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Abstract
Unconstrained Online Linear Optimization (OLO)
is a practical problem setting to study the train-
ing of machine learning models. Existing works
proposed a number of potential-based algorithms,
but in general the design of these potential func-
tions relies heavily on guessing. To streamline
this workflow, we present a framework that gener-
ates new potential functions by solving a Partial
Differential Equation (PDE). Specifically, when
losses are 1-Lipschitz, our framework produces
a novel algorithm with anytime regret bound
C
√
T +∥u∥

√
2T [
√
log(1 + ∥u∥/C)+2], where

C is a user-specified constant and u is any com-
parator unknown and unbounded a priori. Such
a bound attains an optimal loss-regret trade-off
without the impractical doubling trick. Moreover,
a matching lower bound shows that the leading or-
der term, including the constant multiplier

√
2, is

tight. To our knowledge, the proposed algorithm
is the first to achieve such optimalities.

1. Introduction
Advances in online learning have brought deeper under-
standing and better algorithms to the training of machine
learning models. Among all the problem settings therein,
unconstrained online learning has received special attention
since the parameter of the model is often unrestricted before
seeing any data. Compared to conventional settings with a
bounded domain, the unconstrained setting poses an addi-
tional challenge: starting from a poor initialization, how can
an algorithm quickly find an optimal parameter that may be
far-away? With the growing popularity of high-dimensional
models, such an issue becomes increasingly important.

In this paper, we address this issue by studying a theoretical

Future versions available at https://arxiv.org/
abs/2201.07877. 1Boston University. Correspondence
to: Zhiyu Zhang <zhiyuz@bu.edu>, Ashok Cutkosky
<ashok@cutkosky.com>, Ioannis Ch. Paschalidis <yan-
nisp@bu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

problem called unconstrained Online Linear Optimization
(OLO). Given an unbounded domain Rd, we need to design
an algorithm such that in each round it makes a determin-
istic prediction xt ∈ Rd, observes a loss gradient gt ∈ Rd

and suffers a loss ⟨gt, xt⟩, where gt is adversarial (can ar-
bitrarily depend on x1, . . . , xt) and satisfies ∥gt∥≤ 1. The
considered performance metric is the regret

RT (u) =

T∑
t=1

⟨gt, xt⟩ −
T∑

t=1

⟨gt, u⟩ ,

and the goal is to achieve low regret for all comparators u ∈
Rd, time horizon T ∈ N+, and loss gradients g1, . . . , gT .
Besides seeking the optimal rate on T , we are also interested
in the dependence of RT (u) on ∥u∥, as it captures how well
the algorithm performs if the optimal fixed prediction (in
hindsight) turns out to be far-away from the user’s prior
guess (in this case, the origin).

Many algorithms for unconstrained OLO are based on the
potential method. Given a potential function Vt(·), the key
idea is to accumulate the history into a “sufficient statistic”
St = −

∑t−1
i=1 gi and predict the gradient of Vt(·) at St,

i.e., xt = ∇Vt(St). Through this procedure, designing new
algorithms is converted into a more tangible task of finding
good potentials. Specifically, with an arbitrary constant C,
existing works (e.g., Orabona & Pál 2016; Mhammedi &
Koolen 2020) adopted the one-dimensional potential

Vt(St) =
C√
t
exp

(
S2
t

2t

)
(1)

and its variants to achieve the regret bound

RT (u) ≤ C + ∥u∥O

√T log
∥u∥
√
T

C

 . (2)

Among all the achievable upper bounds with RT (0) ≤ C,
the order of ∥u∥ and T in (2) is optimal up to multiplicative
constants. In practice, these algorithms (Orabona & Tom-
masi, 2017; Chen et al., 2022) have demonstrated promising
performance with minimum hyperparameter tuning.

Despite these strong results, there is still room for improve-
ment. Intuitively, requiring a constant RT (0) all the time
amounts to a strong belief that the initialization of the model
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is close to the optimal parameter, which somewhat contra-
dicts the use of an unconstrained domain in the first place.
Reflected in the regret bound, the RHS of (2) can be more
generally viewed as a trade-off between the values of RT (u)
at small ∥u∥ and large ∥u∥: if the cumulative loss RT (0) is
allowed to increase with T , then one may obtain lower regret
with respect to far-away comparators. This will be favor-
able in high-dimensional problems, as good initializations
become harder to obtain.

The question now becomes, what is the optimal loss-regret
trade-off, and how to efficiently achieve it? As a first attempt,
one could assume a known time horizon T , set C =

√
T in

(2) and obtain (McMahan & Orabona, 2014)

RT (u) ≤
√
T + ∥u∥O

(√
T log∥u∥

)
. (3)

With respect to T alone, RT (u) = O(
√
T ). Since it

matches the standard minimax lower bound for constrained
OLO, we consider this loss-regret trade-off as optimal. The
real challenge is an anytime bound – existing arguments
rely on a doubling trick1 (Shalev-Shwartz, 2011), which not
only is notoriously impractical, but also leads to an extra
multiplying constant with unclear optimality. Perhaps due
to this reason, regret bounds like (3) have received a lot less
attention than (2), despite their theoretical advantages.

The present work aims at a practical and optimal approach
towards an anytime bound in the form of (3) – this requires a
significant departure from existing techniques. Specifically,
we will reconsider the design of potential functions in uncon-
strained OLO. The classical workflow is based on heuristic
guessing, which is challenging when the suitable potential
is not an elementary function (e.g., involving complicated
integrals or series). Our goal is to propose a systematic
approach for this task, which reduces the amount of guess-
ing and allows us to handle more complicated potentials.
Eventually, as a byproduct, our framework produces a new
algorithm that efficiently achieves the optimal loss-regret
trade-off.

1.1. Result and contribution

As motivated above, our contributions are twofold.

• We propose a framework that uses solutions of a specific
Partial Differential Equation (PDE) as potential functions
for unconstrained OLO. To this end, we characterize min-
imax optimal potentials via a backward recursion, and our
PDE naturally arises in its continuous-time limit. Solu-
tions of this PDE approximately solve the discrete-time
recursion. Therefore, one may search for suitable poten-
tials within such solutions and their variants, which is a
more structured procedure than direct guessing.

1Running the fixed-T algorithm on time intervals of doubling
lengths, i.e., [2i : 2i+1 − 1].

• Using our framework, we design a one-dimensional po-
tential which is not elementary and hard to guess without
the help of a PDE. The induced algorithm guarantees

RT (u) ≤ C
√
T+∥u∥

√
2T

[√
log

(
1 +

∥u∥√
2C

)
+ 2

]
.

Our bound achieves an optimal loss-regret trade-off (3)
without the doubling trick. Moreover, by constructing a
matching lower bound, we further show that the leading
order term, including the constant multiplier

√
2, is tight.

To our knowledge, the proposed algorithm is the first
to achieve such optimalities. The obtained theoretical
benefits are validated by experiments.

1.2. Related work

Unconstrained OLO Unconstrained convex optimization
has been extensively studied in both the offline and online
settings. Typically, strong guarantees can be obtained assum-
ing certain curvature of the loss function. Without curvature,
the problem becomes harder but more practical for large
scale applications (e.g., training machine learning models),
as gradients become the only available feedback.

For unconstrained OLO, if the optimal learning rate in hind-
sight is known a priori, Online Gradient Descent (OGD)
(Zinkevich, 2003) guarantees O(∥u∥

√
T ) regret with re-

spect to the optimal comparator u. Without that prior knowl-
edge, the regret bound downgrades to O(∥u∥2

√
T ). A line

of works on parameter-free algorithms aims at achieving
Õ(∥u∥

√
T ) regret in the latter setting. Specifically, Mcma-

han & Streeter (2012) proposed the first parameter-free algo-
rithm with O(∥u∥

√
T log(∥u∥T )) regret, which was later

improved to O(∥u∥
√

T log(∥u∥T )) by a potential-based
algorithm (McMahan & Orabona, 2014); this is the opti-
mal rate (Mcmahan & Streeter, 2012; Orabona, 2013; 2019)
given the constraint RT (0) ≤ constant. More recently, the
analysis was streamlined in (Orabona & Pál, 2016; Cutkosky
& Orabona, 2018) through a coin-betting game, and in (Fos-
ter et al., 2018) through the Burkholder method. The ob-
tained algorithms find applications in differential privacy
(Jun & Orabona, 2019; van der Hoeven, 2019), combining
optimizers (Cutkosky, 2019b; 2020; Zhang et al., 2022) and
training neural networks (Orabona & Tommasi, 2017).

Among all these results, a shared limitation is the focus on
RT (0) ≤ constant. Other forms of loss-regret trade-offs are
less explored, both theoretically and practically. Moreover,
the optimality of leading constants has not been considered.

Differential equations for online learning Recently, ap-
plying differential equations in online learning has received
growing interests. The first idea was proposed in (Kapralov
& Panigrahy, 2011), where a potential function for Learning
with Expert Advice (LEA) (Littlestone & Warmuth, 1994)
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was designed by solving an Ordinary Differential Equation
(ODE). As a key benefit, the obtained regret bound achieves
a trade-off with respect to different individual experts. The
proposed techniques were later applied to the discounted
setting (Andoni & Panigrahy, 2013) and the movement-
constrained setting (Daniely & Mansour, 2019). Interest-
ingly, our prior work (Zhang et al., 2022) used the coin-
betting approach to achieve a similar goal as (Daniely &
Mansour, 2019), suggesting intriguing connections between
differential equations and parameter-free online learning.

An improved approach uses PDEs (rather than ODEs) to
generate time-dependent potential functions. Still consider-
ing the LEA problem, such works aim at the optimal regret
bound nonasymptotic in the number of experts. (Zhu, 2014)
first derived a PDE to characterize the continuous-time limit
of LEA, whose arguments were streamlined in (Drenska
& Kohn, 2020b). Exact solutions were obtained in special
cases (Bayraktar et al., 2020a;b; Drenska & Kohn, 2020b),
and more generally, algorithms based on approximate so-
lutions were designed in (Rokhlin, 2017; Kobzar et al.,
2020a;b). Follow-up works considered history-dependent
experts (Drenska & Kohn, 2020a; Drenska & Calder, 2022)
and malicious experts (Bayraktar et al., 2020c; 2021). Fur-
thermore, Harvey et al. (2020) extended this idea to the
anytime setting with two experts, using a different, stochas-
tic derivation of the continuous-time PDE.

Our use of PDE in unconstrained OLO is inspired by these
works on LEA. Notably, we emphasize two differences.

• Existing works considered settings that enforce a unique
solution to the PDE, by requiring a fixed time horizon
(e.g., Zhu 2014; Drenska & Kohn 2020b; Kobzar et al.
2020a) or imposing boundary conditions (Harvey et al.,
2020). In contrast, we directly consider a class of solu-
tions which are generally not comparable to each other.

• In LEA, the goal of the PDE approach is to achieve the
optimal uniform regret (with respect to all experts). In
contrast, we use a PDE to achieve performance trade-offs
in adaptive online learning. Trade-offs among experts
have been studied using ODEs (e.g., Kapralov & Pani-
grahy 2011). However, we focus on the anytime setting,
and the trade-off in unconstrained OLO is with respect to
all comparators in Rd, which is more challenging.

1.3. Notation

Let ∥·∥ be the Euclidean norm, and let Bd be the unit d-
dimensional Euclidean norm ball. For a twice differentiable
function V (t, S), where t represents time and S represents
a spatial variable, let ∇tV , ∇ttV , ∇SV and ∇SSV be
the first and second order partial derivatives. λmax(·) is
the largest eigenvalue of a real symmetric matrix. For a
function f , let f∗ be its Fenchel conjugate. For two integers

a ≤ b, [a : b] is the set of all integers c such that a ≤ c ≤ b;
the brackets are removed when on the subscript, denoting a
finite sequence with indices in [a : b]. Finally, log denotes
the natural logarithm.

2. OLO, betting and limiting PDE
Our approach critically relies on a continuous-time view of
the discrete-time unconstrained OLO problem. It consists
of three steps, detailed in the following three subsections.
First, we convert OLO to a coin-betting problem – the latter
is easier from a technical perspective, due to the absence of
comparators.

2.1. Unconstrained coin-betting and duality

Unconstrained coin-betting is a two-person zero-sum game,
with X = Rd and C = Bd being the action space of the
player and the adversary respectively. The player’s policy
p contains an initial bet x1 ∈ X and a collection of func-
tions {p2, p3, . . .}, with pt : Ct−1 → X . Similarly, the
adversary’s policy a is defined as a collection of functions
{a1, a2, . . .}, with at : X t → C. Analogous to our setting
of unconstrained OLO, randomized betting strategies are
not considered.

Fixing policies p and a on both sides, the game runs as
follows. In the t-th round, the player makes a bet xt =
pt(c1:t−1) based on past coin outcomes. Then, the adversary
decides a new coin ct = at(x1:t), reveals it to the player, and
the player gains ⟨ct, xt⟩ amount of money (effectively, the
player loses money if ⟨ct, xt⟩ is negative). The performance
metric for the player is the total gained wealth

WT =

T∑
t=1

⟨ct, xt⟩ ,

where T is not pre-specified. In other words, the player
aims to ensure an anytime wealth lower bound against all
possible adversaries.

