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Abstract
In recent years, multiplex network embedding has
received great attention from researchers. How-
ever, existing multiplex network embedding meth-
ods neglect structural role information, which can
be used to determine the structural similarity be-
tween nodes. To overcome this shortcoming, this
work proposes a simple, effective, role-based em-
bedding method for multiplex networks, called
RMNE. The RMNE uses the structural role infor-
mation of nodes to preserve the structural similar-
ity between nodes in the entire multiplex network.
Specifically, a role-modified random walk is de-
signed to generate node sequences of each node,
which can capture both the within-layer neighbors,
structural role members, and cross-layer structural
role members of a node. Additionally, the variant
of RMNE extends the existing collaborative em-
bedding method by unifying the structural role in-
formation into our method to obtain the role-based
node representations. Finally, the proposed meth-
ods are evaluated on the network reconstruction,
node classification, link prediction, and multi-
class edge classification tasks. The experimen-
tal results on eight public, real-world multiplex
networks demonstrate that the proposed methods
outperform state-of-the-art baseline methods.

1. Introduction
The wide applicability of networks and their success in de-
scribing real-world complex systems, for example social
(Zhang et al., 2022), traffic(Dapeng & Xiao, 2021), biolog-
ical (Seninge et al., 2021), and financial (Acemoglu et al.,
2015; Zha et al., 2020; Guo et al., 2021; Stolbov et al., 2021)
systems, have thus garnered considerable research attention
in many fields. Motivated by the demands of network analy-
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sis tasks, such as node classification, link prediction, node
clustering, and community detection, many network embed-
ding methods (Cui et al., 2018) have been proposed to learn
low-dimensional vector representations of nodes. Unsuper-
vised network representation learning embeds a node rep-
resentation vector without any external supervision labels.
The basic strategy to extract node embedding is leveraging
the node proximity or structural similarity in the network
structure to learn dense low dimension representations. For
instance, DeepWalk (Perozzi et al., 2014) and Node2vec
(Grover & Leskovec, 2016) capture a node’s proximity by
maximizing the probability of its neighbors generated by a
random walk. Role2vec (Ahmed et al., 2020) learns role-
based embeddings that capture structural roles based on an
attributed random walk. However, most existing popular
methods predominately focus on the single-layer networks
(Khosla et al., 2019), but real-world systems are highly com-
plex; so, using multiplex networks to model these systems
tends to be more realistic (Mucha et al., 2010; Osat et al.,
2017).

Most real networks have the nature of multiplicity, and there
are typically different types of connectivity between two
entities. For instance, in a social network, users are usually
connected through different relationships, such as friends,
colleagues, or relatives. Recent research has demonstrated
that ignoring the multiplicity of multiplex networks can be
potentially dangerous, leading to severe consequences in
system analysis (Osat et al., 2017). Therefore, multiplex
(also known as multi-layer, multi-view or multi-relation) net-
works are more suitable for modeling complex systems, in
which layers share the same set of individuals but may have
different connectivity between two individuals in different
layers (a toy example is shown in Figure 1).

Compared with a single-layer network, the embedding of a
multiplex network is more challenging due to several rea-
sons. First, the embedding method should be able to capture
the structural information of the whole multiplex network
rather than a single network, that is, the embedding method
should make full use of the structural information of each
layer of the multiplex network to improve the embedding
quality. Second, the embedding method should be able
to capture node proximity and structural similarity both in
within- and cross-layer nodes. The existing research has
denoted that the concept of structural roles is very suitable
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Figure 1. A toy example of a three-layer undirected multiplex
network; and the simplest example of structural roles in a multiplex
network. Here, when two nodes have the same degree value, they
belong to the same structural role.

to denote the structural similarity between nodes (Rossi &
Ahmed, 2014). By definition, two nodes belong to the same
structural role if they are structurally similar, which allows
them to be neither directly connected nor in the same layer
network (Ahmed et al., 2020; Rossi & Ahmed, 2014; Zhang
et al., 2021). As shown in Figure 1, all black squares belong
to the same structural role (R3) since they have the same
degree value, and thus, their vector representations should
be close in a unified embedding space.

Recently, representation learning algorithms based on the
single-layer network embedding methods have been pro-
posed to learn the representation of multiplex network nodes.
For instance, certain methods extend the random walk to
entire multiplex network to generate the walks for embed-
ding (Ning et al., 2018; Wilson et al., 2021). Other methods
learn a base layer vector and combine it with the learned
node vector into the final node vector representation (Mat-
suno & Murata, 2018; Zhang et al., 2018; Chu et al., 2019).
The graph neural networks have also been applied to learn
multiplex network embeddings (Berger-Wolf & Chawla,
2019). However, none of the above-mentioned methods can
capture the structural role information in a multiplex net-
work. Recently, several role-based embedding methods of
single-layer networks have been proposed to capture struc-
tural similarity (Ahmed et al., 2020; Ma et al., 2019; Javari
et al., 2020; Zhang et al., 2021). These methods have shown
that the structural role information of nodes is beneficial to
improve the node embeddings quality of the single-layer
networks.

In this work, a simple, effective network embedding method,
named the RMNE, is proposed to learn the role-based node
embedding for multiplex networks. Additionally, in order
to unify the different characteristics of a multiplex network
into one framework, the RMNE+ is further developed. The
main contributions of this work are summarized as follows:

• A simple but effective role-based network embedding

method, called RMNE, is proposed for multiplex net-
works. The learned embeddings of the RMNE can
preserve the structural similarity both in within- and
cross-layer nodes. Unlike the previously proposed
methods, our methods derive the role-based embed-
ding, which can capture the structural role information
on nodes.

• A role-modified random walk is designed to sample
the neighborhood of each node in a multiplex network.
This method can sample across layers and capture the
rich connection information on nodes. In addition,
it can sample the structural role members of a node
within and between network layers.

• Further, the RMNE+ is developed to unify the col-
laborative and structural role characteristics into one
framework.

• The proposed methods are empirically evaluated on the
network reconstruction, node classification, link pre-
diction, and multi-class edge classification tasks using
several real-world multiplex networks. The experimen-
tal results demonstrate the superiority of our methods
over the baseline methods.

2. Proposed methods
In this section, the concept of the multiplex network and the
definition of the structural roles of multiplex networks are
first presented. Then, we introduce the architectures of the
proposed methods, followed by the details of each part.

2.1. Notations

This work focuses on multiplex networks, which are defined
by Definition 2.1.

Definition 2.1. An L-layer multiplex network represents
a collection of L networks G = {G1, . . . , GL}, where
Gl = (Vl, El) denotes the l-th layer in G. Vl denotes the
set of nodes of the l-th layer, and El ∈ Vl × Vl denotes
the set of edges. For nodes u, v ∈ Vl, el(u, v) ∈ El repre-
sents the edge from node u to node v; wl(u, v) denotes the
weight of edge el(u, v)in the l-th layer. There is a one-to-
one correspondence between the nodes in different layers,
but links of different layers may differ from each other. De-
noting the set of unique nodes in the multiplex network
G = {G1, . . . , GL} by N ; then, N = |N | is the number
of nodes of G. Thus, a multiplex network with L layers
and node set N can be expressed as G(N , E , L), where E
denotes the set of edges for the multiplex network.

