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Abstract

We study episodic two-player zero-sum Markov
games (MGs) in the offline setting, where the
goal is to find an approximate Nash equilibrium
(NE) policy pair based on a dataset collected a
priori. When the dataset does not have uniform
coverage over all policy pairs, finding an approxi-
mate NE involves challenges in three aspects: (i)
distributional shift between the behavior policy
and the optimal policy, (ii) function approxima-
tion to handle large state space, and (iii) minimax
optimization for equilibrium solving. We pro-
pose a pessimism-based algorithm, dubbed as pes-
simistic minimax value iteration (PMVI), which
overcomes the distributional shift by constructing
pessimistic estimates of the value functions for
both players and outputs a policy pair by solv-
ing a correlated coarse equilibrium based on the
two value functions. Furthermore, we establish a
data-dependent upper bound on the suboptimal-
ity which recovers a sublinear rate without the
assumption on uniform coverage of the dataset.
We also prove an information-theoretical lower
bound, which shows our upper bound is nearly
minimax optimal, which suggests that the data-
dependent term is intrinsic. Our theoretical results
also highlight a notion of “relative uncertainty”,
which characterizes the necessary and sufficient
condition for achieving sample efficiency in of-
fline MGs. To the best of our knowledge, we
provide the first nearly minimax optimal result for
offline MGs with function approximation.
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1. Introduction
Reinforcement learning (RL) has recently achieved tremen-
dous empirical success, including Go (Silver et al., 2016;
2017), Poker (Brown and Sandholm, 2019), robotic con-
trol (Kober et al., 2013), and Dota (Berner et al., 2019),
many of which involve multiple agents. RL system with
multiple agents acting in a common environment is referred
to as multi-agent RL (MARL) where each agent aims to
maximize its own long-term return by interacting with the
environment and other agents (Zhang et al., 2021). Two key
components of these successes are function approximation
and efficient simulators. For modern RL applications with
large state spaces, function approximations such as neural
networks are used to approximate the value functions or
the policies and contributes to the generalization across dif-
ferent state-action pairs. Meanwhile, an efficient simulator
serves as the environment which allows the agent to collect
millions to billions of trajectories for the training process.

However, for various scenarios, e.g., healthcare (Pan et al.,
2017) and auto-driving (Wang et al., 2018) where either col-
lecting data is costly and risky, or online exploration is not
possible (Fu et al., 2020), it is far more challenging to apply
(MA)RL methods in a trial-and-error fashion. To tackle
these issues, offline RL aims to learn a good policy from a
pre-collected dataset without further interacting with the en-
vironment. Recently, there has been impressive progress in
the theoretical understanding about single-agent offline RL
(Jin et al., 2020b; Rashidinejad et al., 2021; Zanette et al.,
2021; Xie et al., 2021; Yin and Wang, 2021; Uehara and
Sun, 2021), indicating that pessimism is critical for design-
ing provably efficient offline algorithms. More importantly,
these works demonstrate that the necessary and sufficient
condition for achieving sample efficiency in offline MDP
is the single policy (optimal policy) coverage. That is, it
suffices for the offline dataset to have good coverage over
the trajectories induced by the optimal policy.

In offline MARL for zero-sum Markov games, agents are not
only facing the challenges of unknown environments, func-
tion approximation, and the distributional shift between the
behavior policy and the optimal policy, but also challenged
by the sophisticated minimax optimization for equilibrium
solving. Due to these challenges, theoretical understand-
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ings of offline MARL remains elusive. In particular, the
following questions remain open:

(i) Can we design sample-efficient equilibrium learning
algorithms in offline MARL?

(ii) What is the necessary and sufficient condition for
achieving sample efficiency in offline MARL?

To this end, focusing on the two-player zero-sum and finite-
horizon Markov Game (MG) with linear function approxi-
mation, we provide positive answers to the above two ques-
tions. Our contribution is threefold:

• For the two-player zero-sum MG with linear function
approximation, we propose a computationally efficient
algorithm, dubbed as pessimistic minimax value iter-
ation (PMVI), which features the pessimism mecha-
nism.

• We introduce a new notion of “relative uncertainty”,
which depends on the offline dataset and (π∗, ν) ∪
(π, ν∗), where (π∗, ν∗) is an NE and (π, ν) are arbi-
trary policies. Furthermore, we prove that the subopti-
mality of PMVI can be bounded by relative uncertainty
up to multiplicative factors involving the dimension
and horizon, which further implies that “low relative
uncertainty” is the sufficient condition for NE finding
in the offline linear MGs setting. Meanwhile, by con-
structing a counterexample, we prove that, unlike the
single-agent MDP where the single policy (optimal
policy) coverage is enough, it is impossible to learn
an approximate NE by the dataset only with the single
policy pair (NE) coverage property.

• We also investigate the necessary condition for NE
finding in the offline linear MGs setting. We demon-
strate that the low relative uncertainty is exactly the
necessary condition by showing that the relative uncer-
tainty is the information-theoretic lower bound. This
lower bound also indicates that PMVI achieves mini-
max optimality up to multiplicative factors involving
the dimension and horizon.

In summary, we propose the first computationally efficient
algorithm for offline linear MGs which is minimax optimal
up to multiplicative factors involving the dimension and
horizon. More importantly, we figure out that low relative
uncertainty is the necessary and sufficient condition for
achieving sample efficiency in offline linear MGs setup.

1.1. Related Work

There is a rich literature on MG (Shapley, 1953) and RL.
Due to space constraint, we focus on reviewing the theoreti-
cal works on two-player zero-sum MG and offline RL.

Two-player zero-sum Markov game. There has been an
impressive progress for online two-player zero-sum MGs,
including the tabular MG (Bai and Jin, 2020; Xie et al.,
2020; Bai et al., 2020; Liu et al., 2021), and MGs with linear
function approximation (Xie et al., 2020; Chen et al., 2021).
Beyond these two settings, Jin et al. (2021) and Huang et al.
(2021) consider the two-player zero-sum MG with general
function approximation and the proposed algorithms can fur-
ther solve MGs with kernel function approximation, MGs
with rich observations, and kernel feature selection. For
offline sampling oracle, Abe and Kaneko (2020) considers
offline policy evaluation under the strong uniform concen-
tration assumption.

Offline RL. The study of the offline RL (also known as
batch RL), has a long history. In the single-agent setting,
the prior works typically require a strong dataset coverage
assumption (Precup, 2000; Antos et al., 2008; Levine et al.,
2020), which is impractical in general, particularly for the
modern RL problems with large state spaces. Recently, Jin
et al. (2020b) takes a step towards identifying the minimal
dataset assumption that empower provably efficient offline
learning. In particular, it shows that pessimism principle
allows efficient offline learning under a much weaker as-
sumption which only requires a sufficient coverage over
the optimal policy. After Jin et al. (2020b), a line of work
(Rashidinejad et al., 2021; Yin and Wang, 2021; Uehara
et al., 2021; Zanette et al., 2021; Xie et al., 2021; Uehara
and Sun, 2021) leverages the principle of pessimism to de-
sign offline RL algorithms, both in the tabular case and in the
case with general function approximation. These methods
are not only more robust to the violation of dataset coverage
assumption, but also provide non-trivial theoretical under-
standings of the offline learning, which are of independent
interests. Despite the rich literature on single-agent offline
RL, the extension to the MARL is still challenging.

To the best of our knowledge, the current work on sample-
efficient equilibrium finding in offline MARL is only Zhong
et al. (2021) and Cui and Du (2022). In particular, Zhong
et al. (2021) studies the general-sum MGs with leader-
follower structure and aims to find the Stackelberg-Nash
equilibrium, but we focus on finding the NE in two-player
zero-sum MGs with symmetric players. Our work is most
closely related to the concurrent work Cui and Du (2022),
which we discuss in detail below.

Comparison with Cui and Du (2022). Up to now, the
concurrent work Cui and Du (2022) seems to provide the
only analysis on tabular two-player zero-sum MG in the
offline setting. We comment the similarities and differences
between two works as follows.

In terms of algorithms, both PMVI (Algorithm 1) in this
paper and algorithms proposed in Cui and Du (2022) are
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pessimism-type algorithms and computationally efficient.
Since tabular MG is a special case of linear MG, our al-
gorithm can naturally be applied to the tabular setting and
achieve sample efficiency under the same coverage assump-
tion.

In terms of theoretical results, our work can be compared
to Cui and Du (2022) in the following aspects. First, both
this work and Cui and Du (2022) figure out the necessary
and sufficient condition for achieving sample efficiency in
(linear) MGs. Specifically, we introduce a new notion of
relative uncertainty and prove that the low relative uncer-
tainty is the necessary and sufficient condition for achieving
sample efficiency in (linear) MGs. Cui and Du (2022) pro-
poses a similar notion called unilateral concentration and
obtains similar results. Second, by constructing slightly dif-
ferent hard instances, both this work and Cui and Du (2022)
show that the single policy (NE) coverage assumption is
not enough for NE identification in MGs. Third, this work
and Cui and Du (2022) achieve near-optimal results in the
linear setting and tabular setting, respectively. Finally, the
information-theoretic lower bound in Cui and Du (2022)
can be implied by that for single-agent MDP. In contrast,
our information-theoretic lower bound is construction-based
and is a non-trivial extension from single-agent MDP.

2. Preliminaries
In this section, we formally formulate our problem, and
introduce preliminary concepts used in our paper.

2.1. Two-Player Zero-Sum Markov Game

We consider a two-player zero-sum, finite-horizon MG
where one agent (referred to as the max-player) aims to
maximize the total reward while the other agent (referred to
as the min-player) aims to minimize it. The game is defined
as a tupleM (H,S,A1,A2, r,P) where H is the number of
steps in each episode, S is the state space,A1,A2 are the ac-
tion spaces of the two players, respectively, P = {Ph}Hh=1

is the transition kernel where Ph(·|s, a, b) is the distribu-
tion of the next state given the state-action pair (s, a, b) at
step h, r = {rh(s, a, b)}Hh=1 is the reward function1, where
rh(s, a, b) ∈ [0, 1] is the reward given the state-action pair
(s, a, b) at step h. We assume that for each episode, the
game starts with a fixed initial state x ∈ S and it can be
straightforwardly generalized to the case where the initial
state is sampled from some fixed but unknown distribution.

Policy and Value functions. Let ∆(X ) be the probability
simplex over the set X . A Markov policy of the max-player
is a sequence of functions π = {πh : S → ∆(A1)} where

1For ease of presentation, we consider deterministic reward.
Our results immediately generalize to the stochastic reward func-
tion case.