Research on adversarial betting has a long history, dating
back at least to (Cover, 1966) – Cover studied the setting
with a fixed and known time horizon, where all achiev-
able lower bounds can be characterized via dynamic pro-
gramming. Our anytime setting is more involved, but due
to a classical dual relation (McMahan & Orabona, 2014),
solving it is equivalent to solving the unconstrained OLO
problem we ultimately care about: one can construct a
unique OLO algorithm (Algorithm 1) from any coin-betting
algorithm A, and characterize its performance through
Lemma 2.1. Consequently, the rest of the paper will fo-
cus on solving the betting problem in a principled way.
Lemma 2.1 (Theorem 9.6 of Orabona 2019). Let Ψ be any
proper, closed and convex function. For all T ∈ N+, the
following two statements are equivalent:
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Algorithm 1 From coin-betting to OLO.

Require: An algorithm A for unconstrained coin-betting.
1: for t = 1, 2, . . . do
2: Query A for its t-th bet xt and predict it in OLO.
3: Observe loss gradient gt and suffer ⟨gt, xt⟩.
4: Let ct = −gt and send it to A as the t-th coin.
5: end for

1. The unconstrained coin-betting algorithm A guarantees
WT ≥ Ψ

(∑T
t=1 ct

)
against any adversary.

2. The unconstrained OLO algorithm constructed from A
guarantees RT (u) ≤ Ψ∗(u) for all u ∈ Rd, against any
loss sequence. (Ψ∗ is the Fenchel conjugate of Ψ.)

Before proceeding, we note that the above unconstrained
coin-betting game strictly generalizes the well-known ex-
isting one for unconstrained OLO analysis (McMahan &
Orabona, 2014; Orabona & Pál, 2016). The latter assigns
an initial wealth C to the player, and the player’s betting
amount |xt| should be less than the total wealth it possesses
at the beginning of the t-th round. A budget constraint
of this form faithfully models many real-world investment
problems, but since our ultimate goal is online learning
rather than any particular financial application, such a con-
straint is not necessary for our purpose. In fact, relaxing it
gives us greater flexibility to achieve general forms of regret
trade-offs beyond (2). Intuitively speaking, the player in our
setting can make decisions solely based on the perceived
risk-gain trade-off, without being constrained by its budget.

2.2. Minimax coin-betting

For the second step of our derivation, we will characterize
the unconstrained coin-betting game from a minimax per-
spective. Rather than the value of the game, we consider a
refined quantity called value function.

Definition 2.1 (Value function). V : N × Rd → R is a
value function of the unconstrained coin-betting game if

1. V (0, 0) = 0.

2. For all t ∈ N, V (t, ·) is continuous on Rd.

3. For all t ∈ N and S ∈ t · C, 2

V (t, S) = min
x∈X

max
c∈C

[V (t+ 1, S + c)− ⟨c, x⟩] . (4)

The recursive relation in Definition 2.1 is reminiscent of
the conditional value function previously studied in online
learning (Rakhlin et al. 2012; McMahan & Abernethy 2013;

2Even though X is not compact, the minimization on the RHS
of (4) is well-posed since maxc∈C [V (t+ 1, S + c)− ⟨c, x⟩] as a
function of x is coercive.

Drenska & Kohn 2020b) and minimax dynamic program-
ming (Bertsekas 2012). The key difference is that we care
about anytime performance, therefore a terminal condition
to initiate the backward recursion (4) is missing. Rather
than the value-to-go, we model the value-so-far. This signif-
icantly complicates the analysis, as the solution of (4) is not
unique (e.g., V (t, S) = constant · S). In general, similar to
the concept of Pareto optimality, different value functions
are not comparable as they represent different trade-offs
on the shape of the wealth lower bound (ultimately, the
associated regret upper bound due to Lemma 2.1).

On the bright side, any value function can lead to a pair
of player-adversary strategies with tight wealth lower and
upper bounds. Given a good value function (or more gen-
erally, its approximation), a good betting algorithm can be
naturally induced. The proof is deferred to Appendix A.1.

Lemma 2.2. Given any value function V ,

1. We can construct a player policy p∗ such that for all a
and T ∈ N+,

WT ≥ V

(
T,

T∑
t=1

ct

)
.

In addition, for all t, the player’s bet p∗t (c1:t−1) depends
on the past coins only through their sum

∑t−1
i=1 ci.

2. We can construct an adversary policy a∗ such that for
all p and T ∈ N+,

WT ≤ V

(
T,

T∑
t=1

ct

)
.

To proceed, let us further define the unit time as the time in-
terval between consecutive rounds in the coin betting game,
and assign it to 1. In this way, the game can be analyzed on
the real time axis t ∈ R+.

2.3. The scaled game and limiting PDE

Intuitively, solving the backward recursion (4) is difficult
due to its discrete formulation. If we adopt a finer discretiza-
tion on the time axis, then the recursion becomes “smoother”
which is easier to describe using continuous-time analysis.
To this end, let us introduce a scaled coin-betting game.

Definition 2.2 (Scaled game). Given ε > 0, the ε-scaled
game is the unconstrained coin-betting game with unit time
ε2 and adversary action space ε·C. That is, actions are taken
every ε2 of the original units of time, and the adversary
chooses the coin outcomes in a scaled set ε · C instead of C.3

3We choose such scaling factors due to results in the coin-
betting setting with budget constraints (McMahan & Abernethy,
2013). Detailed discussions are presented in Appendix A.2.
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Similar to Definition 2.1, we can define an ε-scaled value
functions Vε on the scaled game. Moreover, we extend its
domain and assume it is twice-differentiable on R>0 × Rd.
The backward recursion on Vε becomes

Vε(t, S) = min
x∈X

max
c∈C

[
Vε(t+ ε2, S + εc)− ⟨εc, x⟩

]
.

Similar to (Zhu, 2014; Drenska & Kohn, 2020b), we take a
Taylor approximation on the RHS,

Vε(t+ ε2, S + εc) = Vε(t, S) + ε2∇tVε(t, S)

+ ε ⟨c,∇SVε(t, S)⟩+
ε2

2
⟨∇SSVε(t, S) · c, c⟩+ o(ε2),

which leads to

0 = min
x∈X

max
c∈C

[ ⟨c,∇SVε(t, S)− x⟩+ ε∇tVε(t, S)

+
ε

2
⟨∇SSVε(t, S) · c, c⟩+ o(ε)].

As ε approaches 0, the dominant term on the RHS is
minx∈X maxc∈C ⟨c,∇SVε(t, S)− x⟩, therefore the outer
minimizing argument should be x = ∇SVε(t, S). Along
this argument, taking ε → 0 and plugging in C = Bd (i.e.,
the unit d-dimensional Euclidean norm ball), we obtain a
second order nonlinear PDE for a limiting value function.

Definition 2.3 (Limiting value function). A function V̄ :
R>0 × Rd → R is a limiting value function of the uncon-
strained coin-betting game if

∇tV̄ = −1

2
max{λmax(∇SS V̄ ), 0}. (5)

The PDE (5) can be regarded as a continuous-time approxi-
mation of the backward recursion (4), and solving it, while
still challenging, is more tractable than handling the discrete-
time recursion itself. Given solutions of this PDE, one may
invoke a perturbed analysis of Lemma 2.2 and obtain corre-
sponding wealth lower bounds.

3. One-dimensional analysis
To demonstrate the power of the PDE framework, let us
focus on the one-dimensional convex case where the non-
linear PDE (5) becomes linear. Despite this restriction, our
approach can still handle the general d-dimensional uncon-
strained OLO problem due to a standard extension technique
(Cutkosky & Orabona, 2018) reviewed in Appendix C.

For now, let us assume d = 1. To further comply with the
duality lemma (Lemma 2.1), we will consider V̄ that are
convex with respect to the second argument. Then, the PDE
(5) reduces to the one-dimensional backward heat equation

∇tV̄ = −1

2
∇SS V̄ . (6)

Such a linear PDE has received considerable attention in
the literature (Miranker, 1961; Payne, 1975), since its initial
value problem has an intriguing ill-posed issue. Interest-
ingly, an insightful work by Harvey et al. (2020) showed
that the backward heat equation gives rise to an optimal
two-expert LEA algorithm – the proposed techniques will
be useful in our analysis as well. Our key observations are
twofold:

• The PDE framework recovers both the OGD potential and
the existing parameter-free potential (1), thus appears to
be a very general approach for unconstrained OLO.

• The optimal potential that Harvey et al. (2020) adopted for
two-expert LEA is also useful for adaptive online learn-
ing, resulting in an optimal unconstrained OLO algorithm
in high-dimensions.

3.1. PDE-based policy class

Motivated by the classical parameter-free potential (1), let
us consider the ansatz

V̄ (t, S) = tαg
(
c · tβS

)
, (7)

where α, β and c are constants, and g : R → R is a one-
dimensional function to be determined. For simplicity we
omit shifting on S, t and the function value. In other words,
once we find appropriate (α, β, c) and g, we immediately
obtain a more general solution

V̄ (t, S) = C0 + (t+ τ)αg
(
c · tβ(S + S0)

)
,

with shifting constants C0, τ and S0. Moreover, any linear
combination of two solutions is also a solution, allowing the
user to interpolate their induced behavior.

Plugging in (7) and letting z = c · tβS, the PDE (6) reduces
to a second order linear ODE for the function g:

c2t2β+1g′′(z) + 2βzg′(z) + 2αg(z) = 0.

Letting β = −1/2 and c = 1/
√
2, it becomes of the stan-

dard Hermite type

g′′(z)− 2zg′(z) + 4αg(z) = 0, (8)

whose general solutions can be expressed in power series
(Arfken et al., 2013, Chapter 7). By varying the parameter
α, we obtain a rich class of limiting value functions V̄ .

To construct coin-betting policies, our key idea is to use V̄ as
a surrogate for the actual value function V (Definition 2.1)
and apply the same argument as in Lemma 2.2. Specifically,
the adversary should pick the coin outcome that maximizes
the RHS of the backward recursion (4), which is

ct ∈ argmax
c∈C

[
V̄

(
t,

t−1∑
i=1

ci + c

)
− ⟨c, xt⟩

]
. (9)
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Algorithm 2 PDE-based adversary policy.

Require: A limiting value function V̄ .
1: for t = 1, 2, . . . do
2: Receive the player’s bet xt and choose the coin as

ct ∈ argmax
c∈{−1,1}

[
V̄

(
t,

t−1∑
i=1

ci + c

)
− ⟨c, xt⟩

]
.

(10)
3: end for

Algorithm 3 PDE-based player policy.

Require: A limiting value function V̄ .
1: for t = 1, 2, . . . do
2: Choose the bet

xt =
1

2

[
V̄

(
t,

t−1∑
i=1

ci + 1

)
− V̄

(
t,

t−1∑
i=1

ci − 1

)]
.

(11)
3: Observe the coin outcome ct and store it.
4: end for

Since V̄ is convex and C = [−1, 1], the adversary can sim-
ply focus on the boundary coins {−1, 1}, leading to the
adversary policy presented in Algorithm 2.

As for the player, the optimal bet is the one that minimizes
the objective function in (9), which is equivalent to the dis-
crete derivative shown in Algorithm 3. Intuitively, the dis-
crete derivative serves as an approximation of the standard
derivative in classical potential methods. Therefore, Algo-
rithm 3 essentially has a potential-based structure, with the
potential function V̄ generated from a PDE. Alternatively,
Algorithm 3 can be interpreted as a discrete approximation
of Follow the Regularized Leader (FTRL) (Abernethy et al.,
2008) whose regularizer is the Fenchel conjugate of V̄ (t, ·).
The equivalence of potential functions and regularizers has
been discussed in (Orabona, 2019, Section 7.3).

3.2. Example

Before any technical analysis, let us demonstrate the gener-
ality of this framework through a few examples. We show
how classical algorithms can be derived from this frame-
work, and more importantly, we present a potential function
which permits an optimal loss-regret trade-off. For any α,
let V̄α be a limiting value function obtained from (8). Let
C > 0 be any positive scaling constant.

Warm up: α = 1. The Hermite ODE (8) has a solution
g(z) = C(2z2 − 1), resulting in V̄1(t, S) = C(S2 − t).
Accordingly, Algorithm 3 bets xt = 2C

∑t−1
i=1 ci = xt−1 +

2Cct−1, which is equivalent to Online Gradient Descent
(OGD) with learning rate 2C. Notably, V̄1 also satisfies

Definition 2.1; that is, V̄1 is not only a limiting value func-
tion, but also a value function for the discrete-time game.
Therefore, both Algorithm 2 and Algorithm 3 can be directly
analyzed through Lemma 2.2, as shown in Appendix B.1.