The structural role is defined by Definition 2.2.

Definition 2.2. Structural roles define sets of nodes; the
nodes inside the same set have higher structural similarity
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than those from different sets (Rossi et al., 2020). The struc-
turally similar indicates that nodes have similar structural
properties.

The simplest example of structural similarity is that two
nodes have the same degree; so, they are structurally sim-
ilar, as shown in Figure 1. This definition allows nodes to
be neither directly connected nor even in the same layer
network.

2.2. The RMNE Algorithm

The overall framework of the proposed RMNE is shown in
Figure 2, where it can be seen that the RMNE includes three
parts: the role discovery process, which divides the nodes
of the input multiplex network into classes of structurally
similar nodes; role-modified random walk, which generates
the node sequence as the training samples of SkipGram
model (Mikolov et al., 2013) for each node u ∈ N ; the
Skip-Gram model, which is used to obtain the node’s d-
dimensional vector representations. The pseudo-code of the
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Figure 2. An overview of the proposed RMNE method: (1) the
role discovery process; (2) role-modified random walk; (3) gener-
ate embeddings for all nodes.

RMNE method is presented in Algorithm 1.

Specifically, Line 3 relabels the nodes of a multiplex net-
work, as shown in Figure 2; Line 4 performs the role dis-
covery process and divides the nodes into different role
classes. The details of role discovery will be introduced
later. Lines 5 and 6 preprocess the transition probability
for the role-modified random walk. Lines 7-14 generate the
node sequence by using the role-modified random walk for
all nodes; the process will also be described later. Line 15
learns the embeddings for all nodes in the multiplex network,
as explained below.

Algorithm 1 The RMNE method
1: Input: Multiplex network G(N , E , L), number of ran-

dom walks per node K, random walk maximum length
Le, the window size of the SkipGram W , the represen-
tation size dimension d, random variable selected from
neighbors r, random variable selected from the same
role members t.

2: Output: Node representation matrix f ∈ R(|N |×d).
3: Gr(Nr, Er, L) = Relabeled G(N , E , L)
4: RoleList = RoleDiscovery (Gr)
5: π = PropocessModifiedWeights (Gr, RoleList, r, t)
6: G′

r = Gr(Nr, Er, L, π)
7: Initialize walks to Empty.
8: while (i < K) : do
9: S = shuffle(Nr)

10: for all nodes u ∈ Nr do
11: walk = role-modified random walk (G′

r, u, Le)
12: append walk to walks
13: end for
14: end while
15: SkipGram(W,d,walks)

2.2.1. ROLE DISCOVERY IN RMNE

The role discovery aims to group the network nodes into
classes of structurally similar nodes (Rossi & Ahmed, 2014).
In this study, the role discovery process is performed over a
multiplex network, that is, nodes may differ in the structural
role between different layers since their structural properties
may be different in different layers. Therefore, the network
nodes are relabeled before the role discovery process so that
the same node has different IDs in different layers. The
relabeled multiplex network is denoted as Gr(Nr, Er, L).
As shown in Figure 2, node 4 (role: R2) of layer 1, node
10 (role: R1) of layer 2, and node 16 (role: R3) of layer 3
denote the same individual.

The role discovery methods have been reviewed in(Rossi &
Ahmed, 2014). The Role2vec(Ahmed et al., 2020) includes
three role discovery methods, namely, the motif-count-
based, degree-based, and Weisfeiler-Lehman (WL) feature
extraction methods (Shervashidze & Borgwardt, 2009; Ma
et al., 2019). For the RMNE method, the role discovery
process is performed based on the Weisfeiler-Lehman fea-
ture extraction method. The Weisfeiler-Lehman method
decomposes each layer of a multiplex network into a tree-
like pattern (called ’subtree’). Specifically, it first relabels
each node with a compressed multi-label that consists of the
original label of the node and the labels of its neighbors, and
then, the feature vectors of nodes are extracted by repeating
this process multiple times. The labeling iterations of the
WL method are usually set to two, to capture node-local
structural patterns. If the method uses the degree of a node
as its feature, we can bin the degrees of all nodes so that



Role-based Multiplex Network Embedding

nodes belonging to the same bin belong to the same role.
Finally, the structural role of each node is obtained through
the role assignment process(Rossi & Ahmed, 2014).

After completing role feature construction (degree-based,
motif-count-based, and WL method in this paper), role as-
signment aims to assign nodes with similar features to the
same roles. There are several options for this process, the
first is to divide the nodes into k types of structural roles
through a clustering method such as k-means. Additionally,
roles can be assigned through a simple equivalence rule
(i.e.two nodes belong to the same structural role if their fea-
ture vectors are the same). In this work, we use the simple
equivalence rule.

2.2.2. ROLE-MODIFIED RANDOM WALK

Random walk is at the core of many network embedding
methods. However, a multiplex network poses novel chal-
lenges to the traditional random walk. First, a random walk
should be able to sample across layers to capture the rich
connection information on nodes. Second, a random walk
should be able to sample the structural role members of
nodes within and between layers, so that the embedding
can preserve the structural similarity. In this work, a role-
modified random walk is proposed to handle the two men-
tioned challenges.

Consider a random walk maximum length Le and a source
node u ∈ Nr. If the algorithm is at a node u(i−1) of a layer
l at time (i− 1), it moves with a certain probability to the
next node ui of a layer l

′
at the time i. The node ui is a

neighbor or the structural role member of the node u(i−1).
Formally, the ui denotes the i-th node in the walk, and it is
obtained as follows:

P (ui = x, li = l′ | ui−1 = v, li−1 = l)

=

{
πv,x,l,l′/z if (v, x) ∈ Er or R(x) = R(v)
0 otherwise

(1)

where πv,x,l,l′ represents the transition probability between
nodes v and x, Z is the normalization constant, and R
denotes node’s role. In this work, two hyperparameters de-
noted as r and t are designed to guide the sampling strategy
of the role-modified random walk. Thus, the transition prob-
ability is expressed as πx,v,l,l′ = atr (v, x, l, l

′) .wl,l′(v, x),
where thewl,l′(v, x) denotes the edge weight between nodes
v and x, and it is defined as follows:

wl,l′(v, x) =

{
wl,l′(v, x) if l = l′,
1 if l 6= l′.

(2)

For an unweighted network, w(l,l′)(v, x) = 1. In addition,

Algorithm 2 The role-modified random walk method

1: Input: G′

r, start node u, random walk maximum length
Le.

