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Abstract
Despite the rapid advancement of semantic dis-
covery in the latent space of Generative Adver-
sarial Networks (GANs), existing approaches
either are limited to finding global attributes
or rely on a number of segmentation masks
to identify local attributes. In this work, we
present a highly efficient algorithm to factorize
the latent semantics learned by GANs concerning
an arbitrary image region. Concretely, we
revisit the task of local manipulation with pre-
trained GANs and formulate region-based se-
mantic discovery as a dual optimization problem.
Through an appropriately defined generalized
Rayleigh quotient, we manage to solve such
a problem without any annotations or training.
Experimental results on various state-of-the-art
GAN models demonstrate the effectiveness of
our approach, as well as its superiority over prior
arts regarding precise control, region robustness,
speed of implementation, and simplicity of use.
Our source code can be found at here.

1. Introduction
Recent studies have shown that versatile semantics emerge
in the latent space of pre-trained Generative Adversarial
Networks (GANs) (Goetschalckx et al., 2019; Shen et al.,
2020a; Jahanian et al., 2020; Yang et al., 2021b). Identifying
these variation factors, which are typically devised as
some directions in the latent spaces (Shen et al., 2020a),
facilitates a wide range of downstream tasks (Xu et al.,
2021; Zhang et al., 2021b; Tan et al., 2020), especially
image editing (Jahanian et al., 2020; Yang et al., 2021b;
Menon et al., 2020; Gu et al., 2020; Zhu et al., 2020; Ling
et al., 2021). In particular, moving latent codes along a
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certain direction can cause corresponding semantic changes
in the synthesized images. Accordingly, it is of great use to
discover these steerable directions diversely and precisely.

To interpret the latent space learned by GANs, many
attempts have been made, including both supervised
ones (Shen et al., 2020b; Jahanian et al., 2020; Yang et al.,
2021b) and unsupervised ones (Shen & Zhou, 2021; Voynov
& Babenko, 2020; Härkönen et al., 2020). Most prior arts,
however, target at finding global attributes (Shen et al.,
2020b; Yang et al., 2021b; Voynov & Babenko, 2020;
Härkönen et al., 2020) such that altering the latent code with
these attributes will manipulate the output image as a whole.
Researchers have given recent attention to detecting local
semantics due to their more practical usage, but they usually
require a number of images labeled with segmentation
masks for the discovery process (Suzuki et al., 2018; Collins
et al., 2020; Wu et al., 2021; Ling et al., 2021). A very recent
work manages to relate a local image region to a GAN latent
subspace independent of annotations (Zhu et al., 2021),
yet it turns to depend on some sensitive hyper-parameters,
resulting in insufficient robustness to the selected region.

In this work, we propose a surprisingly simple algorithm,
termed as ReSeFa, for region-based semantic factorization
in GANs. Unlike existing methods that only treat image
editing as an application and take no account of the ma-
nipulation model for semantic exploration, we re-examine
the task of local editing using pre-trained GANs as the
prior. Specifically, given a region of interest, a robust
manipulation method should take effect on the contents
within this area only and preserve the remaining contents as
much as possible. In other words, after altering the latent
code, we expect the pixels located in the target region to
change while the outside pixels remain the same. Such an
analysis helps define an optimization problem based on the
derivative of pixel values with respect to the latent code
(i.e., Jacobian). Solving this problem can help identify
the variation factors corresponding to a particular image
region. We further notice that the optimization objective can
be formulated as a generalized Rayleigh quotient (Horn &
Johnson, 2012) such that the aforementioned problem can
be solved efficiently.

To summarize, our proposed algorithm has the following
advantages over prior work. First, our algorithm does not

https://github.com/zhujiapeng/resefa/
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rely on detailed spatial masks. Taking mouth editing with
a face synthesis GAN model as an instance, ReSeFa only
needs a rough bounding box around the mouth of a single
synthesized image, making it sufficiently easy to use in
practice. Second, our method is purely based on solving
an eigen-decomposition problem, which is independent of
any hyper-parameters or model structures. Consequently, it
is fairly flexible so that users can customize the regions of
their interests arbitrarily with any pre-trained GAN model.
Third, thanks to the adequately defined generalized Rayleigh
quotient, our approach enables a fast implementation,
especially when the latent space is in high dimensions (e.g.,
W+ space of StyleGAN (Abdal et al., 2020)). Extensive
experimental results suggest that our ReSeFa shows precise
controllability and strong robustness to the selected image
local region, while it can be easily generalized to state-of-
the-art GAN variants, including StyleGAN2 (Karras et al.,
2020b) and BigGAN (Brock et al., 2019).