πh(s) is the distribution of actions taken by the max-player
given the current state s at step h. Similarly, we can define
the Markov policy of the min-player by ν = {νh : S →
∆(A2)}. Given a policy pair (π, ν), the value function
V π,ν
h : S → R and the Q-value function Qπ,ν

h : S × A1 ×
A2 → R at step h are defined by

V π,ν
h (sh) :=Eπ,ν

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣sh
]
,

Qπ,ν
h (sh, ah, bh) :=Eπ,ν

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣sh, ah, bh
]
,

where the expectation is taken over the randomness of the
environment and the policy pair. We define the Bellman
operator Bh for any function V : S → R as

BhV (s, a, b) (2.1)
=E[rh(s, a, b) + V (sh+1) | (sh, ah, bh) = (s, a, b)].

It is not difficult to verify that the value function and Q-value
function satisfy the following Bellman equation:

Qπ,ν
h (s, a, b) = (BhV

π,ν
h+1)(s, a, b). (2.2)

2.2. Linear Markov Game

We consider a family of MGs whose reward functions and
transition kernels possess a linear structure.

Assumption 2.1 (Linear MGs (Xie et al., 2020)). For each
(s, a, b) ∈ S ×A1 ×A2, and h ∈ [H], we have

rh(x, a, b) = ϕ(x, a, b)⊤θh,

Ph(· | x, a, b) = ϕ(x, a, b)⊤µh(·),
(2.3)

where ϕ : S × A1 × A2 → Rd is a known feature map,
θh ∈ Rd is an unknown vector, µh = (µ

(i)
h )i∈[d] is a vector

of d unknown signed measure over S. We further assume
that ||ϕ(·, ·, ·)|| ≤ 1, ||θh|| ≤

√
d, and ||µh(S)|| ≤

√
d for

all h ∈ [H] where || · || is the ℓ2-norm of vector.

With this assumption, we have the following result.

Lemma 2.2 (Linearity of Value Function). Under Assump-
tion 2.1, for any policy pair (π, ν) and any (x, a, b, h) ∈
S ×A1 ×A2 × [H], we have

Qπ,ν(x, a, b) = ⟨ϕ(x, a, b), wπ,ν
h ⟩,

where wπ,ν
h = θh +

∫
S V π,ν

h+1(x
′)dµh(x

′).

Proof. The result is implied by Bellman equation in (2.2)
and the linearity of rh and Ph in Assumption 2.1.



Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets

2.3. Nash Equilibrium and Performance Metrics

If we fix some max-player’s policy π, then the MG degener-
ates to an MDP for the min-player. By the theory of single-
agent RL, we know that there exists a policy br(π), referred
to as the best response policy of the min-player, satisfying
V

π,br(π)
h (s) = infν V

π,ν
h (s) for all s and h. Similarly, we

define the best response policy br(ν) for the min-player’s
policy ν. To simplify the notation, we define

V π,∗
h = V

π,br(π)
h , and V ∗,ν

h = V
br(ν),ν
h .

It is known that there exists a Nash equilibrium (NE) policy
(π∗, ν∗) such that π∗ and ν∗ are the best response policy to
each other (Filar and Vrieze, 2012) and we denote the value
of them as V ∗

h = V π∗,ν∗

h . Although multiple NE policies
may exist, for zero-sum MGs, the value function is unique.

The NE policy is further known to be the solution to the
following minimax equation:

sup
π

inf
ν
V π,ν
h (s) = V π⋆,ν⋆

h (s) = inf
ν
sup
π

V π,ν
h (s),∀(s, h).

(2.4)
We also have the following weak duality property for any
policy pair (π, ν) in MG:

V π,∗
h (s) ≤ V ∗

h (s) ≤ V ∗,ν
h (s),∀(s, h). (2.5)

Accordingly, we measure a policy pair (π, ν) by the duality
gap:

SubOpt((π, ν), x) = V ∗,ν
1 (x)− V π,∗

1 (x). (2.6)

The goal of learning is to find an ϵ-approximate NE (π̂, ν̂)
such that SubOpt((π̂, ν̂), x) ≤ ϵ.

2.4. Offline Data Collecting Process

We introduce the notion of compliance of dataset.

Definition 2.3 (Compliance of Dataset). Given an MGM
and a dataset D = {(sτh, aτh, bτh)}

K,H
τ,h=1, we say the dataset

D is compliant with the MGM if

PD
(
rτh = r, sτh+1 = s|{(sih, aih, bih)}τi=1, {(rih, sih+1)}τ−1

i=1

)
= Ph (rh = r, sh+1 = s|sh = sτh, ah = aτh, bh = bτh)

(2.7)

for all h ∈ [H], s ∈ S where P in the right-hand side of
(2.7) is taken with respect to the underlying MGM.

We make the following assumption through this paper.

Assumption 2.4 (Date Collection). The dataset D is com-
pliant with the underlying MGM.

Intuitively, the compliance ensures (i) D possesses the
Markov property, and (ii) conditioned on (sτh, a

τ
h, b

τ
h),

(rτh, s
τ
h+1) is generated by the reward function and the tran-

sition kernel of the underlying MG.

As discussed in Jin et al. (2020b), as a special case, this
assumption holds if the dataset D is collected by a fixed be-
havior policy. More generally, the experimenter can sequen-
tially improve her policy by any online MARL algorithm as
the assumption allows (aτh, b

τ
h) to be interdependent across

the trajectories. In an extreme case, the actions can even be
chosen in an adversarial manner.

2.5. Additional Notations

For any real number x and positive integer h, we define
the regulation operation as Πh(x) = min{h,max{x, 0}}.
Given a semi-definite matrix Λ, the matrix norm for any
vector v is denoted as ∥v∥Λ =

√
v⊤Λv. The Frobenius

norm of a matrix A is given by ||A||F =
√
tr(AA⊤). We

denote λmin(A) as the smallest eigenvalue of the matrix A.
We also use the shorthand notations ϕh = ϕ(sh, ah, bh),
ϕτ
h = ϕ(sτh, a

τ
h, b

τ
h), and rτh = rh(s

τ
h, a

τ
h, b

τ
h).

3. Pessimistic Minimax Value Iteration
In this section, we introduce our algorithm, namely, Pes-
simistic Minimax Value Iteration (PMVI), whose peudocode
is given in Algorithm 1.

Algorithm 1 Pessimistic Minimax Value Iteration
1: Input: Dataset D = {xτ

h, a
τ
h, b

τ
h, r

τ
h}(τ,h)∈[K]×[H].

2: Initialize V H+1(·) = V H+1(·) = 0.
3: for step h = H,H − 1, · · · , 1 do
4: Λh ←

∑K
τ=1 ϕ

τ
h(ϕ

τ
h)

⊤ + I .
5: wh ← Λ−1

h (
∑K

τ=1 ϕ
τ
h(r

τ
h + V h+1(x

τ
h+1))).

6: wh ← Λ−1
h (
∑K

τ=1 ϕ
τ
h(r

τ
h + V h+1(x

τ
h+1))).

7: Γh(·, ·, ·)← β ·
√

ϕ(·, ·, ·)⊤(Λh)−1ϕ(·, ·, ·).
8: Q

h
(·, ·, ·)← ΠH−h+1{ϕ(·, ·, ·)⊤wh − Γh(·, ·, ·)}.

9: Qh(·, ·, ·)← ΠH−h+1{ϕ(·, ·, ·)⊤wh + Γh(·, ·, ·)}.
10: Let (π̂h(· | ·), ν′h(· | ·)) be the NE of the matrix game

with payoff matrix Q
h
(·, ·, ·).

11: Let (π′
h(· | ·), ν̂h(· | ·)) be the NE of the matrix game

with payoff matrix Qh(·, ·, ·).
12: V h(·)← Ea∼π̂h(·|·),b∼ν′

h(·|·)Qh
(·, a, b).

13: V h(·)← Ea∼π′
h(·|·),b∼ν̂h(·|·)Qh(·, a, b).

14: end for
15: Output: (π̂ = {π̂h}Hh=1, ν̂ = {ν̂h}Hh=1).

At a high level, PMVI constructs pessimistic estimations
of the value functions for both players and outputs a policy
pair by solving a correlated coarse equilibrium based on
these two estimated value functions.

Our learning process is done through backward induc-
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tion with respect to the timestep h. We set V H+1(·) =

V H+1(·) = 0, where V H+1 and V H+1 are estimated
value functions for max-player and min-player, respectively.
Suppose we have obtained the estimated value functions
(V h+1, V h+1) at (h+1)-th step, together with the linearity
of value functions (Lemma 2.2), we can use the regular-
ized least-squares regression to obtain the linear coefficients
(wh, wh) for the estimated Q-functions:

wh ← argmin
w

K∑
τ=1

[rτh + V h+1(x
τ
h+1)− (ϕτ

h)
⊤w]2 + ∥w∥22,

wh ← argmin
w

K∑
τ=1

[rτh + V h+1(x
τ
h+1)− (ϕτ

h)
⊤w]2 + ∥w∥22,

where ϕτ
h is the shorthand of ϕ(sτh, a

τ
h, b

τ
h). Solving this

problem gives the closed-form solutions:

wh ← Λ−1
h (

K∑
τ=1

ϕτ
h(r

τ
h + V h+1(x

τ
h+1))),

wh ← Λ−1
h (

K∑
τ=1

ϕτ
h(r

τ
h + V h+1(x

τ
h+1))),

where Λh ←
K∑

τ=1

ϕτ
h(ϕ

τ
h)

⊤ + I.

(3.1)

Unlike the online setting where optimistic estimations are
essential for encouraging exploration (Jin et al., 2020a; Xie
et al., 2020), we need to adopt more robust estimation due
to the distributional shift in the offline setting. Inspired by
recent work (Jin et al., 2020b; Rashidinejad et al., 2021;
Yin and Wang, 2021; Uehara and Sun, 2021; Zanette et al.,
2021), which shows that pessimism plays a key role in the
offline setting, we also use the pessimistic estimations for
both players. In detail, we estimate Q-functions by subtract-
ing/adding a bonus term:

Q
h
(·, ·, ·)← ΠH−h+1{ϕ(·, ·, ·)⊤wh − Γh(·, ·, ·)},

Qh(·, ·, ·)← ΠH−h+1{ϕ(·, ·, ·)⊤wh + Γh(·, ·, ·)}.
(3.2)

Here Γh is the bonus function, which takes the form

β
√

ϕ⊤Λ−1
h ϕ, where β is a parameter which will be speci-

fied later. Such a bonus function is common in linear bandits
(Lattimore and Szepesvári, 2020) and linear MDPs (Jin et al.,
2020a). We remark that Q

h
and Qh are pessimistic estima-

tions for the max-player and the min-player, respectively.
Then, we solve the matrix games with payoffs Q

h
and Qh:

(π̂h(· | ·), ν′h(· | ·))← NE(Q
h
(·, ·, ·)),

(π′
h(· | ·), ν̂h(· | ·))← NE(Qh(·, ·, ·)).

The estimated value functions V h(·) and V h(·)
are defined by Ea∼π̂h(·|·),b∼ν′

h(·|·)Qh
(·, a, b) and

Ea∼π′
h(·|·),b∼ν̂h(·|·)Qh(·, a, b), respectively. Af-

ter H steps, PMVI outputs the policy pair
(π̂ = {π̂h}Hh=1, ν̂ = {ν̂h}Hh=1).

