fine-Tuning Epochs

81

82

83

Te
st

To
p

1
A

cc
(%

)

Model
MP3
Supervised (300 epochs)

Figure 5. Test top 1 accuracy on ImageNet-1K as the finetunig
epochs is varied, with pretraining epochs fixed at 100. MP3
matches the 300 epoch supervised training baseline with as few as
160 total training epochs.

Position Prediction as an Effective Pretraining Strategy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Masking ratio

80.2

80.4

80.6

80.8

81.0

81.2

81.4

81.6

81.8

82.0

A
cc

ur
ac

y
(%

)

MP3 (ours)
Supervised training baseline: 73.4%

Figure 6. The CIFAR-100 finetuning validation accuracy as the
pretraining η is varied, with 200 epochs of pretraining. All the
settings provide significant improvement to the supervised training
baseline, with the performance peaking at 0.5. Extremely large η
degrades the performance as less contextual information is learned.

Masking ratio. We evaluate models pretrained with the
same number of epochs (200) under different masking ra-
tios. Figure 6 shows that there exists an optimal value that
induces the highest finetuning accuracy. Extreme large η
leads to notable degradation, which suggests that it is im-
portant to train with a reasonably large context token set.

Patch size. For ViTs, the patch size affects the model’s
performance. We experimented with two additional patch
configurations on CIFAR-100 with the default ViT-S archi-
tecture. Figure 7 shows the accuracy for the supervised
training baselines and the finetuning results. We see consis-
tent improvements across small and large patch sizes.

patch size = 2 patch size = 4 patch size = 8
60

65

70

75

80

85

A
cc

ur
ac

y
(%

)

85.06

83.16

75.73

71.89

73.46

64.88

MP3 (ours)
Supervised traning baseline

Figure 7. The CIFAR-100 finetuning validation accuracy for MP3
(pretrained for 1000 epochs) and the supervised training baselines,
as the patch size is varied. MP3 provides consistent improvements
under different patch resolutions.

4.2.5. VISUALIZING AND UNDERSTANDING ATTENTION

The improvements demonstrated by MP3 in Section 4 raise
two important questions: what are the qualitative properties
of the attention mechanism that MP3 learns, and which

Table 5. Comparison with other baselines on Speech Commands
(test accuracy %).

Model Accuracy

TC-ResNet8 (Choi et al., 2019) 96.1
Transformer 91.9
Transformer + MP3 94.2

Table 6. Validation accuracy (%) after finetuning (η = 0) with dif-
ferent amount of pretraining (PT) updates on Speech Commands
with 0.05 fraction of the patches being provided positional infor-
mation.

1K PT 5K PT 10K PT 25K PT 50K PT

91.7 93.3 94.2 93.1 93.8

aspects are preserved under finetuning?

We observe that, at all layers, MP3 yields heads that are
more local, as well as heads that are more global than those
found in supervised ViTs. Upon finetuning, head locality
becomes more similar to that of a supervised ViT, with early
layer locality being much less modified than the locality of
later layers. The results for highly local heads at masking
ratio η = 0 are illustrated in Figure 8. For a full unbiased
selection and more details, see Appendix E.

4.3. Pretraining and Finetuning on Speech Data

For Google Speech Commands we use a Transformer model
with 8 self-attention layers, a dropout of 0.1, feature dimen-
sion of 32 and fully connected feedforward layer dimen-
sion of 64. The model has around 70K parameters in total
to be comparable with the smallest convolutional models
from (Choi et al., 2019). All pretraining and finetuning mod-
els are trained with exactly the same experimental setting as
follows. Optimization is done with Adam (Kingma & Ba,
2015) with a batch size of 256 and early stopping is done
based on validation accuracy. Warmup of learning is done
for 500 updates with a constant learning rate of 10−4. Sub-
sequently the learning rate is increased to 10−3 and dropped
by a factor of 2 every 10k updates. For supervised baselines
and finetuning phase we also use label smoothing (=0.1) for
regularization and we train the models for 30K updates.