2: Output: A node list with the maximum length of Le.
3: Initialize walk with node u.
4: while (len (walk) < Le) do
5: cur = walk[−1]
6: Tcur = set of the neighbors and role members for

node cur
7: w = AliasSample(Tcur, π)
8: Append w to walk
9: end while

10: r walk = recover(walk)

atr(v, x, l, l
′
) is defined as follows:

atr (v, x, l, l
′)

=


δr(v, x) if l = l′ and el,l′(v, x) ∈ εr,
βt(v, x) if R(v) = R(x) and v 6= x,
βt(v, x) ∗ ln(D(v)) if l = l′ and v = x,
βt(v, x) ∗ ln(D(x)) if l 6= l′ and v = x,

(3)

where δr(v, x) and βt(v, x) are respectively defined by:

δr(v, x) =
1

r
(4)

βt(v, x) =
1

t
(5)

where, v = x indicates that nodes v and x denote the same
individual; for instance, nodes 4 and 16 in Figure 2. As
given by Eq. (3), the hyperparameter r guides the sampling
of directly connected neighbors, while the hyperparameter
t controls the sampling of structural role members within
and between layers; if v = x, the node degree at different
layers is used to distinguish the node importance in these
layers. Thus, if u(i−1) = v, the role-modified random walk
samples a node v itself with the probability of βt(v, x) ∗
ln(D(v))at time i, and samples a one-to-one corresponding
node (node x) of v in other layers with the probability of
βt(v, x) ∗ ln(D(v)), where D(·) denotes the node degree,
and ln(·) is the natural logarithm function, which is used
here to avoid the deviation caused by a large node degree
value. If the degree of a node is zero, we set it equal to 1.

After calculating the random walk transition probability by
using Eqs. (1)-(5), the RMNE performs the role-modified
random walk algorithm, the pseudo-code of which is given
in Algorithm 2. Particularly, line 10 performs the recov-
ering of the relabeled nodes ID. For instance, a walk =
[4, 3, 13, 18] is recovered as r walk = [4, 3, 1, 6].



Role-based Multiplex Network Embedding

2.2.3. LEARN EMBEDDINGS

According to Algorithm 1, after generating of the role-
modified random walks in a multiplex network, the Skip-
Gram architecture is used to learn embeddings for all nodes.
Specifically, for a node u ∈ N , Nr(u) is defined as a neigh-
borhood of node u generated by the role-modified sampling
strategy. The objective function is given by:

max
∏
u∈N

P (Nr(u) | f(u)) (6)

where f(·) denotes the vector representation. In this work,
two standard assumptions are adopted (Grover & Leskovec,
2016). The first assumption corresponds to the conditional
independence assumption, whereas the second assumption
characterizes the symmetric effect of neighboring nodes in
their feature space. Accordingly, the softmax function can
be used to approximate P(v|f(u)) as follows:

P(v | f(u)) = exp(f(v) · f(u))∑
w∈N exp(f(w) · f(u))

(7)

Thus, the objective function of Eq. (6) can be simplified to:

min−
∏
u∈N

∏
v∈Nr(u)

exp(f(v) · f(u))∑
w∈N exp(f(w) · f(u))

(8)

Next, Eq. (8) can be rewritten in the log-likelihood form as
follows:

min−
∑
u∈N

∑
v∈Nr(u)

[− logZu + f(v) · f(u)] , (9)

where Zu =
∑

w∈N exp(f(w) · f(u)), and negative sam-
pling is used to approximate its value (Mikolov et al., 2013).

Finally, Eq. (9) is optimized by the stochastic gradient de-
scent (SGD) algorithm (Bottou et al., 1991). The optimiza-
tion result represents a d-dimensional vector representation
of all nodes in the multiplex network.

2.3. The RMNE+ Algorithm

The overall framework of the RMNE+ is shown in Figure 3,
which unifies the structural role information based on the ex-
isting MANE (Ata et al., 2021) method. The key view of the
MANE method is that ”if two nodes are associated in one
layer, they are more likely to be connected in another layer
as well”, which it call second-order collaboration. Appar-
ently, the method does not take into account the structural
similarity between nodes but is only based on ’connectivity’.

Recall the Skip-gram method, a node pair (u, v) consists of
the center node u and a context node v, the task is to maxi-
mize the co-occurrence probability of node pairs. Given an
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Figure 3. An overview of the RMNE+ method, which unify the
intra-layer, cross-layer, and structural role node pairs into one
framework based on (Ata et al., 2021).

L-layer multiplex network and the generated node pairs, the
corresponding loss of each characteristic in the RMNE+ is
shown as follows:
Intra-layer pairs:

L0 = −
∑
l∈L

∑
u∈N

∑
v∈Ne(u)

log

(
exp

(
fTv fu

)∑
w∈N exp (fTw fu)

)
(10)

For each layer, the intra-layer pairs are generated from ran-
dom walks following the Deepwalk method. The Ne(u) is
the context node set of node u under a specific window size,
and center node u and node v ∈ Ne(u) form the intra-layer
node pair (u,v), such as node pairs (3,4) and (7,8) in Figure
3.

Cross-layer, intra-node pairs:

L1 = −
∑
l∈L

∑
u∈N

∑
v∈Intra(u)

log

(
exp

(
fTv fu

)∑
w∈N exp (fTw fu)

)
(11)

The cross-layer, intra-node pairs are generated across dif-
ferent layers for the same node. The Intra(u) denotes
the one-to-one corresponding nodes set for node u. For
example, as shown in Figure 3, Intra(1) = {7, 13}.

Cross-layer, cross-node pairs:

L2 = −
∑
l∈L

∑
u∈N

∑
v∈Cross(u)

log

(
exp

(
fTv fu

)∑
w∈N exp (fTw fu)

)
(12)

The Cross(u) is the second-order collaboration node set of
the center node u. As shown in Figure 3, nodes 9 and 12
are connected at the second layer of the multiplex network
and are therefore more likely connected at the first layer
(i.e. nodes 3 and 6 are more likely to be connected), thus
forming the cross-layer, cross-node pair (3,12).
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Structural role pairs:

L3 = −
∑
l∈L

∑
u∈N

∑
v∈Role(u)

log

(
exp

(
fTv fu

)∑
w∈N exp (fTw fu)

)
(13)

The Role(u) denotes the structural role members of node u,
and two nodes with the same role form a structural role pair
(such as node pair (4,9) in Figure 3).

Hence, the overall loss for a multiplex network is obtained
by combining Eq.(10)-(13):

L = L0 + αL1 + βL2 + γL3 (14)

Where α, β, and γ(> 0)are hyperparameters that control the
contribution of each component to the overall loss. When
α = β = γ = 0, the RMNE+ is reduced to Skip-gram
models on individual layers of a multiplex network.

To implement the RMNE+, we follow the MANE to gen-
erate the collaborative node pairs, and the structural role
pairs are obtained by combining pairs of nodes in the role
class set. The negative sampling and the Adam optimizer
are also adopted. A final node representation is obtained by
concatenating the layer-specific embeddings.

3. Experiments
The proposed methods were evaluated on the network re-
construction, node classification, link prediction, and multi-
class edge classification tasks. The network reconstruction
problem was defined as follows. Given an L-layer multiplex
network G(N , E , L) and the node embeddings learned from
the L−1 layers of G, the network reconstruction task aimed
to predict the edges and non-edges of the entire L-th layer.