Remark 3.1 (Computational efficiency). We remark that our
algorithm is computationally efficient because both the re-
gression (3.1) and finding the NE of a zero-sum matrix game
(using linear programming) can be efficiently implemented.
Moreover, we remark that we do not need to compute
Qh(x, ·, ·), Qh

(x, ·, ·), π̂h(·|x), ν′h(·|x), π′
h(·|x), ν̂′h(·|x)

for all x ∈ S. Instead, we only do so for the states we
encounter.

Remark 3.2. We remark that the linearity of the reward func-
tions and the transition kernel is strictly stronger than the
linearity of value-function. In the online setting, the recent
works (Jin et al., 2021; Huang et al., 2021) show that the lin-
earity of the value function empowers statistically efficient
learning. However, we consider this stronger assumption
because it is likely that it is essential for computational
efficiency due to the lack of computation tractability with
general function approximation and the hardness result in
Du et al. (2019) which only assumes near-linearity of value
functions of MDPs (special case of MGs).

In the following theorem, we provide the theoretical guar-
antees for PMVI (Algorithm 1). Recall that we use the
shorthand ϕh = ϕ(sh, ah, bh).

Theorem 3.3. Suppose Assumptions 2.1 and 2.4 hold. Set
β = cdH

√
ζ in Algorithm 1, where c is a sufficient large

constant and ζ = log(2dKH/p). Then for sufficient large
K, it holds with probability 1− p that

SubOpt
(
(π̂, ν̂), x

)
≤ 2β

H∑
h=1

Eπ∗,ν′

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣∣s1 = x

]

+ 2β

H∑
h=1

Eπ′,ν∗

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣∣s1 = x

]
.

Proof. See Appendix A for a detailed proof.

Theorem 3.3 states that the suboptimality of PMVI is upper
bounded by the product of 2β and a data-dependent term,
where β comes from the the covering number of function
classes and the date-dependent term will be explained in the
following section.

4. Sufficiency: Low Relative Uncertainty
In this section, we interpret Theorem 3.3 by characterizing
the sufficient condition for achieving sample efficiency.
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4.1. Relative Uncertainty

We first introduce the following important notion of “relative
uncertainty”.

Definition 4.1 (Relative Uncertainty). Given an MGM and
a dataset D that is compliant withM, for an NE policy pair
(π∗, ν∗), the relative uncertainty of (π∗, ν∗) with respect to
D is defined as

RU(D, π∗, ν∗, x)

= max
{
sup
ν

H∑
h=1

Eπ∗,ν

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣ s1 = x
]
,

sup
π

H∑
h=1

Eπ,ν∗

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣ s1 = x
]}

,

where x is the initial state and expectation Eπ∗,ν and Eπ,ν∗

are taken respect to randomness of the trajectory induced
by (π∗, ν) and (π, ν∗) in the underlying MG given the fixed
matrix Λh =

∑K
τ=1 ϕ

τ
h(ϕ

τ
h)

⊤ + I , respectively.

We also define the relative uncertainty with respect to the
dataset D as

RU(D, x) = inf
(π∗,ν∗) is NE

RU(D, π∗, ν∗, x). (4.1)

Therefore, we can reformulate Theorem 3.3 as:

SubOpt((π̂, ν̂), x) ≤ 4β · RU(D, x). (4.2)

Hence, we obtain that “low relative uncertainty” allows
PMVI to find an approximate NE policy pair sample effi-
ciently, which further implies that “low relative uncertainty”
is the sufficient condition for achieving sample efficiency in
offline linear MGs.

Before we provide a detailed discussion of this notion with
intuitions and examples, we first contrast our result with
the single policy (optimal policy) coverage identified in
the single-agent setting (Jin et al., 2020b; Xie et al., 2021;
Rashidinejad et al., 2021).

4.2. Single Policy (NE) Coverage is Insufficient

As demonstrated in Jin et al. (2020b); Xie et al. (2021);
Rashidinejad et al. (2021), a sufficient coverage over the
optimal policy is sufficient for the offline learning of MDPs.
As a straightforward extension, it is natural to ask whether
a sufficient coverage over the NE policy pair (π∗, ν∗) is
sufficient and therefore minimal. However, the situation is
more complicated in the MG case and we have the following
impossibility result.

Proposition 4.2. Coverage of the NE policy pair (π∗, ν∗)
is not sufficient for learning an approximate NE policy pair.

Proof. We prove the result by constructing two hard in-
stances and a dataset D such that no algorithm can achieve
small suboptimality for two instances simultaneously. We
consider two simplified linear MGs M1 and M2 with
state space S = {X}, action sets A1 = {ai : i ∈ [3]},
A2 = {bi : i ∈ [3]}, and payoff matrices:

R1 =

 0.5 −1 0
1 0 1
0 −1 0

 , R2 =

 0 0 −1
1 0 −1
1 1 0

 .

(4.3)
We consider the dataset D = {(a2, b2, r = 0), (a3, b3, r =
0)}where the choices of action are predetermined and the re-
wards are sampled from the underlying game, which implies
that D is compliant with the underlying game. However,
we can never distinguish these two games as they are both
consistent with D. Suppose that the output policies are
π̂(ai) = pi, ν̂(bj) = qj with i, j ∈ [3], we can easily find
that

SubOpt
M1

((π̂, ν̂), x) = 2− p2 − q2,

SubOpt
M2

((π̂, ν̂), x) = p1 + q1 + p2 + q2,

where the subscriptMi means that the underlying MG is
Mi. Therefore, we have

SubOpt
M1

((π̂, ν̂), x) + SubOpt
M2

((π̂, ν̂), x) ≥ 2,

which implies that either SubOpt
M1

((π̂, ν̂), x) or

SubOpt
M2

((π̂, ν̂), x) is larger than 1.

We remark that the instances constructed in the proof also
intuitively illustrate the sufficiency of the "low relative un-
certainty". Suppose that the underlying MG isM1 defined
in (4.3) and the dataset D now contains the information
about the set of action pairs:

G = {(a1, b2), (a2, b2), (a2, b1), (a2, b3), (a3, b2)} .
(4.4)

Then, the learning agent has the following estimation

R̂ =

 ∗ −1 ∗
1 0 1
∗ −1 ∗

 , (4.5)

where ∗ can be arbitrary. In particular, the collected infor-
mation is sufficient to verify that (a2, b2) are best response
to each other and therefore the NE policy pair.

More generally, for the NE that is possible a mixed strat-
egy, if we have sufficient information about {(π∗, ν) :
ν is arbitrary}, we can verify that ν∗ is the best re-
sponse of π∗. Similarly, the information about {(π, ν∗) :
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π is arbitrary} allows us to ensure that π∗ is the best re-
sponse policy to ν∗. Therefore, intuitively, a sufficient cov-
erage over these policy pairs empowers efficient offline
learning of the NE.

4.3. Interpretation of Theorem 3.3

To illustrate our theory more, we make several comments
below.

Data-Dependent Performance Upper Bound. The up-
per bound in Theorem 3.3 is in a data-dependent manner,
which is also a key idea employed by many previous works.
This allows to drop the strong uniform coverage assump-
tion, which usually fails to hold in practice. Specifically,
the suboptimality guarantee only relies on the the compli-
ance assumption and depends on the dataset D through the
relative uncertainty RU(D, x).

To better illustrate the role of the relative uncertainty, we
consider the linear MGM1 constructed in (4.3). We define
nij as the times that (ai, bj) is taken in D. Then, we have

sup
ν

Eπ∗,ν

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣∣s1 = x

]
= (1 +min

j
n2,j)

−1/2,

sup
π

Eπ,ν∗

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣∣s1 = x

]
= (1 +min

i
ni,2)

−1/2,

which implies that

RU(D, x) = RU(D, π∗, ν∗, x) = (1 + n∗)−1/2, (4.6)

where n∗ = mini,j∈[3]{n2,j , ni,2}. Hence, RU(D, x) mea-
sures how well the datasetD covers the action pairs induced
by (π∗, ν) and (π, ν∗), where π and ν are arbitrary. In
particular, combining (4.2) and (4.6), we obtain that

SubOpt((π̂, ν̂), x) ≤ 4β · (1 + n∗)−1/2,

where we take β as stated in the theorem. This implies that
the suboptimality of Algorithm 1 is small if the action pair
set is covered well by D, which corresponds to a large n∗.
More generally, we have the following corollary:
Corollary 4.3 (Sufficient Coverage of Relative Information).
Under Assumptions 2.1 and 2.4, we assume the existence of
a constant c1 such that

Λh ⩾ I + c1 ·K ·max
{
sup
ν

Eπ∗,ν

[
ϕhϕ

⊤
h

∣∣s1 = x
]
,

sup
π

Eπ,ν∗
[
ϕhϕ

⊤
h

∣∣s1 = x
] }

, (4.7)

with probability at least 1 − p/2. Set β = cdH
√
ζ in

Algorithm 1 where c is a sufficient large constant and ζ =
log(4dHK/p). Then for sufficient large K, it holds with
probability 1− p that

SubOpt((π̂, ν̂), x) ⩽ c′d3/2H2K−1/2
√
ζ,

where c′ is a constant that only relies on c and c1.

Proof. See Appendix B for detailed proof.

Oracle Property. Notably, in the above example, the action
pair that lies off the set G in (4.4) will not affect RU(D, x).
Such a property is referred as the oracle property in the
literature (Donoho and Johnstone, 1994; Zou, 2006; Fan and
Li, 2001). Specifically, since RU(D, x) takes expectation
under the set of policy pairs:

P = {(π∗, ν) : ν is arbitrary}
⋃
{(π, ν∗) : π is arbitrary},

the suboptimality automatically "adapts" to the trajectory
induced by this set even though it is unknown in prior. This
property is important especially when the datasetD contains
a large amount of irrelative information as the irrelative
information possibly misleads other learning agents. For
instance, suppose that we collect D through a naive policy
pair where both the max-player and the min-player pick their
actions randomly. Therefore, all action pairs are sampled
approximately uniformly. We assume that they are equally
sampled for K/9 times for simplicity. In this case, since
n∗ = K/9, the suboptimality of Algorithm 1 still decays at
a rate of K−1/2. In particular, one important observation is
that the output policy pair (π̂, ν̂) can outperform the naive
policy used to collect the dataset D.

Well-Explored Dataset. As in existing literature (e.g.,
(Duan et al., 2020)), we also consider the case where the
data collecting process explores the state-action space well.
Corollary 4.4 (Well-Explored Dataset). Supposed the
dataset D = {(sτh, aτh, bτh, rτh)}

K,H
τ,h=1 is induced by a fixed

behavior policy pair (π, ν) in the underlying MG. We also
assume the existence of a constant c > 0 such that

λmin(Σh) ⩾ c where Σh = Eπ,ν [ϕhϕ
⊤
h ], ∀h ∈ [H].