Compared to Vision, the position prediction task (pretrain-
ing step) is very hard – even with η = 0 the top-1 accuracy
is only 4%. Nevertheless, a higher value of top-5 accu-
racy of 11% demonstrates that the model is able to learn to
roughly position the patches but cannot resolve it further.
This result shows the difference between image and audio
data: different granularity and locality properties. To sim-

Position Prediction as an Effective Pretraining Strategy

H
ea

d
1

Layer 2 Layer 6
MP3

Layer 10 Layer 11 Layer 12
H

ea
d

2
H

ea
d

3
H

ea
d

4
H

ea
d

5
Layer 2 Layer 6

MP3 + FT (no PosEnc)
Layer 10 Layer 11 Layer 12 Layer 2 Layer 6

MP3 + FT (PosEnc)
Layer 10 Layer 11 Layer 12

Figure 8. Average relative 2D attention maps for (left) MP3, (center) MP3 + finetuning without positional encoding, and (right) MP3 +
finetuning with positional encoding. Both fine tuned models are tuned from the same MP3 model (left), which was trained with masking
ratio η = 0. The heads of the MP3 model are those with the lowest attention entropy H = −Epx

∑N
i=1

∑M
i=1 α

(x)
i,j logα

(x)
i,j /N , and

heads of the fine-tuned models are selected to match those of the MP3 model. MP3 learns strong localizations in layers 6, 10 and 11,
despite not having access to any explicit positional encoding. Although localization does occur in early layers of supervised models, we
do not see early locality in MP3. We expect this is because of the lack of positional encoding, and a context sufficient for localization
has not yet been formed. The attention patterns in layer 12 are unlike those of a standard supervised ViT, and we assume they display
behaviour specific to the MP3 task. Under both finetuning scenario, the later layers are dramatically altered, whereas the earlier layers are
less changed. The primary difference between when using position encoding is that some localization appears in early layers, whereas in
it the absense of positional encoding, there is not. Each attention map is of size 27× 27, with the class token excluded.

plify the position prediction task, in contrast to vision, we
use η = 0 and, moreover, provide positional information
for a randomly chosen 5% of the patches for every sample.
Table 6 shows the results achieved with different amounts
of pretraining steps of MP3. It can be seen that 5K steps
of pretraining is sufficient to improve model accuracy. The
test set result for the base validation model above is 94.2%
which is 2.3% better than supervised baseline with the same
architecture (=91.9%).

5. Conclusions
We have presented MP3, a simple yet effective method
for Transformer pretraining. MP3 differs from most other
Transformer and token prediction based pretraining method,
which bypasses the complexity of designing sophisticated
decoder for dense inputs, such as images and speech. MP3
provides competitive performance on small to medium sized
data and model sizes, for both Vision and Speech. In partic-
ular, MP3 finetuned without position embbedding outper-
form strong supervised training baselines. We also demon-
strate the intriguing properties of the position prediction
task, which is of independent interest from the pretraining
setting. We believe that the strong performing permutation
invariant Transformers will be of great interest to the robust
ML community.

There are obvious limitations of this work. First of all, MP3
is not designed to produce linearly separable features which
many self-supervised methods excel at (e.g., contrastive

learning). Also, despite the high level intuition on sorting
input tokens and its relation to semantic understanding, it
is not entirely clear how the finetuning benefits from such
a pretraining objective. Finally, it is also interesting to test
MP3 on NLP applications, and we leave it as future work.

References
Ahsan, U., Madhok, R., and Essa, I. Video jigsaw: Un-

supervised learning of spatiotemporal context for video
action recognition. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 179–189.
IEEE, 2019.

Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. wav2vec
2.0: A framework for self-supervised learning of speech
representations. Advances in Neural Information Process-
ing Systems, 33, 2020.

Bao, H., Dong, L., and Wei, F. Beit: Bert pre-training of
image transformers. arXiv preprint arXiv:2106.08254,
2021.

Brüel-Gabrielsson, R. and Scarvelis, C. Relative position
prediction as pre-training for text encoders. arXiv preprint
arXiv:2202.01145, 2022.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties
in self-supervised vision transformers. arXiv preprint
arXiv:2104.14294, 2021.

Position Prediction as an Effective Pretraining Strategy

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Chen, X., Xie, S., and He, K. An empirical study of train-
ing self-supervised vision transformers. arXiv preprint
arXiv:2104.02057, 2021.

