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Abstract
This paper studies the algorithmic stability
and generalizability of decentralized stochas-
tic gradient descent (D-SGD). We prove that
the consensus model learned by D-SGD is
O(m/N+1/m+λ2)-stable in expectation in the
non-convex non-smooth setting, where N is
the total sample size of the whole system, m
is the worker number, and 1−λ is the spec-
tral gap that measures the connectivity of the
communication topology. These results then
deliver an O(1/N+((m−1λ2)

α
2 +m−α)/N1−α

2 )
in-average generalization bound, which is non-
vacuous even when λ is closed to 1, in con-
trast to vacuous as suggested by existing liter-
ature on the projected version of D-SGD. Our
theory indicates that the generalizability of D-
SGD has a positive correlation with the spectral
gap, and can explain why consensus control in
initial training phase can ensure better general-
ization. Experiments of VGG-11 and ResNet-18
on CIFAR-10, CIFAR-100 and Tiny-ImageNet
justify our theory. To our best knowledge, this
is the first work on the topology-aware gener-
alization of vanilla D-SGD. Code is available
at https://github.com/Raiden-Zhu/
Generalization-of-DSGD.

1. Introduction
Decentralized stochastic gradient descent (D-SGD) facili-
tates simultaneous model training on a massive number of
workers without a central server (Lopes & Sayed, 2008;
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Nedic & Ozdaglar, 2009b). In D-SGD, every worker
only communicates with the directly connected neighbors
through “gossip communication” (Xiao & Boyd, 2004; Lian
et al., 2017; Koloskova et al., 2020). The communication
intensity is controlled by the communication topology. This
decentralized nature eliminates the requirement for an ex-
pensive central server dedicated to heavy communication
and computation. Surprisingly, existing theoretical results
demonstrate that the massive models on the edge converge
to a unique steady model, the consensus model, even with-
out the control of a central server (Lu et al., 2011; Shi et al.,
2015; Lian et al., 2017). Compared with the centralized syn-
chronized SGD (C-SGD) (Dean et al., 2012; Li et al., 2014),
D-SGD can achieve the same asymptotic linear speedup in
convergence rate (Zhang et al., 2019; 2021). In this way,
D-SGD provides a promising distributed machine learning
paradigm with improved privacy (Nedic, 2020), scalability
(Lian et al., 2017; Kairouz et al., 2021), and communication
efficiency (Ying et al., 2021b).

To date, the theoretical research on D-SGD has mainly
focused on its convergence (Nedic & Ozdaglar, 2009b;
Lian et al., 2017; Koloskova et al., 2020; Alghunaim &
Yuan, 2021), while the understanding on the generalizability
(Mohri et al., 2018; He & Tao, 2020) of D-SGD is still pre-
mature. A large amount of empirical evidence have shown
that D-SGD generalizes well on well-connected topologies
(Assran et al., 2019a; Ying et al., 2021a). Meanwhile, em-
pirical results by Assran et al. (2019b), Kong et al. (2021)
and Ying et al. (2021a) demonstrate that for ring topologies,
the validation accuracy of the consensus model learned by
D-SGD decreases as the number of workers increases. Thus,
a question is raised:

Our question

How does the communication topology of D-SGD
impact its generalizability?

This paper answers this question. We prove a topology-
aware generalization error bound for the consensus model
learned by D-SGD, which characterizes the impact of the
communication topology on the generalizability of D-SGD.
Our contributions are summarized as follows:

• Stability and generalization bounds of D-SGD. This
work proves the algorithmic stability (Bousquet & Elis-
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seeff, 2002) and generalization bounds of vanilla D-SGD
in the non-convex non-smooth setting. In Section 4, we
present an O(m/N+1/m+λ2) distributed on-average sta-
bility (see Corollary 2), where 1− λ denotes the spectral
gap of the network, a measure of the connectivity of the
communication topology G. These results would suffice to
derive a O(1/N + ((m−1λ2)

α
2 +m−α)/N1−α

2 ) gener-
alization bound in expectation of D-SGD (see Theorem 4).
Our error bounds are non-vacuous, even when the worker1

number is sufficiently large, or the communication graph
is sufficiently sparse. The theory can be directly applied
to explain why consensus distance control in the initial
phase of training can ensure better generalization.

• Communication topology and generalization of D-
SGD. Our theory shows that the generalizability of D-
SGD has a positive relationship with the spectral gap
1 − λ of the communication topology G. Besides, we
prove that the generalizability of D-SGD decreases when
the worker number increases for the ring, grid, and expo-
nential graphs. We conduct comprehensive experiments of
VGG-11 (Simonyan & Zisserman, 2014) and ResNet-18
(He et al., 2016b) on CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009) and Tiny-ImageNet (Le & Yang, 2015) to
verify our theory.

To our best knowledge, this work offers the first investi-
gation into the topology-aware generalizability of vanilla
D-SGD. The closest work in the existing literature is by Sun
et al. (2021), which derives O(N−1 + (1 − λ)−1) gener-
alization bounds for projected D-SGD based on uniform
stability (Bousquet & Elisseeff, 2002). They show that the
decentralized nature hurts the stability, and thus undermines
generalizability. Compared with the results by Sun et al.
(2021), our work makes two contributions: (1) we analyze
the vanilla D-SGD, which is capable of solving optimization
problems on unbounded domains, rather than the projected
D-SGD; and (2) our stability and generalization bounds
are non-vacuous, even in the cases where the spectral gap
1 − λ is sufficiently close to 0, which characterizes the
cases where the worker number is sufficiently large or the
communication graph is sufficiently sparse.

2. Related Work
The earliest work of classical decentralized optimization can
be traced back to Tsitsiklis (1984), Tsitsiklis et al. (1986)
and Nedic & Ozdaglar (2009a). D-SGD has been extended
to various settings in deep learning, including time-varying
topologies (Lu & Wu, 2020; Koloskova et al., 2020), asyn-
chronous settings (Lian et al., 2018; Xu et al., 2021; Nadi-
radze et al., 2021), directed topologies (Assran et al., 2019a;

1Throughout this work, we use the term worker to represent
the local model.

Taheri et al., 2020), and data-heterogeneous scenarios (Tang
et al., 2018; Vogels et al., 2021). It has been proved that the
convergence of D-SGD heavily relies on the communication
topology (Hambrick et al., 1996; Bianchi & Jakubowicz,
2012; Lian et al., 2017; Assran et al., 2019b; Wang et al.,
2019; Guo et al., 2020), especially in the scenarios where
the local data is heterogeneous across workers (Yuan et al.,
2020; Koloskova et al., 2020; Dai et al., 2022; Bars et al.,
2022; Huang et al., 2022). However, the impact of the com-
munication topology on the generalizability of D-SGD is
still in its infancy.

Recently, inspiring work by Zhang et al. (2021) gives in-
sights to how gossip communication in D-SGD promotes
generalization in large batch settings. They prove that a
self-adjusting noise exists in D-SGD, which may help D-
SGD find flatter minima with better generalization. Another
work by Richards et al. (2020) presents a generalization
bound of the Adaptation-Then-Combination (ATC) version
of D-SGD through algorithmic stability and Rademacher
complexity (Mohri et al., 2018) in both smooth and non-
smooth settings. However, their generalization bounds are
invariant to the communication topology, which contradicts
the experimental results (see Figure 3). In contrast, our
generalization bounds are topology-aware and characterize
the effects of decentralization on generalization.

3. Preliminaries
Supervised learning. Supposed X ⊆ Rdx and Y ⊆ R
are the input and output spaces, respectively. We de-
note the training set as S = {z1, . . . , zN}, where zζ =
(xζ , yζ) , ζ = 1, . . . , N are sampled independent and identi-
cally distributed (i.i.d.) from an unknown data distribution
D defined on Z = X × Y .

The goal of supervised learning is to learn a pre-
dictor (hypothesis) g(·;w), parameterized by w =
w(z1, z2, . . . , zN ) ∈ Rd, to approximate the mapping be-
tween the input variable x ∈ X and the output variable
y ∈ Y , based on the training set S. Let c : Y × Y 7→ R+

be a loss function that evaluates the prediction performance
of the hypothesis g. The loss of a hypothesis g with re-
spect to (w.r.t.) the example zζ = (xζ , yζ) is denoted by
f(w; zζ) = c(g(xζ ;w), yζ), in order to measure the ef-
fectiveness of the learned model. Then, the empirical and
population risks of w are defined as follows:

FS(w) =
1

N

N∑
ζ=1

f(w; zζ), F (w) = Ez∼D[f(w; z)].

Distributed learning. Distributed learning jointly trains a
learning model w on multiple workers (Shamir & Srebro,
2014). In this framework, the k-th worker (k = 1, . . . ,m)
can access nk independent and identically distributed (i.i.d.)
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Fully-connected Ring Star Grid Exponential

Figure 1. Illustration of some commonly-used communication topologies.

training examples Sk = {zk,1, . . . , zk,nk
}, drawn from the

data distribution D. If set nk = n, the total sample size will
be N = nm. In this case, the global empirical risk of w is
defined as:

∗F̂ (w) =
1

m

m∑
k=1

FSk
(w),

where FSk
(w) = 1

n

∑n
ζ=1 f(w; zk,ζ) denotes the local em-

pirical risk on the k-th worker and zk,ζ ∈ Sk (ζ = 1, . . . , n)
is the local sample set.