Set β = cdH
√
ζ in Algorithm 1 where c is a sufficient large

constant and ζ = log(4dHK/p). Then for sufficient large
K, it holds with probability 1− p that

SubOpt((π̂, ν̂), x) ⩽ c′dH2K−1/2
√
ζ,

where c′ is a constant that only relies on c and c.

Proof. See Appendix C for a detailed proof.

5. Necessity: Low Relative Uncertainty
In this section, we show that the low relative uncertainty is
also the necessary condition by establishing an information-
theoretic lower bound.

We have considered two sets of policy pairs, corresponding
to two levels of coverage assumptions on the dataset:

P1 = {(π∗, ν∗) is an NE};
P2 = {(π∗, ν), (π, ν∗) : π, ν are arbitrary}.
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Clearly, we have P1 ⊂ P2. From the discussion in Sec-
tion 4, we know that a good coverage of P1 is insufficient,
while a good coverage over P2 is sufficient for efficient
offline learning. It remains to ask whether there is a cover-
age assumption weaker than P2 but stronger than P1 that
empowers efficient offline learning in our setting. We give
the negative answer by providing an information-theoretic
lower bound in the following theorem.

Theorem 5.1. For any algorithm Algo(·) that outputs a
Markov policy pair based on D, there exists a linear game
M and a dataset D that is compliant with the underlying
MGM, such that when K is large enough, it holds that

ED

[
SubOpt (Algo(D);x0)

RU(D, x0)

]
⩾ C ′, (5.1)

where C ′ is an absolute constant and x0 is the initial state.
The expectation is taken with respect to PD where Algo(D)
is a policy pair constructed based on the dataset D.

Proof. See Appendix D for a detailed proof.

Notably, the lower bound in Theorem 5.1 matches the sub-
optimality upper bound in Theorem 3.3 up to β and absolute
constant factors and therefore establishes the near-optimality
of Algorithm 1. Meanwhile, Theorem 5.1 states that the
relative uncertainty RU(D, x0) correctly captures the hard-
ness of offline MG under the linear function approximation
setting, that is, low relative uncertainty is the necessary
condition for achieving sample efficiency.

6. Conclusion
In this paper, we make the first attempt to study the two-
player zero-sum linear MGs in the offline setting. For such
an equilibrium finding problem, we propose a pessimism-
based algorithm PMVI, which is the first RL algorithm that
can achieve both computational efficiency and nearly mini-
max optimality. Meanwhile, we introduce a new notion of
relative uncertainty and prove that low relative uncertainty
is the necessary and sufficient condition for achieving sam-
ple efficiency in offline linear MGs. We believe our work
opens up many promising directions for future work, such
as how to perform sample-efficient equilibrium learning in
the offline zero-sum MGs with general function approxima-
tions (Jin et al., 2021; Huang et al., 2021).
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A. Proof of Theorem 3.3
Proof of Theorem 3.3. First, we define the Bellman error as

ιh(x, a, b) = BhV h+1(x, a, b)−Q
h
(x, a, b),

ιh(x, a, b) = BhV h+1(x, a, b)−Qh(x, a, b).

Our proof relies on the following lemma.

Lemma A.1. Let E denote the event that

0 ≤ −ιh(s, a, b) ≤ 2Γh(s, a, b),

0 ≤ ιh(s, a, b) ≤ 2Γh(s, a, b).

for all h ∈ [H] and (s, a, b) ∈ S ×A× B. Then we have Pr(E) ≥ 1− p.

Proof. See Appendix A.1 for a detailed proof.

Under this event, we also have the following lemma to ensure that our estimated value functions are optimistic.

Lemma A.2. Under the event E , we have

V h(x) ≤ V π̂,∗
h (x), V ∗,ν̂

h (x) ≤ V h(x).

Proof. See Appendix A.2 for a detailed proof.

Back to our proof, we decompose the suboptimality gap as

SubOpt
(
(π̂, ν̂), x

)
= V ∗,ν̂

1 (x)− V π̂,∗
1 (x) = V ∗,ν̂

1 (x)− V ∗
1 (x)︸ ︷︷ ︸

(i)

+V ∗
1 (x)− V π̂,∗

1 (x)︸ ︷︷ ︸
(ii)

. (A.1)

For term (i), by Lemma A.2, we have

(i) ≤ V 1(x)− V ∗
1 (x) ≤ V 1(x)− V π′,ν∗

1 (x), (A.2)

where the last inequality follows from the fact that (π∗, ν∗) is the NE. Then we can use the following lemma to decompose
the term V 1(x)− V π′,ν∗

1 (x).

Lemma A.3 (Value Difference Lemma). Given an MG (S,A,B, r,H). Let π̂⊗ν̂ = {π̂h⊗ν̂h : S → ∆(A1)×∆(A2)}h∈[H]

be a product policy, (π, ν) be a policy pair, and {Q̂h}Hh=1 be any estimated Q-functions. For any h ∈ [H] , we define the
estimated value function V̂h : S → R by setting V̂h(x) = ⟨Q̂h(x, ·, ·), π̂h(·|x)⊗ ν̂h(·|x)⟩ for all x ∈ S. For all x ∈ S,

V̂1(x)− V π,ν
1 (x) =

H∑
h=1

Eπ,ν

[
⟨Q̂h(sh, ·, ·), π̂h(·|sh)⊗ ν̂h(·|sh)− πh(·|sh)⊗ νh(·|sh)⟩|s1 = x

]
+

H∑
h=1

Eπ,ν

[
Q̂h(sh, ah, bh)− BhV̂h+1(sh, ah, bh)|s1 = x

]
.

Proof. See Section B.1 in Cai et al. (2020) for a detailed proof.

By Lemma A.3, we obtain

V 1(x)− V π′,ν∗

1 (x) =

H∑
h=1

Eπ′,ν∗

[
⟨Qh(sh, ·, ·), π′

h(·|x)⊗ ν̂h(·|x)− π′
h(·|sh)⊗ ν∗h(·|sh)⟩|s1 = x

]
−

H∑
h=1

Eπ′,ν∗ [ιh(sh, ah, bh)|s1 = x]. (A.3)

The first term can be bounded by the following lemma.
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Lemma A.4. It holds that

H∑
h=1

Eπ′,ν∗

[
⟨Qh(sh, ·, ·), π′

h(·|sh)⊗ ν̂h(·|sh)− π′
h(·|sh)⊗ ν∗h(·|sh)⟩|s1 = x

]
≤ 0.

Proof. See Appendix A.3 for a detailed proof.

Applying Lemma A.1 to the second term of (A.3) gives

−
H∑

h=1

Eπ′,ν∗ [ιh(sh, ah, bh)|s1 = x] ≤ 2

H∑
h=1

Eπ′,ν∗ [Γh(sh, ah, bh)|s1 = x].

Putting the above inequalities together we obtain

(i) ≤ 2

H∑
h=1

Eπ′,ν∗ [Γh(sh, ah, bh)|s1 = x] (A.4)

Similarly, we can obtain

(ii) ≤ 2

H∑
h=1

Eπ∗,ν′ [Γh(sh, ah, bh)|s1 = x]. (A.5)

Plugging (A.4) and (A.5) into (A.1), we conclude the proof of Theorem 3.3.

A.1. Proof of Lemma A.1

Proof of Lemma A.1. Throughout this proof, we use the shorthands

ϕτ
h = ϕ(sτh, a

τ
h, b

τ
h), ϕh = ϕ(sh, ah, bh), ϕ = ϕ(s, a, b).

For the simplicity of notation, we also let

ϵτh(V ) = rτh + V (sτh+1)− BhV (sτh, a
τ
h, b

τ
h) (A.6)

By the linear MDP assumption, we have (BhV h+1)(s, a, b) = ϕ(s, a, b)⊤wh, where

wh = θh +

∫
x∈S

V h+1(x)µh(x)dx.
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Then we have ∣∣ϕ⊤wh − (BhV h+1)(s, a, b)
∣∣

=

∣∣∣∣∣ϕ⊤

(
Λ−1
h

K∑
τ=1

(
rτh + V h+1(s

τ
h+1)

)
ϕτ
h

)
− (BhV h+1)(s, a, b)

∣∣∣∣∣
=

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V h+1)ϕ
τ
h + ϕ⊤Λ−1

h

K∑
τ=1

(BhV h+1)(s
τ
h, a

τ
h, b

τ
h)ϕ

τ
h − ϕ⊤wh

∣∣∣∣∣
=

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V h+1)ϕ
τ
h + ϕ⊤Λ−1

h

K∑
τ=1

ϕτ
h(ϕ

τ
h)

⊤wh − ϕ⊤wh

∣∣∣∣∣
=

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V h+1)ϕ
τ
h + ϕ⊤Λ−1

h (Λh − I)wh − ϕ⊤wh

∣∣∣∣∣
=

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V h+1)ϕ
τ
h − ϕ⊤Λ−1

h wh

∣∣∣∣∣
⩽
∣∣ϕ⊤Λ−1

h wh

∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V h+1)ϕ
τ
h

∣∣∣∣∣︸ ︷︷ ︸
(ii)

. (A.7)

Now we estimate term (i)

|(i)| ⩽ ∥ϕ∥Λ−1
h
∥wh∥Λ−1

h
⩽ ∥wh∥ ∥ϕ∥Λ−1

h
⩽ H
√
d ∥ϕ∥Λ−1

h
, (A.8)

where the second inequality follows from
∥∥Λ−1

h

∥∥
op ⩽ 1 and the third inequality follows from Lemma E.1. Here ∥ · ∥op

denotes the operator norm of a matrix.

Supposed that ∥V − V h+1∥∞ ⩽ ϵ, by the definition of ϵτh(V ) in (A.6), we have∣∣ϵτh(V h+1)− ϵτh(V )
∣∣

=
∣∣rτh + V h+1(s

τ
h+1)− BhV h+1(s

τ
h, a

τ
h, b

τ
h)− rτh − V (sτh+1) + BhV (sτh, a

τ
h, b

τ
h)
∣∣

⩽
∣∣V h+1(s

τ
h+1)− V (sτh+1)

∣∣+ ∣∣BhV h+1(s
τ
h, a

τ
h, b

τ
h)− BhV (sτh, a

τ
h, b

τ
h)
∣∣ ⩽ 2ϵ.