Choi, S., Seo, S., Shin, B., Byun, H., Kersner, M., Kim, B.,
Kim, D., and Ha, S. Temporal convolution for real-time
keyword spotting on mobile devices. Proc. Interspeech,
2019.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
daugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 702–703, 2020.

Cui, Y., Yang, Z., and Liu, T. Pert: Pre-training bert with per-
muted language model. arXiv preprint arXiv:2203.06906,
2022.

Dangovski, R., Jing, L., Loh, C., Han, S., Srivastava, A.,
Cheung, B., Agrawal, P., and Soljačić, M. Equivariant
contrastive learning. arXiv preprint arXiv:2111.00899,
2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL-HLT (1), pp. 4171–4186,
2019. URL https://aclweb.org/anthology/
papers/N/N19/N19-1423/.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=YicbFdNTTy.

Dufter, P., Schmitt, M., and Schütze, H. Position infor-
mation in transformers: An overview. arXiv preprint
arXiv:2102.11090, 2021.

El-Nouby, A., Zhai, S., Taylor, G. W., and Susskind, J. M.
Skip-Clip: Self-Supervised Spatiotemporal Represen-
tation Learning by Future Clip Order Ranking. arXiv
preprint arXiv:1910.12770, 2019.

Ghiasi, G., Lin, T.-Y., and Le, Q. V. Dropblock: A reg-
ularization method for convolutional networks. arXiv
preprint arXiv:1810.12890, 2018.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R.
Masked autoencoders are scalable vision learners. arXiv
preprint arXiv:2111.06377, 2021.

Hoffer, E., Ben-Nun, T., Hubara, I., Giladi, N., Hoefler,
T., and Soudry, D. Augment your batch: Improving
generalization through instance repetition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8129–8138, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015. URL http://
arxiv.org/abs/1412.6980.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object
representations for fine-grained categorization. In 4th
International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lee, H.-Y., Huang, J.-B., Singh, M., and Yang, M.-H. Un-
supervised representation learning by sorting sequences.
In Proceedings of the IEEE International Conference on
Computer Vision, pp. 667–676, 2017.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and
Teh, Y. W. Set transformer: A framework for attention-
based permutation-invariant neural networks. In Interna-
tional Conference on Machine Learning, pp. 3744–3753.
PMLR, 2019.

Li, S., Liu, Z., Wu, D., Liu, Z., and Li, S. Z. Boosting dis-
criminative visual representation learning with scenario-
agnostic mixup. arXiv preprint arXiv:2111.15454, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Naseer, M., Ranasinghe, K., Khan, S., Hayat, M., Khan,
F. S., and Yang, M.-H. Intriguing properties of vision
transformers. arXiv preprint arXiv:2105.10497, 2021.

Noroozi, M. and Favaro, P. Unsupervised learning of visual
representations by solving jigsaw puzzles. In European
Conference on Computer Vision, pp. 69–84. Springer,
2016.

Santa Cruz, R., Fernando, B., Cherian, A., and Gould, S. Vi-
sual permutation learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41(12):3100–3114,
2018.

https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Position Prediction as an Effective Pretraining Strategy

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention with
relative position representations. NAACL, 2018.

Sinha, K., Jia, R., Hupkes, D., Pineau, J., Williams, A., and
Kiela, D. Masked Language Modeling and the Distribu-
tional Hypothesis: Order Word Matters Pre-training for
Little. arXiv preprint arXiv:2104.06644, 2021.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International Con-
ference on Machine Learning, pp. 10347–10357. PMLR,
2021.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K.
Neural discrete representation learning. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
7a98af17e63a0ac09ce2e96d03992fbc-Paper.
pdf.

van den Oord, A., Li, Y., and Vinyals, O. Representa-
tion Learning with Contrastive Predictive Coding. arXiv
preprint arXiv:1807.03748, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol,
P.-A., and Bottou, L. Stacked denoising autoencoders:
Learning useful representations in a deep network with a
local denoising criterion. Journal of Machine Learning
Research, 11(12), 2010.