Recovering existing potentials: α = −1/2. The Hermite
ODE can be solved by g(z) = C exp(z2), resulting in
V̄−1/2(t, S) = C · t−1/2 exp[S2/(2t)]. Such a potential
recovers the existing popular choice (1), and its time shifted
version C ·(t+τ)−1/2 exp[S2/(2(t+τ))] naturally recovers
the shifted potential (Orabona & Pál, 2016) with minimum
effort. Different from the previous example, V̄−1/2 does not
satisfy Definition 2.1. Therefore, we should characterize its
approximation error on the backward recursion (4) in order
to quantify the performance of the induced player policy.
This procedure will be demonstrated in the next subsection.

A new potential: α = 1/2. The two linearly independent
solutions of the Hermite ODE are both useful. First, g(z) =√
2Cz and V̄ (t, S) = CS. Such a potential leads to betting

a fixed amount in coin-betting and shifting the coordinate
system in unconstrained OLO. The idea is simple, and it
will be applied in our experiments. For now, let us focus on
the other solution which is more interesting, i.e.,

g(z) = C

[
2z ·

∫ z

0

exp(x2)dx− exp(z2)

]
,

and the corresponding potential is

V̄1/2(t, S) = C
√
t

[
2

∫ S√
2t

0

(∫ u

0

exp(x2)dx

)
du− 1

]
.

(12)

Notably, as shown in Appendix B.3, ∇SS V̄1/2(t, S) =
V̄−1/2(t, S), suggesting possible deeper connections to the
existing parameter-free algorithms. Harvey et al. (2020)
constructed a two-expert LEA algorithm from V̄1/2, which
achieves the optimal uniform regret. As for unconstrained
OLO, we will show that using V̄1/2 in Algorithm 3 leads
to superior performance compared to V̄−1/2, both in theory
and in practice. Without the help of a PDE, such a potential
has not been discovered in adaptive online learning before
(to the best of our knowledge); this emphasizes the value of
the PDE-based framework.

3.3. Analysis of Algorithm 3

Now we provide rigorous performance guarantees for the
PDE-based player policy (Algorithm 3). To begin with,
define discrete derivatives of a limiting value function V̄ as

∇̄tV̄ (t, S) = V̄ (t, S)− V̄ (t− 1, S),

∇̄SS V̄ (t, S) = V̄ (t, S + 1) + V̄ (t, S − 1)− 2V̄ (t, S).

When doing this we extend the domain of V̄ (t, S) to t = 0,
and assign V̄ (0, 0) = 0 without loss of generality.



PDE-Based Optimal Strategy for Unconstrained Online Learning

The key component of this analysis is the Discrete Itô for-
mula (Klenke, 2013; Harvey et al., 2020). We modify it
for the coin-betting problem, and the proof is provided in
Appendix B.2.
Lemma 3.1 (Lemma D.3 and D.4 of Harvey et al. 2020,
adapted). Consider applying Algorithm 3 against any ad-
versary coin-betting policy a. For all t ∈ N,

V̄

(
t+ 1,

t+1∑
i=1

ci

)
− V̄

(
t,

t∑
i=1

ci

)
≤ ct+1xt+1

+

[
∇̄tV̄

(
t+ 1,

t∑
i=1

ci

)
+

1

2
∇̄SS V̄

(
t+ 1,

t∑
i=1

ci

)]
︸ ︷︷ ︸

♢

.

(13)

Moreover, equality is achieved when ct+1 ∈ {−1, 1}.

Summing (13) over t ∈ [0 : T − 1], the LHS becomes a
telescopic sum which returns V̄ (T,

∑T
i=1 ci), and the RHS

contains WT =
∑T

t=1 ctxt which we aim to bound – the
remaining task is to quantify the sum ♢ in the bracket. Com-
paring ♢ to the backward heat equation (6), one can see
that ♢ represents the “discrete approximation error” on the
PDE. Bounding this error is case-dependent: we will only
consider V̄1/2 in the following, and the analysis of V̄−1/2 is
deferred to Appendix B.5.
Lemma 3.2. For all t ∈ N+ and S ∈ [1 − t, t − 1], V̄1/2

with any parameter C > 0 satisfies

0 ≥ ∇̄tV̄1/2(t, S) + ∇̄SS V̄1/2(t, S)/2

≥

{
−C, t = 1,

−C
8 (t− 1)−3/2 exp

(
S2

2(t−1)

)(
S2

t−1 + 1
)
, t > 1.

Combining the above, we immediately obtain a wealth lower
bound (Theorem 1) for the player policy constructed from
V̄1/2. Its proof is due to a telescopic sum therefore omitted.
Theorem 1. For all T ∈ N+, Algorithm 3 constructed from
V̄1/2 guarantees a wealth lower bound

WT ≥ V̄1/2

(
T,

T∑
t=1

ct

)
,

against any adversary policy a.

Furthermore, by applying the analysis on the opposite di-
rection, the following theorem shows that Algorithm 2 is a
strong adversary policy to confront Algorithm 3. That is,
the pair of player-adversary policies induced by V̄1/2 has
a “dual property”. Note that when the player applies Algo-
rithm 3, both ct = −1 and ct = 1 satisfy (10), therefore
Algorithm 2 can freely choose from these two boundary
coins. The proof is deferred to Appendix B.4.

Theorem 2. For all T ∈ N+ and S ∈ [−T, T ], we can
construct c1 ∈ C and c2, . . . , cT ∈ {−1, 1} such that

1.
∑T

t=1 ct = S;

2. If the player applies Algorithm 3 constructed from V̄1/2

(with parameter C) and the adversary plays the afore-
mentioned coin sequence c1:T , then

WT ≤ V̄1/2 (T, S)+
3C

8
exp

(
S2

2T

)(
S2

T
+ 1

)
+2C.

Comparing Theorem 1 to Theorem 2, the lower and up-
per bound are separated by at most a constant when∑T

t=1 ct = O(
√
T ). It means that everywhere on the set

{(t, S)|S = O(
√
t)}, the value of V̄1/2(t, S) provides a

tight performance guarantee for Algorithm 3.

3.4. Optimality of Algorithm 3

The previous wealth upper bound shows that Theorem 1
faithfully characterizes the performance of Algorithm 3, but
does not address the optimality of this betting policy. To this
end, we now present a wealth upper bound that holds for all
betting policies. The proof is deferred to Appendix B.6.
Theorem 3. For all λ ≥ exp[(

√
2+1)/2], T ≥ 8πλ2 log λ,

and any player policy p that guarantees WT ≥ −C
√
T

(e.g., Algorithm 3 constructed from V̄1/2), there exists an
adversary policy a such that the following statement holds.
In the coin-betting game induced by the policy pair (p,a),

1. |
∑T

t=1 ct|≥
√
2T log λ;

2. WT ≤ 2
√
2πλ
√
log λ · C

√
T .

The proof of Theorem 3 is based on a stochastic adversary
argument similar to (Mcmahan & Streeter, 2012; Orabona,
2013). However, using an improved lower bound for the
tail probability of random walks, our wealth upper bound
is tight up to a poly-logarithmic factor. To see this, let us
compare it to the wealth lower bound from Theorem 1: if
|
∑T

t=1 ct|≥
√
2T log λ, then Algorithm 3 guarantees (the

last inequality due to Lemma B.2)

WT ≥ V̄1/2

(
t,
√
2T log λ

)
≥ C
√
T

[
λ

2 log λ
− 3

2

]
.

For comparison, previous analysis (Orabona, 2013) only
guarantees the suboptimal rate WT ≤ Õ(λlog 4

√
T ). Later

we will see that matching the Õ(λ
√
T ) factor in the wealth

bounds leads to matching the leading term (including the
multiplicative constant) in the regret of OLO.

4. Optimal unconstrained OLO
This section presents our main results on unconstrained
OLO. Notice that using the conversion from coin-betting to
OLO (Algorithm 1), our PDE-based betting strategy (Algo-
rithm 3) can be directly converted into a one-dimensional
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Algorithm 4 PDE-based unconstrained OLO algorithm.

Require: A one-dimensional limiting value function V̄ .
1: Define AB as the standard OGD on Bd with learning

rate ηt = 1/
√
t, initialized at the origin.

2: Initialize a parameter (“sufficient statistic”) S1 = 0.
3: for t = 1, 2, . . . do
4: Let yt =

[
V̄ (t, St + 1)− V̄ (t, St − 1)

]
/2.

5: Query AB for its t-th prediction and assign it to zt.
6: Predict xt = ytzt ∈ Rd.
7: Observe gt ∈ Rd generated by an adversary.
8: Return gt as the t-th loss gradient to AB , and let

St+1 = St − ⟨gt, zt⟩.
9: end for

unconstrained OLO algorithm with a potential structure.
For clarity, its pseudo-code is restated as Algorithm 5 in
Appendix C. To further extend it to Rd, a standard polar
decomposition technique (Cutkosky & Orabona, 2018) will
be adopted. Combining everything, our final product is a
general unconstrained OLO algorithm (Algorithm 4) con-
structed from any solution of the one-dimensional PDE (6).

Let us consider Algorithm 4 constructed from V̄1/2 (12),
with proofs deferred to Appendix C.1. Recall that C is any
positive scaling constant. Converting the coin-betting lower
bound (Theorem 1) to OLO, we have

Theorem 4. For all T ∈ N+ and u ∈ Rd, against any
adversary, Algorithm 4 constructed from V̄1/2 guarantees

RT (u) ≤ C
√
T + ∥u∥

√
2T

[√
log

(
1 +

∥u∥√
2C

)
+ 2

]
.

Theorem 4 offers two advantages over existing results.

1. It is a naturally anytime bound with the optimal4 loss-
regret trade-off, i.e., RT (u) = O

(
∥u∥

√
T log ∥u∥

)
,

shaving a
√
log T factor from most existing bounds like

(2). Actually, as discussed in the introduction, prior
works can achieve this optimal trade-off, but they rely on
the impractical doubling trick (Shalev-Shwartz, 2011) for
an anytime bound. In contrast, our algorithm has a more
efficient potential structure, thus making the optimal loss-
regret trade-off practical for real-world applications.

2. In addition, Theorem 4 also attains the optimal leading
term, including the multiplying constant

√
2. To our

knowledge, this is the first parameter-free bound with an
optimal leading constant. The precise statement is the
following, derived from the wealth upper bound (The-

4In the sense that the asymptotic rate on T alone is optimal.
That is, compared to the optimally tuned gradient descent algo-
rithm with regret O(∥u∥T ), the price of being parameter-free is
only an extra

√
log ∥u∥ factor.

orem 3). For clarity, we write RA,adv
T (u) as the regret

induced by an algorithm A and an adversary adv.

Theorem 5. Define A1/2 as Algorithm 4 constructed from
V̄1/2, then Theorem 4 leads to

lim sup
U→∞

lim sup
T→∞

sup
∥u∥=U,adv

R
A1/2,adv

T (u)

∥u∥
√
T log∥u∥

≤
√
2.

Conversely, for all C and any unconstrained OLO algorithm
A (e.g., A1/2) that guarantees RA,adv

T (0) ≤ C
√
T for all

adv and T , we have

lim inf
U→∞

lim inf
T→∞

sup
∥u∥=U,adv

RA,adv
T (u)

∥u∥
√
T log∥u∥

≥
√
2.

Finally, parallel results based on V̄−1/2 are left to Ap-
pendix C.2. We also convert the player-dependent coin-
betting upper bound (Theorem 2) to OLO, presented in
Appendix C.3. It estimates the performance of our one-
dimensional OLO algorithm (Algorithm 5) up to a small
error term that does not grow with time.

5. Experiment
Our theoretical results are supported by experiments.5 In
this section, we test our one-dimensional unconstrained
OLO algorithm (Algorithm 5) on a synthetic Online Con-
vex Optimization (OCO) task, based on the standard reduc-
tion from OCO to OLO. Its simplicity allows us to directly
compute the regret, thus clearly demonstrate the benefit
of V̄1/2 over the existing potential V̄−1/2. Additional ex-
periments are deferred to Appendix D.5, including (i) a
one-dimensional OLO task with stochastic loss; and (ii) a
high-dimensional regression task with real-world data.

Let us consider a simple one-dimensional OCO problem
with time invariant loss function |xt − u∗|, where u∗ ∈ R
is a constant hidden from the online learning algorithm.
Reduced into OLO (Orabona, 2019, Section 2.3), the ad-
versary picks the loss gradient gt = 1 if xt ≥ u∗, while
gt = −1 otherwise. The most natural comparator is the
hidden constant u∗, and the induced regret of OLO can be
nicely interpreted as the cumulative loss of OCO. That is,
RT (u

∗) =
∑T

t=1 gt(xt − u∗) =
∑T

t=1|xt − u∗|. We will
test three algorithms: (i) Algorithm 5 constructed from V̄1/2

(our main contribution); (ii) Algorithm 5 constructed from
V̄−1/2; and (iii) the classical Krichevsky-Trofimov (KT) al-
gorithm (Orabona & Pál, 2016) which is an optimistic ver-
sion of (ii) with similar guarantees. Each algorithm requires
one hyperparameter: we set C = 1 for the first two, and set
the “initial wealth” as

√
e for KT. Such choices make a fair

comparison, as discussed in Appendix D.2.

