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Abstract
Compressed sensing (CS) aims to recover a high-
dimensional signal with structural priors from its
low-dimensional linear measurements. Inspired
by the huge success of deep neural networks in
modeling the priors of natural signals, genera-
tive neural networks have been recently used to
replace the hand-crafted structural priors in CS.
However, the reconstruction capability of the gen-
erative model is fundamentally limited by the
range of its generator, typically a small subset
of the signal space of interest. To break this bot-
tleneck and thus reconstruct those out-of-range
signals, this paper presents a novel method called
CS-BGM that can effectively expands the range
of generator. Specifically, CS-BGM introduces
uncertainties to the latent variable and parameters
of the generator, while adopting the variational in-
ference (VI) and maximum a posteriori (MAP) to
infer them. Theoretical analysis demonstrates that
expanding the range of generators is necessary for
reducing the reconstruction error in generative CS.
Extensive experiments show a consistent improve-
ment of CS-BGM over the baselines.

1. Introduction
Compressed sensing (CS) is a paradigm that recovers an
unknown signal x ∈ Rn from a small number of linear
measurements

y = Ax + n, (1)

where A ∈ Rm×n (m � n) is the measurement or sens-
ing matrix, and n ∈ Rm is the additive white Gaussian
noise (AWGN). Since the data acquisition of CS allows
for a sampling rate far below the Nyquist rate, it provides
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an efficient approach for data encoding and compression.
In particular, a broad range of real-world applications fall
into the field of CS. Examples include magnetic resonance
imaging (MRI) (Lustig et al., 2007), computed tomography
(CT) (Chen et al., 2008), wireless channel estimation (Haupt
et al., 2010), super-resolution (Fang et al., 2016), and single-
pixel camera (Duarte et al., 2008).

Generally speaking, to reconstruct x from the ill-posed lin-
ear system (1), additional information is needed to ensure
a unique solution. A widely adopted approach is to make
use of the sparsity prior of natural signals in some trans-
form domains. For example, natural sounds and images
are often observed to be sparse under Fourier and wavelet
transformation, respectively. Under the sparsity assumption,
traditional CS seeks to find out the sparsest signal x that fits
the measurements y:

min ‖x‖0, s.t. y = Ax + n, (2)

where ‖x‖0 := |{xi|xi 6= 0}| is the `0-norm (number of
non-zero elements) of x. It has been shown that if the
sensing matrix A satisfies some conditions such as the re-
stricted isometry property (RIP) or restricted eigenvalue
condition (REC), CS guarantees robust recovery of k-sparse
signals (Candės & Tao, 2005). However, searching the spars-
est solution to a linear system is known to be an NP-hard
problem (Natarajan, 1995), for which no polynomial-time
algorithm has been developed yet. In order to get a solution
within feasible time, therefore, existing CS algorithms often
employ greedy search principles, or make some relaxations
to problem (2). Representative examples include matching
pursuit (MP)-type algorithms (Tropp & Gilbert, 2007; Chen
et al., 1989; Needell & Tropp, 2009) and optimization-based
algorithms (Chen et al., 2001; Candės & Tao, 2005).

Although traditional CS algorithms have achieved great suc-
cess in many applications, due to the fact that most natural
signals are not strictly sparse in given transform domains,
relying on sparsity as the sole prior for reconstruction could
lead to inaccurate results. Fortunately, natural signals often
possess a variety of features besides sparsity (Kim et al.,
2020). Hence, an alternate for CS reconstruction is to com-
bine sparsity with additional refined priors of signals, such
as low-rank assumption (Fazel et al., 2008), total varia-
tion (Candes et al., 2006), and dictionary models (Shen
et al., 2015). Despite their progress in both practical appli-
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Figure 1. Comparative illustration between Lasso, CSGM, Sparse-Gen and the proposed CS-BGM method.

cations and theoretical guarantees, these hand-crafted priors
can only cover a limited range of natural signals, which are
hard to generalize to signals from various sources.

To address this generalization issue, Bora et al. (2017) pro-
posed to perform CS using generative models (CSGM). In a
nutshell, CSGM uses a generator, which is a pre-trained un-
supervised generative model (e.g., variational autoencoder
(VAE) (Kingma & Welling, 2014) or generative adversarial
network (GAN) (Goodfellow et al., 2014)), as the distribu-
tional prior of the training data. Parameterized by θ, the
generator g that maps a low-dimensional latent variable
z ∈ Rk to a high-dimensional signal g(z;θ) ∈ Rn (k � n)
is trained to output signals resembling those in the training
set. The pre-trained generator models the conditional dis-
tribution q(x|z,θ) = δD[x− g(z;θ)], where δD[·] is Dirac
delta function, and z is typically set as standard Gaussian
N (z;0, I). Hence, q(x) :=

∫∫
q(x|z,θ)p(θ)p(z)dθdz is

called a generative prior.