Thus we have∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

(
ϵτh(V h+1)− ϵτh(V )

)
ϕτ
h

∣∣∣∣∣ ⩽
K∑

τ=1

∣∣ϕ⊤Λ−1
h

(
ϵτh(V h+1)− ϵτh(V )

)
ϕτ
h

∣∣
⩽

K∑
τ=1

∣∣ϵτh(V h+1)− ϵτh(V )
∣∣ ∥ϕ∥Λ−1

h
∥ϕτ

h∥Λ−1
h

⩽
K∑

τ=1

∣∣ϵτh(V h+1)− ϵτh(V )
∣∣ ∥ϕ∥Λ−1

h
∥ϕτ

h∥ ⩽ 2ϵK ∥ϕ∥Λ−1
h

,

where the last inequality holds since ∥ϕ∥ ⩽ 1. We define two function classes as

Qh = ΠH−h+1

{
ϕ(·, ·, ·)⊤w − β

√
ϕ⊤Λ−1ϕ

}
,

Qh = ΠH−h+1

{
ϕ(·, ·, ·)⊤w + β

√
ϕ⊤Λ−1ϕ

}
,

(A.9)

where the parameters (w,Λ) satisfy ∥w∥ ≤ H
√
dK and λmin(Λ) ≥ 1. Let Qh,ϵ and Qh,ϵ be the ϵ-nets of Qh and Qh,

respectively. Choose the pair (Q′
h+1

, Q
′
h+1) ∈ Qh,ϵ ×Qh,ϵ such that

∥Qh+1 −Q
′
h+1∥∞ ⩽ ϵ, ∥Q

h+1
−Q′

h+1
∥∞ ⩽ ϵ,
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where ϵ = 1/KH . Let V ′
h+1(s) be the NE value of payoff matrix Q

′
h+1(s, ·, ·). By Lemma E.2 we have∣∣V ′

h+1(s)− V h+1(s)
∣∣ ⩽ ϵ.

Then we obtain

|(ii)| =

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

(
ϵτh(V h+1)− ϵτh(V )

)
ϕτ
h + ϕ⊤Λ−1

h

K∑
τ=1

ϵτh(V
′
h+1)ϕ

τ
h

∣∣∣∣∣
⩽

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

(
ϵτh(V h+1)− ϵτh(V

′
h+1)

)
ϕτ
h

∣∣∣∣∣+
∣∣∣∣∣ϕ⊤Λ−1

h

K∑
τ=1

ϵτh(V
′
h+1)ϕ

τ
h

∣∣∣∣∣
⩽ 2ϵK ∥ϕ∥Λ−1

h
+

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V
′
h+1)ϕ

τ
h

∣∣∣∣∣ (A.10)

⩽ 2ϵK ∥ϕ∥Λ−1
h

+

∥∥∥∥∥
K∑

τ=1

ϵτh(V
′
h+1)ϕ

τ
h

∥∥∥∥∥
Λ−1

h

∥ϕ∥Λ−1
h︸ ︷︷ ︸

(iii)

. (A.11)

For any τ ∈ [K], h ∈ [H], we define

Fh,τ−1 := σ
(
{(sjh, a

j
h, b

j
h)}

min{τ+1,K}
j=1 ∪ {(rjh, s

j
h+1)}

τ
j=1

)
,

where σ(·) is the σ−algebra generated by a set of random variables. For all τ ∈ [K], we have ϕ(sτh, a
τ
h, b

τ
h) ∈ Fh,τ−1, as

(sτh, a
τ
h, b

τ
h) is Fh,τ−1−measurable. Besides, for any fix function V : S → [0, H − 1] and all τ ∈ [K], we have

ϵτh(V ) = rτh + V (sτh+1)− (BhV )(sτh, a
τ
h, b

τ
h) ∈ Fh,τ−1

and {ϵτh(V )}Kτ=1 is a stochastic process adapted to the filtration {Fh,τ}Kτ=0. By Lemma E.4, we obtain an estimation of
term (iii). For any δ ∈ (0, 1),

P

∥∥∥∥∥
K∑

τ=1

ϵτh(V )ϕτ
h

∥∥∥∥∥
2

Λ−1
h

⩾ 2H2 log

(
det(Λh)

1/2

δ det(I)1/2

) ⩽ δ

Since

∥Λh∥op =

∥∥∥∥∥I +
K∑

τ=1

ϕτ
h(ϕ

τ
h)

⊤

∥∥∥∥∥
op

⩽ 1 +

K∑
τ=1

∥∥ϕτ
h(ϕ

τ
h)

⊤∥∥
op ⩽ 1 +K,

we have det(Λh) ⩽ (1 +K)d, which further implies

P

∥∥∥∥∥
K∑

τ=1

ϵτh(V )ϕτ
h

∥∥∥∥∥
2

Λ−1
h

⩾ H2

(
d log(1 +K) + 2 log(

1

δ
)

)
⩽ P

∥∥∥∥∥
K∑

τ=1

ϵτh(V )ϕτ
h

∥∥∥∥∥
2

Λ−1
h

⩾ 2H2 log

(
det(Λh)

1/2

δ det(I)1/2

) ⩽ δ.

By Lemma E.3,
∣∣∣Qϵ,h ×Qϵ,h

∣∣∣ = N 2
h,ϵ ⩽

(
1 + 4H

√
dK

ϵ

)2d (
1 + 8β2

√
d

ϵ2

)2d2

. Thus, by the union bound argument we have

|(iii)| ≲ dH
√

ζ∥ϕ∥Λ−1
h
. (A.12)

with probability at least 1− p/2. Combining (A.8), (A.10), and (A.12), we have∣∣ϕ⊤wh − (BhV h+1)(s, a, b)
∣∣ ≤ β∥ϕ∥Λ−1

h
= Γh(s, a, b)
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with probability at least 1− p/2. Then, we have

ϕ⊤wh + Γh(s, a, b) ≥ BhV h+1(s, a, b) ≥ −(H − h+ 1).

The last inequality follows from |rh| ⩽ 1 and
∣∣V h+1(s, a, b)

∣∣ ⩽ H − h. The inequality implies

Qh(s, a, b) = min{H − h+ 1, ϕ⊤wh + Γh(s, a, b)} ≤ ϕ⊤wh + Γh(s, a, b).

Therefore, we have

ιh(sh, ah, bh) = BhV h+1(sh, ah, bh)−Qh(sh, ah, bh)

≥ BhV h+1(sh, ah, bh)− ϕ⊤wh − Γh(sh, ah, bh) ≥ −2Γh(sh, ah, bh). (A.13)

If ϕ⊤wh + Γh(s, a, b) ≥ H − h+ 1, then, we have

Qh(s, a, b) = min{H − h+ 1, ϕ⊤wh + Γh(s, a, b)} = H − h+ 1.

Thus, we further obtain that

ιh(s, a, b) = BhV h+1(s, a, b)−Qh(s, a, b) = BhV h+1(s, a, b)− (H − h+ 1) ≤ 0. (A.14)

Otherwise, ϕ⊤wh + Γh(s, a, b) ≤ H − h+ 1, which implies Qh(s, a, b) = ϕ⊤wh + Γh(s, a, b). In this situation, we have

ιh(s, a, b) = BhV h+1(s, a, b)−Qh(s, a, b)

= BhV h+1(s, a, b)− ϕ⊤wh − Γh(s, a, b) ≤ 0. (A.15)

Similarly, we can prove

0 ≤ ιh(s, a, b) ≤ 2Γh(s, a, b) (A.16)

with probability at least 1− p/2. Thus, the event E happens with probability at least 1− p, which concludes our proof.

A.2. Proof of Lemma A.2

Proof of Lemma A.2. We prove the first inequality i.e.,

V h(x) ≤ V π̂,∗
h (x).

We prove it by induction. When h = H + 1, V π̂,∗
h = V h = 0, the inequality holds trivially. Now we suppose the inequality

holds for step h+ 1, we prove it also holds for step h. By definition of value function,

V π̂,∗
h (x)− V h(x) = Eπ̂,∗[Q

π̂,∗
h (x, a, b)]− Eπ̂,ν′ [Q

h
(x, a, b)]

= Eπ̂,∗[Q
π̂,∗
h (x, a, b)−Q

h
(x, a, b)]

+
(
Eπ̂,∗[Qh

(x, a, b)]− Eπ̂,ν′ [Q
h
(x, a, b)]

)
. (A.17)

By the definition that ιh(x, a, b) = BhV h+1(x, a, b)−Q
h
(x, a, b), we have

Qπ̂,∗
h (x, a, b)−Q

h
(x, a, b) = Bh

(
V π̂,∗
h+1(x, a, b)− V h+1(x, a, b)

)
+ ιh(x, a, b) ≥ 0, (A.18)

where the last inequality follows from Lemma A.1 and induction assumption. Meanwhile, by the property of NE, we have

Eπ̂,∗[Qh
(x, a, b)]− Eπ̂,ν′ [Q

h
(x, a, b)] ≥ 0, (A.19)

Combining (A.17), (A.18) and (A.19), we obtain

V π̂,∗
h (x)− V h(x) ≥ 0,

which concludes the proof.
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A.3. Proof of Lemma A.4

Proof of Lemma A.4. We estimate the each term in the summation. By the fact that (π′
h(·|x), ν̂h(·|x)) is the NE of the

matrix game with payoff Qh(x, ·, ·) for any x ∈ S, we have

⟨Qh(sh, ·, ·), π′
h(·|sh)⊗ ν̂h(·|sh)− π′

h(·|sh)⊗ ν∗h(·|sh) ≤ 0. (A.20)

Taking summation over h ∈ [H], we obtain

H∑
h=1

Eπ′,ν∗

[
⟨Qh(sh, ·, ·), π′

h(·|sh)⊗ ν̂h(·|sh)− π′
h(·|sh)⊗ ν∗h(·|sh)⟩|s1 = x

]
≤ 0,

which concludes the proof.

B. Proof of Corollary 4.3
Proof of Corollary 4.3. Fix (π∗, ν). For notational simplicity, we define

Σh(x) = Eπ∗,ν [ϕ(sh, ah, bh)ϕ
⊤(sh, ah, bh)|s1 = x].

By the assumption, we have

Eπ∗,ν

[√
ϕ⊤
hΛ

−1
h ϕh

]
⩽ Eπ∗,ν

[√
ϕ⊤
h (I + c1KΣh(x))−1ϕh|s1 = x

]
= Eπ∗,ν

[√
tr((I + c1KΣh(x))−1ϕhϕ⊤

h )|s1 = x

]
⩽
√
Eπ∗,ν

[
tr((I + c1KΣh(x))−1ϕhϕ⊤

h )|s1 = x
]

=
√
[tr((I + c1KΣh(x))−1Σh(x))]

=

√
1

c1K
·
√
tr((I + c1KΣh(x))−1(c1KΣh(x) + I − I))

=

√
1

c1K
·
√
tr(I − (I + c1KΣh(x))−1) ⩽

√
d

c1K
,

where the second inequality follows from the Cauchy-Schwarz inequality. Thus, for any policy ν, we have

2β

H∑
h=1

Eπ∗,ν [
√
ϕ⊤
hΛ

−1
h ϕh|s1 = x] ⩽ 2cc

−1/2
1 d3/2H2K−1/2

√
ζ.