5Code is available at https://github.com/zhiyuzz/
ICML2022-PDE-Potential.

https://github.com/zhiyuzz/ICML2022-PDE-Potential
https://github.com/zhiyuzz/ICML2022-PDE-Potential
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Figure 1. One-dimensional synthetic task with loss |xt − u∗|. Specifically, Subfigure (b) fixes T = 500 and plots RT (u
∗) of KT minus

RT (u
∗) of our algorithm (V̄1/2) as a function of u∗.

Since RT (u
∗) depends on both u∗ and T , there are multiple

ways to visualize our results. In Figure 1a, we fix u∗ = 10
and plot RT (u

∗) as a function of T (lower is better), with
more settings of u∗ tested in Appendix D.3. For comparison,
we also plot the regret upper bound based on V̄1/2 (Corol-
lary 13). Consistent with our theory, (i) the upper bound
(red dashed) closely captures the actual performance of our
algorithm (blue); (ii) the two baselines (orange and green)
exhibit similar performance, and our algorithm improves
both when u∗ = 10.

In Figure 1b, we fix T = 500 and plot the differ-
ence between the regret of KT and our algorithm (i.e.,
RT (u

∗)|KT−RT (u
∗)|ours as a function of u∗, higher

means our algorithm improves the KT baseline by a larger
margin). The obtained curve demonstrates the benefit of our
special loss-regret trade-off: while sacrificing the regret at
small |u∗|, our algorithm significantly improves the base-
line when u∗ is far-away. Notably, the magnitude of |u∗|
represents the quality of initialization: with an oracle guess
ũ, one can shift the origin to ũ, and the effective distance to
u∗ becomes |ũ− u∗|. Figure 1b shows that in order to beat
our algorithm, the baseline has to guess u∗ beforehand with
error at most 1, which is obviously very hard. Therefore,
our algorithm prevails in most situations.

To strengthen the intuition, let us fix u∗ = 100 and take a
closer look at the progression of predictions xt (Figure 1c).
Similar to both baselines, our algorithm approaches u∗ with
exponentially growing speed at the beginning, which is
a key benefit of parameter-free algorithms over gradient
descent (Orabona & Tommasi, 2017, Section 5). However,
after overshooting, the prediction of our algorithm exhibits
a much smaller “dip”. This aligns with the intuition, as our
algorithm allows higher RT (0). In other words, compared
to the baselines, our algorithm has a weaker belief that
the initialization is correct; instead, it believes more in the
incoming information. Such a property leads to advantages
when the initialization is indeed far from the optimum.

6. Conclusion
We propose a framework that generates unconstrained OLO
potentials by solving a PDE. It reduces the amount of guess-
ing in the current workflow, thus simplifying the discovery
and analysis of more complicated potentials. To demon-
strate its power, we use this framework to design a concrete
algorithm - it achieves the optimal loss-regret trade-off with-
out any impractical doubling trick, and moreover, attains the
optimal leading constant. Such properties lead to practical
advantages when a good initialization is not available.

Overall, we believe that the continuous-time perspective
adopted in this paper, based on a series of recent works
(Drenska & Kohn, 2020b; Harvey et al., 2020), could be a
powerful tool for adaptive online learning in general. Sev-
eral interesting directions are left open:

• In order to further improve practicality, can we use the
new potential to achieve gradient-adaptive (Cutkosky &
Orabona, 2018; Cutkosky, 2019a; Mhammedi & Koolen,
2020) bounds?

• Can the PDE framework achieve adaptivity or trade-offs in
a broader range of online learning problems? For example,
with bandit feedback, switching cost, delays, etc.

• Is there a more principled way to handle the obtained
PDEs, without enough boundary conditions? Can we
automate the discovery and verification of new potentials?
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Appendix
Organization Appendix A presents details on the derivation of our PDE (5). Appendix B solves the one-dimensional PDE
and verifies the quality of the induced coin-betting policies. Appendix C converts our theoretical results on coin-betting to
unconstrained OLO. Appendix D presents details on our experiments.

A. Detail on the derivation of PDE
In this section we present two aspects of our PDE derivation omitted in the main paper. First, we prove Lemma 2.2 which
shows that any value function can naturally induce a pair of “dual” player-adversary policies. Next, we discuss our choice of
scaling factors for the scaled game (Definition 2.2).

A.1. Proof of Lemma 2.2

Recall the definition of value functions from Definition 2.1.

Lemma 2.2. Given any value function V ,

1. We can construct a player policy p∗ such that for all a and T ∈ N+,

WT ≥ V

(
T,

T∑
t=1

ct

)
.

In addition, for all t, the player’s bet p∗t (c1:t−1) depends on the past coins only through their sum
∑t−1

i=1 ci.

2. We can construct an adversary policy a∗ such that for all p and T ∈ N+,

WT ≤ V

(
T,

T∑
t=1

ct

)
.

Proof of Lemma 2.2. We only prove the first part by induction. The proof of the second part is similar, therefore omitted.
Let us restate the backward recursion (4),

V (t, S) = min
x∈X

max
c∈C

[V (t+ 1, S + c)− ⟨c, x⟩] .

Starting from t = 0 and S = 0, let x1 be the outer minimizing argument. Then, for all adversary policy a1 such that
c1 = a1(x1), we have V (1, c1) = V (1, c1)− V (0, 0) ≤ ⟨c1, x1⟩.

Now consider the following induction hypothesis: there exists T ∈ N+, initial bet x1 and functions p∗2, . . . , p
∗
T such that for

all a,
T∑

t=1

⟨ct, xt⟩ ≥ V

(
T,

T∑
t=1

ct

)
.

Plugging (t, S) = (T,
∑T

t=1 ct) into the backward recursion,

V

(
T,

T∑
t=1

ct

)
= min

xT+1∈X
max

cT+1∈C

[
V

(
T + 1,

T+1∑
t=1

ct

)
− ⟨cT+1, xT+1⟩

]
.

Given the value function V , there exists xT+1 only depending on T and
∑T

t=1 ct such that for all cT+1,

V

(
T,

T∑
t=1

ct

)
≥ V

(
T + 1,

T+1∑
t=1

ct

)
− ⟨cT+1, xT+1⟩ .

Define the policy p∗T+1 in this way, we have

T+1∑
t=1

⟨ct, xt⟩ ≥ V

(
T + 1,

T+1∑
t=1

ct

)
.
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A.2. The choice of scaling factors

We now discuss our choice of scaling factors for the scaled game (Definition 2.2). To begin with, let us review the
wealth lower bounds for the existing coin-betting setting (McMahan & Abernethy, 2013; Orabona & Pál, 2016) with
budget constraints. For simplicity, assume d = 1. Inspired by the celebrated Kelly bettor (Kelly jr, 1956), McMahan and
Abernethy (2013) made an interesting observation: if starting from an initial wealth C and knowing the bias of future coins
(
∑T

t=1 ct/T ), the player could bet a fixed fraction β =
∑T

t=1 ct/T of his wealth in each round and guarantees a wealth
lower bound

WT ≥ C exp

(
(
∑T

t=1 ct)
2

2T

)
. (14)

Of course, this strategy is not implementable in reality. However, using a time-dependent betting fraction βt that reflects the
bias observed online, the player can actually implement a strategy (Orabona & Pál, 2016) with

WT ≥
C√
T

exp

(
(
∑T

t=1 ct)
2

2T

)
,

which matches (14) in the important exponential factor. Under the presence of budget constraints, such an exponential
factor is optimal. Extended to our unconstrained coin-betting setting (which is a strict generalization of the existing one),
this exponential factor characterizes the best result when the player can only tolerate a fixed amount of total loss. This is
intuitively similar to the concept of Pareto optimality: the optimal policy for the player depends on how risk-tolerant it is.

Back to the design of scaling factors for the ε-scaled game, our guideline is simple: the baseline strategy (McMahan &
Abernethy, 2013) discussed above should guarantee the same wealth bound in the scaled game and the original game. In
this way, the PDE derived in the scaling limit could recover the specific Pareto optimal result (14). Concretely, let f(ε) and
g(ε) be the scaling factors on the unit time and the coin space respectively. Without loss of generality, let g(ε) = ε; we now
justify our choice f(ε) = ε2.

Consider an extreme adversary whose decisions are always 1. In the original game, the baseline strategy (McMahan &
Abernethy, 2013) guarantees WT ≥ C exp(T/2) due to (14). In the scaled game, the adversary decisions are scaled by ε,
and the total number of decision rounds is [f(ε)]−1 times as many. Therefore, the baseline strategy guarantees

WT ≥ C exp

(
(εT · [f(ε)]−1)2

2T · [f(ε)]−1

)
= C exp

(
ε2T · [f(ε)]−1

2

)
.

If f(ε) = ε2, then the wealth bounds for the scaled game and the original game are equal.

B. Detail on the PDE-based betting policy
In this section we present detailed analysis of the one-dimensional coin-betting game (Section 3). By solving the backward
heat equation (6), we obtain three specific limiting value functions (i.e., potential functions) V̄1, V̄−1/2 and V̄1/2. The
performance of their induced coin-betting policies (Algorithm 3) will be characterized next.

In particular, V̄1 is a special case where the exact minimax relation (Lemma 2.2) can be directly applied. For the general
case (e.g., V̄−1/2 and V̄1/2), the minimax relation only approximately holds, therefore we need to use a perturbed analysis
introduced in Appendix B.2 to B.5. Finally, Appendix B.6 shows the optimality of the coin-betting policies.

B.1. Special case: Policy induced by V̄1

It is easy to verify that V̄1(t, S) = C(S2− t) satisfies Definition 2.1. Therefore, the performance guarantee of the associated
player and adversary policies (Algorithm 2 and 3) can be stated as a corollary of Lemma 2.2.

Corollary 6. For all T ∈ N+,

1. Against any adversary policy a, Algorithm 3 constructed from V̄1 guarantees

WT ≥ C

( T∑
t=1

ct

)2

− T

 .
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2. Against any player policy p, Algorithm 2 constructed from V̄1 guarantees

WT ≤ C

( T∑
t=1

ct

)2

− T

 .

B.2. General case: Discrete Itô formula

In general, the solution of the backward heat equation (6) is only an approximation of a value function (for the discrete-time
coin-betting game), therefore Lemma 2.1 cannot be directly applied. Instead, we pursue a perturbed analysis using the
Discrete Itô formula. Harvey et al. used this technique in two-expert LEA. Here we modify it for our coin-betting problem.
Lemma 3.1 (Lemma D.3 and D.4 of Harvey et al. 2020, adapted). Consider applying Algorithm 3 against any adversary
coin-betting policy a. For all t ∈ N,

V̄

(
t+ 1,

t+1∑
i=1

ci

)
− V̄

(
t,

t∑
i=1

ci

)
≤ ct+1xt+1 +

[
∇̄tV̄

(
t+ 1,

t∑
i=1

ci

)
+

1

2
∇̄SS V̄

(
t+ 1,

t∑
i=1

ci

)]
︸ ︷︷ ︸

♢

.

Moreover, equality is achieved when ct+1 ∈ {−1, 1}.

Proof of Lemma 3.1. Starting from the LHS,

LHS = V̄

(
t+ 1,

t+1∑
i=1

ci

)
− 1

2

[
V̄

(
t+ 1,

t∑
i=1

ci + 1

)
+ V̄

(
t+ 1,

t∑
i=1

ci − 1

)]

+
1

2

[
V̄

(
t+ 1,

t∑
i=1

ci + 1

)
+ V̄

(
t+ 1,

t∑
i=1

ci − 1

)]
− V̄

(
t,

t∑
i=1

ci

)

= V̄

(
t+ 1,

t+1∑
i=1

ci

)
− 1

2

[
V̄

(
t+ 1,

t∑
i=1

ci + 1

)
+ V̄

(
t+ 1,

t∑
i=1

ci − 1

)]

+ ∇̄tV̄

(
t+ 1,

t∑
i=1

ci

)
+

1

2
∇̄SS V̄

(
t+ 1,

t∑
i=1

ci

)
.

The remaining task is to show

V̄

(
t+ 1,

t+1∑
i=1

ci

)
− 1

2

[
V̄

(
t+ 1,

t∑
i=1

ci + 1

)
+ V̄

(
t+ 1,

t∑
i=1

ci − 1

)]
≤ ct+1xt+1.

Plugging in the player’s bet xt+1 (11), it suffices to show that

V̄

(
t+ 1,

t+1∑
i=1

ci

)
≤ 1 + ct+1

2
V̄

(
t+ 1,

t∑
i=1

ci + 1

)
+

1− ct+1

2
V̄

(
t+ 1,

t∑
i=1

ci − 1

)
,

which follows from the convexity of V̄ . Equality is achieved when ct+1 ∈ {−1, 1}.

B.3. Preliminary: Properties of V̄1/2 and V̄−1/2

In the Discrete Itô formula, quantifying the perturbation term ♢ is case-dependent. Before doing so, we present some facts
on V̄1/2 and V̄−1/2 which will be useful later. Let us first consider V̄1/2. For clarity, we copy the definition here.