While testing, CSGM fixes θ to be the point estimation θ̂
obtained from training, and optimizes the latent variable z
to produce an estimation x̂ = g(ẑ; θ̂) that has the minimum
fitting error to the test measurements, i.e.,

ẑ = arg min
z
‖Ag(z; θ̂)− y‖22. (3)

This optimization can be performed via gradient descent
(GD) or other search methods. Empirically, using generative
models leads to a substantial gain in the reconstruction accu-
racy over conventional CS algorithms like Lasso (Candės &
Tao, 2005), especially when the number of measurements is

small (Whang et al., 2021). Moreover, theoretical analyses
have been established for CSGM; see (Hand & Voroninski,
2018; Kamath et al., 2020; Liu & Scarlett, 2020).

Following CSGM, plenty of studies have recently been de-
veloped to leverage the power of generative models in CS.
On the one hand, much effort has been made to accelerate
the optimization process in the test phase. Shah & Hegde
(2018) proposed to use projected gradient descent (PGD) in
the signal space to speed up convergence, for which prov-
able guarantees were derived. Raj et al. (2019) showed that
a network-based PGD (NPGD) is empirically faster. Wu
et al. (2019) utilized meta-learning to learn the initializa-
tion of θ as well as the measurement matrix A, so that the
test optimization can be completed within fewer GD itera-
tions. Asim et al. (2020) used a flow-based invertible model
where z can be computed inversely from x.

On the other hand, it is reported in (Bora et al., 2017) that
CSGM often presents inferior performance when the test sig-
nals lie outside the rangeR(g(z;θ)) := {g(z;θ)|z ∈ Rk}
of the generator. Research has been done to ameliorate
the reconstruction quality for these out-of-range signals.
In (Dhar et al., 2018), an extra sparse deviation vector was
introduced to expand the range of the generator (which
is called Sparse-Gen). This approach has been extended
by Yang et al. (2021) using non-convex `q-norm. Further-
more, it has been shown in (Kabkab et al., 2018; Kim
et al., 2020) that better reconstruction performances can
be achieved via training generative models in supervised
fashions (i.e., with access to y). Due to the use of y, how-
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ever, the supervised modifications only work with a fixed
measurement matrix A. As a result, retraining is required
when A changes. Besides, it was shown in (Daras et al.,
2021) that optimizing the high-dimensional intermediate
layer (in addition to the low-dimensional latent variable)
helps improve the expressiveness of the generator. This
framework of CSGM has also been applied to MRI, where
posterior sampling via Langevin dynamics was employed to
generate higher-quality reconstructions (Jalal et al., 2021).

In this paper, in order to effectively reconstruct those out-
of-range signals, we propose to expand the range of the
generator in CSGM by modeling uncertainties in the net-
work parameter θ. Indeed, when the generative models are
trained using empirical loss minimization, the uncertain-
ties emerge naturally because the finite training data are
imperfect estimations of the signal space of interest. To per-
form reconstruction (i.e., inference of x), we use variational
inference and maximum a posteriori (MAP) for the low-
dimensional latent variable z and high-dimensional parame-
ter θ, respectively. By doing so, the range of the generator
is adjusted “adaptively” to embrace those out-of-range test
signals. We thus refer to our method as CS with Bayesian
generative model (CS-BGM). A comparative illustration be-
tween Lasso, CSGM, Sparse-Gen and the proposed method
is given in Fig. 1. Our work will justify the necessity of ad-
justing the range of the generative model for fundamentally
improving the reconstruction quality. Also, numerical ex-
periments will show the superiority of the proposed method
over the baselines.

Similar to (Bora et al., 2017), we only consider the case
where the noise n is assumed Gaussian. Whereas, we also
mention that the proposed method can be readily generalized
to non-Gaussian cases by applying techniques in e.g., (Jalal
et al., 2020; Whang et al., 2020).

2. Preliminaries
Before proceeding to introduce the proposed CS-BGM, we
review several important notions and definitions. The fol-
lowing two properties constrain the eigenvalues of the mea-
surement matrix, which are commonly adopted to establish
recovery guarantees for the sparsity-based CS algorithms.
Definition 2.1 (REC). A matrix A ∈ Rm×n is said to
satisfy the restricted eigenvalue condition (REC) of order
K, provided there exists some constant γ > 0 such that

‖Ax‖22 ≥ γ‖x‖22 (4)

holds for all K-sparse vector x ∈ Rn.
Definition 2.2 (RIP). A matrix A ∈ Rm×n is said to satisfy
the restricted isometry property (RIP) of order K, provided
there exists some constant δ ∈ (0, 1) such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (5)

holds for all K-sparse vector x ∈ Rn. The minimum δ
satisfying (5) is called restricted isometry constant (RIC),
which is denoted as δK(A), or δK for notational simplicity.

While REC requires that all the eigenvalues of A∗A should
be greater than γ, RIP further restricts them being inside
the interval [1 − δ, 1 + δ]. From another perspective, γK
measures the distance between the space of all K-sparse
vectors and the null space of A, and δK is an indicator
of how Euclidean norms of the K-sparse vectors can be
preserved under the transform A (Dhar et al., 2018). It is
well-known that many random matrices satisfy the RIP and
REC with high probability when the number m of measure-
ments scales almost linearly with K. For example, it has
been shown in (Candės & Tao, 2005; Baraniuk et al., 2008)
that a random Gaussian matrix A whose entries are drawn
i.i.d. from N (Aij ; 0, 1

m ) obeys the RIP with order-K RIC
δK with overwhelming probability if m = O( K

δ2K
log n

K ).