2. Related Work
Generative Adversarial Networks. GANs (Goodfellow
et al., 2014) have significantly advanced high-fidelity
image synthesis with different objective functions (Arjovsky
et al., 2017), novel training schedules (Karras et al., 2018;
Brock et al., 2019), carefully designed network architec-
tures (Karras et al., 2019; 2020b; 2021), and improved data
efficiency (Zhao et al., 2020; Karras et al., 2020a; Yang et al.,
2021a). Through properly reusing the knowledge learned in
the GAN pre-training, prior arts have demonstrated a wide
range of downstream applications of GANs, such as image
classification (Xu et al., 2021), image segmentation (Zhang
et al., 2021b), visual alignment (Peebles et al., 2021), image
editing (Gu et al., 2020; Menon et al., 2020), etc.

Local Editing with GANs. Among all the applications of
GANs, image local editing earns a number of audiences
considering its interactivity and practical usage. One
straightforward way of controlling the synthesis of a certain
image region is to make the GAN generator spatially aware
during training (Lee et al., 2020; Kim et al., 2021). An
alternative way is to first segment the synthesis results and
then manipulate (e.g., swap) the intermediate feature maps
at the region of interest (Suzuki et al., 2018; Bau et al.,
2020b; Collins et al., 2020; Zhang et al., 2021a). However,
all these approaches tend to perform editing only from the
instance level instead of the semantic level. Taking face
local manipulation as an example, these methods are capable
of harmonizing the eyes of one person to another (Lee et al.,
2020; Kim et al., 2021; Suzuki et al., 2018; Collins et al.,
2020) yet fail to make a person close the eyes. Meanwhile,
they require users to specify spatial masks for each editing
(e.g., the eyes of a person may not always locate at the same
spatial position in different images), making them hard to

generalize to all samples.

Semantic Discovery in GANs. Interpreting the generation
mechanism of GANs helps us understand the rules about
how the generator renders an image. In this way, we
can utilize such rules for image editing once for all (Bau
et al., 2019; 2020a). A typical way to control the GAN
generation is to identify some steerable directions within the
latent space (Jahanian et al., 2020). These latent directions
usually correspond to some high-level semantics, like the
age of a person, and can be faithfully used for attribute
manipulation of any synthesized image (Goetschalckx et al.,
2019; Plumerault et al., 2020; Shen et al., 2020b; Yang
et al., 2021b; Voynov & Babenko, 2020; Härkönen et al.,
2020; Shen & Zhou, 2021; Spingarn-Eliezer et al., 2021;
Cherepkov et al., 2021; He et al., 2021). Nevertheless, most
directions found by previous methods are targeted at the
entire image, and how to discover the semantics for some
image regions remains unsolved.

It has recently been shown that some latent subspaces of
GANs can be directly used for image local editing without
operating the feature maps (Wu et al., 2021; Lang et al.,
2021; Zhu et al., 2021; Ling et al., 2021). Wu et al.
(2021) propose StyleSpace, which uncovers the relationship
between some convolutional units in the generator and the
objects within the output image, however, identifying the
object-oriented channels requires a number of object masks
as the ground-truth and is only applicable to style-based
network structure (Karras et al., 2019). Ling et al. (2021)
propose a novel local editing approach by controlling the
segmentation mask. However, the manipulation pipeline
requires manually editing the segmentation mask, which
needs skilled personnel and precise ground truth, and
requires optimizing the latent code to meet the expected
semantic change, which can be time-consuming. In addition,
using a segmentation mask for semantic discovery would
fail to find appearance-related attributes. Zhu et al. (2021)
propose low-rank subspaces in GANs for image local
editing, but the discovery of these subspaces relies on low-
rank factorization with a relaxation factor. Such a hyper-
parameter turns out to be sensitive to the model structure
and the selected local region, and an inadequate value may
lead to unsatisfying manipulation results.