Decentralized Stochastic Gradient Descent (D-SGD).
The goal of D-SGD is to learn a consensus model w =
1
m

∑m
k=1 wk, on m workers, where wk denotes the local

model on the k-th worker. For any k, let w(t)
k ∈ Rd be the

d-dimensional local model on the k-th worker in the t-th
iteration, while w

(1)
k = 0 is the initial point. We denote P

as a doubly stochastic gossip matrix that characterizes the
underlying topology G (see Definition A.5 and Figure 1).
The intensity of gossip communications is measured by the
spectral gap (Seneta, 2006) of P (i.e., 1−max {|λ2| , |λn|},
where λi (i = 2, . . . ,m) denotes the i-th largest eigen-
value of P (see Definition A.6). The vanilla Adapt-While-
Communicate (AWC) version of D-SGD without projecting
operations updates the model on the k-th worker by

w
(t+1)
k =

Communication︷ ︸︸ ︷
m∑
l=1

Pk,lw
(t)
l −

Computation︷ ︸︸ ︷
ηt∇f(w

(t)
k ; z

(t)
k,ζt

), (1)

where {ηt} is a sequence of positive learning rates, and
∇f(w

(t)
k ; z

(t)
k,ζt

) is the gradient of f w.r.t. the first ar-
gument on the k-th worker, and ζt is i.i.d. variable
drawn from the uniform distribution over {1, . . . , n} at
the t-th iteration (Lian et al., 2017). In this paper, ma-
trix W = [w1, · · · ,wm]T ∈ Rm×d stands for all local
models across the network, while matrix ∇f(W;Z) =
[∇f(w1; z1), · · · ,∇f(wm; zm)]T ∈ Rm×d stacks all lo-
cal gradients w.r.t. the first argument. In this way, the matrix
form of Equation (1) is as follows:

W(t+1) = PW(t) − ηt∇f(W(t);Z
(t)
ζt
).

4. Topology-aware Generalization Bounds of
D-SGD

This section proves stability and generalization bounds for
D-SGD. We start with the definition of a new parameter-
level stability for distributed settings. Then, the stability of
D-SGD under a non-smooth condition is obtained (see The-
orem 1 and Corollary 2). This implies a connection between
stability and generalization in expectation (see Lemma 3),
which suffices to prove the expected generalization bound of
D-SGD, of order O(1/N + ((m−1λ2)

α
2 +m−α)/N1−α

2 ).

4.1. Algorithmic Stability of D-SGD

Understanding generalization using algorithmic stability can
be traced back to Bousquet & Elisseeff (2002) and Shalev-
Shwartz et al. (2010), and has been applied to stochastic
gradient methods (Hardt et al., 2016; Lei & Ying, 2020).
For more details, please see Appendix B.

We define a new algorithmic stability of distributed opti-
mization algorithms below, which better characterizes the
on-average sensitivity of models across multiple workers.
Definition 1 (Distributed On-average Stability). Let Sk =
{zk,1, . . . , zk,n} denote the i.i.d. local samples on the k-
th worker drawn from the distribution D (k = 1, . . . ,m).
S(i)
k = zk,1, . . . , z̃k,i, . . . , zk,n} ∈ Zn is formed by replac-

ing the i-th element of Sk with a local sample z̃k,i drawn
from the distribution D. We denote wk and w̃k as the
weight vectors on the k-th worker produced by the stochas-
tic algorithm A based on Sk and S(i)

k , respectively. A is ℓ2
distributed on-average ϵ-stable for all training data sets Sk

and S(i)
k (k = 1 . . .m) if

1

mn

n∑
i=1

m∑
k=1

ESk,S(i)
k ,A

[
∥wk − w̃k∥22

]
≤ ϵ2,

where EA[·] stands for the expectation w.r.t. the randomness
of the algorithm A (see more details in Appendix A).

We then prove that D-SGD is distributed on-average stable.

Theorem 1. Let Sk and S(i)
k be constructed in Definition 1.

Let w(t)
k and w̃

(t)
k be the t-th iteration on the k-th worker
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produced by Equation (1) based on Sk and S(i)
k respec-

tively, and {ηt} be a non-increasing sequence of positive
learning rates. We assume that for all z ∈ Z , the function
w 7→ f(w; z) is non-negative and convex with its gradient
∇f(w; z) being (α,L)-Hölder continuous (see Assump-
tion A.3). We further assume that the weight differences
at the t-th iteration are multivariate normally distributed:
w

(t)
k − w̃

(t)
k

i.i.d.∼ N (µt,k, σ
2
t,kId) for all k where d denotes

the dimension of weights, with unknown parameters µt,k

and σt,k satisfying some technical conditions (see Assump-
tion A.4). Then we have the following:

1

mn

n∑
i=1

m∑
k=1

ESk,S(i)
k ,A

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

]
≤

t∑
τ=0

Ct−τ{O
(
(1− 1

m
)λ2 +

1

m

)
︸ ︷︷ ︸

Error from decentralization

+O(
ητ

2

n
· 1

m

m∑
k=1

ESk,A

[
F

2α
1+α

Sk
(w

(τ)
k )

]
)︸ ︷︷ ︸

O(m
N ) · Averaged empirical risk

},

where C = 2η0L(1− 1
n ) and FSk

(w
(τ)
k ) is the local empir-

ical risk of the k-th worker at iteration τ .

Theorem 1 suggests that the distributed on-average stability
of D-SGD is positively related to the spectral gap of the
underlying topology and the accumulation of the averaged
empirical risk. The proof is provided in Appendix D.2.

We can obtain a simplified result with fixed learning rates.

Corollary 2 (Stability in Expectation with ηt ≡ η ). Sup-
pose all the assumptions of Theorem 1 hold. With a fixed
learning rate ηt ≡ η ≤ 1

2L (1 − 2
m ), the distributed on-

average stability of D-SGD can be bounded as

1

mn

n∑
i=1

m∑
k=1

ESk,S(i)
k ,A

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

]
≤ 1

1−2ηL(1− 1
n )

{O(
ϵSη

2

n
)︸ ︷︷ ︸

O(m
N )

+O
(
(1− 1

m
)λ2 +

1

m

)
︸ ︷︷ ︸

Error from decentralization

},

where ϵS denotes the upper bound of averaged empirical

risk 1
m

∑m
k=1 ESk,A

[
F

2α
1+α

Sk
(w

(t)
k )

]
.

Corollary 2 shows that the distributed on-averge stability of
D-SGD is of the order O(m/N+1/m+λ2). We defer the
proof to Appendix D.2.

Comparison with existing results. Compared with Sun
et al. (2021), we relax the restrictive bounded gradient
and the smoothness assumptions. Instead, a much weaker

Figure 2. Histograms of the weight differences of the last layers
of the ResNet-18 models (1024 dimensions × 10 classes=10240
parameters) trained by AWC D-SGD on S and S(i) that differ by
only one data point. Thirty ResNet-18 models are trained on data
sampled from the MNIST dataset (LeCun et al., 1998), each model
is trained with 16 workers for 3000 iterations.

Hölder condition (see Assumption A.3) is adopted. We
make a mild assumption that the weight difference

(
w

(t)
k −

w̃
(t)
k

)
is multivariate normally distributed (see Assump-

tion A.4), which stems from our empirical observations:
Figure 2 illustrates that the distribution of the weight differ-
ences in ResNet-18 models trained by D-SGD is close to
a centered Gaussian. Intuitively, the assumption is based
upon the fact that the weights of the consensus model are
very insensitive to the change of a single data point.

We also compare the order of the derived bound with the
existing literature. Hardt et al. (2016) proves that SGD
is O(

∑t−1
τ=1 ητ/n)-stable in convex and smooth settings,

which corresponds to the O(mN ) term in Corollary 2. Un-
der Hölder continuous condition, Lei & Ying (2020) pro-
poses a parameter-level stability bound of SGD of the or-

der O( ϵSη2

n +η
2

1−α ). In contrast, Corollary 2 shows that
D-SGD suffers from additional terms O

(
(1− 1

m )λ2+ 1
m

)
,

where the first term O
(
(1− 1

m )λ2) can characterize the de-
gree of disconnection of the underlying communication
topology. Close work by Sun et al. (2021) proved that the
stability of the projected variant of D-SGD is bounded by
O
(

ηtB2

N +ηtB2

1−λ

)
in the convex smooth setting, where B is

the upper bound of the gradient norm. The term O(ηtB
2

1−λ
)

brought by decentralization is of the order O(m2B2) for
ring topologies and O(mB2) for grids, respectively. Our
error bound in Corollary 2 is tighter than their results, since

1

1−2ηL(1− 1
n )

· O
(
(1− 1

m
)λ2 +

1

m

)
≤ O

(
m
)
≪ O(mB2) ≤ O(m2B2).
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4.2. Generalization bounds of D-SGD

The following lemma bridges the gap between generaliza-
tion and the newly proposed distributed on-average stability.
Lemma 3 (Generalization via Distributed On-average Sta-
bility). Let Sk and S(i)

k be constructed in Definition 1. If
for any z, the pre-specified function f(w; z) is non-negative
and convex, with its gradient ∇f(w; z) being (α,L)-Hölder
continuous, then

ES,A

[
F (w(t))− FS(w

(t))
]

≤ L

mn1−α
2

{ 1

mn

m∑
k=1

n∑
i=1

ESk,S(i)
k ,A

[
∥w(t)

k −w̃(t)
k ∥22

]}α
2 ,

where w(t) = 1
m

∑m
k=1 w

(t)
k .

We give the proof in Appendix D.3.