To generalize the recovery guarantees from the sparsity-
based prior to the generative prior, Bora et al. (2017) intro-
duced the set-restricted eigenvalue condition (S-REC).

Definition 2.3 (Bora et al. 2017, S-REC). Let S ⊆ Rn be
a set. For some parameters γ > 0 and ε > 0, a matrix
A ∈ Rm×n is said to satisfy the set-restricted eigenvalue
condition S-REC(S, γ, ε), provided that

‖A(x1 − x2)‖2 ≥ γ‖x1 − x2‖2 − ε, ∀x1,x2 ∈ S. (6)

Compared to REC that is defined with K-sparse vectors,
S-REC can be applied to non-sparse vectors by choosing the
set S properly. Thus, it can be used in the generative models
by setting S as the range of the generator. Besides, there
is an extra slack variable ε for achieving the generalization.
Similar to the REC, S-REC can also be satisfied by common
random matrices with overwhelming probability when m
scales almost linearly with k, leading to the reconstruction
guarantees for the generative model; see (Bora et al., 2017).

3. The CS-BGM Method
In this section, we will explain how CS-BGM expands the
range of the generator of CSGM to reconstruct the out-of-
range signals. The key idea is to consider the uncertainties
of the model parameters. We will also theoretically justify
the necessity of expanding the range of generator.

3.1. A Bayesian View of Generative CS

We start with a Bayesian view of the generative CS, which
makes it easier to increase the flexibility of the generative
model. The training stage of CS-BGM is similar to that of
CSGM. Specifically, the generator is trained such that the
generative prior q(x) resembles the data distribution p(x)
of the training signals. For example, it has been shown in
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GAN (Goodfellow et al., 2014) that

θ̂ = arg min
θ

JSD
(
q(x|θ;Xtr)

∥∥p(x;Xtr)
)
, (7)

where JSD is the Jensen–Shannon divergence, and Xtr is
the matrix collecting all the training signals. In fact, θ̂ is a
point estimation p(θ;Xtr) ≈ p(θ; θ̂) = δD[θ− θ̂] from the
Bayesian view. As a result, the generative prior q(x;Xtr) =∫∫

q(x|z,θ)p(θ;Xtr)p(z)dθdz ≈ q(x; θ̂) serves as a good
approximation of the training signal distribution p(x;Xtr).

In testing, after observing the test measurements y, we infer
the conditional expectation of the signal through

E[x|y;Xtr] ≈
∫

xq(x|y;Xtr)

=

∫∫
q(x|z,θ)p(z,θ|y;Xtr)dzdθdx

= Ep(z,θ|y;Xtr)[g(z;θ)]. (8)

where the last equality follows from q(x|z,θ) = δD[x −
g(z;θ)]. Thus, what remains is to infer the posterior

p(z,θ|y;Xtr) ∝ p(y|z,θ)p(θ;Xtr)p(z), (9)

where we have used the Bayes’ rule.

For CSGM, the test prior (i.e. training posterior) for θ is
taken to be the point estimation p(θ;Xtr) ≈ δD[θ− θ̂], and
z is taken to be its MAP estimation:

ẑ = arg max
z

p(z,θ|y;Xtr)

≈ arg max
z

p(z, θ̂|y;Xtr)

= arg min
z
− log p(y|z; θ̂)− log p(z)

= arg min
z
‖Ag(z; θ̂)− y‖22 + λz‖z‖22, (10)

where λz is the relative weights for the prior of z. As a
result, the conditional expectation (8) in this case is given
by E[x|y;Xtr] ≈ Ep(z,θ|y;Xtr)[g(z;θ)] ≈ g(ẑ; θ̂). Notice
that there is an extra term λz‖z‖22 compared with (3). In
fact, precisely due to this extra term, an improvement on
the performance of CSGM has been reported in (Bora et al.,
2017), which well matches with our analysis. However,
since the training set contains only finite samples from the
signal space, directly using the point estimations θ̂ and ẑ
will ignore the uncertainties in the test prior p(θ;Xtr) and
posterior p(z,θ|y;Xtr). In particular, since the parameter θ̂
is deterministic after training, it will result in a fixed range
R(g(z; θ̂)) of the generator, leading to inferior reconstruc-
tion quality of test signals outside the range.