The network reconstruction task is a supervised learning
problem. In the experiment, the test samples were con-
structed as follows. The edges set off the L-th layer were
the positive samples; an equal number of randomly gener-
ated non-edges were the negative samples. It was ensured
that the non-edges in the negative samples did not belong to
the edges of the input multiplex network.

Further, an edge (u, v) embedding was constructed based
on the node embeddings of nodes u and v using different
operators, including Hadamard, Average, Weighted-L1, and
Weighted-L2 (as shown in Appendix B). Then, a logistic
regressor was trained to conduct the prediction task. The
ROC-AUC was used as an evaluation metric of model per-
formance and it is calculated by averaging the results of 10
runs.

The node classification, link prediction, and multi-class edge
classification tasks are performed the same as the (Ata et al.,
2021). In addition, the effect of different parameters of the
proposed methods’ performance was analyzed.

Table 1. A brief introduction to the networks used in this work.

DATASET #LAYERS #NODES #EDGES

CKM 3 246 1551
LLF 3 71 2571
VICKERS 3 29 740
KTS 4 39 1018
SACCHCERE 4 6570 97482

ALZHEIMER’S 2 12901 204353
LINKEDIN 3 10196 3323042
YOUTUBE 3 7558 4469222

3.1. Datasets

Eight real-world multiplex networks were used to validate
the performance of the proposed methods. The basic statis-
tics for the multiplex networks used are given in Table 1.

The CKM (Coleman et al., 1957) physician-innovative mul-
tiplex network contains three different layers. The LLF
(Snijders et al., 2006) multiplex social network consists of
three types of relationships (co-work, friendship, and ad-
vice) between the partners and associates of a corporate
law partnership. The Vickers (Vickers & Chan, 1981) de-
notes a three-layer multiplex social network collected by
Vickers from 29 seventh-grade students in a school in Vic-
toria, Australia. The KTS (Kapferer, 1972) describes the
interactions in a tailor shop in Zambia over a period of 10
months. The Sacchcere (De Domenico et al., 2015) repre-
sents a multiplex genetic and protein interaction network of
the Saccharomyces Cerevisiae. In this study, the physical as-
sociation, direct interaction, association, and colocalization
layers were extracted. The Alzheimer’s (Ata et al., 2021) is
a two-layers protein network and we conduct the node clas-
sification task on this labeled network. The LinkedIn (Ata
et al., 2021) captures three different relationships among
a social network,we perform the multi-class edge classifi-
cation on this network. The YouTube (Ata et al., 2021) is
a three-layers video-sharing network. We conduct the link
prediction task on it.

3.2. Baseline Methods

For the RMNE method, the comparison methods include
DeepWalk (Perozzi et al., 2014), Node2vec (Grover &
Leskovec, 2016), Ohmnet (Zitnik & Leskovec, 2017),
PMNE (Liu et al., 2017), MNE (Zhang et al., 2018),MANE
(Ata et al., 2021), FFME (Ning et al., 2019), and GATNE-T
(Cen et al., 2019) methods. For RMNE+ method, the base-
line methods are the same as the MANE (Ata et al., 2021),
which include HIN2Vec (Fu et al., 2017) and HeGAN (Hu
et al., 2019) two heterogeneous network embedding meth-
ods, and five multiplex network embedding methods, i.e.
MVE (Qu et al., 2017), mvn2vec (Shi et al., 2018), MNE
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(Zhang et al., 2018), DMNE (Ni et al., 2018), and GATNE
(Cen et al., 2019). Two representative role-based single-
layer network embedding methods were also compared,
namely Struc2vec (Ribeiro et al., 2017) and Role2vec
(Ahmed et al., 2020). Theses methods are explained briefly
in Appendix A.

3.3. Performance Comparison

For the network reconstruction task, the experimental re-
sults are shown in Table 2, where it can be seen that the
RMNE achieved the optimal result compared to the base-
line methods. According to the results in Table 2, the single-
layer network embedding method without considering the
multiplicity of a multiplex network showed poor perfor-
mance in the network reconstruction task on most datasets.
Moreover, the MANE, a multi-view network embedding
method, had a relatively low AUC score compared to the
other multiplex network embedding methods. Generally,
the RMNE combined with the Weighted-L2 operator out-
performed all baseline methods for all datasets, except for
the CKM. These results suggest that embedding with pre-
serving the structural role information is beneficial to the
network reconstruction task of multiplex networks.

Table 2. AUC scores of different embedding methods combined
with different operators in the network reconstruction task on five
real-world multiplex networks. The best result for each dataset is
denoted in bold; for each operator, the best scores are underlined.
See Appendix B for the complete results (Sac: Sacchcere, OP:
operators, HD: Hadamard, L2: Weighted-L2).

OP METHOD LLF VICKERS KTS SAC CKM

DEEPWALK 0.5371 0.6321 0.6203 0.7903 0.7508
NODE2VEC 0.5926 0.6306 0.6159 0.7884 0.7391
STRUC2VEC 0.6645 0.7596 0.7860 0.7853 0.5918
ROLE2VEC 0.6353 0.6482 0.6977 0.7574 0.9115
MANE-1 0.5585 0.5936 0.6653 0.6334 0.6533
MANE-2 0.6028 0.6009 0.7153 0.5342 0.7245
OHMNET 0.7320 0.8035 0.8461 0.9112 0.9073
PMNE(N) 0.7196 0.8524 0.8837 0.8827 0.8925

HD PMNE(R) 0.7124 0.8443 0.8456 0.8766 0.8905
PMNE(C) 0.7050 0.8501 0.8489 0.8927 0.8869
MNE 0.7043 0.7024 0.7706 0.9138 0.9139
GATNE-A 0.7563 0.7833 0.8271 0.8967 0.9087
GATNE-C 0.7525 0.8239 0.8093 0.8997 0.9056
FFME 0.7458 0.8076 0.7606 0.9121 0.9115
RMNE 0.7606 0.8246 0.8465 0.8783 0.9208

DEEPWALK 0.5485 0.6475 0.6321 0.7012 0.6855
NODE2VEC 0.5834 0.6195 0.5952 0.7060 0.6855
STRUC2VEC 0.6509 0.7301 0.7367 0.7865 0.5856
ROLE2VEC 0.6400 0.6770 0.7074 0.7980 0.8203
MANE-1 0.5625 0.6062 0.6773 0.8579 0.6527
MANE-2 0.6021 0.6094 0.7373 0.8614 0.6844
OHMNET 0.7066 0.7817 0.7963 0.9130 0.8890
PMNE (N) 0.7322 0.8511 0.8654 0.8907 0.8793

L2 PMNE (R) 0.7202 0.8519 0.8610 0.8536 0.8654
PMNE (C) 0.7009 0.8470 0.8606 0.5322 0.8768
MNE 0.7053 0.7290 0.7424 0.8352 0.9022
GATNE-A 0.7578 0.8199 0.8171 0.8271 0.9029
GATNE-C 0.7564 0.8559 0.8406 0.8850 0.9014
FFME 0.7733 0.8499 0.8289 0.7054 0.8979
RMNE 0.8017 0.8957 0.9109 0.9274 0.9151