Lemma 3 suggests that if the consensus model learned by the
distributed SGD A is ϵ-stable in the sense of Definition 1, the
generalization error of the consensus model is bounded by
Lϵ

α
2 /(mn1−α

2 ). Lemma 3 improves Theorem 2 (c) of Lei
& Ying (2020) by removing the O(ES,A

[
F

2α
1+α (A(S))

]
)

term, where ES,A

[
F (A(S))

]
denotes the population risk of

the learned model A(S) (see Equation (D.26)). This im-
provement is significant, because ES,A

[
F (A(S))

]
usually

does not converge to zero in practice.

We now prove the generalization bound of D-SGD.
Theorem 4 (Generalization Bound in Expectation with
ηt ≡ η). Let all the assumptions of Theorem 1 hold. With a
fixed step sizes of ηt ≡ η ≤ 2L(1− 2

m ), the generalization
error of the consensus model learned by D-SGD can be
controlled as

ES,A

[
F (w(t))− FS(w

(t))
]

≤ L

[1−2ηL(1− 1
n )]

α
2
{O(

ϵ
α
2

S
N︸︷︷︸

O( 1
N )

+
n

α
2

N
((1− 1

m
)λ2+

1

m
)

α
2

︸ ︷︷ ︸
Error from decentralization

)},

where w(t) = 1
m

∑m
k=1 w

(t)
k and ϵS is the upper bounder

of 1
m

∑m
k=1 ESk,A

[
F

2α
1+α

Sk
(w

(t)
k )

]
.

The order of the generalization bound in Theorem 4 is
O(1/N + ((m−1λ2)

α
2 +m−α)/N1−α

2 ) and will become
O(1/N + (m− 1

2λ2 +m−1)/N− 1
2 ) in the smooth settings

where α = 1. The proof is provided in Appendix D.3.
Remark 1. Corollary 2 and Theorem 4 indicate that the
stability and generalization of D-SGD are positively related
to the spectral gap 1− λ. The intuition of the results is that
D-SGD with a denser connection topology (i.e., larger λ)
can aggregate more information from its neighbors, thus

”indirectly” accessing more data at each iteration, leading
to better generalization.

Table 1. Spectral gap of gossip matrices with different topology.

Graph topoloy Spectral gap 1− λ

Fully-connected 1
Disconnected 0
Ring ≈ 16π2/3m2

Grid O(1/(m log2(m)))
Exponential graph (even) 2/(1 + log2(m))

4.3. Practical Implications

Our theory delivers significant practical implications.

Communication topology and generalization. The inten-
sity of communication is controlled by the spectral gap 1−λ
of the underlying communication topologies (see Table 1).
Detailed analyses of the spectral gaps of some commonly-
used topologies can be found in Proposition 5 of Nedić et al.
(2018) and Ying et al. (2021a). Substituting the spectral gap
of different topologies in Table 1 into Theorem 4, we can
conclude that the generalization error of different topologies
can be ranked as follows: fully-connected < exponential <
grid < ring, since

0 < 1−O((log2(m))−1)

< 1−O((m log2(m))−1) < 1−O(m−2).

On the one hand, our theory provides theoretical evidence
that D-SGD will generalize better on well-connected topolo-
gies (i.e., topologies with larger spectral gap). On the other
hand, we prove that for a specific topology, the worker num-
ber impacts the generalization of D-SGD through affecting
the spectral gap of the topology.

Consensus distance control. Recently, a line of studies
have been devoted to understanding the connection between
optimization and generalization through studying the effect
of early phase training (Keskar et al., 2017; Achille et al.,
2018; Frankle et al., 2020). In the decentralized settings,
Kong et al. (2021) claims that there exists a “critical con-
sensus distance” in the initial training phase—consensus
distance (i.e. 1

m

∑m
i=1 ∥w

(t)
k − 1

m

∑m
k=1 w

(t)
k ∥2F ) below the

critical threshold will ensure good generalization. However,
the reason why consensus control can promote generaliza-
tion remains an open problem. Fortunately, the following
theorem can explain this phenomenon by connecting the
consensus distance notion in Kong et al. (2021) with the
algorithmic stability and the generalizability of D-SGD.

Corollary 5. Let all the assumptions of Theorem 1 plus
Assumption A.1 and Assumption A.2 hold. Suppose
that the consensus distance satisfies the condition Γ2 ≤
1
m

∑m
k=1 ∥w

(t)
k −w(t)∥22 ≤ K2 if t ≤ tΓ, and is controlled

below Γ2 from tΓ-th iterate to the end of training. Then
one can conclude that the upper bound of the distributed
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on-average stability of D-SGD increase monotonically with
tΓ if the total number of iterations t ≥ −C

2 lnC .

We give the proof in Appendix D.4.

Corollary 5 provides theoretical evidence for the following
empirical findings: (1) consensus control is beneficial to the
algorithmic stability and the generalizability of D-SGD; and
(2) it is more effective to control the consensus distance in
the initial stage of training than at the end of training.

5. Empirical Results
This section empirically validates our theoretical results.
We first introduce the experimental setup and then study
how the communication topology and the worker num-
ber affect the generalization of D-SGD. The code is
available at https://github.com/Raiden-Zhu/
Generalization-of-DSGD.

5.1. Experimental Setup

Networks and datasets. Network architectures VGG-11
(Simonyan & Zisserman, 2014) and ResNet-18 (He et al.,
2016b) are employed in our experiments. The models are
trained on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009)
and Tiny ImageNet (Le & Yang, 2015), three popular bench-
mark image classification datasets. The CIFAR-10 dataset
consists of 60,000 32×32 color images across 10 classes,
with each class containing 5,000 training and 1,000 testing
images. The CIFAR-100 dataset also consists of 60,000
32×32 color images, except that it has 100 classes, each
class containing 5,00 training and 1,00 testing images. Tiny
ImageNet contains 120,000 64× 64 color images in 200
classes, each class containing 500 training images, 50 vali-
dation images, and 50 test images. No other pre-processing
methods are employed.

Training setting. Vanilla D-SGD is employed to train im-
age classifiers based on VGG-11 and ResNet-18 on fully-
connected, ring, grid, and static exponential topologies. The
number of workers is set as 32 and 64. Batch normaliza-
tion (Ioffe & Szegedy, 2015) and dropout (Srivastava et al.,
2014) are employed in training VGG-11. The local batch
size is set as 64. To control the impact of different total
batch size (local batch size × worker number) caused by the
different number of workers, we apply the linear scaling law
(i.e., linearly increase learning rate w.r.t. total batch size)
(He et al., 2016a; Goyal et al., 2017). The initial learning
rate is set as 0.1 and will be divided by 10 when the model
has accessed 2/5 and 4/5 of the total number of iterations
(He et al., 2016a). All other techniques, including momen-
tum (Qian, 1999), weight decay (Tihonov, 1963), and data
augmentation (LeCun et al., 1998) are disabled.

Implementations. All our experiments are conducted

on a computing cluster with GPUs of NVIDIA® Tesla™

V100 16GB and CPUs of Intel® Xeon® Gold 6140 CPU
@ 2.30GHz. Our code is implemented based on PyTorch
(Paszke et al., 2019).

5.2. Communication topology and generalization

We calculate the difference between the validation loss and
the training loss on different topologies separately, as shown
in Figure 3 and Figure C.1. Two observations are obtained
from those figures: (1) for large topologies, the loss differ-
ences can be sorted as follows: fully-connected ≈ exponen-
tial < grid < ring; (2) as the worker number increases, the
loss differences of D-SGD on different topologies increase.
These observations suggest that (1) D-SGD generalizes bet-
ter on well-connected topologies with a larger spectral gap;
(2) the generalizability gap of D-SGD on different topolo-
gies grows as the worker number increases.

In comparison to ResNet-18, we observe when VGG-11 is
chosen as the backbone, the generalization gaps between
different topologies are larger (see Figure 3 and Figure C.1).
We conjecture that the generalization gaps are amplified
because the Hölder constant L of VGG-11 is larger than
that of ResNet-18, according to our theory suggesting that
the generalization error of D-SGD linearly increases with L
(see Theorem 4).

One may observe that the loss difference of the fully-
connected topology is larger than that of other topologies
in the initial training phase, which seems to be inconsistent
with our theory. Theoretically, explaining this phenomenon
is an optimization problem, which is beyond the scope of
this work. One possible explanation is motivated by the
stability-convergence trade-off in iterative optimization al-
gorithms (Chen et al., 2018). Since the fully-connected
system converges faster, the corresponding optimization
error is smaller than the other three kinds of systems at
the beginning of training. Therefore, the fully-connected
system is less stable in the initial phase of training.

6. Future Works
Generalization of D-SGD with non-i.i.d. data. In real-
world settings, a fundamental challenge is that data may not
be i.i.d. across the workers. In this case, different work-
ers may collect very distinct or even contradictory samples
(i.e., data-heterogeneity) (Criado et al., 2021). However,
generalization analyses of distributed learning algorithms
are mostly based on the key assumption that the data is i.i.d.
over workers. Therefore, more sophisticated techniques are
needed to broaden our knowledge on the following ques-
tions: Would the consensus model learned by D-SGD gen-
eralize well in the non-i.i.d. settings? Would the effect of
the communication topology on generalization be reduced

https://github.com/Raiden-Zhu/Generalization-of-DSGD
https://github.com/Raiden-Zhu/Generalization-of-DSGD
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(a) VGG-11 on CIFAR-10, 32 workers (b) VGG-11 on CIFAR-100, 32 workers (c) VGG-11 on Tiny ImageNet, 32 workers

(d) VGG-11 on CIFAR-10, 64 workers (e) VGG-11 on CIFAR-100, 64 workers (f) VGG-11 on Tiny ImageNet, 64 workers

Figure 3. Loss differences in training VGG-11 using D-SGD with different topologies.

or amplified in these scenarios?