Different from CSGM, therefore, we will take these uncer-
tainties into consideration in the following. However, due

Algorithm 1 Alternate optimization for CS-BGM
Input: Sensing matrix A ∈ Rm×n, alternation number
L, iteration numbers Rz, Rθ, learning rates ηz, ηθ, pre-
trained model parameters θ̂, measurements y ∈ Rn.
Initialization: Initialize v randomly, θ̃ ← θ̂.
repeat

v(0) ← v;
for r from 1 to Rz do
v(r) ← v(r−1) + ηz

∂ELBO
∂v(r−1)

using MC sampling;
end for
v← v(Rz);
θ(0) ← θ̃;
for r from 1 to Rθ do

θ(r) ← θ(r−1) − ηθ
∂L(θ(r−1),y)

∂θ(r−1)
using MC sam-

pling;
end for
θ̃ ← θ(Rθ);

until do L times
Output: Image estimation Eq(z|v)[g(z; θ̃)].

to the high-dimensionality of θ and the non-linearity of the
neural network, it is difficult to directly infer, or even approx-
imately infer p(θ;Xtr) during training. Nevertheless, con-
sidering that the training and test signals are sampled from
the same signal space, their distribution should be empiri-
cally close to each other. Hence, with a mild modification
to θ̂, we can hopefully find a new generator whose range
can well cover the test signals. Specifically, we equip θ
with a multivariate Gaussian prior p(θ;Xtr) = N (θ; θ̂, λI),
where λ is a hyperparameter determined by the discrepancy
between training and testing.

To infer the joint posterior of z and θ which are dependent
of each other (cf. (9)), we propose to solve for them with
alternating optimization. Moreover, we choose to infer z
and θ using variational inference (VI) and MAP estimation,
respectively. To be more specific, we perform the following
two processes iteratively:

i) fixing p(θ|y;Xtr) ≈ δ[θ − θ̃] to be the MAP esti-
mation, find a surrogate variational posterior q(z|v)
that minimizes the Kullback-Leibler (KL) divergence
KL
(
q(z|v)‖p(z|y; θ̃)

)
, where v is the variational

parameter to be optimized. It is well-known (see
e.g., (Blei et al., 2017)) that minimizing this KL diver-
gence above is equivalent to maximizing the evidence
lower bound

ELBO := Eq(z|v)

[
log p(y|z; θ̃)

]
−KL

(
q(z|v)‖p(z)

)
;

(11)

ii) fixing q(z|v), find a MAP estimator θ̃ that maximizes
the posterior p(θ|z,y;Xtr) ∝ p(y|z,θ)p(θ;Xtr). Or
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equivalently, minimize the loss

L(θ,y) := Eq(z|v)

[
‖Ag(z;θ)−y‖22

]
+λθ‖θ− θ̂‖22,

(12)
where λθ is the relative weight trading-off the data
fidelity and the prior of θ during testing.

It should be noted that the dimension of θ is much larger
than z, so it would require a considerable number of Monte
Carlo (MC) samples to perform VI on it. For practical
consideration, we therefore choose MAP rather than VI.
Indeed, since the reconstruction results are more sensitive to
the generator parameters θ compared to the latent variable z,
the posterior of θ will have much smaller variance, and thus
can be well approximated by a MAP estimation. Finally,
the signal estimated by CS-BGM is given by E[x|y;Xtr] ≈
Ep(z,θ|y;Xtr)[g(z;θ)] ≈ Eq(z|v)[g(z; θ̃)]. The alternating
optimization strategy is summarized in Alg. 1.

Alternatively, one can use the MAP estimation (instead of
VI) of z, i.e., (10), in the alternate optimization. Interest-
ingly, this modification leads to a variant of the proposed
CS-BGM without MC sampling, thus shortening the re-
construction time. Experiments in Sec. 4 suggest that this
variant also achieves a satisfactory performance.

So far, we have explained how CS-BGM expands the range
of generator via uncertainty modeling to include the out-of-
range signals. We mention that adjusting the parameters
of generative models has also been suggested in CS with
untrained neural networks (Ulyanov et al., 2018). How-
ever, the proposed method mainly differs in two aspects.
Firstly, this work focuses on CS using random measure-
ments, while untrained neural networks were used in inverse
problems such as denoising, super-resolution, and inpaint-
ing removal, for which a rough estimation of the original
signal can be obtained directly from the downsampled or
perturbed measurements. Secondly, the training process of
the generative model provides a strong prior for θ in the
proposed method. With this prior term, we are only allowed
to modify θ slightly; cf. (12). Whereas in CS with untrained
neural networks, there is no prior so that θ is randomly ini-
tialized and can change significantly. In the next section, we
will justify that expanding the range of the generative model
is necessary for fundamentally reducing the reconstruction
error.

3.2. Why Expanding the Range of Generator?

Although theoretical guarantees have been well developed
for CSGM, empirical tests suggest that a large measurement
error per pixel (i.e., 1

n‖Ag(ẑ; θ̂)−y‖22) can still be observed
on the test set even after optimizing over z (Bora et al.,
2017); see also Fig. 2 for such an example. In the context of
CS, to reduce the reconstruction error ‖g(ẑ; θ̂)−x‖22, there
are two major approaches in general.

i) One is by adding additional priors of x to refine the
reconstruction results. As ẑ is already the minimizer of
the measurement error in CSGM, these priors help to
find a z′ such that ‖Ag(z′; θ̂)− y‖22 ≥ ‖Ag(ẑ; θ̂)−
y‖22 but ‖g(z′; θ̂)− x‖22 ≤ ‖g(ẑ; θ̂)− x‖22.

ii) The other is by expanding the range of reconstruction
model to cover more signals. Ablation tests by Bora
et al. (2017) showed that the representative capability
of the generative model is mainly limited by its range,
although no theoretical evidence has been available.