For the node classification, link prediction, and multi-class
edge classification tasks, the results are shown in Table
3: the RMNE+ obtained the optimal results compared to
these baselines. The visualization of embeddings of the
Alzheimer’s network obtained by RMNE+ and MANE is
shown in Figure 4. We only sampled 100 nodes which
included all positives for clearer visualization since the
Alzheimer’s dataset is highly imbalanced with fewer than
1% positive samples. The result denoted that the positives
of the RMNE+ method clustered well and were relatively
dense. Here, the role discovery method for Alzheimer’s
dataset is Weisfeiler-Lehman-based, while LinkedIn and
YouTube are based on degree and motif-count methods re-
spectively. We further include the results of various role
discovery methods in Appendix B. In addition, we also
present the role distributions for different role discovery
methods in Appendix B. Note that, to make the RMNE+

method suitable for large-scale networks, we only count the
degree and the number of triangles as node features for the
motif-count method.

Table 3. Performance evaluation for node classification, multi-
class edge classification and link prediction tasks, the best result
for each dataset is denoted in bold. The results of these baseline
methods (except Struc2vec and Role2vec methods) are obtained
from (Ata et al., 2021).

ALZHEIMER’S LINKEDIN YOUTUBE

METRIC ROC-AUC PR-AUC MICRO-F MACRO-F ROC-AUC PR-AUC

SINGLE 0.6968 0.0221 0.4001 0.3468 0.6334 0.1565
DECOUPLED 0.8200 0.0735 0.4341 0.3739 0.6700 0.1649
MERGED 0.7305 0.0075 0.4197 0.3724 0.6565 0.1763

STRUC2VEC 0.5807 0.0010 0.4033 0.3371 0.6517 0.1770
ROLE2VEC 0.9330 0.1759 0.4355 0.3780 0.6398 0.1571

HIN2VEC 0.5734 0.0030 0.3014 0.2175 0.6264 0.1258
HEGAN 0.6967 0.0104 0.3937 0.3467 0.6322 0.1520

MVE 0.6543 0.0161 0.4113 0.2867 0.6276 0.1650
MVN2VEC-C 0.8617 0.0890 0.4326 0.3791 0.6633 0.1621
MVN2VEC-R 0.8756 0.0275 0.4439 0.3717 0.6703 0.1669
MNE 0.9195 0.1676 0.4334 0.3538 0.6749 0.1604
DMNE 0.9357 0.0603 0.3473 0.2253 0.6056 0.1394
GATNE 0.9190 0.1227 0.3202 0.1619 0.6838 0.1624
MANE 0.9660 0.2277 0.4446 0.3865 0.6917 0.2039
RMNE+ 0.9761 0.4264 0.4602 0.3922 0.7017 0.2194

−75 −50 −25 0 25 50 75
−75

−50

−25

0

25

50

75

(a) MANE

−6 −4 −2 0

−4

−2

0

2

(b) RMNE+.

Figure 4. Visualization of Alzheimer’s proteins.
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3.4. Ablation and Parameter Sensitivity Analysis

For the RMNE method, the parameter sensitivity experi-
ment was performed on various real-world datasets. In the
experiment, to evaluate the effect of a particular parameter
on the network reconstruction performance, that parameter
was changed while the other parameters were kept fixed.
The results are shown in Figure 5. Compared with the other
parameters, the embedding dimension d and window size
W had little effect on the AUC score. For the Sacchcere
dataset, all parameters of the RMNE had little effect on the
network reconstruction, indicating the RMNE could stably
reconstruct the L-layer, regardless of the changes in the
parameters’ values. For the LLF dataset, the optimal val-
ues of Le and K were 15 and 20, respectively. The best
values of K and Le for the Vickers dataset were 50 and 30,
respectively.

Intuitively, the parameter r controls the likelihood of sam-
pling the within-layer neighbors, while the parameter t
guides the sampling of the cross-layer and role-level. If
r < 1, this sampling strategy encourages the walk to pre-
serve more node’s within-layer neighbors. Conversely, if
t < 1, the walk is more likely to sample a node’s role mem-
bers and encourages exploration across layers. The effects
of parameters r and t are shown in Figure 5 (a) and (b),
respectively. For the LLF, Vickers, and KTS datasets, the
RMNE performed better when r > 1, while for datasets
Sacchcere and CKM, its performance decreased slightly as
r increased. The best values of t for LLF, Vickers, and KTS
datasets were 0.5, 0.25, and 1.0, respectively. For datasets
Sacchcere and CKM, the RMNE’s performance increased
slightly as t increased.

For the RMNE+ method, we examined the contribution of
structural role pairs in Eq.14. Specifically, we evaluated (1)
Without role pairs, i.e., γ = 0; (2) Only role pairs, i.e., α =
β = 0. As Figure 6 shows, RMNE+ outperforms the other
cases, indicating that the structural role information of nodes
is beneficial to derive higher-quality node representations.
Interestingly, when we only use the structural role pair for
optimization, i.e.α = β = 0 in Eq.14, our method still
achieves better performance than MANE (Ata et al., 2021)
in datasets YouTube and LinkedIn. While in Alzheimer’s
network, the ROC-AUC metric has declined due to the large
influence of the second-order collaboration (Ata et al., 2021).
We further vary γ in Figure 7 (a, b, c), the results denote γ =
0.5 exhibits the optimal performance. Figure 7 (d) shows the
fast convergence of the RMNE+ method, typically less than
8 epochs. The impact of hyperparameters α and β are shown
in Appendix B. Particularly, when α = 0.5, the RMNE+

achieves the best performance on Alzheimer’s dataset, i.e.
ROC-AUC: 0.9918, PR-AUC: 0.5192.
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Figure 5. The effects of different parameters on the RMNE perfor-
mance.

3.5. Scalability Analysis

To evaluate the scalability of the proposed RMNE method,
the node embeddings of the Barabasi-Albert scale-free net-
works were learned by increasing the network size from
100 to 100000. For each network size case, a two-layer
multiplex network with an average node degree of 10 for
each layer was generated. The results are shown in Figure 8.
The sampling procedure included the role discovery process
and the role-modified random walk simulation process. The
optimization procedure was the Skip-gram model training
with negative sampling. As shown in Figure 8, the proposed
RMNE method was to be nearly as fast as node2vec, and it
scaled linearly as the network size increased. For Node2vec,
the two-layer multiplex network was merged as a single-
layer network and used to learn the node embeddings. The
scalability analysis of the RMNE+ method is similar to the
MANE (Ata et al., 2021) method.
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Figure 6. Impact of structural role on the RMNE+ performance.
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Figure 7. (a), (b), (c): Impact of hyperparameter γ on the RMNE+

performance; (d): The convergence analysis of RMNE+.
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Figure 8. Runtime comparison of the Barabasi-Albert scale-free
networks with an average degree of 10 for each layer.