Implicit bias of D-SGD. As pointed out in Zhang et al.
(2021), the additional gradient noise in D-SGD helps it
converge to a flatter minima compared to centralized dis-
tributed SGD. Therefore, a direct question is whether there
is a superior implicit bias effect (Soudry et al., 2018; Ji &
Telgarsky, 2019; Arora et al., 2019; Wang et al., 2021) in
D-SGD compared to centralized distributed SGD, which
involves the convergence direction? Can we theoretically
analyze the implicit bias of D-SGD and derive fine-grained
generalization bounds of D-SGD?

7. Conclusion
In this paper, we analyze the algorithmic stability and gen-
eralizability of decentralized stochastic gradient descent
(D-SGD). We prove that the consensus model learned by
D-SGD is O(m/N+1/m+λ2)-stable, where N is the total
sample size of the whole system, m is the worker num-
ber, and 1 − λ is the spectral gap of the communication
topology. Based on this stability result, we obtain an
O(1/N + ((m−1λ2)

α
2 +m−α)/N1−α

2 ) in-average gener-
alization bound, characterizing the gap between the training
performance and the test performance. Our error bounds
are non-vacuous, even when the worker number is suffi-
ciently large, or the communication graph is sufficiently
sparse. According to our theory, we can conclude: (1)
the generalizability of D-SGD is positively correlated with
the spectral gap of the underlying topology; (2) the gener-

alizability of D-SGD decreases when the worker number
increases. These theoretical findings are empirically jus-
tified by the experiments of VGG-11 and ResNet-18 on
CIFAR-10, CIFAR-100, and Tiny ImageNet. The theory
can also explain why consensus control at the beginning of
training can promote the generalizability of D-SGD. To our
best knowledge, this is the first study on the topology-aware
generalizations of vanilla D-SGD.
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A. Additional Background
The following remarks clarify some notations in the literature.
Remark A.1. Stochastic learning algorithms A : ∪nZn 7→ W are often applied to produce an output model A(S) ∈ Rd

based on the training set S . To avoid ambiguity, let A(S) denote the model generated by a general learning algorithm, and
w denote the models generated by a specific stochastic learning algorithm.
Remark A.2. Stochastic learning introduces two kinds of randomness: one from the sampling of training examples and
another from the adopted randomized algorithm. In the following analysis, EA[·] stands for the expectation w.r.t. the
randomness of the algorithm A, and ES [·] denotes the expectation w.r.t. the randomness originating from sampling the data
set S. Notice that S ∼ Dn and z ∼ D, therefore ES [·] differs from Ez[·] defined in Section 3.

Based on the work by Hardt et al. (2016) and Bottou & Bousquet (2008), we give a formulation of excess error decomposition
and demonstrate how to understand generalization through error decomposition.
Definition A.1 (Excess Error Decomposition). We denote the empirical risk minimization (ERM) solution by w∗

S =
argminw FS(w) and w∗ = argminw F (w). The excess error F (A(S))− F (w∗) can be decomposed as

ES,A [F (A(S))− F (w∗)]︸ ︷︷ ︸
Excess error

= ES,A [F (A(S))− FS(A(S))]︸ ︷︷ ︸
Generalization error

+ES,A [FS(A(S))− FS (w∗
S)]︸ ︷︷ ︸

Optimization error

+ES,A [FS(w
∗
S)− F (w∗)]

≤ ES,A [F (A(S))− FS(A(S))]︸ ︷︷ ︸
Generalization error

+ES,A [FS(A(S))− FS (w∗
S)]︸ ︷︷ ︸

Optimization error

(A.1)

The last inequality holds since and ES,A [FS(w
∗
S)] ≤ ES,A [FS (w∗)] = ES

[
F (w∗). The empirical risk and the population

risk above are defined in Section 3. This paper considers upper bounding the first term called the generalization error.

Lipschitzness and smoothness are two commonly adopted assumptions to establish the uniform stability guarantees of SGD.
Assumption A.1 (Lipschitzness).

∥∥∇f(w; z)
∥∥
2
≤ G for all w ∈ Rd and z ∈ Z .

Assumption A.2 (Smoothness). f is β-smooth if for any z and w, w̃ ∈ Rd,∥∥∇f(w; z)−∇f(w̃; z)
∥∥
2
≤ β∥w − w̃∥2. (A.2)

These two restrictive assumptions are not satisfied in many real contexts. For example, the Lipschitz constant G can be very
large for some learning problems (Fazlyab et al., 2019; Lei & Ying, 2020). In addition, neural nets with piecewise linear
activation functions like ReLU are not smooth. Smoothness is generally difficult to ensure at the beginning and intermediate
phases of deep neural network training (Bassily et al., 2020).
Assumption A.3 (Hölder Continuity). Let L > 0, α ∈ [0, 1]. ∇f(·, z) is (α,L)-Hölder continuous if for all w, w̃ ∈ Rd

and z ∈ Z , ∥∥∇f(w; z)−∇f(w̃; z)
∥∥
2
≤ L∥w − w̃∥α2 . (A.3)

Hölder continuous gradient assumption is much weaker than smoothness by definition. Serving as an intermediate
class of functions (C1,α (Rn)) between smooth functions (C1,1 (Rn)) and functions with Lipschitz continuous gradients
(C1,0 (Rn)), the main advantage of functions with Hölder continuous gradients lies in the ability to automatically adjust
the smoothness parameter to a proper level (Nesterov, 2015): Inequality (A.3) with α = 1 corresponds to smoothness and
Inequality (A.3) with α = 0 is equivalent to Lipschitzness (see Assumption A.1).

Assumption A.4 (Gaussian Weight Difference). We assume that the difference between w
(t)
k and w̃

(t)
k (the t-th iterate on

k-th worker produced by Equation (1) based on Sk and S(i)
k respectively) is independent and normally distributed:

(
w

(t)
k − w̃

(t)
k

)
∼N (µt,k, σ

2
t,kId), k = 1, . . . ,m

where Id denotes an identity matrix with size d, and µt,k, σ
2
t,k are unknown parameters. We also give a mild constraint

that the d-dimensional parameter µt,k satisfies d · µ2
0 ≤ ∥µt,k∥22 ≤ d · µ2 and the parameter σ2

t,k ∈ R is bounded by σ2.

Assumption A.4 is mild since Sk and S(i)
k only vary at one point.
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Commonly used stability notions are listed below.

Definition A.2 (Hypothesis Stability). A stochastic algorithm A is hypothesis ϵ-stable w.r.t. the loss function f if for all
training data sets S,S(i) ∈ Zn that differ by at most one example, we have

EzEA

[
f(A(S); z)− f(A(S(i)); z)

]
≤ ϵ. (A.4)

Definition A.3 (Uniform Stability). A stochastic algorithm A is ϵ-uniformly stable w.r.t. the loss function f if for all training
data sets S,S(i) ∈ Zn that differ by at most one example, we have

sup
z

EA

[
f(A(S); z)− f(A(S(i)); z)

]
≤ ϵ. (A.5)

Definition A.4 (On-average Model Stability, (Lei & Ying, 2020)). A stochastic algorithm A is ℓ2 on-average model ϵ-stable
for all training data sets S,S(i) ∈ Zn that differ by at most one example, we have

1

N

N∑
i=1

ES,S(i),A

[
∥A(S)−A(S(i))∥22

]
≤ ϵ2.

Some widely used notions regarding decentralized training are listed as follows.

Definition A.5 (Doubly Stochastic Matrix). Let G = (V, E) stand for the decentralized communication topology where
V denotes the set of m computational nodes and E represents the edge set. For any given graph G = (V, E), the
doubly stochastic gossip matrix P = [Pk,l] ∈ Rm×m is defined on the edge set E that satisfies: (1) If k ̸= l and
(k, l) /∈ E , then Pk,l = 0 (disconnected); otherwise, Pk,l > 0 (connected); (2) Pk,l ∈ [0, 1] ∀k, l; (3) P = P⊤; and (4)∑

k Pk,l =
∑

l Pk,l = 1 (standard weight matrix for undirected graph).

Definition A.6 (Spectral Gap). Denote λ = max {|λ2| , |λm|} where λi (i = 2, . . . ,m) is the i-th largest eigenvalue of
gossip matrix P ∈ Rm×m. The spectral gap of a gossip matrix P can be defined as follows:

spectral gap := 1− λ.

According to the definition of doubly stochastic matrix (Definition A.5), we have 0 ≤ λ < 1. The spectral gap measures the
connectivity of the communication topology, which is close to 0 for sparse topologies and will approach 1 for well-connected
topologies.

To facilitate our subsequent analysis, we provide some preliminaries of matrix algebra here.

Definition A.7 (Frobenius Norm). The Frobenius norm (Euclidean norm, or Hilbert–Schmidt norm) is the matrix norm of a
matrix A ∈ Rp×q defined as the square root of the sum of the squares of its elements:

∥A∥F =

√√√√ q∑
i=1

q∑
j=1

|aij |2 =
√
Tr(ATA).

For any A,B ∈ Rp×q , the following identity holds:

∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2⟨A,B⟩F ,

where ⟨·, ·⟩F is the Frobenius inner product.
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B. Additional Related Work
B.1. Non-centralized learning.