Similarly, for any policy π, we have

2β

H∑
h=1

Eπ,ν∗ [
√
ϕ⊤
hΛ

−1
h ϕh|s1 = x] ⩽ 2cc

−1/2
1 d3/2H2K−1/2

√
ζ.

Let c′ = 4cc
−1/2
1 , by the definition of related uncertainty, we obtain

4β · RU(D, x) ⩽ c′d3/2H2K−1/2
√
ζ.

Combined with Theorem 3.3, we further obtain

SubOpt(PMVI(D), x) ⩽ c′d3/2H2K−1/2
√
ζ,

which concludes our proof.
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C. Proof of Corollary 4.4
Proof of Corollary 4.4. The proof consists of two steps. In the first step, we use Lemma E.5 for concentration. In
the second step, we estimate the suboptimality. Recall that we denote ϕh = ϕ(sh, ah, bh) , ϕτ

h = ϕ(sτh, a
τ
h, b

τ
h) and

Σh(x) = Eπ,ν [ϕ(sh, ah, bh)ϕ
⊤(sh, ah, bh)|s1 = x]. Let

Zh =

K∑
τ=1

Aτ
h, Aτ

h = ϕτ
h(ϕ

τ
h)

⊤ − Σh, ∀h ∈ [H].

Clearly, we have Eπ,ν [A
τ
h] = 0. Since the trajectories are induced by the behavior policy (π, ν), the K trajectory are i.i.d.

and {Aτ
h} are i.i.d.. By Assumption 2.1, we have ∥ϕ(s, a, b)∥ ⩽ 1 for any (s, a, b) ∈ S ×A1 ×A2, which further implies∥∥ϕτ

h(ϕ
τ
h)

⊤
∥∥

op ⩽ 1. Then, we have

∥Σh∥op =
∥∥Eπ,ν [ϕ

τ
h(ϕ

τ
h)

⊤]
∥∥

op ⩽ Eπ,ν

[∥∥ϕτ
h(ϕ

τ
h)

⊤∥∥
op

]
⩽ 1.

Thus, we obtain

∥Aτ
h∥op ⩽ ∥Σh∥op +

∥∥ϕτ
h(ϕ

τ
h)

⊤∥∥
op ⩽ 2,

and ∥∥Aτ
h(A

τ
h)

⊤∥∥
op ⩽ ∥Aτ

h∥
2
op ⩽ 4.

Since {Aτ
h}τ∈[K are i.i.d. and mean-zero, for any h ∈ [H], we have

∥∥Eπ,ν [Z
⊤
h Zh]

∥∥
op =

∥∥∥∥∥
K∑

τ=1

Eπ,ν [A
τ
h(A

τ
h)

⊤]

∥∥∥∥∥
op

= K ·
∥∥Eπ,ν [A

τ
h(A

τ
h)

⊤]
∥∥

op ⩽ 4K.

Similarly, we can obtain
∥∥Eπ,ν [ZhZ

⊤
h ]
∥∥

op ⩽ 4K. By Lemma E.5, we have ,

P(∥Zh∥op ⩾ t) ⩽ 2d · exp
(
− t2/2

4K + 2t/3

)
, ∀t > 0.

Let t =
√

10K log (4dH/p), we have

P(∥Zh∥op ⩾ t) ⩽
p

2H
.

By the definition of Λh, we have

Zh =

K∑
τ=1

ϕτ
h(ϕ

τ
h)

⊤ −KΣh = Λh − I −KΣh.

When K > 40/c · log (4dH/p), it holds with probability at least 1− p/2 that

λmin(Λh) = λmin(Zh + I +KΣh)

⩾ Kλmin(Σh)− ∥Zh∥op ⩾ K
(
c−

√
10/K · log (4dH/p)

)
⩾ Kc/2

for all h ∈ [H]. Let c′′ =
√

2/c, with probability 1− p/2, we have∥∥Λ−1
h

∥∥
op ⩽ c′′2K−1

for all h ∈ [H]. Combined the fact that ∥ϕ∥ (·, ·, ·) ⩽ 1, for all h ∈ [H], we have√
ϕ⊤
hΛ

−1
h ϕh ≤

∥∥Λ−1
h

∥∥
op ⩽ c′′K−1/2.
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Then, for any policy pair (π, ν), we have

H∑
h=1

Eπ,ν

[√
ϕ⊤
hΛ

−1
h ϕh|s1 = x

]
⩽ c′′HK−1/2.

Together with Theorem 3.3, we have

SubOpt(PMVI(D), x) ⩽ c′dH2K−1/2
√
ζ

with probability at least 1− p with c′ = 4cc′′. Therefore, we finish the proof.

D. Proof of the Information-Theoretic Lower Bound
The proof is organized as follows. First, we construct a class of linear MGs M and a dataset collecting process for D
which is compliant with the underlying MG. Then, given a policy pair (π, ν) constructed based on D, we find two hard
MGsM1,M2 from the class M such that the policy pair cannot achieve a desired suboptimality simultaneously. Before
continuing, we introduce another notion of suboptimality, defined as

SubOptw((π, ν), x0) = |V ∗
1 − V π,ν

1 | ≤ V ∗,ν
1 − V π,∗

1 = SubOpt((π, ν), x0),

due to the weak duality property given in (2.5). Therefore, we can prove the lower bound for SubOptw((π, ν), x0) which
implies the original theorem.

D.1. Construction of the Linear MG Class M

The class M is defined to be

M = {M(p1, p2, p3) : p1, p2 ∈ [1/4, 3/4], p3 = min{p1, p2}},

where M(p1, p2, p3) is a MG with H ⩾ 2, state space S = {x0, x1, x2} and action space |A1| = |A2| = {yi}Ai=0 with
A = |A1| ≥ 3. We fix the initial state as x0. Now we define the transition kernel of the game at step h = 1 to be

P1 (x1 | x0, y1, yj) = p1 P1 (x2 | x0, y1, yj) = 1− p1, ∀j ∈ {1, · · · , A},
P1 (x1 | x0, y2, yj) = p2, P1 (x2 | x0, y2, yj) = 1− p2, ∀j ∈ {1, · · · , A},
P1 (x1 | x0, yi, yj) = p3, P1 (x2 | x0, yi, yj) = 1− p3, ∀i ≥ 3,∀j ∈ {1, · · · , A}.

According to the construction, we can see that the transition is determined by the max-player’s action at step h = 1. At
subsequent step h ≥ 2, we set

Ph(x1|x1, yi, yj) = Ph(x2|x2, yi, yj) = 1,∀i, j ∈ {1, · · · , A}.

In other words, the states x1 and x2 are absorbing. The reward functions of the game are defined as

r1(x0, yi, yj) = 0, ∀i, j ∈ {1, · · · , A},
rh(x1, yi, yj) = 1, rh(x2, yi, yj) = 0, ∀h ≥ 2,∀i, j ∈ {1, · · · , A}.

We further illustrate the class M in Figure D.1. To show that the gameM(p1, p2, p3) is indeed a linear MG, we define the
feature map ϕ(s, a, b) to be

ϕ(x0, yi, yj) = (e(i−1)A+j , 0, 0) ∈ RA2+2 ϕ(x1, yi, yj) = (0A2 , 1, 0) ∈ RA2+2

ϕ(x2, yi, yj) = (0A2 , 0, 1) ∈ RA2+2 ∀i, j ∈ {1, · · · , A},

where en ∈ RA2

is a vector whose components are all zero except for the n-th one.
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x0

x1

x2

P1(x1 |x0, yi, yj) = pi

P1(x2 |x0, yi, yj) = 1− pi

Figure 1. Illustration of the Game M(p1, p2, p3): In the first step with initial state x0, the game is totally determined by the max-player’s
action. The game has a probability of pi to enter state x1 if the max-player takes action a1 = yi. Meanwhile, x1 and x2 are absorbing
states.

D.2. Dataset Collecting Process

We speficy the dataset collecting process in this subsection. Given an MG M(p1, p2, p3) ∈ M, the dataset D =

{(sτh, aτh, bτh, rτh)}
K,H
τ,h=1 consists of K trajectories starting from the initial state x0, namely, xτ

1 = x0 for all τ ∈ [K].
The actions taken at the first step {aτ1 , bτ1}Kτ=1 are predetermined. The transitions at step h = 1 are sampled fromM and are
independent across K trajectories. The rewards are also generated by theM. The subsequent actions {aτh, bτh}Kτ=1, h ≥ 2
are arbitrary since they do not affect the transition and reward generation. In this case, the dataset is compliant with the
underlying MGM.

Before continuing, we define

nij =

K∑
τ=1

1{aτ1 = yi, b
τ
1 = yj}, κj

i =

K∑
τ=1

1{aτ1 = yi, s
τ
2 = xj},

nk
min = min{min

j
nkj ,min

i
nik}, ni =

A∑
j=1

nij , mi =

K∑
τ=1

1{sτ2 = xi}.
(D.1)

In other words, in the dataset D, the action pair (yi, yj) is taken by two players at step h = 1 for nij times; the event that
the max-player takes action yi at step h = 1 and the next state is xj happens for κj

i times; the max-player takes action yi at
step h = 1 for ni times; and the initial state x0 transits to xi for mi times. Finally, nk

min measures how well the dataset D
covers the state action pairs where one action is fixed to be k.

Since x1 and x2 are absorbing states, for learning the optimal policy π∗, the original datasetD contains the same information
as the reduced one D1 := {(xτ

1 , a
τ
1 , b

τ
1 , x

τ
2 , r

τ
2 )}Kτ=1. Recall that the actions at step h = 1 are predetermined. The

randomness of the dataset generation only comes from the transiton at the first step and we can write:

PD∼M (D1) =

K∏
τ=1

PM (s2 = xτ
2 | s1 = xτ

1 = x0, a1 = aτ1 , b1 = bτ1)

=

A∏
j=1

(
p
k1
j

j (1− pj)
k2
j

)
.

(D.2)

D.3. Lower Bound of the Suboptimality

In this subsection, we constructed two MGs and show that the suboptimality of any algorithm that outputs a policy based on
the dataset D is lower bounded by the hypothesis testing risk and the risk can be further lower bounded by some tuning
parameters.
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Lemma D.1 (Reduction to Testing). For the dataset D collected as specified in Section D.2, there exists two MGs
M1(p

∗, p, p),M2(p, p
∗, p) ∈ M where p∗ > p satisfy p, p∗ ∈ [1/4, 3/4], such that the output policy Algo(D) of any

algorithm satisfies:

ED∼M1 [SubOptw(Algo(D);x0)] + ED∼M2 [SubOptw(Algo(D);x0)]

⩾ (H − 1)(p∗ − p) (ED∼M1 [1− π̂1(y1)] + ED∼M2 [π̂1(y1)]) ,

It further holds that

ED∼M1 [SubOptw(Algo(D);x0)] + ED∼M2 [SubOptw(Algo(D);x0)] ⩾ 1/2(H − 1)(p∗ − p). (D.3)

The right-hand side of (D.3) is the risk of a (randomized) test function about the hypothesis testing problem:

H0 :M =M1 versus H1 :M =M2.