Our analysis is motivated from these two approaches. We
will show theoretically that as long as the measurement
error is large, the reconstruction error can never be signifi-
cantly reduced, no matter what additional prior is imposed.
This is because the reconstruction error is essentially lower
bounded by its measurement error. Therefore, to funda-
mentally reduce the reconstruction error, breaking the range
limit of the generative model and thus enhancing its repre-
sentative capability is necessary.

To formalize our analysis, we first give a useful framework
called the set-restricted isometry property (S-RIP).

Definition 3.1 (S-RIP). Let S ⊆ Rn be a set. For some
parameters δ ∈ (0, 1) and ε > 0, a matrix A ∈ Rm×n is
said to satisfy the S-RIP(S, δ, ε), provided that
√

1−δ‖x1−x2‖2−ε≤‖A(x1 − x2)‖2
≤
√

1+δ‖x1−x2‖2 +ε, ∀x1,x2∈S.

While the definition of S-RIP resembles that of S-REC, it
further requires the measurement distance ‖A(x1 − x2)‖2
to be upper bounded by the signal distance ‖x1 − x2‖2.
Precisely, the upper bound is of vital importance to our
analysis.

Next, we show that with high probability, the S-RIP can be
satisfied by random Gaussian matrices.

Lemma 3.2. Let g : Rk 7→ Rn be L-Lipschitz. Let
Bk(r) = {z|z ∈ Rk, ‖z‖2 ≤ r} be an `2-norm ball in
Rk. And denote by g(Bk(r)) := {g(z;θ)|z ∈ Bk(r)} the
range of the generator restricted to inputs from the `2-norm
ball. For δ ∈ (0, 1), if

m = Ω

(
k

δ2
log

Lr

ε

)
, (13)

then a random matrix A ∈ Rm×n with i.i.d. entries
N (Aij ; 0, 1

m ) satisfies the S-RIP(g(Bk(r)), δ, ε) with prob-
ability exceeding 1− e−Ω(δ2m).

The proofs are left to the appendices. This lemma suggests
that, with m increasing almost linearly in k, the S-RIP can
be satisfied with overwhelming probability in g(Bk(r)). It
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Figure 2. An example of reconstructing an RGB face image of 64×
64× 3, where CS-BGM can effectively reduce the measurement
and reconstruction errors compared to CSGM.

should be noted that although the Lipschitz constant L of
the generator varies for different network architecture, its
effect is much weaker than that of k due to the logarithm
term. We also remark that in practice, z could hardly take
values corresponding to tiny prior probabilities, otherwise
the regularization terms in Eqs. (10) and (11) would become
too large. Empirically, when those z are given as inputs,
the decoder outputs can be interpreted as “extrapolation”,
which are of inferior qualities compared to “interpolation”
ones. Therefore, z is generally required to have a bounded
norm r; see the rationale in (Bora et al., 2017).

Then, with the aid of Lemma 3.2, we have the following
theorem, which applies to the entire range of the generator.

Theorem 3.3. Let g : Rk 7→ Rn be a d-layer neu-
ral network, where each layer is composed by a linear
transform and a point-wise non-linearity. Also, denote by
R(g(z;θ)) := {g(z;θ)|z ∈ Rk} the range of the genera-
tor. Suppose that there are at most c nodes per layer, and
all the non-linearities are piecewise linear with at most two
pieces. Then, for δ ∈ (0, 1), if

m = Ω

(
kd

δ2
log c

)
, (14)

a random matrix A ∈ Rm×n with i.i.d. entries
N (Aij ; 0, 1

m ) satisfies the S-RIP(R(g(z;θ)), δ, ε) with
probability exceeding 1− e−Ω(δ2m).

Finally, we show that a necessary condition for a genera-
tor to cover the test signal x is that a small measurement
error can be achieved by optimizing over z. Consider an
ideal generator g(z;θ∗) such that minz ‖g(z;θ∗)−x‖ = 0
with minimizer denoted by z∗. Then, we know from The-
orem 3.3 that if m = Ω

(
kd
δ2 log c

)
, the Gaussian measure-

ment matrix A with i.i.d. entriesN (Aij ; 0, 1
m ) satisfies the

S-RIP(R(g(z;θ∗)), δ, ε) with probability of 1− e−Ω(δ2m).
Also, let ẑ = arg minz ‖Ag(z;θ∗)− y‖22, then we have

‖Ag(ẑ;θ∗)− y‖2 ≤ ‖Ag(z∗;θ∗)− y‖2
= ‖Ag(z∗;θ∗)− (Ax + n)‖2
≤ ‖A(g(z∗;θ∗)− x)‖2 + ‖n‖2
≤
√

1 + δ‖g(z∗;θ∗)−x‖2 + ε+ ‖n‖2
= ε+ ‖n‖2 (15)

with overwhelming probability.1 In other words, the recon-
struction error is essentially lower bounded by its measure-
ment error, which completes the justification.