To handle an increasing amount of data and model parameters, distributed learning across multiple computing nodes
(workers) emerges. A traditional distributed learning system usually follows a centralized setup (Abadi et al., 2016).
However, such a central server-based learning scheme suffers from two main issues: (1) A centralized communication
protocol significantly slows down the training since central servers are easily overloaded, especially in low-bandwidth or
high-latency cases (Lian et al., 2017); (2) There exists potential information leakage through privacy attacks on model
parameters despite decentralizing data using Federated Learning (Zhu et al., 2019; Geiping et al., 2020; Yin et al., 2021). As
an alternative, training in a non-centralized fashion allows workers to balance the load on the central server through the
gossip technique, as well as maintain confidentiality (Warnat-Herresthal et al., 2021). Model decentralization can be divided
into three kinds of categories by layers (Lu & De Sa, 2021): (1) On the application layer, decentralized training usually
refers to federated learning (Zhao et al., 2018; Dai et al., 2022) ; (2) On the protocol layer, decentralization denotes average
gossip where local workers communicate by averaging their parameters with their neighbors on a graph (Lian et al., 2017)
and (3) on the topology layer, it means a sparse topology graph (Wan et al., 2020).

B.2. Generalization via algorithmic stability.

Algorithmic stability theory, PAC-Bayes theory, and information theory are major tools for constructing algorithm-dependent
generalization bounds (Neu et al., 2021). A direct intuition behind algorithmic stability is that if an algorithm does not
rely excessively on any single data point, it can generalize well. Proving generalization bounds based on the sensitivity
of the algorithm to changes in the learning sample can be traced back to Vapnik & Chervonenkis (1974) and Devroye &
Wagner (1979). After that, the celebrated work by Bousquet & Elisseeff (2002) establishes the relationship between uniform
stability and generalization in high probability. Follow-up work by Shalev-Shwartz et al. (2010) identifies stability as the
major necessary and sufficient condition for learnability. Then, Hardt et al. (2016) provide uniform stability bounds for
stochastic gradient methods (SGM) and show the strong stability properties of SGD with convex and smooth losses. Recent
work by Lei & Ying (2020) defines a new on-average stability notion and conducts generalization analyses on SGD with
the Hölder continuous assumption. In addition to uniform stability, there are other stability notions including on-average
stability (Shalev-Shwartz et al., 2010), uniform argument stability (Liu et al., 2017), data-dependent stability (Kuzborskij &
Lampert, 2018), hypothesis set stability (Foster et al., 2019) and locally elastic stability (Deng et al., 2021).
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C. Additional Experimental Results
We also calculate the difference between the validation loss and the training loss in training ResNet-18 using D-SGD.

(a) ResNet-18 on CIFAR-10, 32 workers (b) ResNet-18 on CIFAR-100, 32 workers (c) ResNet-18 on Tiny ImageNet, 32 workers

(d) ResNet-18 on CIFAR-10, 64 workers (e) ResNet-18 on CIFAR-100, 64 workers (f) ResNet-18 on Tiny ImageNet, 64 workers

Figure C.1. Loss differences in training ResNet-18 using D-SGD with different topologies.
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D. Proof
D.1. Technical lemmas

To complete our proof, we first introduce some technical lemmas.

Lemma D.1 (Corollary 1.14., (Montenegro & Tetali, 2006)). Let M stand for the matrix with all the elements be 1/m and
P is defined in Definition A.5. For any k ∈ Z+, the following inequality holds:∥∥Pk −M

∥∥
2,2

≤ ∥P∥kλ . (D.1)

Lemma D.2. For any a, b ∈ R and p ∈ R+, the following inequality holds:

(a+ b)2 ≤ (1 + p)a2 + (1 + p−1)b2. (D.2)

Lemma D.3 (Self-bounding Property, (Lei & Ying, 2020)). Assume that for all z ∈ Z , the map w 7→ f(w; z) is nonnegative
with its gradient ∇f(w; z) being (α,L)-Hölder continuous (Assumption A.3), then w 7→ f(w; z) can be bounded as

∥∇f(w, z)∥2 ≤ cα,1f
α

1+α (w, z), ∀w ∈ Rd, z ∈ Z.

where

cα,1 =

{
(1 + 1/α)

α
1+αL

1
1+α , if α > 0

supz ∥∇f(0; z)∥2 + L, if α = 0.
(D.3)

Remark D.1. The self-binding property implies that H”older continuous gradients can be controlled by function values.
The α = 1 and α ∈ (0, 1) case are established by Srebro et al. (2010) and Ying & Zhou (2017), respectively. The case where
α = 0 follows directly from Assumption A.3.

Lemma D.4 (Co-coercivity). Assume that for all z ∈ Z , the map w 7→ f(w; z) is nonnegative and convex, with its gradient
∇f(w; z) being (α,L)-Hölder continuous (see Assumption A.3). Then for all w, w̃, the following inequality holds:

∥∇f(w; z)−∇f(w̃; z)∥2 ≤ (1 + α)L
1
α

2α

〈
w − w̃,∇f(w; z)−∇f(w̃; z)

〉 α
1+α . (D.4)

Remark D.2. Lemma D.4 establishes the co-coercivity of the gradients for nonnegative convex functions with Hölder
continuous gradients. The α = 1 and α ∈ (0, 1) cases can be found in Nesterov (2003) and Ying & Zhou (2017) respectively.
The proof of the α = 0 case can be obtained directly from the convexity of f .

Remark D.3. Using Young’s inequality

ab ≤ p−1|a|p + q−1|b|q (a, b ∈ R, p, q > 0 with p−1 + q−1 = 1),

for any η > 0, the right-hand side of Inequality (D.4) can be further controlled by

2η−1
〈
w − w̃,∇f(w; z)−∇f(w̃; z)

〉
+ c2α,3η

2α
1−α , (D.5)

where cα,3 =
√
1−α√
1+α

(2−αL)
1

1−α . For more details, see Appendix D of Lei & Ying (2020).

Lemma D.5. For any a, b ∈ Rd with ai, bi being their i-th components, respectively, the following inequality holds:

aTb =
∑
i

aibi ≤
√∑

i

a2i
∑
i

b2i ≤
∑

i a
2
i +

∑
i b

2
i

2
. (D.6)
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D.2. Algorithmic stability of D-SGD

Proof of Theorem 1.

To begin with, we decompose
∑m

k=1

∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2
, the on-average stability of D-SGD at the t-th iteration, into three

parts by the definition of the vector 2-norm. In the following, we will let z(t)k,ζt
and z̃

(t)
k,ζt

denote two random samples drawn
from S and S(i) respectively on the k-th worker at the i-th iteration, respectively.

m∑
k=1

∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

=

m∑
k=1

∥∥ m∑
l=1

Pk,lwt(l)− ηt∇f
(
w

(t)
k ; z

(t)
k,ζt

)
−

m∑
l=1

Pk,lw̃
(t)
l + ηt∇f

(
w̃

(t)
k , z̃

(t)
k,ζt

)∥∥2
2

=

m∑
k=1

∥∥ m∑
l=1

Pk,l(w
(t)
l − w̃

(t)
l )

∥∥2
2
+

m∑
k=1

ηt
2
∥∥∇f

(
w

(t)
k ; z

(t)
k,ζt

)
−∇f

(
w̃

(t)
k , z̃

(t)
k,ζt

)∥∥2
2

− 2
m∑

k=1

ηt
〈 m∑

l=1

Pk,l(w
(t)
l − w̃

(t)
l ),∇f

(
w

(t)
k ; z

(t)
k,ζt

)
−∇f

(
w̃

(t)
k , z̃

(t)
k,ζt

) 〉
=

∥∥P(W(t) − W̃(t))
∥∥2
F︸ ︷︷ ︸

T1

+

m∑
k=1

1
z
(t)
k,ζt

̸=z̃
(t)
k,ζt

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2
−
∥∥ m∑

l=1

Pk,l(w
(t)
l − w̃

(t)
l )

∥∥2
2

]
︸ ︷︷ ︸

T2

+

m∑
k=1

1
z
(t)
k,ζt

=z̃
(t)
k,ζt

[
ηt

2
∥∥∇f

(
w

(t)
k ; z

(t)
k,ζt

)
−∇f

(
w̃

(t)
k , z̃

(t)
k,ζt

)∥∥2
2

−2ηt
〈 m∑

l=1

Pk,l(w
(t)
l − w̃

(t)
l ),∇f

(
w

(t)
k ; z

(t)
k,ζt

)
−∇f

(
w̃

(t)
k , z̃

(t)
k,ζt

) 〉]
︸ ︷︷ ︸

T3

where ∥·∥F denotes the Frobenius norm (see Definition A.7).

(1) To construct our proof, we start by constructing an upper bound for the expectation of T1:

EA(T1) = EA

[∥∥P(W(t) − W̃(t))
∥∥2
F
≤ d(σ2 + µ2)

[
(m− 1)λ2 + 1

]
. (D.7)

Proof.