4. Conclusion
In this work, a simple but effective role-based network em-
bedding method for multiplex networks, named RMNE,
is proposed. The contextual information of a node is ob-
tained by a role-modified random walk approach. The pro-
posed method samples both the within-layer neighbors and
structural role members and the cross-layer structural role
members of a node during the walk. Thus, the learned
node embeddings can preserve the node proximity and the
structural similarity in multiplex networks. Further, the
RMNE+ is developed to unify the different multiplex net-
work characteristic, including collaborative and structural
role information, to one framework. The proposed methods
are evaluated on the network reconstruction, node classifi-
cation, multi-class edge classfiic, and link prediction tasks.
The experimental results on different real-world multiplex
networks demonstrate the superiority of our methods over
the baseline methods.
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6. Appendix
6.1. Related works

In this section, network embedding methods for single-layer
networks are briefly reviewed, and then several embedding
methods proposed for multiplex networks are introduced.
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6.1.1. NETWORK EMBEDDING METHODS FOR
SINGLE-LAYER NETWORKS

Inspired by the success of natural language processing,
DeepWalk (Perozzi et al., 2014) was the first method to intro-
duce deep learning into the field of node embeddings. Sub-
sequently, Node2vec (Grover & Leskovec, 2016) extended
DeepWalk by proposing a biased random walk. However,
the above-mentioned methods, as well as LINE (Tang et al.,
2015) and CARE (Keikha et al., 2018), derive community-
based embedding (Rossi et al., 2020) while ignoring the
structural role information on nodes. Conversely, Role2vec
(Ahmed et al., 2020) was developed to learn structural role-
based embeddings for single-layer networks. Thereafter,
Rose (Javari et al., 2020), RiWalk (Ma et al., 2019), and
RESD (Zhang et al., 2021) were proposed to learn the role-
based embedding of nodes. However, all the listed embed-
ding methods are intended for single-layer networks, and
the multiplicity of networks is not considered.

6.1.2. NETWORK EMBEDDING METHODS FOR
MULTIPLEX NETWORKS

Recently, multiplex network embedding methods have re-
ceived considerable attention. PMNE (Liu et al., 2017)
proposed three methods—network aggregation, result ag-
gregation, and layer co-analysis—to project a multi-layer
network onto a continuous vector space. OhmNet (Zitnik &
Leskovec, 2017), which represents a hierarchy-aware unsu-
pervised node embedding method for multiplex networks,
uses a hierarchy to model dependencies between network
layers. MNE (Zhang et al., 2018) learns a high-dimensional
node embedding and a lower-dimensional layer embedding
simultaneously for each node and then combines these two
embeddings to obtain the final node embedding. CrossMNA
(Chu et al., 2019) adopts the same idea as the MNE. MELL
(Matsuno & Murata, 2018) uses the layer vector to cap-
ture and characterize a layer’s connectivity; the final node
embeddings are obtained by combining the node embed-
ding in each layer with layer embedding. GATNE (Cen
et al., 2019), designed for attributed multiplex heteroge-
neous networks, learns the node representation embedding
by combining the base, edge, and attribute embeddings.
Moreover, GATNE-T performs only base and edge embed-
dings. HDMI (Jing et al., 2021) uses a high-order deep
infomax to optimize a joint supervision signal, and then,
an attention mechanism is adopted to combine node em-
beddings from different layers. HMNE (Ning et al., 2021)
embeds node embeddings by considering high-order node
dependence. Multi-node2vec (Wilson et al., 2021) intro-
duces a third hyperparameter based on the node2vec to
control the random walk between layers and then uses the
Skip-gram (Mikolov et al., 2013) neural network model to
learn the final node representation. The literature (Shi et al.,
2021) also extends the random walk method to multiplex

networks. In contrast, FFME (Ning et al., 2019) adopts an
adaptive cross-layer forest fire sampling (FFS) for multi-
plex networks to address the bias problem of the traditional
random walk. DMNE (Ni et al., 2018) is a multi-network
embedding method, which can form many-to-many node
mappings between different networks. MVN2VEC (Shi
et al., 2018) identifies preservation and collaboration as two
objectives for multi-view network representation learning.
The MVE (Qu et al., 2017) method promotes the collabora-
tion of different views by voting among them. The work (Li
et al., 2018) work considers both within-layer connections
and cross-layer dependencies. In addition, a multi-view
collaborative network embedding method named MANE
(Ata et al., 2021) considers the second-order collaboration
to learn node embedding.

In summary, single-layer network embedding methods can-
not capture the multiplicity of networks. Moreover, multi-
plex network embedding methods neglect the structural role
information in the final node embeddings so that the embed-
dings cannot capture the structural similarity of the network.
To overcome these shortcomings, this paper proposes a struc-
tural role-based embedding method for multiplex networks,
named RMNE, which can preserve the node proximity and
structural similarity.

6.2. Appendix A

• DeepWalk (Perozzi et al., 2014): DeepWalk uses a ran-
dom walk to generate a node sequence, and then feeds
it to the Skip-Gram architecture to learn the embedding
of each node.

• Node2vec (Grover & Leskovec, 2016): Node2vec ex-
tends the DeepWalk by designing two hyperparameters
to guide the second-order random walk.

• Struc2vec (Ribeiro et al., 2017): Struc2vec learns
node embeddings based on structural identities.

• Role2vec (Ahmed et al., 2020):Role2vec uses a map-
ping function to assign a role to each node and then
uses the attributed random walks to generate node se-
quence that capture structural roles.

It should be note that the DeepWalk, Node2vec,
Struc2vec, and Role2vec are the single-layer network
embedding methods. In the network reconstruction
task, the DeepWalk and Node2vec were applied to
each layer (i.e., to (L− 1) layers in total) to learns the
node rep-resentations, and then independently recon-
structed theLth layer. Finally, the average performance
was calculated. For the two role-based network embed-
ding methods, i.e. Struc2vec and Role2vec, we merge
multiple networks into a single-layer network and then
use these two methods to learn node embeddings. For
the network reconstruction task of a L-layer multiplex
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network, we use the L − 1 layers to learn the node
embeddings, and then use the learned embeddings to
predict the edges of the Lth layer.

• Ohmnet (Zitnik & Leskovec, 2017): Ohmnet is a mul-
tiplex network embedding method that uses hierarchy
information to model dependencies between the tis-
sues.

• PMNE (Liu et al., 2017): PMNE employs three
methods to learn node embeddings in multiplex net-
works, which are network aggregation, results aggre-
gation, and layer co-analysis, and they are denoted as
PMNE(n), PMNE(r), and PMNE(c), respectively. The
PMNE(n) and PMNE(r) are based on a single-layer
network embedding without leveraging the interaction
between the layers, while PMNE(c) considers the in-
fluence of interactions among layers.

• MNE (Zhang et al., 2018): For each node, the MNE
learns a common embedding and an additional em-
bedding for each type of relationship between nodes.
Then, the multiple relationships are jointly learned by
a unified network embedding model.