V̄1/2(t, S) = C
√
t

[
2

∫ S/
√
2t

0

(∫ u

0

exp(x2)dx

)
du− 1

]
.

Some calculation yields its derivatives. Let∇t and ∇tt be the first and second order derivative with respect to t. Let∇S ,
∇SS , ∇SSS ,∇SSSS be the first to fourth order derivative with respect to S.
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∇S V̄1/2(t, S) =
√
2C

∫ S/
√
2t

0

exp(x2)dx.

∇SS V̄1/2(t, S) =
C√
t
exp

(
S2

2t

)
.

∇SSS V̄1/2(t, S) =
CS

t3/2
exp

(
S2

2t

)
.

∇SSSS V̄1/2(t, S) =
C

t3/2
exp

(
S2

2t

)(
S2

t
+ 1

)
.

∇tV̄1/2(t, S) = −
C

2
√
t
exp

(
S2

2t

)
.

∇ttV̄1/2(t, S) =
C

4t3/2
exp

(
S2

2t

)(
S2

t
+ 1

)
.

Similarly, for V̄−1/2 we have the following.

V̄−1/2(t, S) =
C√
t
exp

(
S2

2t

)
.

∇S V̄−1/2(t, S) =
CS

t3/2
exp

(
S2

2t

)
.

∇SS V̄−1/2(t, S) =
C

t3/2
exp

(
S2

2t

)(
S2

t
+ 1

)
.

∇SSS V̄−1/2(t, S) =
C

t3/2
exp

(
S2

2t

)(
S3

t2
+

3S

t

)
.

∇SSSS V̄−1/2(t, S) =
C

t5/2
exp

(
S2

2t

)(
S4

t2
+

6S2

t
+ 3

)
.

∇tV̄−1/2(t, S) = −
C

2t3/2
exp

(
S2

2t

)(
S2

t
+ 1

)
.

∇ttV̄−1/2(t, S) =
C

4t5/2
exp

(
S2

2t

)(
S4

t2
+

6S2

t
+ 3

)
.

Let us compare the betting behavior induced by V̄1/2 and V̄−1/2. The bets in both cases are roughly their derivatives.

Lemma B.1. For all t ∈ N+ and |S| ≤ t− 1, |∇S V̄1/2(t, S)|≥ |∇S V̄−1/2(t, S)|.

Proof of Lemma B.1. Due to symmetry, it suffices to consider 0 ≤ S ≤ t − 1. Notice that when S = 0, ∇S V̄1/2(t, 0) =
∇S V̄−1/2(t, 0). With S ≤ t− 1,

∇SS V̄−1/2(t, S)

∇SS V̄1/2(t, S)
=

1

t

(
S2

t
+ 1

)
≤ 1− t−1 + t−2 ≤ 1.

Moreover, let us specifically compare the derivatives when |S|= O(
√
t): |∇S V̄1/2(t, S)|= O(1) while |∇S V̄−1/2(t, S)|=

O(t−1). Therefore, the betting behavior induced by V̄1/2 cannot be achieved by simply scaling V̄−1/2 (i.e., using a different
C).

Finally back to V̄1/2, the integral definition may not be easy to interpret. We can further lower bound it as the following.

Lemma B.2. For all (t, S) such that
√
2t ≤ |S|≤ t,

V̄1/2(t, S) ≥ C
√
t ·
[

t

S2
exp

(
S2

2t

)
− 3

2

]
.

Proof of Lemma B.2. Based on the definition of V̄1/2, it suffices to show that for all z ≥ 1,

f(z) := 2

∫ z

0

(∫ u

0

exp(x2)dx

)
du− 1

2z2
exp

(
z2
)
≥ −1/2.

Notice that f(1) ≥ −1/2. Taking the derivatives,

f ′(z) = 2

∫ z

0

exp(x2)dx+ exp(z2)
[
z−3 − z−1

]
.

f ′(1) ≥ 0, and
f ′′(z) = 3 exp

(
z2
) (

z−2 − z−4
)
≥ 0.
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B.4. Policy induced by V̄1/2

In this subsection we characterize the player policy constructed from V̄1/2. The first step is to quantify the perturbation error
(♢ in (13)). After that, the wealth lower bound (Theorem 1) follows from a telescopic sum on the Discrete Itô formula.

Lemma 3.2. For all t ∈ N+ and S ∈ [1− t, t− 1], V̄1/2 with any parameter C > 0 satisfies

0 ≥ ∇̄tV̄1/2(t, S) + ∇̄SS V̄1/2(t, S)/2

≥

{
−C, t = 1,

−C
8 (t− 1)−3/2 exp

(
S2

2(t−1)

)(
S2

t−1 + 1
)
, t > 1.

Proof of Lemma 3.2. Plugging in the definition of discrete derivative,

∇̄tV̄1/2(t, S) + ∇̄SS V̄1/2(t, S)/2 =
1

2
V̄1/2(t, S + 1) +

1

2
V̄1/2(t, S − 1)− V̄1/2(t− 1, S). (15)

Step 1: upper bound. For clarity, define a function f : R→ R as

f(z) = 2z

∫ z

0

exp(x2)dx− exp(z2).

Then, using the definition of V̄1/2, it suffices to show that

f

(
− 1√

2

)
+ f

(
1√
2

)
≤ 0,

and for all t > 1,

f

(
S − 1√

2t

)
+ f

(
S + 1√

2t

)
≤ 2

√
1− 1

t
f

(
S√

2(t− 1)

)
.

The first inequality can be easily verified by computing the values of f(1/
√
2) and f(−1/

√
2). As for the second inequality,

we use (Harvey et al., 2020, Lemma C.4): for all x ∈ R and z ∈ [0, 1),

f

(
x− z√

2

)
+ f

(
x+ z√

2

)
≤ 2
√
1− z2f

(
x√

2(1− z2)

)
.

Taking x = S/
√
t and z = 1/

√
t completes the proof.

Step 2: lower bound. From Taylor’s theorem,

V̄1/2(t, S + 1) = V̄1/2(t, S) +∇S V̄1/2(t, S) +
1

2
∇SS V̄1/2(t, S) +

1

6
∇SSS V̄1/2(t, S) +

1

24
∇SSSS V̄1/2(t, S + a),

V̄1/2(t, S − 1) = V̄1/2(t, S)−∇S V̄1/2(t, S) +
1

2
∇SS V̄1/2(t, S)−

1

6
∇SSS V̄1/2(t, S) +

1

24
∇SSSS V̄1/2(t, S − b),

V̄1/2(t− 1, S) = V̄1/2(t, S)−∇tV̄1/2(t, S) +
1

2
∇ttV̄1/2(t− c, S),

where a, b, c ∈ [0, 1]. Plugging these into (15) and using the condition ∇tV̄1/2 = −∇SS V̄1/2/2 (since V̄1/2 is a solution of
the backward heat equation), we have

∇̄tV̄1/2(t, S) + ∇̄SS V̄1/2(t, S)/2 =
1

48
∇SSSS V̄1/2(t, S + a) +

1

48
∇SSSS V̄1/2(t, S − b)− 1

2
∇ttV̄1/2(t− c, S).

From Appendix B.3, ∇SSSS V̄1/2(t, S) ≥ 0 for all (t, S), and

∇ttV̄1/2(t, S) =
C

4
t−3/2 exp

(
S2

2t

)(
S2

t
+ 1

)
.
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Therefore,

∇̄tV̄1/2(t, S) + ∇̄SS V̄1/2(t, S)/2 ≥ −
C

8
max
c∈[0,1]

(t− c)−3/2 exp

(
S2

2(t− c)

)(
S2

t− c
+ 1

)
= −C

8
(t− 1)−3/2 exp

(
S2

2(t− 1)

)(
S2

t− 1
+ 1

)
.

Next we prove Theorem 2. It shows that the wealth lower bound (Theorem 1) faithfully characterizes the performance of the
player policy constructed from V̄1/2.

Theorem 2. For all T ∈ N+ and S ∈ [−T, T ], we can construct c1 ∈ C and c2, . . . , cT ∈ {−1, 1} such that

1.
∑T

t=1 ct = S;

2. If the player applies Algorithm 3 constructed from V̄1/2 (with parameter C) and the adversary plays the aforementioned
coin sequence c1:T , then

WT ≤ V̄1/2 (T, S) +
3C

8
exp

(
S2

2T

)(
S2

T
+ 1

)
+ 2C.

Proof of Theorem 2. We first construct the coin sequence. For all S ∈ [−T, T ], there exists an integer S̃ such that |S̃|≤ T ,
(|S̃|+1) mod 2 = T mod 2 and |S − S̃|≤ 1. We define the coins using three phases.

1. c1 = S − S̃;

2. For all 1 < t ≤ T − |S̃|, let ct = sign(c1) · (−1)t−1;

3. If S̃ ̸= 0, then for all t such that T − |S̃|< t ≤ T , let ct = S̃/|S̃|.

Based on this coin sequence, there are three immediate observations:

1. The sum of coins from the second phase is 0, and the sum of coins from the third phase is S̃; therefore,
∑T

t=1 ct = S.

2. If τ ≤ T − |S̃| then |
∑τ

t=1 ct|≤ 1.

3. If T − |S̃|< τ ≤ T then |
∑τ

t=1 ct|= |S|−T + τ .

Next, we derive the wealth upper bound induced by such a coin sequence and the player policy (Algorithm 3). Starting from
the first round, x1 = 0, therefore W1 = 0. W1 = V̄1/2(1, c1)− V̄1/2(1, c1) ≤ V̄1/2(1, c1)− V̄1/2(1, 0) = V̄1/2(1, c1) + C.
Considering the rest of the rounds, there are two cases: (i) |S|≤

√
T ; (ii) |S|>

√
T .

Case (i) In this case we first show that for all integer τ in [1 : T ], |
∑τ

t=1 ct|≤
√
τ . Due to the second observation

above, this condition holds for all τ ≤ T − |S̃|, and we only need to focus on T − |S̃|< τ ≤ T (the third phase) where
|
∑τ

t=1 ct|= |S|−T + τ ≤
√
T − T + τ ; since T −

√
T ≥ τ −

√
τ , we further have |

∑τ
t=1 ct|≤

√
τ . Based on this result,

telescoping Lemma 3.1 (notice that equality is achieved) and using Lemma 3.2, we have

WT ≤ V̄1/2

(
T,

T∑
t=1

ct

)
+ C +

C

8

T−1∑
t=1

t−3/2 exp

(
(
∑t

i=1 ci)
2

2t

)(
(
∑t

i=1 ci)
2

t
+ 1

)

≤ V̄1/2

(
T,

T∑
t=1

ct

)
+ C +

√
eC

4

T−1∑
t=1

t−3/2 ≤ V̄

(
T,

T∑
t=1

ct

)
+

(
3
√
e

4
+ 1

)
C.

Case (ii) In this case we show that for all integer τ in [1 : T ], |
∑τ

t=1 ct|/
√
τ ≤ |

∑T
t=1 ct|/

√
T . Similar to Case (i), we

consider τ ≤ T − |S̃| and T − |S̃|< τ ≤ T separately. When τ ≤ T − |S̃|, we have |
∑τ

t=1 ct|/
√
τ ≤ 1 ≤ |S|/

√
T =

|
∑T

t=1 ct|/
√
T . On the other hand, when T − |S̃|< τ ≤ T it suffices to show that

|S|−T + τ√
τ

≤ |S|√
T
.
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The LHS monotonically increases with respect to τ , and when τ = T the inequality holds with equality. In summary, the
required condition |

∑τ
t=1 ct|/

√
τ ≤ |

∑T
t=1 ct|/

√
T holds for all τ ∈ [1 : T ].

Based on this result, telescoping Lemma 3.1 and using Lemma 3.2, we have

WT ≤ V̄1/2

(
T,

T∑
t=1

ct

)
+ C +

C

8
exp

(
(
∑T

i=1 ci)
2

2T

)(
(
∑T

i=1 ci)
2

T
+ 1

)
T−1∑
t=1

t−3/2

≤ V̄1/2

(
T,

T∑
t=1

ct

)
+ C +

3C

8
exp

(
(
∑T

i=1 ci)
2

2T

)(
(
∑T

i=1 ci)
2

T
+ 1

)
.

Combining Case (i) and Case (ii) completes the proof.

Theorem 2 has a special form: it fixes both the player policy (Algorithm 3) and the adversary policy (Algorithm 2), and then
bounds the wealth induced by both of them. Results of this form are seldom studied in conventional online learning settings.
The reason is that, the performance metric for those settings is usually the uniform regret (a real number), therefore the gap
between policy-independent upper and lower bounds is relatively easy to describe. In contrast, we care about the trade-offs
on our performance metric, so our upper and lower bounds are both expressed as functions; the characterization of their gap
is much richer. We present our player-policy-independent wealth upper bound as Theorem 3. It is related, but incomparable
to Theorem 2 stated above.