We mention that our analysis also explains Fig. 2. In CSGM,
the minimum measurement error is still large, suggesting
that the generator cannot cover the test signal, hence the
reconstruction error cannot be small. Whereas for CS-BGM,
the measurement error is adequately small so that a small
reconstruction error can be possibly achieved.

4. Experiments
In this section, we will state the setup of the numerical exper-
iments and evaluate the performance of our method. Com-
parisons among CS-BGM, LASSO, CSGM, PGD-GAN,
and Sparse-Gen will be presented to empirically appraise
the recovery capabilities. All experiments are run using
Tensorflow (Abadi et al., 2015) on one Intel(R) Xeon(R)
Silver 4116 CPU and four GeForce RTX 2080 Ti GPUs.
For convenient reproducibility, our codes are available at
https://github.com/347325285/CS_BGM.

4.1. Datasets

We consider two datasets: i) the MNIST handwritten digit
dataset (LeCun & Cortes, 2010) and ii) the CelebFaces At-
tributes (CelebA) dataset (Liu et al., 2015). For the MNIST
dataset, each digit is a grayscale image of size 28×28, where
the value of each pixel is 0 or 1. For the CelebA datase, the
dimension of each RGB image is cropped to 64 × 64 × 3
for consistent use. In this case, the input of MNIST is 784-
dimensional and sparse. Whereas for CelebA, the input is
as high as 12288-dimensional and dense.

4.2. Models and Hyperparameters

To ensure that the measurement matrix satisfies the S-RIP
with high probability, we consider the random Gaussian
measurement matrix with each entry i.i.d. drawn from
N (Aij ; 0, 1

m ). We use pre-trained VAE models as in (Bora
et al., 2017) on the MNIST dataset. The VAE model is a
fully connected neural network with the architecture 20-500-

1This doesn’t holds with the S-REC, because the latter fails to
lower bound the recovery error with the measurement error.

https://github.com/347325285/CS_BGM
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(a) MNIST dataset (b) CelebA dataset

Figure 3. Comparative results among Lasso, CSGM, Sparse-Gen and CS-BGM. The vertical bars are 95% confidence intervals.

500-784, i.e., we generate the digit of size 28× 28 from a
standard normal vector z ∈ R20. For the experiments on
CelebA dataset, we use the pre-trained generative model
as in (Bora et al., 2017). The latent representation space
for z is of dimension 100. For both models, we use Adam
optimizer (Kingma & Ba, 2015) with learning rate 0.001
for v and 0.002 for θ, respectively. In the fast implementa-
tion named CS-BGM (w/o MC), which infers z with MAP
estimation like θ, the learning rate for z is set to be 0.001l.
The regular coefficient λθ is 0.1. To compare the perfor-
mance of different methods, we choose 1024 digits from
the MNIST test dataset and 64 images from CelebA, with a
batch size of 64. For the implementations of other compara-
tive algorithms, we use hyperparameters suggested by their
authors.

4.3. Optimization Strategy

Here, we detail the optimization strategy of the proposed CS-
BGM algorithm. Following the common choice, we use a
multivariate Gaussian distribution with diagonal covariance
matrix as the variational posterior q(z|v), and adopt the
reparameterization trick (Kingma & Welling, 2014) when
performing VI. The number of MC samples for inference
is set to 20 on the MNIST dataset and 10 on the celebA
dataset. In our experiments, we perform the optimization of
z for 2000 iterations and then θ for 500 iterations with only
1 alternations. In particular, we set J = 1,K = 2000, and
L = 500 to Alg. 1. In the fast implementation, we set J =
1,K = 500, and L = 200 to Alg. 1. We do not perform
more alternations or iterations since the loss has already
converged under such setting. We stress that optimization
with more alternations for different m could produce better
performance under an elaborate parameter selection. For the
sake of brevity, however, we do not include such fine-tuning

in our experiments.

4.4. Results

We present our experimental results on the MNIST and
CelebA datasets, respectively. For comparison, we choose
the per-pixel `2 reconstruction loss ( 1

n‖x − x̂‖2) as our
performance metric.

4.4.1. MNIST

According to the previous hyperparameter settings, we con-
struct the corresponding measurement matrix A of size
m × 784 (with m varying from 50 to 750) and compare
the reconstructed pixel error between different methods in
Fig. 3(a) and Fig. 4. Overall, it can be observed that our
proposed method performs the best (i.e., with the lowest
`2 loss) when the number m of measurements is between
100 and 400. When m is 500 or larger, the performance of
Sparse-Gen improves and becomes comparable to that of
CS-BGM. This is perhaps because Sparse-Gen optimizes
the following problem:

min
z,ν
‖Dν‖1 + ‖A(g(z;θ) + ν)− y‖22, (16)

where D is some transform basis, which is set as an iden-
tity matrix in MNIST. Thus, when m becomes larger, the
assumption made by Sparse-Gen (i.e., ν being sparse) is
more likely to holds.