This construction mirrors the Le Cam method (Le Cam, 2012; Yu et al., 1997). See the Section 5.3.2 of Jin et al. (2020b) for
a detailed discussion.

Proof of Lemma D.1. We first notice that by the construction ofM1 andM2, the games degrade to the MDPs. Therefore,
we have

ED∼M1 [SubOptw(Algo(D);x0)] = ED∼M1

[
|V π∗,ν∗

1 (x0)− V π̂,ν̂
1 (x0)|

]
= ED∼M1

[
V π∗,ν∗

1 (x0)− V π̂,ν̂
1 (x0)

]
,

where we use the fact that the Nash value is the V-value of the induced MDP in the last equality. Clearly, forM1, π∗
1 puts

probability 1 for action y1 given the state x0. In this case, we have the following calculation:

ED∼M1

[
V π∗,ν∗

1 (x0)− V π̂,ν̂
1 (x0)

]
= (H − 1)

(
p∗ −

A∑
i=1

ED∼M1 [π̂1(yi)] pi

)

= (H − 1)ED∼M1

p∗(1− π̂1(y1))−
∑
i̸=1

π̂i(yi)p


= (H − 1)(p∗ − p)ED∼M1 [1− π̂1(y1)] ,

where we use
∑A

j=1 π̂1(yj) = 1 in the last equality. Therefore, we have

ED∼M1 [SubOptw(Algo(D);x0)] = (H − 1)(p∗ − p)ED∼M1 [1− π̂1(y1)] .

Similarly,
ED∼M2 [SubOptw(Algo(D);x0)] = (H − 1)(p∗ − p)ED∼M2 [1− π̂1(y2)] .

It follows that
ED∼M1 [SubOptw(Algo(D);x0)] + ED∼M2 [SubOptw(Algo(D);x0)]

⩾ (H − 1)(p∗ − p) (ED∼M1 [1− π̂1(y1)] + ED∼M2 [π̂1(y1)]) ,
(D.4)

where we use π̂1(y1) ≤ 1− π̂1(y2). This concludes the proof of (D.3). It remains to find a lower bound for the right-hand
side. We have:

ED∼M1 [1− π̂1(y1)] + ED∼M2 [π̂1(y1)] ⩾ 1− TV (PD∼M1 ,PD∼M2)

⩾ 1−
√

KL (PD∼M1 ||PD∼M2) /2 (D.5)

where TV(·, ·) and KL(·||·) are the total variation distance of probability measures and Kullback-Leibler (KL) divergence
of two distributions, respectively. Here the first inequality comes from the definition of total variation distance, and the
last inequality follows from Pinsker’s inequality. Intuitively, we set p and p∗ carefully to makeM1 andM2 hard to be
distinguished.
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As stated in (D.2), we can explicitly write down the probability of the reduced dataset D1 as

PD∼M1
(D1) = (p∗)κ

1
1 · (1− p∗)κ

2
1 · p

∑
i̸=1 κ1

i · (1− p)
∑

i̸=1 κ2
i ;

PD∼M2
(D1) = (p∗)κ

1
2 · (1− p∗)κ

2
2 · p

∑
i̸=2 κ1

i · (1− p)
∑

i̸=2 κ2
i .

We recall κj
i =

∑K
τ=1 1{aτ1 = yi, s

τ
2 = xj}. Since the randomness only comes from the state transition at the first step for

D1 and these transitions are independent across K trajectories. It follows that

KL (PD∼M1
||PD∼M2

)

= ED∼M1

[ (
κ1
1 − κ1

2

)
log

(
p∗

p

)
+
(
κ2
1 − κ2

2

)
log

(
1− p∗

1− p

)]
= (p∗n1 − pn2) log

(
p∗

p

)
+ ((1− p∗)n1 − (1− p)n2) log

(
1− p∗

1− p

)
= n1

(
p∗ log

p∗

p
+ (1− p∗) log

1− p∗

1− p

)
+ n2

(
p log

p

p∗
+ (1− p) log

1− p

1− p∗

)
. (D.6)

It remains to carefully set p and p∗ to obtain the desired lower bound. To this end, we set

p =
1

2
− 1

16

√
2

n1 + n2
, p∗ =

1

2
+

1

16

√
2

n1 + n2
,

such that p, p∗ ∈ [1/4, 3/4] and

p∗ − p <
1

4
< min{p, p∗, 1− p∗, 1− p}.

As a result of the inequality log(1 + x) ⩽ x, ∀x > −1, we have

p∗ log
p∗

p
+ (1− p∗) log

1− p∗

1− p
⩽

(p∗ − p)2

p(1− p)
⩽ 16(p∗ − p)2,

p log
p

p∗
+ (1− p) log

1− p

1− p∗
⩽

(p∗ − p)2

p∗(1− p∗)
⩽ 16(p∗ − p)2.

Thus,

KL (PD∼M1
||PD∼M2

) ⩽ 16n1(p
∗ − p)2 + 16n2(p

∗ − p)2 ⩽ 16(n1 + n2)(p
∗ − p)2 ≤ 1

2
.

It follows that

ED∼M1 [1− π̂1(y1)] + ED∼M2 [π̂1(y1)] ⩾ 1−
√

KL (PD∼M1 ||PD∼M2) /2 ⩾
1

2
.

Combined this with (D.4) and (D.5), we conclude that

ED∼M1 [SubOptw(Algo(D);x0)] + ED∼M2 [SubOptw(Algo(D);x0)] ⩾
1

2
(H − 1)(p∗ − p). (D.7)

Therefore, we conclude the proof.

D.4. Upper Bound of RU(D, x0)

We recall that we are concerning about

ED∼M

[
SubOptw (Algo(D);x0)

RU(D, x0)

]
.

We still need to find an upper bound of RU(D, x0) for the constructed linear MGs.
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Lemma D.2 (Upper Bound of RU(D, x0)). Suppose the Assumption 2.4 holds and the underlying MG isM ∈ M. We
define j∗ = argmaxj∈{1,2} pj (we assume that p1 ̸= p2). Then, the optimal policy satisfies π∗

1(yj∗) = 1 and we further
take ν∗1 (yj∗) = 1. Then, for Algorithm 1, it holds that

H∑
h=1

sup
ν

Eπ∗,ν

[(
ϕ (sh, ah, bh)

⊤
Λ−1
h ϕ (sh, ah, bh)

)1/2
| x0

]
≤ 1√

1 + nj∗

min

+ (H − 1) ·
(

pj∗√
1 +m1

+
1− pj∗√
1 +m2

)
,

H∑
h=1

sup
π

Eπ,ν∗

[(
ϕ (sh, ah, bh)

⊤
Λ−1
h ϕ (sh, ah, bh)

)1/2
| x0

]

≤ sup
π

 1√
1 + nj∗

min

+
∑
i∈[A]

π1(yi)(H − 1) ·
(

pi√
1 +m1

+
1− pi√
1 +m2

) .

(D.8)

Furthermore, with probability at least 1− 1
K , the following event holds

E = {mi ⩾ K/4−
√
2K log(2K) | i = 1, 2},

where the probability is taken with respect to PD∼M. Under E , for K ⩾ 32 log(2K), we can obtain

RU(D, π∗, ν∗, x0) ≤
1√
nj∗

min

+
2
√
2(H − 1)√

K
≤ 2
√
2H√
nj∗

min

. (D.9)

Proof of Lemma D.2. Proof of (D.8). We first consider supν Eπ∗,ν . By xτ
1 = x0 for all τ ∈ [K] and the definition of Λh,

we have

Λ1 = I +

K∑
τ=1

ϕ (x0, a
τ
1 , b

τ
1)ϕ (x0, a

τ
1 , b

τ
1)

⊤

= diag (1 + n11, 1 + n12 . . . , 1 + nAA, 1, 1) ∈ R(A2+2)×(A2+2),

where the second equality follows from the definition of ϕ. For h ≥ 2, the state is x1 or x2, so we have

Λh = I +

K∑
τ=1

ϕ (xτ
h, a

τ
h, b

τ
h)ϕ (xτ

h, a
τ
h, b

τ
h)

⊤
= diag (1, 1, . . . , 1, 1 +m1, 1 +m2) ∈ R(A2+2)×(A2+2),

where the second equality follows from the definition of ϕ. Under (π∗, ν), we know that

Pπ∗,ν(s2 = x1) = pj∗ , Pπ∗,ν(s2 = x2) = 1− pj∗ .

It follows that

sup
ν

Eπ∗,ν

[(
ϕ (sh, ah, bh)

⊤
Λ−1
h ϕ (sh, ah, bh)

)1/2
| s1 = x0

]

≤


(
1 + nj∗

min

)−1/2

, h = 1,

pj∗ · (1 +m1)
−1/2

+ (1− pj∗) · (1 +m2)
−1/2

, h ∈ {2, . . . ,H},

where we use the definition of ϕ, and the fact that nj∗

min ≤ nj∗i for all i ∈ [A].

For supπ Eπ,ν∗ , the main difference lies in the distribution of s2:

Pπ,ν∗(s2 = x1) =
∑
j∈[A]

π1(yj)pj , Pπ,ν∗(s2 = x2) = 1−
∑
j∈[A]

π1(yj)pj .
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It follows that

Eπ,ν∗

[(
ϕ (sh, ah, bh)

⊤
Λ−1
h ϕ (sh, ah, bh)

)1/2
| s1 = x0

]

≤


(
1 + nj∗

min

)−1/2

, h = 1,∑
i∈[A] π1(yi)(H − 1) ·

(
pi√

1+m1
+ 1−pi√

1+m2

)
, h ∈ {2, . . . ,H},

where we use the definition of ϕ, and the fact that nj∗

min ≤ nij∗ for all i ∈ [A]. This concludes the proof of (D.8).

We now turn to the high-probability event:

E =

{
mi ⩾ K/4−

√
1

2
K log(2K) | i = 1, 2

}
.

By construction, we know that 3
4 ≥ p1, p2 ≥ 1

4 . Therefore, we know that E[mi] ⩾ 1/4K for i = 1, 2. By Hoeffding’s
inequality, for any ξ ∈ (0, 1), with probability at least 1− ξ , the following event happens{

mi ⩾ K/4−
√

1

2
K log(2/ξ) | i = 1, 2

}
.

Setting ξ = 1/K, we obtain the desired result.

Proof of (D.9). In particular, for K ⩾ 32 log(2K), with probability at least 1− 1/K, we have

mi ⩾ K/8, ∀i ∈ {1, 2}.

The (D.9) follows directly from (D.8) and mi ⩾ K/8.

D.5. Proof of Theorem 5.1

We now invoke Lemma D.1 and Lemma D.2 to give a detailed proof of Theorem 5.1.