B.5. Policy induced by V̄−1/2

Analogous to the previous subsection, we now characterize the performance of the player policy induced by V̄−1/2. The first
step is to quantify the perturbation error ♢.
Lemma B.3. For all t ∈ N+ and S ∈ [1− t, t− 1], V̄−1/2 with any parameter C > 0 satisfies the following conditions.

1. If t = 1, then
∇̄tV̄−1/2(t, S) + ∇̄SS V̄−1/2(t, S)/2 = C

√
e.

2. If t > 1, then

−C

8
(t− 1)−5/2 exp

(
S2

2(t− 1)

)(
S4

(t− 1)2
+

6S2

t− 1
+ 3

)
≤ ∇̄tV̄−1/2(t, S) + ∇̄SS V̄−1/2(t, S)/2 ≤ 0.

Proof of Lemma B.3. The case of t = 1 can be easily verified. We will prove the second case next. Plugging in the definition,
we have

∇̄tV̄−1/2(t, S) + ∇̄SS V̄−1/2(t, S)/2 =
1

2
V̄−1/2(t, S + 1) +

1

2
V̄−1/2(t, S − 1)− V̄−1/2(t− 1, S)

=
C

2
√
t
exp

(
(S − 1)2

2t

)
+

C

2
√
t
exp

(
(S + 1)2

2t

)
− C√

t− 1
exp

(
S2

2(t− 1)

)
.

(16)

First, let us consider the upper bound. Since exp(−t−1) ≥ 1− t−1, we have

exp

(
1

2t

)
≤
√

t

t− 1
.

Therefore,

exp

(
(S − 1)2

2t

)
+ exp

(
(S + 1)2

2t

)
= exp

(
S2 + 1

2t

)[
exp

(
−S

t

)
+ exp

(
S

t

)]
≤
√

t

t− 1
exp

(
S2

2t

)[
exp

(
−S

t

)
+ exp

(
S

t

)]
≤ 2

√
t

t− 1
exp

(
S2

2t

)
exp

(
S2

2t2

)
,
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where the last inequality is due to the classical result cosh(x) ≤ exp(x2/2). Back to (16),

∇̄tV̄−1/2(t, S) + ∇̄SS V̄−1/2(t, S)/2 ≤ C

√
1

t− 1

[
exp

(
S2

2t

)
exp

(
S2

2t2

)
− exp

(
S2

2(t− 1)

)]
,

and it is straightforward to verify that RHS ≤ 0.

Next, we consider the lower bound. Similar to the proof of Lemma 3.2, using the derivatives from Appendix B.3,

∇̄tV̄−1/2(t, S) + ∇̄SS V̄−1/2(t, S)/2 ≥ −
1

2
∇ttV̄−1/2(t− 1, S)

= −C

8
(t− 1)−5/2 exp

(
S2

2(t− 1)

)(
S4

(t− 1)2
+

6S2

t− 1
+ 3

)
.

Similar to the wealth lower bound induced by V̄1/2 (Theorem 1), we can plug the above lemma into the Discrete Itô formula
(Lemma 3.1) and obtain the following theorem via a telescopic sum. The proof is omitted. Essentially, a wealth lower bound
of this form recovers the result from (Orabona & Pál, 2016). However, our analysis is based on a general framework without
budget constraints, therefore does not involve any betting fractions.

Theorem 7. For all T ∈ N+, Algorithm 3 constructed from V̄−1/2 guarantees a wealth lower bound

WT ≥ V̄−1/2

(
T,

T∑
t=1

ct

)
− C
√
e,

against any adversary policy a.

In addition, analogous to Theorem 2, we can also state a wealth upper bound based on V̄−1/2. The proof uses a similar
strategy, therefore is omitted.

Theorem 8. For all T ∈ N+ and S ∈ [−T, T ], we can construct c1 ∈ C and c2, . . . , cT ∈ {−1, 1} such that

1.
∑T

t=1 ct = S;

2. If the player applies Algorithm 3 constructed from V̄−1/2 (with parameter C) and the adversary plays the aforementioned
coin sequence c1:T , then

WT ≤ V̄−1/2 (T, S) +
5C

24
exp

(
S2

2T

)(
S4

T 2
+

6S2

T
+ 3

)
+ 2C.

B.6. The optimality of betting policies

Finally, we prove the player-policy-independent wealth upper bounds (Theorem 3 and its analogue based on V̄−1/2). The
first step is to prove a sharp lower bound for the tail probability of one-dimensional symmetric random walk, based on a
normal approximation.

Lemma B.4. For all T ∈ N+, let z1, . . . , zT be i.i.d. Rademacher random variables. Then for any k > 0,

P

[∣∣∣∣∣
T∑

t=1

zt

∣∣∣∣∣ ≥ k

]
≥
√

2

π

k
√
T

k2 + T
exp

(
− k2

2T

)
− 1√

T
.

Proof of Lemma B.4. Due to Central Limit Theorem, the random variable (
∑T

t=1 zt)/
√
T converges in distribution to

standard normal N(0, 1). Concretely, the nonasymptotic convergence rate can be characterized via the Berry-Esseen
Theorem (Korolev & Shevtsova, 2012): Let FT (x) be the CDF of (

∑T
t=1 zt)/

√
T and Φ(x) be the standard normal CDF,

then,

sup
x∈R
|FT (x)− Φ(x)| ≤ 1

2
√
T
.
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For the tail probability of standard normal distribution, there is a standard lower bound (Gordon, 1941) through the Mills
ratio, which can be verified via a derivative argument: For all x > 0,

1− Φ(x) ≥ 1√
2π

1

x+ x−1
exp

(
−x2

2

)
.

Therefore,

P

[∣∣∣∣∣
T∑

t=1

zt

∣∣∣∣∣ ≥ k

]
= 2 ·

[
1− FT (k/

√
T )
]
≥ 2 ·

[
1− Φ(k/

√
T )− 1

2
√
T

]
≥
√

2

π

k
√
T

k2 + T
exp

(
− k2

2T

)
− 1√

T
.

Compared to similar tail lower bounds from existing works on unconstrained OLO (Mcmahan & Streeter, 2012; Orabona,
2013), Lemma B.4 has the tight exponent (1/2) in the exponential function. This allows us to justify the optimality of our
PDE-based coin-betting policy (Algorithm 3 constructed from V̄1/2), and eventually the converted unconstrained OLO
algorithm.

Theorem 3. For all λ ≥ exp[(
√
2 + 1)/2], T ≥ 8πλ2 log λ, and any player policy p that guarantees WT ≥ −C

√
T (e.g.,

Algorithm 3 constructed from V̄1/2), there exists an adversary policy a such that the following statement holds. In the
coin-betting game induced by the policy pair (p,a),

1. |
∑T

t=1 ct|≥
√
2T log λ;

2. WT ≤ 2
√
2πλ
√
log λ · C

√
T .

Proof of Theorem 3. Let us first generalize the unconstrained coin-betting game to allow random adversary on the coin
space {−1, 1}. That is, based on past player bets x1, . . . , xt, the adversary decides a distribution on {−1, 1} and samples ct
from this distribution.

Now, consider the setting where the player applies any policy p that guarantees WT ≥ −C
√
T , and the adversary picks coin

outcomes according to a Rademacher distribution: regardless of x1, . . . , xt, the coin ct equals −1 and 1 with probability
1/2 respectively. Then for all T ∈ N+, let k =

√
2T log λ.

0 = E

[
T∑

t=1

ctxt

]

= E

[
T∑

t=1

ctxt

∣∣∣∣
∣∣∣∣∣

T∑
t=1

ct

∣∣∣∣∣ ≥ k

]
P

[∣∣∣∣∣
T∑

t=1

ct

∣∣∣∣∣ ≥ k

]
+ E

[
T∑

t=1

ctxt

∣∣∣∣
∣∣∣∣∣

T∑
t=1

ct

∣∣∣∣∣ < k

]
P

[∣∣∣∣∣
T∑

t=1

ct

∣∣∣∣∣ < k

]

≥ E

[
T∑

t=1

ctxt

∣∣∣∣
∣∣∣∣∣

T∑
t=1

ct

∣∣∣∣∣ ≥ k

]
P

[∣∣∣∣∣
T∑

t=1

ct

∣∣∣∣∣ ≥ k

]
− C
√
T .

Applying Lemma B.4, using λ ≥ exp[(
√
2 + 1)/2] and T ≥ 8πλ2 log λ,

P

[∣∣∣∣∣
T∑

t=1

ct

∣∣∣∣∣ ≥ k

]
≥
√

2

π

√
2 log λ

1 + 2 log λ
λ−1 − 1√

T

≥ 1√
2π log λ

λ−1 − 1√
T
≥ 1

2
√
2π log λ

λ−1.

E

[
T∑

t=1

ctxt

∣∣∣∣
∣∣∣∣∣

T∑
t=1

ct

∣∣∣∣∣ ≥ k

]
≤ C

√
T

P
[∣∣∣∑T

t=1 ct

∣∣∣ ≥ k
] ≤ 2

√
2πλ

√
log λ · C

√
T .

Therefore, for any player policy p there exists an adversary policy a which induces |
∑T

t=1 ct|≥
√
2T log λ and WT ≤

2
√
2πλ
√
log λ · C

√
T .
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A similar result can be stated with respect to V̄−1/2, using a different “barrier” k that depends on logarithmic factors of T .
This introduces a specific technical issue: when we use Lemma B.4, the normal approximation error (1/

√
T ) is comparable

in magnitude to the Gaussian tail bound (the first term in Lemma B.4) which we care about. Therefore, the following
theorem has a slightly weaker form than Theorem 3.

Theorem 9. For all λ ≥ exp[(
√
2 + 1)/2], there exists T0 ∈ N+ (depending on λ) such that for all T ≥ T0 and any player

policy p which guarantees WT ≥ −C
√
e (e.g., Algorithm 3 constructed from V̄−1/2), there exists an adversary policy a

with the following property. In the coin-betting game induced by the policy pair (p,a),

1. |
∑T

t=1 ct|≥
√

2T log(λ
√
T/log T );

2. WT ≤ 2
√
2πeλ(log T )−1

√
log(λ

√
T/log T ) · C

√
T .

Proof of Theorem 9. We follow a similar analysis as Theorem 3 but use a different barrier. Let us only consider T > 1 and

let k =
√

2T log(λ
√
T/log T ). Using the Rademacher random adversary,

E

[
T∑

t=1

ctxt

∣∣∣∣
∣∣∣∣∣

T∑
t=1

ct

∣∣∣∣∣ ≥ k

]
P

[∣∣∣∣∣
T∑

t=1

ct

∣∣∣∣∣ ≥ k

]
≤ C.

Using λ ≥ exp[(
√
2 + 1)/2], we have 1 ≤ 2(

√
2− 1) log(λ) ≤ 2(

√
2− 1) log(λ

√
T/log T ). Therefore,

P

[∣∣∣∣∣
T∑

t=1

ct

∣∣∣∣∣ ≥ k

]
≥
√

2

π

√
2 log(λ

√
T/log T )

1 + 2 log(λ
√
T/log T )

log T

λ
√
T
− 1√

T

≥ log T

λ
√
2π log(λ

√
T/log T )

T−1/2 − T−1/2.

Since the first term decays slower (with respect to T ) than the second term T−1/2, there exists T0 depending on λ such that
for all T ≥ T0,

P

[∣∣∣∣∣
T∑

t=1

ct

∣∣∣∣∣ ≥ k

]
≥ log T

2λ
√

2π log(λ
√
T/log T )

T−1/2,

E

[
T∑

t=1

ctxt

∣∣∣∣
∣∣∣∣∣

T∑
t=1

ct

∣∣∣∣∣ ≥ k

]
≤ C

√
e

P
[∣∣∣∑T

t=1 ct

∣∣∣ ≥ k
] ≤ 2

√
2πeλ(log T )−1

√
log(λ

√
T/log T ) · C

√
T .

C. Detail on unconstrained OLO
In this section we present detailed analysis on unconstrained OLO. First, using the conversion from coin-betting to OLO
(Algorithm 1), our coin-betting policy (Algorithm 3) can be directly converted into a one-dimensional unconstrained OLO
algorithm. For clarity, we restate its pseudo-code as Algorithm 5.

Algorithm 5 PDE-based one-dimensional unconstrained OLO algorithm.

Require: A one-dimensional limiting value function V̄ which satisfies (6).
1: for t = 1, 2, . . . do
2: Predict

xt =
1

2

[
V̄

(
t,−

t−1∑
i=1

gi + 1

)
− V̄

(
t,−

t−1∑
i=1

gi − 1

)]
.

3: Observe the loss gradient gt and store it.
4: end for
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For general d-dimensional problems, we rely on a classical reduction (Cutkosky & Orabona, 2018) to the one-dimensional
problem. Its pseudo-code is Algorithm 6, and the associated performance guarantee is Lemma C.1 whose proof follows
from (Cutkosky & Orabona, 2018, Theorem 2) and the standard regret bound of OGD (e.g., Section 4.2.1 of Orabona 2019).
Our final product is Algorithm 4 presented in the main paper.

Algorithm 6 Reducing unconstrained OLO from Rd to R.