Warden, P. Speech commands: A dataset for limited-
vocabulary speech recognition. CoRR, abs/1804.03209,
2018. URL http://arxiv.org/abs/1804.
03209.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Ag-
gregated Residual Transformations for Deep Neural Net-
works. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1492–1500,
2017.

Xu, D., Xiao, J., Zhao, Z., Shao, J., Xie, D., and Zhuang,
Y. Self-supervised spatiotemporal learning via video
clip order prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 10334–10343, 2019.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y.
CutMix: Regularization Strategy to Train Strong Clas-
sifiers with Localizable Features. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 6023–6032, 2019.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond Empirical Risk Minimization. arXiv
preprint arXiv:1710.09412, 2017.

Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. Ran-
dom Erasing Data Augmentation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 13001–13008, 2020.

https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
http://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1804.03209

Position Prediction as an Effective Pretraining Strategy

A. Implementation
Algorithm 1 illustrates the MP3 implementation in the pretraining mode. We see that only two simple modifications to the
forward pass of a standard Transformer model is needed, which results in a more efficient masked Transformer. The loss is
also very easy to compute with the help of a linear prediction head.

Algorithm 1 Pseudo code of MP3 in a PyTorch-like style, where we ignore the ‘cls’ token for simplicty. In the pretraining
phase, we first call mask sample to randomly sample the context tokens; the context token indices are then passed to
masked attention in each attention block.

def mask_sample(x, eta):
x: input tokens, shape (batch_size, num_tokens, input_dim)
eta: masking ratio in range [0, 1)
return kv_ind, indices of context tokens, shape (batch_size, num_context_tokens)
B, N, D = x.size()
M = int(N * eta) # number of context tokens
rand_ind = torch.randn(B, N).argsort(dim=1) # generate a random permutation of positions per input
kv_ind = rand_ind[torch.arange(B).unsqueeze(1), rand_ind[:, :M]] # get the first M positions per example
return kv_ind

def masked_attention(x, kv_ind):
x: input tokens, shape (batch_size, num_tokens, input_dim)
kv_ind: indices of context tokens returned by mask_sample, shape (batch_size, num_context_tokens)
return y, output of masked attention
B, N, D = x.size()
q = query_proj(x) # apply query projection to all tokens
k = key_proj(x[torch.arange(B).unsqueeze(1), kv_ind])
v = value_proj(x[torch.arange(B).unsqueeze(1), kv_ind]) # apply key and value projection to context tokens
y = multi_head_attention(q, k, v) # perform standard multi-head attention
return y

def mp3_loss(x):
x: output of the Transformer backbone, shape (batch_size, num_tokens, input_dim)
return a scalar loss
B, N, D = x.size()
targets = torch.arange(N).repeat(B) # the targets is each patch’s original position
apply a linear projection to get the predictions
pred = linear_head(x) # shape (batc_size, num_tokens, num_tokens)
loss = cross_entropy(pred, targets) # classification across all positions
return loss

def forward(x, eta):
x: input tokens (e.g., image patches), eta: masking ratio.
x = x + pos_embed -- we do not use position embeddings
kv_ind = mask_sample(x, eta)
x = masked_transformer(x, kv_ind) # with masked_attention
loss = mp3_loss(x)
return loss

B. Transfer Learning Results
We further test MP3’s ability in Transfer Learning. We obtain a ViT-B model pretrained with 150 epochs with η = 0.75, and
finetune it on CIFAR-10 and Stanford Cars (Krause et al., 2013) dataset, which have 50K training examples in 10 classes
and 8144 training examples in 196 classes, respectively. We compare with ViT-B, DeiT-B and DINO, all trained with the
same architecture. Table 7 shows that MP3 gives competitive performance with supervised and self-supervised models.

Table 7. Transfer learning result on CIFAR-10 and Stanford Cars datasets.

Dataset ViT (Dosovitskiy et al., 2021) DeiT-B (Touvron et al., 2021) DINO (Caron et al., 2021) MP3

CIFAR-10 98.1 99.1 99.1 98.0
Stanford Cars - 92.1 93.0 91.8

C. Layerwise KNN probe
For self-supervised learning, k-nearest neighbor classification (KNN) is a popular way of testing the linear separability
of the pretrained features (which is similar to linear probing). We perform a study on ImageNet-1K, where we vary the
masking ratio η in pretraining, and examine each layer’s average pooled representation with an KNN classifier. The results
are shown in Figure 9. We see that all trained layers show significantly higher validation accuracy than a random model.