Different from existing methods, our algorithm has the
following advantages: (1) Our method is based on
derivative (Ramesh et al., 2019; Chiu et al., 2020; Wang
& Ponce, 2021) and has no requirements on the model
structure as long as it is differentiable. Hence, unlike some
approaches that are particularly designed for StyleGAN (Wu
et al., 2021; Ling et al., 2021), ReSeFa can be easily
generalized to different GAN variants. (2) Our method
can be directly solved by maximizing a properly defined
generalized Rayleigh quotient, making it independent of any



Region-Based Semantic Factorization in GANs

annotations, hyper-parameters, or training. Such a robust
formulation also enables fast implementation, significantly
outperforming other alternatives. (3) Our approach enables
more precise local control, which will be verified in the
experiment section.

3. Methodology
In this section, we introduce our proposed method for
region-based semantic factorization in GANs. As mentioned
above, we revisit the task of local editing with pre-trained
GANs and takes the manipulation model into account for
identifying the variation factors regarding a particular image
region. Base on our analysis, the semantic discovery process
can be formulated as an optimization problem, whose
objective happens to be a well-defined generalized Rayleigh
quotient. Consequently, such a problem holds a super
efficient solver.

3.1. Manipulation Model with GAN Priors

Using prior knowledge learned by GANs for image editing
has been widely explored (Shen et al., 2020b; Jahanian et al.,
2020; Yang et al., 2021b). Concretely, given a well-trained
generator G(·) that maps the latent space Z to the image
spaceX , we would like to find a latent direction n ∈ Z such
that altering a latent code z through the direction can cause
the corresponding semantic change in the output image
x = G(z). Such a process can be formulated as

edit(x) ≜ xedit = G(z + αn), (1)

where α indicates the degree of editing. Here, n is usually
assumed to be a unit vector (Shen & Zhou, 2021), i.e.,
nTn = 1.

3.2. Region-based Semantic Discovery

As shown in Equation (1), there is no explicit constraint on
the relationship between x and xedit, hence the entire image
may get changed, resulting in a global editing. However,
for the case of local editing, we would like to only change
the image content within a certain region, denoted as xf ,
while the surroundings, denoted as xb, keep untouched.
Here, xf and xb form a partition of all pixels within x, i.e.,
xf ∪xb = x and xf ∩xb = ∅, where the subscripts f and
b are short for “foreground” and “background” respectively.
Accordingly, we reformulate Equation (1) to fit the local
editing task as {

xedit = G(z + αn),

s.t. ||xedit
b − xb||22 = 0,

(2)

where || · ||2 denotes the ℓ2 norm.

Based on the local manipulation model described in Equa-
tion (2), the constraint ||xedit

b − xb||22 can be approximated

using the first-order Taylor expansion

||xedit
b − xb||22 = ||{G(z + αn)}b − {G(z)}b||22

≈ α2nTJT
b Jbn.

(3)

Here, Jb is the derivative of pixel values with respect to the
latent code (i.e., Jacobian) (Ramesh et al., 2019; Zhu et al.,
2021). Particularly, we have

(Jb)j,k =
∂{G(z)}j

∂zk
, (4)

where j stands for a pixel position within the image, and k
stands for a dimension of the latent space Z . In practice,
Jb can be easily computed as long as the generator G(·) is
differentiable, regardless of its architecture.

In other words, Equation (3) can be used to characterize the
variation of the background region when altering the latent
code z towards the latent direction n. Similarly, we can
also measure the foreground change with

||xedit
f − xf ||22 ≈ α2nTJT

f Jfn. (5)

We argue that, given any arbitrary pixel partition {xf ,xb},
an adequate local editing should take sufficient effect on the
pixels within the region of interest (Shen & Zhou, 2021), xf ,
yet maintain the remaining pixel values, xb. Therefore, we
are able to factorize the region-based semantics via solving
the following optimization problem{

argmaxn nTJT
f Jfn,

argminn nTJT
b Jbn.