Require: A one-dimensional unconstrained OLO algorithm A1d.
1: Define AB as the standard OGD on Bd with learning rate ηt = 1/

√
t, initialized at the origin.

2: for t = 1, 2, . . . do
3: Obtain predictions yt ∈ R from A1d and zt ∈ Rd from AB .
4: Predict xt = ytzt ∈ Rd, observe gt ∈ Rd.
5: Return ⟨gt, zt⟩ and gt as the t-th loss gradient to Ar and AB , respectively.
6: end for

Lemma C.1 (Theorem 2 of Cutkosky & Orabona 2018, adapted). For all T ∈ N+, if A1d guarantees regret bound
RT (u) ≤ RT (u) for all u ∈ R, then Algorithm 6 guarantees RT (u) ≤ RT (∥u∥) + ∥u∥

√
2T for all u ∈ Rd.

C.1. OLO algorithm induced by V̄1/2

Next, we consider Algorithm 4 and prove the regret upper bound induced by V̄1/2.

Theorem 4. For all T ∈ N+ and u ∈ Rd, against any adversary, Algorithm 4 constructed from V̄1/2 guarantees

RT (u) ≤ C
√
T + ∥u∥

√
2T

[√
log

(
1 +

∥u∥√
2C

)
+ 2

]
.

Proof of Theorem 4. The proof follows from the combination of Lemma 2.1, Theorem 1 and Lemma C.1. Specifically, let
us first guarantee the performance of the yt sequence. For clarity, given any T , define a one-dimensional function fT as
fT (S) = V̄1/2(T, S). Combining Lemma 2.1 and Theorem 1, for any T ∈ N+ and w ∈ R we have

T∑
t=1

⟨gt, zt⟩ yt −
T∑

t=1

⟨gt, zt⟩w ≤ f∗
T (w).

Then, due to Lemma C.1, for all T ∈ N+ and u ∈ Rd Algorithm 4 guarantees

RT (u) ≤ f∗
T (∥u∥) + ∥u∥

√
2T .

The remaining task is to bound the Fenchel conjugate f∗
T . For all w ∈ R,

f∗
T (w) = sup

S∈R
Sw − fT (S).

Let S∗ be the maximizing argument. Without loss of generality (due to symmetry), assume w ≥ 0 and therefore S∗ ≥ 0.
We have

w = ∇fT (S∗) =
√
2C

∫ S∗/
√
2T

0

exp(z2)dz.

For any x ≥ 0, consider the function f(x) =
∫ x

0
exp(z2)dz. It is lower bounded by g(x) = exp(x2−x)−1, as f(0) = g(0),

and
f ′(x) = exp(x2) ≥ exp(x2 − x)(2x− 1) = g′(x),

due to the inequality exp(x) ≥ 2x− 1. Therefore,

w√
2C

=

∫ S∗/
√
2T

0

exp(z2)dz ≥ exp

[(
S∗
√
2T
− 1

2

)2

− 1

4

]
− 1,
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S∗ ≤
√
2T

[√
1

4
+ log

(
1 +

w√
2C

)
+

1

2

]
.

Now consider f∗
T (w). Since fT (S

∗) ≥ −C
√
T and

√
x+ (1/4) ≤

√
x+ (1/2),

f∗
T (w) = S∗w − fT (S

∗) ≤ S∗w + C
√
T ≤ C

√
T + w

√
2T

[√
log

(
1 +

w√
2C

)
+ 1

]
.

Combining everything completes the proof.

Converting Theorem 3 to unconstrained OLO, we also have a regret lower bound with respect to all algorithms (satisfying a
condition).

Theorem 10. For all η ∈ (0, 1), U ≥ 12η−1C, T ≥ 2η2U2C−2 log(ηUC−1) and any unconstrained OLO algorithm A
that guarantees RT (0) ≤ C

√
T (e.g., Algorithm 4 constructed from V̄1/2), there exists an adversary and a comparator

u ∈ Rd such that ∥u∥= U and

RT (u) ≥ (1− η) ∥u∥

√
2T log

η ∥u∥
2
√
πC

.

Proof of Theorem 10. We start by proving the regret lower bound for one-dimensional unconstrained OLO. Extension to
the general d-dimensional problem will be considered later.

For the one-dimensional problem, we first invoke a particular version of Theorem 3 on unconstrained coin-betting. Specifi-
cally, for any constants η ∈ (0, 1) and u ∈ R/{0} we define λ in Theorem 3 as

λ =
η |u|
2
√
πC

.

For convenience of notation we also define

T0 =
2η2 |u|2

C2
log

(
η |u|
2
√
πC

)
.

Then, Theorem 3 yields the following result: For all η ∈ (0, 1), |u| ≥ 2
√
π exp[(

√
2 + 1)/2]η−1C, T ≥ T0 and any

coin-betting player policy p that guarantees WT ≥ −C
√
T , there exists a coin-betting adversary policy a such that in the

game induced by (p,a), (i) |
∑T

t=1 ct|≥
√
2T log λ; (ii) WT ≤ η |u|

√
2T log λ.

Using Algorithm 1, we can equivalently convert OLO to coin-betting by letting ct = −gt. Then, the above result
immediately translates to the following statement on one-dimensional unconstrained OLO: For all η ∈ (0, 1), |u| ≥
2
√
π exp[(

√
2 + 1)/2]η−1C, T ≥ T0 and any unconstrained OLO algorithm A that guarantees the cumulative loss bound∑T

t=1 gtxt ≤ C
√
T , there exists an OLO adversary such that in the induced game, (i) |

∑T
t=1 gt|≥

√
2T log λ; (ii)

−
∑T

t=1 gtxt ≤ η |u|
√
2T log λ.

Let us consider the regret of A in this setting with respect to comparators u and −u. Using the above result,

max {RT (u),RT (−u)} =
T∑

t=1

gtxt +max

{
−

T∑
t=1

gtu,

T∑
t=1

gtu

}

=

T∑
t=1

gtxt +

∣∣∣∣∣
T∑

t=1

gt

∣∣∣∣∣ |u|
≥ (1− η) |u|

√
2T log λ

= (1− η) |u|

√
2T log

η |u|
2
√
πC

.
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Thus we have proved the desirable result when d = 1.

Extending this result to d-dimension follows from a standard technique: consider adversaries whose loss vectors gt are only
nonzero in one coordinate. Let gt = [gt,1, . . . , gt,d], and assume gt,2 = . . . = gt,d = 0. Then, for any player who plays
against this adversary and competes against u = [u1, 0, . . . , 0],

RT (u) =

T∑
t=1

⟨gt, xt⟩ −
T∑

t=1

⟨gt, u⟩ =
T∑

t=1

gt,1xt,1 −
T∑

t=1

gt,1u1,

∥u∥= |u1|, and the cumulative loss satisfies
∑T

t=1 ⟨gt, xt⟩ =
∑T

t=1 gt,1xt,1. Therefore, any d-dimensional algorithm that
guarantees RT (0) ≤ C

√
T is translated into a one-dimensional algorithm with the same guarantee, and our one-dimensional

regret lower bound can be applied.

Finally, for a clear comparison of the upper and lower bounds, we have the following theorem presented in the main paper.

Theorem 5. Define A1/2 as Algorithm 4 constructed from V̄1/2, then Theorem 4 leads to

lim sup
U→∞

lim sup
T→∞

sup
∥u∥=U,adv

R
A1/2,adv

T (u)

∥u∥
√
T log∥u∥

≤
√
2.

Conversely, for all C and any unconstrained OLO algorithm A (e.g., A1/2) that guarantees RA,adv
T (0) ≤ C

√
T for all adv

and T , we have

lim inf
U→∞

lim inf
T→∞

sup
∥u∥=U,adv

RA,adv
T (u)

∥u∥
√
T log∥u∥

≥
√
2.

Proof of Theorem 5. Let us first consider the upper bound. Plugging in Theorem 4,

lim sup
U→∞

lim sup
T→∞

sup
∥u∥=U,adv

R
A1/2,adv

T (u)

∥u∥
√
T log∥u∥

≤ lim sup
U→∞

lim sup
T→∞

sup
∥u∥=U,adv

(
C + 2

√
2∥u∥

∥u∥
√

log∥u∥
+

√
2 log

(
1 +

∥u∥√
2C

)
log−1∥u∥

)

≤ lim
U→∞

C + 2
√
2U

U
√
logU

+ lim
U→∞

√
2 log

(
1 +

U√
2C

)
log−1 U =

√
2

As for the lower bound, we use Theorem 10. We first fix any C and any A satisfying the condition in the theorem to be
proved. For all η ∈ (0, 1), with U ≥ 12η−1C and T ≥ 2η2U2C−2 log(ηUC−1),

sup
∥u∥=U,adv

RA,adv
T (u)

∥u∥
√
T log∥u∥

≥ (1− η)

√
2 log

ηU

2
√
πC

log−1 U

= (1− η)

√
2

(
1 +

log η

logU
− log(2

√
πC)

logU

)
.

Taking lim inf on both sides, for all η ∈ (0, 1),

lim inf
U→∞

lim inf
T→∞

sup
∥u∥=U,adv

RA,adv
T (u)

∥u∥
√

T log∥u∥
≥
√
2(1− η).

Rewriting this statement, we have: for all ε ≥ 0 and η ∈ (0, 1), there exists U0 depending on ε and η such that for all
U ≥ U0,

lim inf
T→∞

sup
∥u∥=U,adv

RA,adv
T (u)

∥u∥
√

T log∥u∥
≥
√
2−
√
2η − ε.

Finally, using the definition of lim inf completes the proof.
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C.2. OLO algorithm induced by V̄−1/2

Similar to the previous subsection, we can also convert our results on V̄−1/2 (Appendix B.5) to the OLO setting. Since V̄1/2

recovers the existing coin-betting potentials, the converted regret upper bound recovers the classical bound (2). See also
(Orabona & Pál, 2016, Corollary 5).

Theorem 11. For all T ∈ N+ and u ∈ Rd, against any adversary, Algorithm 4 constructed from V̄−1/2 guarantees

RT (u) ≤ C
√
e+ ∥u∥

√
2T

[√
log

(
1 +
∥u∥T
C

)
+ 1

]
.

Proof of Theorem 11. Following the proof of Theorem 4, the only difference here is to upper bound the Fenchel conjugate
of fT (S) = V̄−1/2(T, S). We use the existing result (Orabona & Pál, 2016, Lemma 18): for any function f(x) =
β exp(x2/(2α)) with α, β > 0,

f∗(y) ≤ |y|

√
α log

(
1 +

αy2

β2

)
− β.

Therefore,

f∗
T (∥u∥) ≤ C

√
e+ ∥u∥

√
T log

(
1 +
∥u∥2T 2

C2

)
≤ C
√
e+ ∥u∥

√
2T log

(
1 +
∥u∥T
C

)
.

The rest of the proof is similar to the proof of Theorem 4.

Next we present the regret lower bound induced by V̄−1/2, parallel to Theorem 10.

Theorem 12. For all η ∈ (0, 1) and U ≥ 12η−1C, there exists T0 ∈ N+ (depending on η, U and C) such that the following
statement holds. For all T ≥ T0 and any unconstrained OLO algorithmA that guarantees RT (0) ≤ C

√
e (e.g., Algorithm 4

constructed from V̄−1/2), there exists an adversary and a comparator u ∈ Rd such that ∥u∥= U and

RT (u) ≥
[
1− η (log T )

−1
]
∥u∥

√
2T log

η ∥u∥
√
T

2
√
πeC log T

.

The proof is similar to Theorem 10 therefore omitted. In particular, we plug a slightly different choice of λ into Theorem 9:
λ = η |u| /(2

√
πeC).

To our knowledge, existing lower bounds for unconstrained OLO (Theorem 7 of Mcmahan & Streeter 2012, Theorem 2 of
Orabona 2013, Theorem 5.12 of Orabona 2019) all focused on the “budget constraint” RT (0) ≤ constant. Such a setting
is different from Theorem 10 presented in the main paper, but same as Theorem 12 above. Compared to those results,

Theorem 12 improves the leading constant: previously the best known constant (on the leading term ∥u∥
√

T log(∥u∥
√
T ))

was 1/
√
log 2 ≈ 1.201 (Orabona, 2013), while we improve it to

√
2 ≈ 1.414. This is due to the use of a tighter tail lower

bound for one-dimensional random walk (Lemma B.4).

Finally let us compare Theorem 12 to Theorem 11. The leading constants in the upper and lower bounds are 2 and
√
2

respectively (on the leading term ∥u∥
√

T log(∥u∥
√
T )). Future works may consider closing this gap.

C.3. Algorithm-dependent regret lower bound

In this subsection we convert our player-dependent wealth upper bound (Theorem 2) into an algorithm-dependent regret
lower bound for unconstrained OLO. The first step is to fix an unconstrained OLO algorithm for our analysis. The ideal
choice would be our high-dimensional algorithm (Algorithm 4) constructed from V̄1/2. However, the polar decomposition
adopted in Algorithm 4 introduces some technicalities that are non-essential for understanding the nature of this problem.
Therefore, we consider the one-dimensional algorithm (Algorithm 5), where the polar decomposition is not needed.