Position Prediction as an Effective Pretraining Strategy

There is also a positive correlation between η and the peak performance on KNN classification. The optimal layer also
appears in the middle, rather than at the very top.

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer index
0

5

10

15

20

25

K
N

N
to

p-
1

ac
cu

ra
cy

(%
)

η
0.90
0.75
0.50
0.25
0.00
Rand

Figure 9. KNN classification accuracy on ImageNet-1K, as the pretraining η and the target layer are varied.

0 5 10

0

5

10Pa
tc

h
y=

0

Patch x=0

0 5 10

0

5

10

Patch x=1

0 5 10

0

5

10

Patch x=2

0 5 10

0

5

10

Patch x=3

0 5 10

0

5

10

Patch x=4

0 5 10

0

5

10

Patch x=5

0 5 10

0

5

10

Patch x=6

0 5 10

0

5

10

Patch x=7

0 5 10

0

5

10

Patch x=8

0 5 10

0

5

10

Patch x=9

0 5 10

0

5

10

Patch x=10

0 5 10

0

5

10

Patch x=11

0 5 10

0

5

10

Patch x=12

0 5 10

0

5

10

Patch x=13

0 5 10

0

5

10Pa
tc

h
y=

1

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

2

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

3

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

4

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

5

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

6

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

7

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

8

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

9

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

11

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

12

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

13

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

0

Patch x=0

0 5 10

0

5

10

Patch x=1

0 5 10

0

5

10

Patch x=2

0 5 10

0

5

10

Patch x=3

0 5 10

0

5

10

Patch x=4

0 5 10

0

5

10

Patch x=5

0 5 10

0

5

10

Patch x=6

0 5 10

0

5

10

Patch x=7

0 5 10

0

5

10

Patch x=8

0 5 10

0

5

10

Patch x=9

0 5 10

0

5

10

Patch x=10

0 5 10

0

5

10

Patch x=11

0 5 10

0

5

10

Patch x=12

0 5 10

0

5

10

Patch x=13

0 5 10

0

5

10Pa
tc

h
y=

1

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

2

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

3

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

4

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

5

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

6

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

7

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

8

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

9

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

11

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

12

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10Pa
tc

h
y=

13

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

0 5 10

0

5

10

Figure 10. Left: average position correlation within the same image; Right: average position correlation across random image pairs.

D. Feature Visualization
We also visualize the correlation pattern of the representations within an image, and across images. To do so, we conduct two
experiments. In the first one, we compute the Pearson Correlation of the last layer’s representation between each position
pair within the same image, averaged across the ImageNet-1K validation set. In the second, we compute the correlation
between each position pair of two random images. Each experiment results in a correlation matrix of 196× 196, which is
reshaped to a 14×14× (14×14) grid. The results are shown in Figure 10. We see that the representations are biased to their
positions. However, there is stronger correlations within the same images than across different ones, which demonstrates
that their is an implicit clustering effect of representations within the same image.

Position Prediction as an Effective Pretraining Strategy

E. Relative attention maps
Here we present the full (all layers and heads) relative attention maps for MP3 (η = 0.75), finetuning with/without positional
encoding, and supervised baseline with positional encoding. The results are shown in Figure 11. We see that finetuning
drastically changes the locality patterns of the last three layers, while lower layers remain similar.

H
ea

d
0

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

H
ea

d
1

H
ea

d
2

H
ea

d
3

H
ea

d
4

H
ea

d
5

H
ea

d
6

H
ea

d
7

H
ea

d
8

H
ea

d
9

H
ea

d
10

H
ea

d
11

MP3 (η = 0.75)

H
ea

d
0

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

H
ea

d
1

H
ea

d
2

H
ea

d
3

H
ea

d
4

H
ea

d
5

H
ea

d
6

H
ea

d
7

H
ea

d
8

H
ea

d
9

H
ea

d
10

H
ea

d
11

MP3 (η = 0.75) + FT (PosEnc)