The on-averaged stability after a single gossip communication can be written as∥∥P(W(t) − W̃(t))
∥∥2
F
=

m∑
k=1

∥∥ m∑
l=1

Pk,l(w
(t)
l − w̃

(t)
l )

∥∥2
2
=

d∑
v=1

m∑
k=1

∥∥ m∑
l=1

Pk,l(w
v,(t)
l − w̃

v,(t)
l )

∥∥2
2

=

d∑
v=1

m∑
k=1

σ2
t,k(

m∑
l=1

P2
k,l){

∑m
l=1 Pk,l[(w

v,(t)
l − w̃

v,(t)
l )− µv

t,k] +
∑m

l=1 Pk,lµ
v
t,l]

σt,k

√∑m
l=1 P

2
k,l

}2

≤
d∑

v=1

m∑
k=1

σ2
t,k(

m∑
l=1

P2
k,l){

∑m
l=1 Pk,l[(w

v,(t)
l − w̃

v,(t)
l )− µv

t,k]

σt,k

√∑m
l=1 P

2
k,l

}2 + µ2dm ·
m∑

k=1

m∑
l=1

P2
k,l

+

d∑
v=1

m∑
k=1

(

m∑
l=1

P2
k,l)

∑m
l1=1

∑m
l2=1 Pk,l1Pk,l2µ

v
t,l1

[(w
v,(t)
l1

− w̃
v,(t)
l1

)− µv
t,l1

]√∑m
l1=1 P

2
k,l

√∑m
l2=1 P

2
k,l

, (D.8)

where w
v,(t)
l and w̃

v,(t)
l stacks the v-th entry of the d-dimensional vector w(t)

l and w̃
(t)
l , respectively. The last inequality

holds since
∑d

v=1(µ
v
t,l)

2 ≤ dµ2.
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Since the weight difference is normally distributed:(
w

(t)
k − w̃

(t)
k

)
∼ N (µt,k, σ

2
t,kId), k = 1, . . . ,m,

with µt,k satisfying ∥µt,k∥22 ≤ d · µ2 and σ2
t,k ∈ R being bounded by σ2, we obtain∑m

l=1 Pk,l[(w
v,(t)
l − w̃

v,(t)
l )− µv

t,k]

σt,k

√∑m
l=1 P

2
k,l

i.i.d.∼ N (0, 1), l = 1, . . . ,m.

Since the sum of squared i.i.d. standard normal variables follows a Chi-Square distribution with 1 degree of freedom, we
arrive at

{
∑m

l=1 Pk,l[(w
v,(t)
l − w̃

v,(t)
l )− µv

t,k]

σt,k

√∑m
l=1 P

2
k,l

}2∼X 2(1), l = 1, . . . ,m.

Furthermore, since ∀l EA[(w
v,(t)
l − w̃

v,(t)
l )− µv

t,l] = 0, we have

EA

 d∑
v=1

m∑
k=1

(

m∑
l=1

P2
k,l)

∑m
l1=1

∑m
l2=1 Pk,l1Pk,l2µ

v
t,l1

[(w
v,(t)
l1

− w̃
v,(t)
l1

)− µv
t,l1

]√∑m
l1=1 P

2
k,l

√∑m
l2=1 P

2
k,l

 = 0.

As a consequence,

EA

[∥∥P(W(t) − W̃(t))
∥∥2
F
≤ dσ2

m∑
k=1

λ2
k + dµ2

m∑
k=1

λ2
k ≤ d(σ2 + µ2)[1 + (m− 1)λ2],

where 1− λ is the spectral gap of the communication topology.

(2) For the second part T2, we have

T2 ≤
m∑

k=1

1
z
(t)
k,ζt

̸=z̃
(t)
k,ζt

p
∥∥ m∑

l=1

Pk,l(w
(t)
l −w̃(t)

l )
∥∥2
2
+

m∑
k=1

1
z
(t)
k,ζt

̸=z̃
(t)
k,ζt

(1 + p−1)c2α,1ηt
2
(
f

2α
1+α (w

(t)
k ; z

(t)
k,ζt

)+f
2α

1+α (w̃
(t)
k , z̃

(t)
k,ζt

)
)
.

(D.9)

Proof.

Inequality (D.9) are mainly based on Lemma D.2 and Lemma D.3:

T2 =

m∑
k=1

1
z
(t)
k,ζt

̸=z̃
(t)
k,ζt

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2
−
∥∥ m∑

l=1

Pk,l(w
(t)
l − w̃

(t)
l )

∥∥2
2

]
=

m∑
k=1

1
z
(t)
k,ζt

̸=z̃
(t)
k,ζt

[∥∥ m∑
l=1

Pk,lwt(l)−ηt∇f
(
w

(t)
k ; z

(t)
k,ζt

)
−

m∑
l=1

Pk,lw̃
(t)
l +ηt∇f

(
w̃

(t)
k , z̃

(t)
k,ζt

)∥∥2
2
−
∥∥ m∑

l=1

Pk,l(w
(t)
l −w̃(t)

l )
∥∥2
2

]
≤

Lemma D.2

m∑
k=1

1
z
(t)
k,ζt

̸=z̃
(t)
k,ζt

[
p
∥∥ m∑

l=1

Pk,l(w
(t)
l − w̃

(t)
l )

∥∥2
2
+ (1 + p−1)ηt

2
∥∥∇f

(
w

(t)
k ; z

(t)
k,ζt

)
−∇f

(
w̃

(t)
k , z̃

(t)
k,ζt

)∥∥2
2

]
≤

Lemma D.3

m∑
k=1

1
z
(t)
k,ζt

̸=z̃
(t)
k,ζt

[
p
∥∥ m∑

l=1

Pk,l(w
(t)
l − w̃

(t)
l )

∥∥2
2︸ ︷︷ ︸

T2.1

+(1 + p−1)c2α,1ηt
2
(
f

2α
1+α (w

(t)
k ; z

(t)
k,ζt

) + f
2α

1+α (w̃
(t)
k , z̃

(t)
k,ζt

)
)]
.

(3) T3 can be controlled as follows:

T3 ≤
m∑

k=1

1
z
(t)
k,ζt

=z̃
(t)
k,ζt

ηt
[
2L

∥∥w(t)
k − w̃

(t)
k

∥∥2α
2

+
∥∥ m∑

l=1

Pk,l(w
(t)
l −w̃(t)

l )
∥∥2
2

]
. (D.10)
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Proof.

According to the Hölder continuous assumption, we have

m∑
k=1

1
z
(t)
k,ζt

=z̃
(t)
k,ζt

∥∥∇f(w
(t)
k ; z

(t)
k,ζt

)−∇f(w̃
(t)
k ; z̃

(t)
k,ζt

)
∥∥2
2
≤ L

m∑
k=1

1
z
(t)
k,ζt

=z̃
(t)
k,ζt

∥∥w(t)
k − w̃

(t)
k

∥∥2α
2
. (D.11)

Consequently,

T3 ≤
m∑

k=1

1
z
(t)
k,ζt

=z̃
(t)
k,ζt

ηt
[
L
∥∥w(t)

k − w̃
(t)
k

∥∥2α
2

− 2
〈 m∑

l=1

Pk,l(w
(t)
l − w̃

(t)
l ),∇f

(
w

(t)
k ; z

(t)
k,ζt

)
−∇f

(
w̃

(t)
k , z̃

(t)
k,ζt

) 〉]
≤

m∑
k=1

1
z
(t)
k,ζt

=z̃
(t)
k,ζt

ηt
[
L
∥∥w(t)

k − w̃
(t)
k

∥∥2α
2

+ 2
∥∥ m∑

l=1

Pk,l(w
(t)
l −w̃(t)

l )
∥∥
2
·
∥∥∇f(w

(t)
k ; z

(t)
k,ζt

)−∇f(w̃
(t)
k ; z̃

(t)
k,ζt

)
∥∥
2

]
≤

Lemma D.5

m∑
k=1

1
z
(t)
k,ζt

=z̃
(t)
k,ζt

ηt
[
L
∥∥w(t)

k − w̃
(t)
k

∥∥2α
2

+
∥∥ m∑

l=1

Pk,l(w
(t)
l −w̃(t)

l )
∥∥2
2
+

∥∥∇f(w
(t)
k ; z

(t)
k,ζt

)−∇f(w̃
(t)
k ; z̃

(t)
k,ζt

)
∥∥2
2

]
≤

m∑
k=1

1
z
(t)
k,ζt

=z̃
(t)
k,ζt

ηt
[
2L

∥∥w(t)
k − w̃

(t)
k

∥∥2α
2︸ ︷︷ ︸

T3.1

+
∥∥ m∑

l=1

Pk,l(w
(t)
l −w̃(t)

l )
∥∥2
2

]
. (D.12)

(4) A simple combination of Inequality (D.7), Inequality (D.9) and Inequality (D.10) provides the following:

m∑
k=1

∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2
= T1 + T2 + T3

≤ T1 +

m∑
k=1

1
z
(t)
k,ζt

̸=z̃
(t)
k,ζt

[
p
∥∥ m∑

l=1

Pk,l(w
(t)
l − w̃

(t)
l )

∥∥2
2
+ (1 + p−1)c2α,1ηt

2
(
f

2α
1+α (w

(t)
k ; z

(t)
k,ζt

) + f
2α

1+α (w̃
(t)
k , z̃

(t)
k,ζt

)
)]

+

m∑
k=1

1
z
(t)
k,ζt

=z̃
(t)
k,ζt

ηt
[
2L

∥∥w(t)
k − w̃

(t)
k

∥∥2α
2

+
∥∥ m∑

l=1

Pk,l(w
(t)
l −w̃(t)

l )
∥∥2
2

]
. (D.13)

S(i)
k = {zk,1, . . . , z̃i,k, . . . , zk,n} differs from Sk by only the i-th element. Consequently, at the t-th iterate, with a probability

of 1− 1
n , the example z

(t)
k,ζt

selected by D-SGD on worker k in both Sk and S(i)
k is the same (i.e. z(t)k,ζt

= z̃
(t)
k,ζt

), and with a

probability of 1
n , the selected example is different (i.e. z(t)k,ζt

̸= z̃
(t)
k,ζt

).