For Algorithm 5 constructed from V̄1/2, we can state the following regret upper bound using the proof of Theorem 4. Since
we do not further bound f∗

T (|u|), such a result is tighter than Theorem 4.
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Corollary 13. Denote fT (S) = V̄1/2(T, S). For all T ∈ N+ and u ∈ R, against any adversary, Algorithm 5 constructed
from V̄1/2 guarantees

RT (u) ≤ f∗
T (|u|).

The Fenchel conjugate can be slightly simplified: if we define z through |u|=
√
2C
∫ z

0
exp(x2)dx, then f∗

T (|u|) =

C
√
T exp(z2). Although the order of |u| is not as clear as in Theorem 4, we can numerically evaluate this bound as in our

experiments.

Converting Theorem 2 to OLO, we have

Theorem 14. Denote fT (S) = V̄1/2(T, S). For all T ∈ N+ and |u|≤ (3/8)C(T + 3) exp(T/2), we can construct a finite
sequence of loss gradients g1, . . . , gT ∈ [−1, 1] such that Algorithm 5 constructed from V̄1/2 has the regret lower bound

RT (u) ≥ f∗
T (|u|)−O(|u| log |u|),

against the aforementioned loss gradients. O(·) subsumes absolute constants.

Proof of Theorem 14. For convenience, let us define the function

hT (S) = V̄1/2 (T, S) +
3C

8
exp

(
S2

2T

)(
S2

T
+ 1

)
+ 2C.

Directly applying Theorem 2 yields the following result. For all T ∈ N+ and S ∈ [−T, T ], there exists g1, . . . , gT ∈ [−1, 1]
such that (i) −

∑T
t=1 gt = S; and (ii) Algorithm 5 constructed from V̄1/2 satisfies

∑T
t=1 gtxt ≥ −hT (S) against loss

gradients g1:T .

Define a variable u∗ as

u∗ = h′
T (S) =

√
2C

∫ S/
√
2T

0

exp(x2)dx+
3CS

8T
exp

(
S2

2T

)(
S2

T
+ 3

)
.

Since S is arbitrary within the interval [−T, T ], u∗ can take any value within [−U,U ], where U = (3/8)C(T +3) exp(T/2).
Due to a standard result from convex analysis (Rockafellar, 2015, Theorem 23.5), hT (S) + h∗

T (u
∗) = Su∗. Therefore,

RT (u
∗) =

T∑
t=1

gtxt −
T∑

t=1

gtu
∗ ≥ −hT (S) + Su∗ = h∗

T (u
∗).

The remaining task is to lower bound h∗
T (·).

Without loss of generality, assume u ≥ 0. Let us define a variable S̃ through the equation

u =
√
2C

∫ S̃/
√
2T

0

exp(z2)dz.

Then, using the proof of Theorem 4,

h∗
T (u) = sup

S∈R
Su− hT (S) ≥ S̃u− hT (S̃) = f∗

T (u)−
3C

8
exp

(
S̃2

2T

)(
S̃2

T
+ 1

)
− 2C,

and

S̃ ≤
√
2T

[√
log

(
1 +

u√
2C

)
+ 1

]
.

Combining the above completes the proof.

Comparing Corollary 13 to Theorem 14, the leading terms in the player-dependent bounds are exactly the same. The
gap between the upper and lower bounds does not depend on time. That is, we have a good estimate of the worst case
performance of Algorithm 5.
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D. Detail on experiments
We now present details on our experiments. First, we introduce the KT algorithm (Orabona & Pál, 2016) as our baseline. It
is perhaps the most well-known parameter-free algorithm for unconstrained OLO. Essentially, it is an optimistic version of
Algorithm 5 induced by the existing potential V̄−1/2. Next, we discuss the choice of hyperparameters in our experiments. In
the last three subsections, we present empirical results omitted from the main paper.

D.1. Baseline: Krichevsky-Trofimov algorithm

We first consider the one-dimensional version of the KT algorithm, whose pseudo-code is presented as Algorithm 7.
Theoretically it guarantees a similar bound as Theorem 11, with only minor differences on the non-leading constants.

Algorithm 7 The Krichevsky-Trofimov algorithm.

Require: Initial wealth ε > 0.
1: for t = 1, 2, . . . do
2: Predict xt = (−

∑t−1
i=1 gi/t) · (ε−

∑t−1
i=1 gixi)

3: Observe gt and store it.
4: end for

Lemma D.1 (Corollary 5 of Orabona & Pál 2016). For all T ∈ N+ and u ∈ R, against any adversary, Algorithm 7
guarantees

RT (u) ≤ ε+ |u|

√√√√T log

(
1 +

24 |u|2 T 2

ε2

)
.

The one-dimensional KT algorithm can be naturally extended to higher dimensions. Specifically, we wrap it using
Algorithm 6 (the reduction from Cutkosky & Orabona 2018), just like how Algorithm 4 extends Algorithm 5 to higher
dimensions.

D.2. Choice of hyperparameters

We now discuss the choice of hyperparameter C in the two versions of Algorithm 5. Note that since both versions are
parameter-free algorithms, the hyperparameter C does not affect their performance as critically as the learning rate in OGD:
for any C, the regret upper bound has the same asymptotic order (but with different minor constants). Specifically we choose
C = 1 in both versions. One reason is that this is the most natural choice when no information is available beforehand.
More importantly, at the beginning of the optimization process, C = 1 induces the same asymptotic exponential growth rate
for the predictions of the two versions. (As we discussed in Section 5, such an exponential growth is the key for the success
of parameter-free algorithms.)

Concretely, the predictions of the both versions are roughly the gradients of the potentials, which are ∇S V̄−1/2(t, S) =

CSt−3/2 exp[S2/(2t)] for V̄−1/2 and∇S V̄1/2(t, S) =
√
2C
∫ S/

√
2t

0
exp(x2)dx for V̄1/2. At the beginning, all the gradient

feedback are one-sided, therefore |S|= t. Applying S = t and taking the derivative with respect to t, the growth rate of
predictions based on V̄−1/2 is

∇t

[
∇S V̄−1/2(t, S)|S=t

]
=

C

2
√
t

(
1− 1

t

)
exp

(
t

2

)
.

For V̄1/2 we have

∇t

[
∇S V̄1/2(t, S)|S=t

]
=

C

2
√
t
exp

(
t

2

)
.

The leading terms would match if the hyperparameters of the two versions are the same.

As for the initial wealth ε in KT, by comparing Theorem 11 and Lemma D.1 we can see that ε =
√
eC is the most reasonable

choice. It matches the maximum allowable RT (0) in the KT algorithm and the version of Algorithm 5 based on V̄−1/2.
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D.3. Omitted results on 1d OCO

Testing more cases of u∗ We first present more cases of u∗ to support Figure 1a. Figure 2 shows that for u∗ ≥ 1, our
algorithm consistently beats the baselines. Note that the vertical scale in each subfigure is different. Using a unified scale,
Figure 1b in the main paper plots the gap between the green line and the blue line at T = 500. (The two baselines are
similar, therefore the orange line is not considered in Figure 1b.)
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Figure 2. More cases of u∗ to support Figure 1a; C = 1, T = 500.

The effect of T Next, we investigate the effect of the maximum time horizon T . When closely comparing the regret upper
bounds of the two potential-based algorithms (Theorem 4 and 11), one can see that for all fixed C and nonzero u∗, the upper
bound based on the new potential V̄1/2 is always better if T is long enough (O(

√
T ) as opposed to O(

√
T log T )). Then, a

reasonable guess is that for some small u∗, the performance of our algorithm may be weaker than the baselines at T = 500
(Figure 2), but better than the baselines at larger T . Such a guess is true in certain cases, as shown in Figure 3. Specifically,
we pick u∗ = 0.3 and vary the maximum T . Initially our algorithm is worse, but as T increases it can still outperform the
baselines.
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Figure 3. One-dimensional task with C = 1 and u∗ = 0.3. From left to right: T = 500, 10000, 200000.
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A different hyperparameter C Finally, we investigate the effect of the hyperparameter C on the qualitative comparison
of the three algorithms. We change C to 10 and present results parallel to Figure 2 in Figure 4. The initial wealth of KT is
scaled accordingly to 10

√
e.
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Figure 4. One-dimensional task with C = 10.

Figure 4 exhibits a similar behavior as Figure 2: while sacrificing the regret at small |u∗|, our algorithm is better when u∗

is far-away. However, we also see that our algorithm exhibits less qualitative improvement over the baselines: in order to
beat our algorithm (at T = 500), previously (with C = 1) the baselines should initialize at ũ with error |ũ− u∗|≤ 1, but
now (with C = 10) such an error is allowed to be less than 10. A possible concern is that the advantage of our algorithm
becomes harder to justify in this setting. We address this concern from three different perspectives.

1. Even with C = 10, our algorithm still outperforms the baselines when u∗ is everywhere except on a compact set.
Therefore, our algorithm still works better in more situations (of u∗).

2. Theoretically, for all fixed C and nonzero u∗, our algorithm always guarantees better regret bound than the baselines
when T is large enough. Empirically this is validated in Figure 3.

3. The key idea of parameter-free algorithms is to use a simple hyperparameter to replace the laborious tuning of learning
rates. In practice (e.g., Orabona & Pál 2016; Chen et al. 2022), such a hyperparameter is often simply set to 1, and the
resulting algorithms already exhibit strong empirical performance. Actually, changing C amounts to trading off loss with
regret; without any prior knowledge, the most natural choice is perhaps C = 1. Therefore, when our algorithm and the
two baselines are in the most natural configuration, our algorithm has the best performance unless a very accurate guess
of u∗ is known a priori (Figure 2).

D.4. Additional experiment: 1D OLO with stochastic loss

As suggested by an anonymous reviewer, we now consider another one-dimensional experimental setting where loss
gradients are iid stochastic, rather than generated from linearization. We choose C = 1 and T = 500; the loss gradients
gt are generated iid on the support {±1}, with mean 0.2. Each algorithm is run 50 times, and the mean of the negative
cumulative loss −

∑T
t=1 gtxt as a function of T is plotted in Figure 5; higher is better. Our algorithm beats both baselines in

this setting.
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Figure 5. 1D OLO with stochastic losses. The plot shows the negative cumulative loss as a function of T ; higher is better.

D.5. Additional experiment: High-dimensional regression with real data

In the last subsection, we report a high-dimensional regression experiment with real data. We use the YearPredictionMSD
dataset (Bertin-Mahieux et al., 2011) available from the UCI Machine Learning Repository (Dua & Graff, 2017), and the
context of this dataset is to predict the release year of a song from its audio features. The raw data is preprocessed in two
steps.

1. Feature normalization. For all the features (columns of the data matrix), we perform min-max scaling to transform their
range to [0, 1].

2. Row scaling. For all the feature vectors (rows of the data matrix, i.e., training samples), we scale them such that each
feature vector has L2-norm 1. This is due to the Lipschitz requirement in our setting, and the same procedure has been
performed in prior works (e.g., Orabona & Pál 2016).

After that, we use a linear model with absolute loss lt(x) = |⟨zt, x⟩ − yt|, where zt ∈ R90 and yt ∈ R+ are the t-th
sampled feature vector and target. This can be converted into a 90-dimensional unconstrained OLO problem: the adversary
picks gt = zt if ⟨zt, xt⟩ ≥ yt, while gt = −zt otherwise. Same as before, we consider three algorithms with C = 1: (i)
Algorithm 4 constructed from V̄1/2; (ii) Algorithm 4 constructed from V̄−1/2; and (iii) KT.

To study how these algorithms adapt to the distance to the optimal comparator, we use a parameter γ to scale the target
yt. That is, we assign yt ← γyt, and γ is varied across different settings. Due to the linearity of our regression model, the
optimal comparator is effectively scaled by γ. With a small γ, the comparators are brought closer to our initialization 0.
Note that such a scaling does not work if we use a nonlinear regression model. In those general cases, one may only care
about the unscaled setting (γ = 1).

Our results are presented in two ways, (i) fix γ and vary T ; (ii) fix T and vary γ. Specifically, since (zt, yt) is sampled from
the dataset, in each setting (of γ) we run each algorithm 5 times and use the average cumulative OCO loss

∑T
t=1 lt(xt) as

the “TotalLoss” of this algorithm. Figure 6 shows the type-(i) results where we fix γ at different values and plot TotalLoss
as a function of T .

As for the type-(ii) results, Figure 7 shows the difference between KT and our algorithm (TotalLoss|KT−TotalLoss|ours)
as a function of γ. In other words, it plots the difference between the green and blue lines in Figure 6 at T = 50000.

Combining two figures, we can draw a similar conclusion as the one-dimensional experiment: our algorithm outperforms
the baseline when the optimal comparator is far-away from the initial prediction.
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Figure 6. High-dimensional experiment with real data. C = 1.
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Figure 7. High-dimensional regression. Plot shows the TotalLoss of KT minus the TotalLoss of our algorithm.