H
ea

d
0

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

H
ea

d
1

H
ea

d
2

H
ea

d
3

H
ea

d
4

H
ea

d
5

H
ea

d
6

H
ea

d
7

H
ea

d
8

H
ea

d
9

H
ea

d
10

H
ea

d
11

MP3 (η = 0.75) + FT (no PosEnc)

H
ea

d
0

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

H
ea

d
1

H
ea

d
2

H
ea

d
3

H
ea

d
4

H
ea

d
5

H
ea

d
6

H
ea

d
7

H
ea

d
8

H
ea

d
9

H
ea

d
10

H
ea

d
11

Supervised (PosEnc)

Figure 11. Average relative attention visualization for MP3 pretrained and finetuned models, compared with the supervised training
baseline. Top left: MP3 pretrained; top right: MP3 finetuned with PE; bottom left: MP3 finetuned without PE; bottom right: supervised
baseline with PE.

F. ImageNet Reconstruction Visualization
As performed in Figure 2, additional images from the ImageNet validation set were used to test the position prediction of a
model trained with η = 0.5 (Figure 12) and η = 0.75 (Figure 13). Reconstructions were generated by placing each patch in
the predicted position, and patches falling in the same position were averaged. Different η was used at test time, ranging in

Position Prediction as an Effective Pretraining Strategy
=0

.0

context input recon context input recon context input recon
0.

25
0.

5
0.

75
=0

.0

context input recon context input recon context input recon

0.
25

0.
5

0.
75

Figure 12. Example reconstructed images from the ImageNet validation set for a model trained with η = 0.5.

{0, 0.25, 0.5, 0.75}. In Figure 12 with η = 0.5, the model can accurately predict majority of the patches for η < 0.75. In
Figure 13 with η = 0.75, the patches were not placed in the absolute true location, but they were placed in positions that
still made sense semantically.

To visualize the role of the context patches with the query patches, patches from two different images in the ImageNet
validation set were shuffled together and separated into two distinct sets. A random subset of the patches were used as
context patches to predict positions for both context and query patches. The final reconstructions are visualized in Figures. 14
and 15. In Figure 14, the two original images of dogs look visually similar in content, composition, and color distribution.
The resulting images created a dog-like animal in the center of the image. In Figure 15, two different contents were mixed
together: boat in one image and a hot air balloon in another. Similar patches were grouped together creating coherent
boat-like structure in one part of the image and a balloon-like structure in another part.

Position Prediction as an Effective Pretraining Strategy
=0

.0

context input recon context input recon context input recon

0.
25

0.
5

0.
75

=0
.0

context input recon context input recon context input recon

0.
25

0.
5

0.
75

Figure 13. Example reconstructed images from the ImageNet validation set for a model trained with η = 0.75.

Position Prediction as an Effective Pretraining Strategy

=0
.0

orig 1 orig 2 input 1 recon 1 input 2 recon 2

0.
25

0.
5

0.
75

Figure 14. Patches from two images from the ImageNet validation set (top left images) were shuffled together and separated into two
distinct sets. Rows 1–4: positions were predicted using the shuffled set of patches with different η used at test time, ranging in {0, 0.25,
0.5, 0.75}. Columns 3 & 5: the unordered inputs to the model, with the context patch tokens outlined in green. Columns 4 & 6: each
patch was placed in the predicted position, and patches falling in the same position were averaged. Coherent dog-like animal can be seen
in the final reconstructions with the background placed around the dog.

Position Prediction as an Effective Pretraining Strategy

=0
.0

orig 1 orig 2 input 1 recon 1 input 2 recon 2

0.
25

0.
5

0.
75

Figure 15. Patches from two images from the ImageNet validation set (top left images) were shuffled together and separated into two
distinct sets. Rows 1–4: positions were predicted using the shuffled set of patches with different η used at test time, ranging in {0, 0.25,
0.5, 0.75}. Columns 3 & 5: the unordered inputs to the model, with the context patch tokens outlined in green. Columns 4 & 6: each
patch was placed in the predicted position, and patches falling in the same position were averaged. In this example, similar patches were
placed closer together. In the last column of Row 3, a coherent boat-like structure was reconstructed in the lower left region of the image.