Since A is independent of k, EA(T2.1) and EA(T3.1) can be controlled accordingly as follows:

EA(T2.1) = EA

[
p

m∑
k=1

1
z
(t)
k,ζt

̸=z̃
(t)
k,ζt

∥∥ m∑
l=1

Pk,l(w
(t)
l − w̃

(t)
l )

∥∥2
2

]
=

p

n

m∑
k=1

EA

[∥∥ m∑
l=1

Pk,l(w
(t)
l − w̃

(t)
l )

∥∥2
2

]
≤

Inequality (D.7)

p

n
d(σ2 + µ2)

[
(m− 1)λ2 + 1

]
(D.14)

where the proof of the last inequality is analogous to part (1).

By the concavity of the mapping x 7→ xα (α ∈ [0, 1]), we have

EA(T3.1) ≤ 2ηtL(1−
1

n
)EA

[ m∑
k=1

∥∥w(t)
k − w̃

(t)
k

∥∥2α
2

]
≤ 2ηtL(1−

1

n
){EA

[ m∑
k=1

∥∥w(t)
k − w̃

(t)
k

∥∥2
2

]
}α ≤ 2ηtL(1−

1

n
)EA

[ m∑
k=1

∥∥w(t)
k − w̃

(t)
k

∥∥2
2

]
. (D.15)
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The last inequality holds if m ≥ 1
dµ2

0
, where dµ2

0 is the lower bound of ∥µt,k∥22 (k = 1 . . .m), which leads to

EA

[∑m
k=1

∥∥w(t)
k − w̃

(t)
k

∥∥2
2

]
≥ 1. The condition m ≥ 1

dµ2
0

can be easily satisfied in training overparameterized models in a
decentralized manner, since both m and d are large in these cases.

Therefore, taking the expectation on both sides of Inequality (D.13) provides

EA

[ m∑
k=1

∥∥w(t+1)
k −w̃(t+1)

k

∥∥2
2

]
≤ 2ηtL(1−

1

n
)EA

[ m∑
k=1

∥∥w(t)
k − w̃

(t)
k

∥∥2
2

]
+[1+

p

n
+(1− 1

n
)ηt]d(σ

2+µ2)
[
(m−1)λ2 + 1

]
+

1

n

m∑
k=1

[
(1+p−1)c2α,1ηt

2
(
f

2α

1+α (w
(t)
k ; z

(t)
k,ζt

)+f
2α

1+α (w̃
(t)
k , z̃

(t)
k,ζt

)
)]
.

(D.16)

Knowing that z(t)k,ζt
and z̃

(t)
k,ζt

follow the same distribution, we have

ESk,S(i)
k ,A

[
f

2α
1+α (w̃

(t)
k ; z̃

(t)
k,ζt

)
]
= ESk,A

[
f

2α
1+α (w

(t)
k ; z

(t)
k,ζt

)
]
.

Note that {ηt} is an non-increasing sequence. As a consequence,

m∑
k=1

ESk,S(i)
k ,A

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

]
≤ 2η0L(1−

1

n
)︸ ︷︷ ︸

≜C (scaling coefficient)

ESk,S(i)
k ,A

[ m∑
k=1

∥∥w(t)
k − w̃

(t)
k

∥∥2
2

]

+ [1 +
p

n
+ (1− 1

n
)ηt]d(σ

2 + µ2)
[
(m− 1)λ2 + 1

]
︸ ︷︷ ︸

topology-dependent

+
2

n

[
(1 + p−1)c2α,1ηt

2
m∑

k=1

ESk,A

[
f

2α
1+α (w

(t)
k ; z

(t)
k,ζt

)
]]

︸ ︷︷ ︸
topology-independent

. (D.17)

Multiplying both sides of Inequality (D.17) with C−(t+1) provides

C−(t+1)
m∑

k=1

ESk,S(i)
k ,A

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

]
≤ C−tESk,S(i)

k ,A

[ m∑
k=1

∥∥w(t)
k − w̃

(t)
k

∥∥2
2

]
+ C−(t+1)

{
[1 +

p

n
+ (1− 1

n
)ηt]d(σ

2 + µ2)
[
(m− 1)λ2 + 1

]
+

2

n

[
(1 + p−1)c2α,1ηt

2
m∑

k=1

ESk,A

[
f

2α
1+α (w

(t)
k ; z

(t)
k,ζt

)
]]}

.

(D.18)

Taking the summation over the iteration τ , we can write

t∑
τ=0

C−(τ+1)
m∑

k=1

ESk,S(i)
k ,A

[∥∥w(τ+1)
k − w̃

(τ+1)
k

∥∥2
2

]
≤

t∑
τ=0

C−τESk,S(i)
k ,A

[ m∑
k=1

∥∥w(τ)
k − w̃

(τ)
k

∥∥2
2

]
+

t∑
τ=0

C−(τ+1)
{
[1+

p

n
+(1− 1

n
)ητ ]d(σ

2+µ2)
[
(m−1)λ2+1

]
+

2

n

[
(1+p−1)c2α,1ητ

2
m∑

k=1

ESk,A

[
f

2α
1+α (w

(τ)
k ; z

(τ)
k,ζt

)
]]}

.

(D.19)

Since for all k,w1(k) = w̃1(k) = 0 (see Definition Page 3), we have

m∑
k=1

ESk,S(i)
k ,A

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

]
≤

t∑
τ=0

Ct−τ
{
[1+

p

n
+(1− 1

n
)ητ ]d(σ

2+µ2)
[
(m−1)λ2+1

]
+

2

n

[
(1+p−1)c2α,1ητ

2
m∑

k=1

ESk,A

[
f

2α
1+α (w

(τ)
k ; z

(τ)
k,ζt

)
]]}

. (D.20)
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Since the mapping x 7→ x
2α

1+α is concave, we have 1
n

∑n
i=1 f

2α
1+α (w

(τ)
k , z

(τ)
k,ζτ

) ≤ F
2α

1+α

Sk
(w

(τ)
k ). Then the distributed

on-average stability of D-SGD can be controlled as follows:

1

mn

n∑
i=1

m∑
k=1

ESk,S(i)
k ,A

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

]
≤

t∑
τ=0

Ct−τ
{
[1+

p

n
+(1− 1

n
)ητ ]d(σ

2+µ2)
[
(1− 1

m
)λ2+

1

m

]
+

2

n

[
(1+p−1)c2α,1ητ

2 1

m

m∑
k=1

ESk,A

[
F

2α
1+α

Sk
(w

(τ)
k )

]]}
. (D.21)

The proof is complete.

Proof of Corollary 2.

With constant step size ηt ≡ η ≤ 1
2L (1−

2
m ),

∑t
τ=0 C

t−τ can be written as

t∑
τ=0

Ct−τ =

t∑
τ=0

[2ηL(1− 1

n
)]
t−τ

=

t−1∑
τ=0

[2ηL(1− 1

n
)]
τ

=
1− [2ηL(1− 1

n )]
t

1− 2ηL(1− 1
n )

.

Consequently, the distributed on-average stability of D-SGD becomes:

1

mn

n∑
i=1

m∑
k=1

ESk,S(i)
k ,A

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

]
≤

1− [2ηL(1− 1
n )]

t

1− 2ηL(1− 1
n )

{
[1+

p

n
+(1− 1

n
)η]d(σ2+µ2)

[
(1− 1

m
)λ2+

1

m

]
+

2

n

[
(1+p−1)c2α,1η

2ϵS ]
}
, (D.22)

where ϵS denotes the upper bound of 1
m

∑m
k=1 ESk,A

[
F

2α
1+α

Sk
(w

(t)
k )

]
∀t.

When t → ∞, we further get

1

mn

n∑
i=1

m∑
k=1

ESk,S(i)
k ,A

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

]
≤ 1

1− 2ηL(1− 1
n )

{
[1+

p

n
+(1− 1

n
)ητ ]d(σ

2+µ2)
[
(1− 1

m
)λ2+

1

m

]
+

2

n

[
(1+p−1)c2α,1ητ

2ϵS ]
}
. (D.23)

D.3. Generalization of D-SGD

Proof of Lemma 3.

We denote A(S) as the model produced by algorithm A based on the training dataset S.

To begin with, we can write

ES,A

[
F (A(S))− FS(A(S))

]
= ES,S(i),A

[ 1
N

N∑
i=1

(
F (A(S(i)))− FS(A(S))

)]
= ES,S(i),A

[ 1
N

N∑
i=1

(
Ez̃∼D(f(A(S(i)); z̃))− f(A(S); zi)

)]
(D.24)

= ES,S(i),A

[ 1
N

N∑
i=1

(
f(A(S(i)); zi)− f(A(S); zi)

)]
, (D.25)
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where the first line follows from noticing that ES,A

[
F (A(S))

]
= ES(i),A

[
F (A(S(i)))

]
and the last identity holds since

A(S(i)) is independent of zi and thus ES,S(i),A

[
Ez̃∼S(i)(f(A(S(i)); z̃)

]
= ES,S(i),A

[
f(A(S(i)); zi)

]
.

The Hölder continuity of f and the concavity of the x 7→ x
α
2 further guarantees

ES,A

[
F (A(S))− FS(A(S))

]
≤ ES,S(i),A

[ 1
N

N∑
i=1

L∥A(S)−A(S(i))∥α2
]

= ES,S(i),A

[ L

N1−α
2

( 1

N

N∑
i=1

∥A(S)−A(S(i))∥22
)α

2
]
. (D.26)

Finally, consider 1
m

∑m
k=1 w

(t)
k as an output of algorithm A on dataset S , we can complete the proposition by the convexity

of vector 2-norm and square function:

ES,A

[
F (

1

m

m∑
k=1

w
(t)
k )− FS(

1

m

m∑
k=1

w̃
(t)
k )

]
≤ ES,S(i),A

[ L

(mn)1−
α
2

( 1
n

n∑
i=1

∥ 1

m

m∑
k=1

w
(t)
k − 1

m

m∑
k=1

w̃
(t)
k ∥22

)α
2
]

≤ L

mn1−α
2

{ 1

mn

m∑
k=1

n∑
i=1

ESk,S(i)
k ,A

[
∥w(t)

k − w̃
(t)
k ∥22

]}α/2
. (D.27)

Proof of Theorem 4.