Proof of Theorem 5.1. Since the actions are predetermined, we can additionally assume that

1

c
⩽

n1
min

n2
min

⩽ c,
1

c
⩽

n2i

n2
min

⩽ c,
1

c
⩽

n1i

n2
min

⩽ c ∀i ∈ {1, · · · , n},

where c is a positive constant. This assumption means that the numbers of action pairs whose components contain y1 or y2
are relatively uniform. By Lemma D.1, there exist two gamesM1,M2 such that

max
i∈{1,2}

√
ni

minED∼Mi
[SubOptw (Algo(D), x0)]

⩾

√
n1

minn
2
min√

n1
min +

√
n2

min

(ED∼M1 [SubOptw (Algo(D), x0)] + ED∼M2 [SubOptw (Algo(D), x0)])

⩾

√
n1

minn
2
min√

n1
min +

√
n2

min

1

2
(H − 1)(p∗ − p) =

√
2

16
· (H − 1) ·

√
n1

minn
2
min√

n1
min +

√
n2

min

· 1√
n1 + n2

,

where the first inequality is because max{x, y} ≥ ax+ (1− a)y for all a ∈ [0, 1] and x, y ≥ 0 and the second inequality
follows from Lemma D.1. Note that

n1 + n2 =

A∑
i=1

(n1i + n2i) ⩽ 2cAn2
min.

Therefore, we have

max
i∈{1,2}

√
ni

minED∼Mi
[SubOptw (Algo(D), x0)] ⩾

1

16
√
cA
· (H − 1) ·

√
n1

min/n
2
min√

n1
min/n

2
min + 1

⩾ C, (D.10)
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where C =
1

16
√
cA
· (H − 1) · 1

1 +
√
c

. Here the last inequality is because f(t) = t
1+t is increasing for t ≥ 0. We now

take the optimal policy of gameMi to be π∗
1(yi) = ν∗1 (yi) = 1. It follows that

max
i∈{1,2}

ED∼Mi

[
SubOptw (Algo(D), x0)

RU(D, x0)

]
⩾ max

i∈{1,2}
ED∼Mi

[
SubOptw (Algo(D), x0)

RU(D, x0)
1E

]
⩾ max

i∈{1,2}
ED∼Mi

[
1

C1

√
ni

min SubOptw(Algo(D), x0)1E

]
= max

i∈{1,2}
ED∼Mi

[
1

C1

√
ni

min SubOptw (Algo(D), x0)

]
− ED∼Mi

[
1

C1

√
ni

min SubOptw (Algo(D), x0) · 1Ec

]
⩾

C

C1
−
√
K

C1
· 2H · 1

K

⩾
C

2C1
:= C ′ > 0,

where C ′ =
C

2C1
, C1 = 2

√
2H , and C =

1

16
√
cA
· (H − 1) · 1

1 +
√
c

. The second inequality follows from (D.9). The

third inequality is because (D.10), SubOptw(Algo(D), x0) ≤ 2H , ni
min ≤ K, and P(E) ≤ 1

K . The forth inequality holds

for K ⩾
16H2

C2
. By SubOpt(Algo(D), x0) ≥ SubOptw(Algo(D), x0), we conclude the proof of Theorem 5.1.

E. Technical Lemmas
Recall that we use shorthands

ϕh = ϕ(sh, ah, bh), ϕτ
h = ϕ(sτh, a

τ
h, b

τ
h), rτh = r(sτh, a

τ
h, b

τ
h).

Lemma E.1. For any dataset D, we define

wh = θh +

∫
x∈S

V h+1(x)µh(x)dx,

where V h+1(x) are the value function constructed in Algorithm 1, then wh as well as wh in Algorithm 1 satisfy

∥wh∥ ⩽ H
√
d, ∥wh∥ ⩽ H

√
Kd, i = 1, 2.

Proof of Lemma E.1. By definition of wh,

∥wh∥ =
∥∥∥∥θh +

∫
x∈S

V h+1(x)µh(x)dx
∥∥∥∥ ⩽ ∥θh∥+

∥∥∥∥∫
x∈S

V h+1(x)µh(x)dx
∥∥∥∥

⩽
√
d+ (H − h)

∫
x∈S
∥µh(x)∥ dx ⩽

√
d+ (H − h)

√
d ⩽ H

√
d

where the second and the last inequities follow from the regulation assumption in Assumption 2.1 that ∥θh∥ ⩽
√
d and∫

x∈S ∥µh(x)∥ dx ⩽
√
d , while the construction in Algorithm 1 guarantees V h+1(x) ⩽ H − h, which implies the third

inequality.

By construction of wh in Algorithm 1,

∥wh∥ =

∥∥∥∥∥Λ−1
h

K∑
τ=1

ϕτ
h(r

τ
h + V h+1(sh+1))

∥∥∥∥∥ ⩽ H

K∑
τ=1

∥∥Λ−1
h ϕτ

h

∥∥ ,
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where the last inequality follows from triangle inequality and |rτh| ⩽ 1, V h+1(x) ⩽ H − h. Note that

∥∥Λ−1
h ϕτ

h

∥∥ =

√
(ϕτ

h)
⊤Λ

−1/2
h Λ−1

h Λ
−1/2
h ϕτ

h ⩽
(
(ϕτ

h)
⊤Λ−1

h ϕτ
h

)1/2
.

The last inequality follows from
∥∥Λ−1

h

∥∥
op ⩽ 1. Thus,

H

K∑
τ=1

∥∥Λ−1
h ϕτ

h

∥∥ = H

K∑
τ=1

(
(ϕτ

h)
⊤Λ−1

h ϕτ
h

)1/2
⩽ H
√
K

(
K∑

τ=1

(ϕτ
h)

⊤Λ−1
h ϕτ

h

)1/2

= H
√
K

(
tr(Λ−1

h

K∑
τ=1

ϕτ
h(ϕ

τ
h)

⊤)

)1/2

= H
√
K
(
tr(Λ−1

h (Λh − 1I))
)1/2

⩽ H
√
K (tr(I))

1/2
= H
√
Kd,

where the first inequality follows from Cauchy-Schwarz inequality.

Lemma E.2 (Non-Expansive Property of Nash Value). For any integer n and matrix A ∈ Rn×n, we denote f(A) =
maxx∈∆ miny∈∆ xTAy, where ∆ = {x ∈ Rn : xi ≥ 0,

∑n
i=1 xi = 1}. Fix ϵ > 0, given any matrices A1, A2 ∈ Rn×n

satisfying ∥A1 −A2∥∞ ≤ ϵ, we have

|f(A1)− f(A2)| ≤ ϵ.

Proof. Fix x, we have

min
y∈∆

xTA1y = min
y∈∆

xT(A1 −A2 +A2)y ≥ min
y∈∆

xTA2y − ϵ,

where the inequality follows from the fact that ∥A1 −A2∥∞ ≤ ϵ. Hence, we can further obtain

f(A1) = max
x∈∆

min
y∈∆

xTA1y ≥ max
x∈∆

min
y∈∆

xTA2y − ϵ = f(A2)− ϵ. (E.1)

Symmetrically, we can obtain f(A2) ≥ f(A1)− ϵ. Therefore, we conclude the proof.

Lemma E.3 (ϵ−Covering). For any ϵ > 0, the ϵ−covering number Nh,ϵ of Qh (and Qh) with respect to ℓ∞ norm satisfies

Nh,ϵ ⩽

(
1 +

4H
√
dK

ϵ

)d(
1 +

8β2
√
d

ϵ2

)d2

,

Here the function classes Qh and Qh are defined in (A.9).

Proof of Lemma E.3. We only estimate the covering number of Qh. Suppose Q1 with parameters (w1, A1) and Q2 with
parameters (w2, A2) are in the function class Qh, then

∥Q1 −Q2∥∞ = sup
ϕ:∥ϕ∥⩽1

∣∣∣ΠH−h+1

(
ϕ⊤w1 + β

√
ϕ⊤A1ϕ

)
−ΠH−h+1

(
ϕ⊤w2 + β

√
ϕ⊤A2ϕ

)∣∣∣
⩽ sup

ϕ:∥ϕ∥⩽1

∣∣∣(ϕ⊤w1 + β
√
ϕ⊤A1ϕ

)
−
(
ϕ⊤w2 + β

√
ϕ⊤A2ϕ

)∣∣∣
⩽ sup

ϕ:∥ϕ∥⩽1

∣∣ϕ⊤(w1 − w2)
∣∣+ sup

ϕ:∥ϕ∥⩽1

β
√
|ϕ⊤(A1 −A2)ϕ|

⩽ ∥w1 − w2∥+ β
√
∥A1 −A2∥F ,
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where the second inequality follows from the inequality
√
x−√y ⩽

√
|x− y|. Thus ϵ/2-covering of Cw = {w ∈ Rd :

∥w∥ ⩽ H
√
dK} and

ϵ2

4β2
−covering of CA = {A ∈ Rd×d : ∥A∥F ⩽

√
d} are sufficient to form an ϵ-cover of Qh. We

obtain the covering number of Qh satisfies

Nh,ϵ ⩽

(
1 +

4H
√
dK

ϵ

)d(
1 +

8β2
√
d

ϵ2

)d2

.

The inequality follows from the standard bound of the covering number of Euclidean Balls (cf. Lemma 2 in Vershynin
(2010)).

Lemma E.4 (Concentration for Self-normalized Processes (Abbasi-Yadkori et al., 2011)). Suppose {ϵt}t⩾1 is a scalar
stochastic process generating the filtration {Ft}t⩾1, and ϵt|Ft−1 is zero mean and σ-subGaussian. Let {ϕt}t⩾1 be an
Rd-valued stochastic process with ϕt ∈ Ft−1. Suppose Λ0 ∈ Rd×d is positive definite, and Λt = Λ0 +

∑t
s=1 ϕsϕ

⊤
s . Then

for each δ ∈ (0, 1), with probability at least 1− δ, we have

∥
t∑

s=1

ϕsϵs∥2Λ−1
t

⩽ 2σ2log
(

det(Λt)
1
2

δdet(Λ0)
1
2

)
, ∀t ⩾ 0.

Lemma E.5 (Matix Bernstein Inequality). Supposed that {Ak}nk=1 are independent random matrix in Rd1×d2 . They satisfy
E[Ak] = 0 and ∥Ak∥op ⩽ L. Let Z =

∑n
k=1 Ak and

v(Z) = max
{∥∥E[ZZ⊤]

∥∥
op ,
∥∥E[Z⊤Z]

∥∥
op

}
= max

{∥∥∥∥∥
n∑

k=1

E[AkA
⊤
k ]

∥∥∥∥∥
op

,

∥∥∥∥∥
n∑

k=1

E[A⊤
k Ak]

∥∥∥∥∥
op

}
.

We have,

P(∥Z∥op ⩾ t) ⩽ (d1 + d2) · exp
(
− t2/2

v(Z) + L/3 · t

)
, ∀t > 0.

Proof. See Theorem 1.6.2 of Tropp (2015) for detailed proof.