4.4.2. CELEBA

We test all methods for A ∈ Rm×12288 withm varying from
20 to 104. As shown in Fig. 3(b), the CS-BGM method has
the minimum reconstruction error for all tested region of m.
The gap between CS-BGM and CSGM even increases with
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Figure 4. Reconstruction results on MNIST dataset when the measurement number m = 100.

m, which clearly demonstrates the superiority of expanding
the range of generator.

Fig. 5 shows the comparative reconstruction results of face
images among different methods on CelebA dataset. Since
it has been reported by Dhar et al. (2018) that Sparse-Gen
performs better with discrete wavelet transform (DWT) than
discrete cosine transform (DCT), we run Sparse-Gen with
DWT in our experiments. The number m of measurements
is set to 1000. One can observe that Lasso works poorly in
most cases, since the face images (after DCT or DWT) are
not sparse enough for accurate reconstruction.

One can also observe that the faces recovered by other meth-
ods (CSGM, PGD-GAN, and Sparse-Gen) are more or less
deformed or distorted. The main reason is that the distribu-
tion of the training images are inconsistent with that of the
test ones, so that the latter cannot be reconstructed with the
learned prior. Indeed, most of these distorted faces are com-
binations of the elements from the training images, while
they are not similar in detail to the test ones. This obser-
vation confirms the “inconsistency” of the distributions. In
addition, the residual (i.e. x− x̂) is not strictly sparse under
the hand-crafted transform domain, and hence could not be
well modeled using a sparse ν. In comparison, CS-BGM
can accurately restore the details of the test images, as it can
adaptively adjust the range of the generator to promote the
reconstruction quality.

5. Conclusion and Future Work
In this paper, we have proposed a method called CS-BGM
for fundamentally reducing the reconstruction error of sig-
nals in CS with generative models. Our analysis has shown
that the quality of reconstructed images is limited by the
measurement error, regardless of what additional prior is im-
posed. Nevertheless, by introducing uncertainties, CS-BGM
can effectively break through the range limit of representa-
tive capability for the generator, thus offering big potential
for quality improvement in generative image reconstruction.
Empirically experiments on common datasets have demon-
strated that the performance gains brought by expanding the
range of the generator are indeed nontrivial.

Our future work will focus on several feasible directions.
First, we will try different priors (e.g., sparsity) on θ in CS-
BGM, or learn a prior for θ from the training data. Second,
as mentioned, the upper bound of the reconstruction error is
dominated by the slack constant ε when the measurement er-
ror is adequately small. To further refine the reconstruction
results, therefore, attention will be cast to the reduction of ε,
with possible use of additional priors on the signal x. Third,
we will try to generalize the proposed method to larger and
more sophisticated models such as StyleGAN (Karras et al.,
2019). Since the complexity of CS-BGM is dominated by
the alternating optimization between z and θ, a potential so-
lution is to train a neural network (e.g., LSTM) to infer their
joint posterior given y. Thus, the burdensome optimization
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Figure 5. Reconstruction results on CelebA dataset when the measurement number m = 1000. Lasso (C) and Lasso (W) mean that we
perform Lasso on the DCT and DWT, respectively. Sparse-Gen is performed on the wavelet basis as well.

process can be substituted by a simple forward mapping.
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A. Proof of Lemma 3.2
Lemma A.1 (Restated). Let g : Rk 7→ Rn be L-Lipschitz. Let Bk(r) = {z|z ∈ Rk, ‖z‖2 ≤ r} be an `2-norm ball in Rk.
And denote by g(Bk(r)) := {g(z;θ)|z ∈ Bk(r)} the range of the generator restricted to inputs from the `2-norm ball. For
δ ∈ (0, 1), if

m = Ω

(
k

δ2
log

Lr

ε

)
, (17)

then a random matrix A ∈ Rm×n with i.i.d. entries N (Aij ; 0, 1
m ) satisfies the S-RIP(g(Bk(r)), δ, ε) with probability

exceeding 1− e−Ω(δ2m).

Proof. The proof extends that of (Bora et al., 2017, Lemma 4.1) using Laurent-Massart bounds and Johnson–Lindenstrauss
lemma.

First, Let b be a vector such that

bi =

√
m

‖x‖2
(Ax)i, i = 1, . . . ,m.

Since the entries of A are i.i.d. Gaussian N (Aij ; 0, 1
m ), it is straightforward to verify that

bi ∼ N (0, 1).

Thus we have
‖b‖22 ∼ χ2(m).

Using the concentration of measure for chi-squared distribution (Laurent & Massart, 2000), we obtain

P[‖b‖22 −m ≥ 2
√
mt+ 2t] ≤ e−t (18)

and
P[‖b‖22 −m ≤ −2

√
mt] ≤ e−t. (19)

Substituting 2
√
mt+ 2t with δm in (18), and 2

√
mt with δm in (19), respectively, we get

P[‖b‖22 ≥ (1 + δ)m] ≤ e−m2 (δ+1+
√

2δ+1)

and
P[‖b‖22 ≤ (1− δ)m] ≤ e− δ

2m
4 .

Notice that

‖Ax‖22 =
‖x‖22
m
‖b‖22,

by the union bound we have for a fixed x ∈ Rn that

P[(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22] ≥1− e−m2 (δ+1+
√

2δ+1) − e− δ
2m
4

=1− e−Ω(δm) − e−Ω(δ2m)

=1− e−Ω(δ2m), (20)

where the last equation is because δ ∈ (0, 1).