(6)

3.3. Computational Solution

Reformulation. The problem defined in Equation (6) can
be solved via convex optimization (Boyd & Vandenberghe,
2004). Alternatively, we unify this dual-objective optimiza-
tion into a single criterion as

argmax
n

nTJT
f Jfn

nTJT
b Jbn

, (7)

where the new object happens to be a generalized Rayleigh
quotient (Horn & Johnson, 2012), R(Jf ,Jb,n). Equa-
tion (7) can be solved as a generalized eigenvalue problem

JT
f Jfn = λJT

b Jbn, (8)

where those eigenvectors n corresponding to the largest
eigenvalues λ are just the local semantics we expect.

Standard solution. To solve Equation (8), a standard
solution is to perform Cholesky decomposition (Higham,
2002) on JT

b Jb as JT
b Jb = LLT . L is a lower triangular
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Input EyebrowClose EyesGaze Direction Wear Lipstick Close MouthBig Nose

Figure 1. Precise local editing results achieved by our ReSeFa on the StyleGAN2 generator (Karras et al., 2020b) trained on FFHQ
dataset (Karras et al., 2019). The regions of interest are highlighted with green boxes in the first row, while all rows share the same latent
directions found by solving Equation (11). Note that our algorithm does not require the region masks to be precise, and can identify
diverse semantics (both appearance and shape) corresponding the same region, like “wearing lipstick” and “closing mouth” for mouth.

matrix with real diagonal entries due to the symmetry of
JT
b Jb. Let ñ = LTn. Equation (8) can be reorganized as

L−1JT
f Jf (L

−1)T ñ = λñ, (9)

which can be easily solved by performing eigen decomposi-
tion on L−1JT

f Jf (L
−1)T .

Handling singular case. However, in real cases, there
is no guarantee that L is invertible. Recall that the pixel
partition {xf ,xb} can be arbitrary, making it possible that
the variation factors regarding region xb are limited. In
other words, JT

b Jb can be rank-deficient. To handle such
a case, we make a slight modification on JT

b Jb to make it
non-singular as

JT
b Jb ← JT

b Jb + τ tr(JT
b Jb)I, (10)

where I is the identity matrix and tr(·) denotes the trace.
τ = 1e−3 is a small scaling factor. For simplicity, we set
a = τ tr(JT

b Jb). Now, Equation (8) can be converted to

(JT
b Jb + aI)−1JT

f Jfn = λn. (11)

Fast implementation. Even though Equation (11) has
provided an elegant formulation for region-based semantic
factorization, solving it can be time consuming especially
when the latent space Z is with extremely high dimensions.

For example, the W+ space (Abdal et al., 2020) for a
StyleGAN (Karras et al., 2019) generator with 18 layers is
512×18 = 9216 dimensional. To speed up the factorization
process, we provide an efficient scheme by virtue of the
Sherman-Morrison-Woodbury formula (Higham, 2002). To
be specific, let Jb = UDV T be the truncated Singular
Value Decomposition (SVD) (Horn & Johnson, 2012) of
Jb, where U , V , D are the left singular matrix, the right
singular matrix, and a diagonal matrix respectively. D is of
size r × r, where r is the rank of Jb. Then we can derive

(JT
b Jb + aI)−1 = (V D(V D)T + aI)−1

= aI − V D(aI + (V D)TV D)−1(V D)T

= aI − V D(aI +D2)−1DV T

= aI − V D̃V T ,

(12)

where D̃ = D(aI +D2)−1D is reduced to the diagonal-
wise operation, which is far more efficient.

Summary. With the above analysis, given a generator G(·)
and a partition {xf ,xb}, the semantic vectors related to re-
gion xf can be efficiently obtained by solving Equation (11)
using Equation (12) as an intermediate step.
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Figure 2. Versatile local semantics found by our algorithm using the StyleGAN2 models (Karras et al., 2020b) trained on various
datasets, including LSUN churches (indoor scene), LSUN cars (general object), and LSUN bedrooms (indoor scene) (Yu et al., 2015).