• MANE (Ata et al., 2021): MANE is a multi-view net-
work (i.e., multiplex network) embedding method con-
sidering both first- and second-order collaborations.
In this work, we use MANE-1 and MANE-2 to de-
note the first- and second-order collaboration modes,
respectively.

• FFME (Ning et al., 2019): FFME uses the adaptive
cross-layer forest fire sampling (FFS) to address the
bias prob-lem of the random walk. It also uses a node
metric called the neighbor partition coefficient (NPC)
to supervise the node sequence generation process.

• GATNE-T (Cen et al., 2019): GATNE-T splits the
overall node embedding into two parts: base embed-
ding and edge embedding. The base embedding is
shared among edges of different layers, while the edge
embedding is computed by aggregating the edge em-
beddings of a node’s neighbors using the self-attention
mechanism. In this work, the heterogeneous skip-gram
model was used for node representation learning, and
the final node embedding was obtained by aggregating
the node embeddings of different layers. The aggre-
gate operators were concatenating and average, and the
corresponding methods were denoted as GATNE-c and
GATNE-a, respectively.

Parameter settings: In the comparison experiments, the
embedding dimension d was set to 128 for all methods.
The parameters of the comparison methods were set as
follows. For the DeepWalk and Node2vec, the walk length

was 80, the number of random walks per node was 10,
and the window size was 10; For the Node2vec, p and
q were empirically set to four and one, respectively. For
the Ohmnet and PMNE, the number of walks was set to
15, and the walk length was 10; also, according to (Jing
et al., 2021), p = 2 and q = 1. For the PMNE(r), the
embedding dimension was set to 126 for the three-layer
multiplex networks. For MANE-1, α = 1 and β = 0, and
for MANE-2, α = 1 and β = 1. The other parameters of
MANE-1 and MANE-2 were set the same as the RMNE.
For the FFME, MNE and GATNE-T, the default parameters
settings suggested by the original paper was used. The
other parameters were set the same as those suggested in the
original studies. For the RMNE, we set K = 20, Le = 15,
and W = 10. The optimal values of r and t were chosen
from a set of {0.25, 0.5, 1.0, 2.0, 4.0}. For RMNE+, we
set α = β = 1, γ = 0.5, the other parameters were set
the same as the MANE (Ata et al., 2021). In addition, the
role discovery process settings were the same as that of the
Role2vec (Ahmed et al., 2020).

6.3. Appendix B

Table 4. Embedding operators used to obtain the representation of
edges on the network reconstruction task (L1: Weighted-L1, L2:
Weighted-L2).

OPERATORS SYMBOL DEFINITION

HADAMARD � [f(u)� f(v)]i = fi(u) ∗ fi(v)
AVERAGE � [f(u)� f(v)]i =

fi(u)+fi(v)
2

L1 ‖ · ‖1i ‖f(u) · f(v)‖1i = |fi(u)− fi(v)|
L2 ‖ · ‖2i ‖f(u) · f(v)‖2i = |fi(u)− fi(v)|

2

Table 5. Performance evaluation for node classification, multi-
class edge classification, and link prediction tasks, the best result
for each dataset is denoted in bold. The results of these baseline
methods (except struc2vec and role2vec methods) are obtained
from (Ata et al., 2021). The standard deviation is shown in paren-
theses. These methods of not showing standard deviation are due
to the original paper does not provide this information.

ALZHEIMER’S LINKEDIN YOUTUBE

METRIC ROC-AUC PR-AUC MICRO-F MACRO-F ROC-AUC PR-AUC

SINGLE 0.6968 0.0221 0.4001 0.3468 0.6334 0.1565
DECOUPLED 0.8200 0.0735 0.4341 0.3739 0.6700 0.1649
MERGED 0.7305 0.0075 0.4197 0.3724 0.6565 0.1763

STRUC2VEC 0.5807(.198) 0.001(.000) 0.4033(.009) 0.3371(.013) 0.6517(.004) 0.1770(.001)
ROLE2VEC 0.9330(.046) 0.1759(.186) 0.4355(.001) 0.3780(.001) 0.6398(.002) 0.1571(.001)

HIN2VEC 0.5734 0.0030 0.3014 0.2175 0.6264 0.1258
HEGAN 0.6967 0.0104 0.3937 0.3467 0.6322 0.1520

MVE 0.6543 0.0161 0.4113 0.2867 0.6276 0.1650
MVN2VEC-C 0.8617 0.0890 0.4326 0.3791 0.6633 0.1621
MVN2VEC-R 0.8756 0.0275 0.4439 0.3717 0.6703 0.1669
MNE 0.9195 0.1676 0.4334 0.3538 0.6749 0.1604
DMNE 0.9357 0.0603 0.3473 0.2253 0.6056 0.1394
GATNE 0.9190 0.1227 0.3202 0.1619 0.6838 0.1624
MANE 0.9660 0.2277 0.4446 0.3865 0.6917 0.2039
RMNE+ 0.9761(.006) 0.4264(.171) 0.4602(.022) 0.3922(.001) 0.7017(.003) 0.2194(.002)
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Figure 9. Impact of hyperparameter γ and different role discovery methods. Top:degree-based; middle: Weisfeiler-Lehman-based; bottom:
Motif-count based.
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Figure 10. Impact of hyperparameter α on the RMNE+ performance.
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Figure 11. Impact of hyperparameter β on the RMNE+ performance.
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Figure 12. The role distribution for different role discovery methods. Top: degree-based; middle: Weisfeiler-Lehman-based; bottom:
Motif-count-based. In this figure, the role assignment process of the degree- and motif-count-based methods uses equivalence rules, while
for the Weisfeiler-Lehman-based method, we assign roles based on the first element of nodes’ feature vector (when using the entire feature
vector, the number of roles of datasets Alzheimer’s, LinkedIn, and YouTube are 22794, 12085, and 21945 respectively).
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Table 6. AUC scores of different embedding methods combined
with different operators in the network reconstruction task on five
real-world multiplex networks. The best result for each dataset is
denoted in bold; for each operator, the best scores are underlined
(OP:operators, Sac: Sacchcere, HD:Hadamard, AG:Average). The
standard deviation is shown in parentheses.