Then, we construct an ε
L -net N on Bk(r) such that

log |N | ≤ k log

(
4Lr

ε

)
.

Since g is L-Lipschitz, we know that g(N) is an ε-net of g(Bk(r)).
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Let T := {g(z1)− g(z2)|z1, z2 ∈ N} be the set of pairwise differences for vectors in g(N). Then we have

log |T | ≤ log |N |2 ≤ 2k log

(
4Lr

ε

)
. (21)

For any z, z′ ∈ Bk(r), there exists z1, z2 ∈ N such that g(z1),g(z2) are ε-close to g(z),g(z′), respectively. Therefore we
obtain

‖g(z)− g(z′)‖2 ≤‖g(z1)− g(z2)‖2 + ‖g(z)− g(z1)‖2 + ‖g(z2)− g(z′)‖2
≤‖g(z1)− g(z2)‖2 + 2ε (22)

and

‖g(z)− g(z′)‖2 ≥‖g(z1)− g(z2)‖2 − ‖g(z)− g(z1)‖2 − ‖g(z2)− g(z′)‖2
≥‖g(z1)− g(z2)‖2 − 2ε. (23)

Employing (Bora et al., 2017, Lemma 8.2), with probability of 1− e−Ω(m), we get

‖Ag(z1;θ)−Ag(z;θ)‖2 = O(ε)

and
‖Ag(z2;θ)−Ag(z′;θ)‖2 = O(ε).

Therefore, with probability of 1− e−Ω(m), we have

‖Ag(z)−Ag(z′)‖2 ≤ ‖Ag(z1)−Ag(z2)‖2 + ‖Ag(z)−Ag(z1)‖2 + ‖Ag(z2)−Ag(z′)‖2
≤ ‖Ag(z1)−Ag(z2)‖2 +O(ε) (24)

and
‖Ag(z)−Ag(z′)‖2 ≥ ‖Ag(z1)−Ag(z2)‖2 −O(ε). (25)

Substituting x in (20) with g(z1)− g(z2), it then holds with probability of 1− e−Ω(δ2m) that

(1− δ)‖g(z1)− g(z2)‖22 ≤ ‖Ag(z1)−Ag(z2)‖22 ≤ (1 + δ)‖g(z1)− g(z2)‖22 (26)

for a fixed g(z1)− g(z2).

By the union bound over all the vectors in T , we have (26) holds for ∀z1, z2 ∈ N with probability of

1− 2|T |e−Ω(δ2m) = 1− 2e−Ω(δ2m)

where the equality follows from (13) and (21).

Since (24), (25) and (26) are independent with each other, then with probability of

(1− e−Ω(m))(1− e−Ω(δ2m)) = 1− e−Ω(δ2m),

it holds that

‖Ag(z)−Ag(z′)‖2 ≤‖Ag(z1)−Ag(z2)‖2 +O(ε)

≤
√

1 + δ‖g(z1)− g(z2)‖2 +O(ε)

and that

‖Ag(z)−Ag(z′)‖2 ≥‖Ag(z1)−Ag(z2)‖2 −O(ε)

≥
√

1 + δ‖g(z1)− g(z2)‖2 −O(ε),

which is the desired S-RIP(g(Bk(r)), δ, ε).
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B. Proof of Theorem 3.3
Theorem B.1 (Restated). Let g : Rk 7→ Rn be a d-layer neural network, where each layer is composed by a linear
transform and a point-wise non-linearity. And denote by R(g(z;θ)) := {g(z;θ)|z ∈ Rk} the range of the generator.
Suppose there are at most c nodes per layer, and all the non-linearities are piecewise linear with at most two pieces. For
δ ∈ (0, 1), if

m = Ω

(
kd

δ2
log c

)
, (27)

then a random matrix A ∈ Rm×n with i.i.d. entries N (Aij ; 0, 1
m ) satisfies the S-RIP(R(g(z;θ)), δ, ε) with probability of

1− e−Ω(δ2m).

Proof. From (Bora et al., 2017, Section 8.3) we know thatR(g(z;θ)) is a union of O(ckd) different k-dimensional faces
(k-faces) in Rn.

For each k-face F ⊆ R(g(z;θ)), applying Lemma 3.2 (which still holds for any compact set in addition to `2-norm balls),
we get that A satisfies S-RIP(F, δ, ε) with probability of 1− e−Ω(δ2m) if

m = Ω

(
k

δ2
log

Lr

ε

)
.

Then, for the range R(g(z;θ)) which is a union of O(ckd) different k-faces, the union bound gives that A satisfies
S-RIP(F, δ, ε) with probability exceeding 1−O(ckd)e−Ω(δ2m) if

m = Ω

(
k

δ2
log

Lr

ε

)
.

Therefore, let

m = Ω

(
kd

δ2
log c

)
,

then A can satisfy S-RIP(F, δ, ε) with probability of 1− e−Ω(δ2m). The proof is thus completed.