4. Experiments
4.1. Experimental Setup

We conduct extensive experiments to evaluate our proposed
method, mainly on two types of models, i.e., Style-
GAN2 (Karras et al., 2020b) and BigGAN (Brock et al.,

2019). And the datasets we use are diverse, including
FFHQ (Karras et al., 2019), LSUN bedroom, church, car (Yu
et al., 2015), and ImageNet (Deng et al., 2009). For
StyleGAN2, we use the models released by the authors, and
for BigGAN, we use the model from TensorFlow Hub. For
metrics, we use Fréchet Inception Distance (FID) (Heusel

https://www.tensorflow.org/hub/tutorials/biggan_generation_with_tf_hub
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Figure 3. Precise local editing on a conditional generative model, i.e., BigGAN (Brock et al., 2019), where we can conclude three
observations. First, our algorithm is able to control the synthesis of only a part of the object with a small region of interest (e.g., “beak”
in the second row), or control the synthesis of the entire object with a large region of interest (e.g., “pose” in the third row). Second,
when altering the pose of birds in the third row, the background (e.g., the grass in the second column and the branch in the third column)
are barely affected, demonstrating the precise control achieved by our method. Third, the semantics found from one category can be
convincingly applied to other categories.

et al., 2017), masked Mean Squared Error (MSE), and
Identity loss (ID). FID is used to evaluate the image fidelity
after editing. For the masked MSE, we used it to qualify the
editing precision. Specifically, we can evaluate the change in
the edited region or the rest region using a mask. We use the
ArcFace model to evaluate identity similarity between the
edited images and the original images. The experiments are
organized as follows. First, we demonstrate that our method
could easily find semantically meaningful directions when
given a specific region of a generated image on various
datasets in Section 4.2. Second, we compare our method
with the existing methods in Section 4.3 and demonstrate
that our methods have strong control over the local region
of the synthesized images even when editing in the latent
space. All the experiments are conducted on a single RTX
2080 Ti GPU.

4.2. Local Semantic Discovery and Manipulation

Recall that our method is rather simple and can be divided
into three steps. First, we need to compute the Jacobian of
a synthesized image to the latent code. Second, obtaining
Jf and Jb according to the masked region (By default,

in each figure, the masked region and the remaining part
are used to compute Jf and Jb, respectively.). Third,
solving Equation (8) or Equation (11) to get the attribute
vectors, which are used to edit the images. We first
conduct experiments on the official FFHQ 1024 × 1024
model released in StyleGAN2. The eyes, eyebrows, mouth,
and nose are chosen as the local regions to factorize their
semantics. As shown in Figure 1, our method could uncover
the semantics that enables fine-grained and precise local
control over the synthesized images. For example, when
factorizing the semantics in the nose-related region, we
could find an attribute that changes the size of the nose.
When the region is taken from the eyes, as the green masks
are shown in the third and fourth columns in Figure 1,
several eye-related semantics could be found, such as look
askance, close eyes, etc. We could manipulate the eyebrows,
as the fifth column shows when the region is chosen as the
eyebrows. The last two columns show the found semantics
when given the mouth region. For instance, the penultimate
column shows that all the images have lipstick regarding
their gender. The last column shows that semantics found
in this region can close the mouth of the images. More

https://github.com/TreB1eN/InsightFac_Pytorch
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Figure 4. Qualitative comparison between different local editing approaches on face synthesis model (Karras et al., 2020b), including
StyleSpace (Wu et al., 2021), LowRankGAN (Zhu et al., 2021), and ReSeFa. Our approach produces more realistic results and suggests
more precise controllability in maintaining the image contents beyond the region of interests, i.e., eyes and mouth.

semantic meaningful edit results on each face region can be
found in Appendix C.

Besides the face model, we further validate our proposed
method on other models. Figure 2 shows the results on
LSUN-church, car, and bedroom, which demonstrates that
our method could control either a large region of an image or
a small area of an image. For the control on the small region,
we could observe that the number of windows on the church
are modified, and the wheel type of the car are changed as
well. For the control on the large region, the cloud is added
in the sky of the church, the color of the car body can be
changed, and the color of the wall in bedroom is changed as
well. In all, we could say that our proposed method perform
well on StyleGAN2. For more results, please refer to the
Appendix C.

For BigGAN, the most commonly changed attributes are the
size, pose, and background color of the objects (Plumerault
et al., 2020; Jahanian et al., 2020; Voynov & Babenko,
2020), which always result in a global change of an
image. Seldom had they shown the local control over the
synthesized images. However, our proposed method not
only could control the size or pose of the object, but also
could control over a small area of the synthetic images.