OP METHOD LLF VICKERS KTS SAC CKM

DEEPWALK 0.5371(.013) 0.6321(.030) 0.6203(.052) 0.7903(.002) 0.7508(.001)
NODE2VEC 0.5926(.013) 0.6306(.001) 0.6159(.004) 0.7884(.010) 0.7391(.001)
STRUC2VEC 0.6645(.002) 0.7596(.007) 0.7860(.005) 0.7853(.009) 0.5918(.006)
ROLE2VEC 0.6353(.018) 0.6482(.040) 0.6977(.043) 0.7574(.009) 0.9115(.004)
MANE-1 0.5585(.020) 0.5936(.018) 0.6653(.018) 0.6334(.002) 0.6533(.010)
MANE-2 0.6028(.012) 0.6009(.010) 0.7153(.020) 0.5342(.006) 0.7245(.009)
OHMNET 0.7320(.010) 0.8035(.027) 0.8461(.023) 0.9112(.003) 0.9073(.006)

PMNE (N) 0.7196(.011) 0.8524(.019) 0.8837(.018) 0.8827(.006) 0.8925(.008)
HD PMNE (R) 0.7124(.010) 0.8443(.015) 0.8456(.011) 0.8766(.007) 0.8905(.010)

PMNE (C) 0.7050(.006) 0.8501(.025) 0.8489(.014) 0.8927(.004) 0.8869(.010)
MNE 0.7043(.034) 0.7024(.034) 0.7706(.012) 0.9138(.006) 0.9139(.008)

GATNE-A 0.7563(.008) 0.7833(.005) 0.8271(.008) 0.8967(.006) 0.9087(.003)
GATNE-C 0.7525(.011) 0.8239(.008) 0.8093(.007) 0.8997(.010) 0.9056(.012)

FFME 0.7458(.008) 0.8076(.013) 0.7606(.022) 0.9121(.007) 0.9115(.005)
RMNE 0.7606(.006) 0.8246(.006) 0.8465(.008) 0.8783(.013) 0.9208(.002)

DEEPWALK 0.5384(.010) 0.6189(.049) 0.5996(.045) 0.7470(.006) 0.6559(.007)
NODE2VEC 0.5911(.007) 0.6054(.001) 0.6236(.007) 0.7389(.012) 0.6522(.010)
STRUC2VEC 0.6673(.003) 0.7620(.005) 0.7849(.005) 0.8198(.004) 0.5918(.006)
ROLE2VEC 0.6100(.011) 0.6600(.031) 0.7092(.032) 0.7183(.008) 0.7272(.005)
MANE-1 0.5852(.018) 0.6839(.014) 0.7428(.025) 0.7475(.007) 0.5511(.008)
MANE-2 0.5954(.016) 0.6837(.013) 0.7407(.016) 0.7768(.006) 0.5603(.009)
OHMNET 0.6049(.009) 0.6836(.011) 0.7662(.022) 0.8353(.004) 0.5668(.010)

PMNE (N) 0.6003(.009) 0.7007(.020) 0.7427(.012) 0.8489(.006) 0.5720(.017)
AG PMNE (R) 0.5895(.008) 0.6934(.024) 0.7443(.021) 0.7534(.010) 0.5546(.016)

PMNE (C) 0.5889(.009) 0.6918(.014) 0.7359(.017) 0.8320(.008) 0.5667(.011)
MNE 0.5893(.016) 0.6807(.032) 0.7499(.011) 0.7951(.011) 0.5658(.008)

GATNE-A 0.5838(.009) 0.7336(.015) 0.7586(.012) 0.8246(.010) 0.5188(.007)
GATNE-C 0.5897(.010) 0.7337(.009) 0.7391(.003) 0.8397(.006) 0.5357(.003)

FFME 0.5859(.009) 0.6203(.022) 0.5445(.019) 0.8321(.004) 0.5624(.016)
RMNE 0.6088(.003) 0.7093(.007) 0.7439(.004) 0.8371(.007) 0.5581(.003)

DEEPWALK 0.5486(.014) 0.6475(.022) 0.6250(.020) 0.7212(.013) 0.6783(.002)
NODE2VEC 0.5874(.010) 0.6137(.002) 0.6117(.005) 0.7218(.011) 0.6772(.002)
STRUC2VEC 0.6568(.003) 0.7449(.008) 0.7600(.006) 0.8037(.004) 0.5949(.004)
ROLE2VEC 0.6286(.008) 0.6734(.025) 0.7248(.023) 0.7627(.005) 0.7881(.004)
MANE-1 0.5652(.010) 0.6209(.008) 0.6720(.009) 0.8612(.021) 0.6471(.004)
MANE-2 0.5930(.005) 0.6209(.012) 0.7258(.005) 0.8638(.011) 0.6889(.002)
OHMNET 0.6954(.008) 0.7675(.009) 0.8036(.016) 0.9121(.012) 0.8940(.007)

PMNE (N) 0.7190(.008) 0.8430(.011) 0.8532(.009) 0.8897(.008) 0.8736(.007)
L1 PMNE (R) 0.7202(.007) 0.8260(.007) 0.8660(.006) 0.8241(.005) 0.8632(.006)

PMNE (C) 0.6965(.007) 0.8394(.007) 0.8515(.007) 0.5285(.007) 0.8815(.006)
MNE 0.6959(.004) 0.6909(.016) 0.7287(.018) 0.8361(.007) 0.9002(.007)

GATNE-A 0.7409(.012) 0.8309(.012) 0.8540(.020) 0.8200(.008) 0.9126(.008)
GATNE-C 0.7559(.010) 0.8501(.007) 0.8481(.002) 0.8787(.006) 0.9103(.011)

FFME 0.7627(.005) 0.8492(.007) 0.8357(.008) 0.7069(.005) 0.8930(.005)
RMNE 0.7945(.002) 0.8836(.005) 0.9041(.004) 0.9227(.005) 0.9022(.002)

DEEPWALK 0.5485(.012) 0.6475(.021) 0.6321(.055) 0.7012(.009) 0.6855(.001)
NODE2VEC 0.5834(.019) 0.6195(.003) 0.5952(.004) 0.7060(.010) 0.6855(.001)
STRUC2VEC 0.6509(.003) 0.7301(.013) 0.7367(.006) 0.7865(.005) 0.5893(.004)
ROLE2VEC 0.6400(.008) 0.6770(.024) 0.7307(.019) 0.7980(.004) 0.8203(.004)
MANE-1 0.5625(.015) 0.6062(.021) 0.6773(.001) 0.8579(.009) 0.6527(.012)
MANE-2 0.6021(.011) 0.6094(.010) 0.7373(.014) 0.8614(.010) 0.6844(.020)
OHMNET 0.7066(.009) 0.7817(.010) 0.7963(.011) 0.9130(.008) 0.8890(.007)

PMNE (N) 0.7322(.006) 0.8511(.008) 0.8654(.010) 0.8907(.002) 0.8793(.008)
L2 PMNE (R) 0.7202(.006) 0.8519(.010) 0.8610(.002) 0.8536(.004) 0.8654(.005)

PMNE (C) 0.7009(.006) 0.8470(.008) 0.8606(.007) 0.5322(.008) 0.8768(.010)
MNE 0.7053(.004) 0.7290(.017) 0.7424(.023) 0.8352(.006) 0.9022(.008)

GATNE-A 0.7578(.008) 0.8199(.001) 0.8171(.008) 0.8271(.001) 0.9029(.010)
GATNE-C 0.7564(.006) 0.8559(.006) 0.8406(.002) 0.8850(.015) 0.9014(.001)

FFME 0.7733(.006) 0.8499(.005) 0.8289(.014) 0.7054(.006) 0.8979(.005)
RMNE 0.8017(.002) 0.8957(.005) 0.9109(.004) 0.9274(.004) 0.9151(.002)