We start by rewriting Inequality (D.21) as

1

mn

n∑
i=1

m∑
k=1

ESk,S(i)
k ,A

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

]
≤

t∑
τ=0

Ct−τ
{
[1+

p

n
+(1− 1

n
)ητ ]d(σ

2+µ2)
[
(m−1)λ2+1

]
+

1

n

[
2(1+p−1)c2α,1ητ

2
m∑

k=1

ESk,A

[
F

2α
1+α

Sk
(w

(τ)
k )

]]}
. (D.28)

To facilitate subsequent analysis, we denote Tdec =
∑t

τ=0 C
t−τ [1+ p

n+(1− 1
n )ητ ]d(σ

2+µ2)
[
(m−1)λ2+1

]
and Tavg =∑t

τ=0 C
t−τ

[
2(1+p−1)c2α,1ητ

2
∑m

k=1 ESk,A

[
F

2α
1+α

Sk
(w

(τ)
k )

]]
.

A combination of Inequality (D.21) and Lemma 3 yields

ES,A

[
F (

1

m

m∑
k=1

w
(t+1)
k )− FS(

1

m

m∑
k=1

w
(t+1)
k )

]
≤ L

mn1−α
2

( 1
n
Tavg + Tdec)

α/2. (D.29)

Since the inequality (1 + x)
α
2 ≤ 2

α
2 − 1 + x

α
2 ≤ 1 + x

α
2 holds for all x ≥ 1 and α ∈ [0, 1], the right hand side of

Inequality (D.28) can be bounded as

L

mn1−α
2
(
1

n
Tavg + Tdec)

α
2 =

L

mn1−α
2
(
Tavg

n
)

α
2

(
1 + Tdecn)

α
2 ≤ L

mn1−α
2
(
Tn

n
)

α
2 [1 + (Tdecn)

α
2 ]

=
LT

α
2

avg

mn
[1 + (Tdecn)

α
2 ] =

L

m
[
T

α
2

avg

n
+ TavgT

α
2

decn
α
2 −1]. (D.30)

Consequently, the generalization bound of D-SGD can be controlled as

ES,A

[
F (

1

m

m∑
k=1

w
(t+1)
k )− FS(

1

m

m∑
k=1

w
(t+1)
k )

]
≤ L

m
[
T

α
2

avg

n
+ T

α
2

decn
α
2 −1]

=
L

N

[ t∑
τ=0

Ct−τ2(1+p−1)c2α,1ητ
2ϵS

]α
2

+
L · nα

2

N
{

t∑
τ=0

Ct−τ [(1− 1

m
)λ2+

1

m
]}

α
2

. (D.31)
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where ϵS denotes the upper bound of 1
m

∑m
k=1 ESk,A

[
F

2α
1+α

Sk
(w

(t)
k )

]
∀t.

If we set the ηt ≡ η ≤ 1
2L , Inequality (D.31) can be written as

ES,A

[
F (

1

m

m∑
k=1

w
(t+1)
k )− FS(

1

m

m∑
k=1

w
(t+1)
k )

]
≤ 1

[1− 2ηL(1− 1
n )]

α
2
{O(

Lϵ
α
2

S
N

) +O(
Ln

α
2

N
[(1− 1

m
)λ2+

1

m
]

α
2

)}

≤ 1

[1− 2ηL(1− 1
n )]

α
2
{O(

Lϵ
α
2

S
N

) +O(
Ln

α
2

N
(λα+m−α

2 ))}, (D.32)

which completes the proof.

D.4. Implications

Proof of Corollary 5.

Inequality (D.21) shows that in the smooth settings (α = 1), the distributed on-average stability of D-SGD is bounded as

1

mn

n∑
i=1

m∑
k=1

ESk,S(i)
k ,A

[∥∥w(t+1)
k − w̃

(t+1)
k

∥∥2
2

]
≤

t∑
τ=0

Ct−τ
{
[1+

p

n
+(1− 1

n
)ητ ]d(σ

2+µ2)
[
(1− 1

m
)λ2

τ+
1

m

]
+

2

n

[
(1+p−1)c21,1ητ

2 1

m

m∑
k=1

ESk,A

[
FSk

(w
(τ)
k )

]]}
,

(D.33)

where C = 2ηL(1− 1
n ).

Our goal is to prove that the upper bound of the stability increase with the number of iterations that we start to control the
“consensus distance”.

According to the descent lemma in Koloskova et al. (2020), the empirical risk of the consensus model can be bounded by
the consensus distance as follows:

EAf(w
(τ+1); z

(τ+1)
ζt

) ≤ EAf(w
(τ); z

(τ+1)
ζt

) + ηL2 1

m

m∑
k=1

∥w(τ)
k −w(τ)∥22︸ ︷︷ ︸

consensus distance

+EA
L

n
η2 ∥ 1

m

m∑
k=1

∇f(w
(τ)
k ; z

(τ)
ζτ

)∥22︸ ︷︷ ︸
norm of the averaged gradient

,

(D.34)
where w(τ) = 1

m

∑m
k=1 w

(τ)
k .

Due to the fact that the gradient of f w.r.t. the first parameter is bounded by B and the square of the vector 2-norm ∥ · ∥22 is
convex, we have

1

m

m∑
k=1

ESk,A

[
FSk

(w(τ))
]
≤ ηL2

τ∑
ν=0

1

m

m∑
k=1

∥w(ν) −w
(ν)
k ∥22 +

L

m
η2τB2. (D.35)

To connect the stability upper bound in Inequality (D.33), we perform the Taylor expansion of 1
m

∑m
k=1 ESk,A

[
FSk

(·)
]

around w(τ):

1

m

m∑
k=1

ESk,A

[
FSk

(w
(τ)
k )

]
=

1

m

m∑
k=1

ESk,A

[
FSk

(w(τ))
]
+

1

m

m∑
k=1

[
ESk,A

[
∇FSk

(w(τ))
]]T

(w
(τ)
k −w(τ))

+ (w
(τ)
k −w(τ))T

1

m

m∑
k=1

ESk,A

[
∇2FSk

(w(τ))
]
(w

(τ)
k −w(τ)) +O(∥w(τ)

k −w(τ)∥32).

(D.36)
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According to Assumption A.1, the gradient of FSk
w.r.t. the first parameter is bounded by B. Consequently, the averaged

empirical loss 1
m

∑m
k=1 ESk,A

[
FSk

(w
(τ)
k )

]
can be bounded as

1

m

m∑
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ESk,A

[
FSk

(w
(τ)
k )

]
≤ 1

m
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+ ∥ 1

m
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k −w(τ))︸ ︷︷ ︸
=0

∥2 ∥ESk,A

[
∇FSk

(w(τ))
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∥2︸ ︷︷ ︸
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(τ)
k −w(τ))T
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m
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∇2FSk
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k −w(τ)) +O(∥w(τ)
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ESk,A

[
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(w(τ))
]
+ L

1

m
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∥w(τ)
k −w(τ)∥22︸ ︷︷ ︸

consensus distance

+O(∥w(τ)
k −w(τ)∥32). (D.37)

The last inequality holds since the smooth condition

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 ⇐⇒ ∇2f ⪯ LI, (D.38)

and thus we have

(w
(τ)
k −w(τ))T

1

m

m∑
k=1

ESk,A

[
∇2FSk

(w(τ))
]
(w

(τ)
k −w(τ))

≤ L
1

m

m∑
k=1

(w
(τ)
k −w(τ))TI(w

(τ)
k −w(τ)) = L

1

m

m∑
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If we omit the third-order difference, a combination of Inequality (D.35) and Inequality (D.37) provides
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This inequality would suffice to prove that the distributed on-average stability increase with the accumulation of the
“consensus distance”.

Suppose that the consensus distance is controlled below the critical consensus distance Γ2 from tΓ-th iterate to the end of
the training. For simplicity, we make a mild assumption that the consensus distance Γ2 ≤ 1

m
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if τ is greater than tΓ; and

1

m

m∑
k=1

ESk,A

[
FSk

(w
(τ)
k )

]
≤ L

1

m

m∑
k=1

∥w(τ)
k −w(τ)∥22 +

ηL2

m

τ∑
ν=0

m∑
k=1

∥w(ν) −w
(ν)
k ∥22 +

L

m
η2B2τ

≤ LK2 + (ηL2K2 +
L

m
η2B2) · τ , (D.42)

if if τ is smaller than tΓ.
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Consequently,
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Recall that our goal is to prove that G(tΓ) increase with tΓ.

Due to the fact that
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Since the finite sum of the arithmetico-geometric sequence can be written as
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we can upper bound G(tΓ) as follows:
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Rewrite the inequality above, then we arrive at
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One can prove that if t ≥ −C
2 lnC , the upper bound of G(tΓ) will be a monotonically increasing function of tΓ. Conse-

quently, we can conclude that the distributed on-average stability bound and the generalization bound of D-SGD increase
monotonically with tΓ if the total number of iterations satisfies t ≥ −C

2 lnC .