Figure 3 displays the strong ability of our method to edit
the local region. For example, the beak of these birds
changed, which is a very small part of an image. Still, our
method could edit them, which shows the great power of our
method for local controllability. Except for the control on
the small region, Figure 3 also demonstrates that our method
could edit the attributes related to a large region as well.
For instance, the size and pose can be varied successfully
regrading the categories.

4.3. Comparison with Existing Alternatives

In this section, we compare our method with the state-of-
the-art methods both qualitatively and quantitatively. We
compare our method with StyleSpace (Wu et al., 2021) and
LowRankGAN (Zhu et al., 2021), which are two state-of-
the-art methods for local control on the generated images.
In the main paper, we show the attributes of closing eyes
and mouth, and for the comparison of the other attribute,
please see the the Appendix C.

First, we compare with StyleSpace as shown in Figure 4,
in which we could find that our method could achieve
more photo-realistic results. For instance, the artifacts
appeared when closing the eyes of the man, and the eyebrow
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Table 1. Quantitative comparison between different local editing approaches on face synthesis model (Karras et al., 2020b), including
StyleSpace (Wu et al., 2021), LowRankGAN (Zhu et al., 2021), and ReSeFa. We use FID (lower is better) to evaluate the image quality
after editing, MSE (lower is better, scaled by 1e4 for good readability) to calculate the value change of pixels outside the region of interest,
and ID similarity (higher is better) to measure the identity change before and after manipulation. The interpretation speed using each
method is also reported in the last column.

Close Eyes Close Mouth With Lipstick Big Nose

Method FID↓ MSE↓ ID↑ FID↓ MSE↓ ID↑ FID↓ MSE↓ ID↑ FID↓ MSE↓ ID↑ Speed

StyleSpace 26.32 2.31 0.51 24.83 2.43 0.51 57.12 0.63 0.84 25.65 0.98 0.75 10.0s
LowRankGAN 25.43 5.61 0.53 24.91 4.96 0.73 32.33 8.44 0.63 25.37 5.52 0.56 393s
ReSeFa (Ours) 24.40 2.51 0.83 23.35 2.11 0.85 38.41 1.53 0.89 24.82 1.64 0.85 0.5s

disappeared simultaneously. The hair and background of
the second image are changing as well. Sometimes, it is
hard to close the images’ eyes, as the second column shows.
When closing the mouth, the jaw becomes smaller in all
these three images, and the beard of the man decreases as
well. On the contrary, the editing results are significantly
improved when using our method.

Second, we compared our method with recently proposed
LowRankGAN (Zhu et al., 2021). As shown in Figure 4,
we could see that both the LowRankGAN and our method
could successfully close the eyes or mouth of the images.
Nevertheless, there are some differences. For one thing,
when closing the eyes of the first and third images, the
brightness changes, the face of the second image is smaller
after editing. Instead, our method could well preserve these
changes. For another, when closing the mouth, the jaw
of the first woman is widened, the beard of the man is
increased, and the hair color and the background of the
girl are changed. Again, our method could well preserve
these changes. We draw from the above experiment that our
method has a stronger ability to precisely manipulate the
local regions than those two baselines.

We also give the quantitative comparison results in Table 1
and Figure 5. Table 1 reports quantitative results on
different attributes. As shown, our method could get the best
identity similarity (ID) after editing for all these attributes.
Regrading the speed to find the semantics in a specific
region, we also report the time of discovery using different
methods in Table 1 (The time ). It can be observed that
our ReSeFa owns the fastest implementation, thanks to the
analysis on the local manipulation model. Also, it is worth
noting that our algorithm does not require any annotations
like StyleSpace (Wu et al., 2021).

Figure 5 gives the MSE on both the edited region and the
remaining region when gradually increasing the manipula-
tion strength (i.e., α in Equation (1)) on closing mouth or
eyes. Figure 5a shows that the MSE of StyleSpace is larger
than the other two methods in the mouth region, presumably
because the jaw has a large shift when closing the mouth,
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Figure 5. Quantitative results of pixel change by gradually
making people close mouth and eyes using StyleSpace (Wu et al.,
2021), LowRankGAN (Zhu et al., 2021), and ReSeFa. “in” and
“out” refer to region of interest and its surroundings, respectively.
A higher “in” change and a lower “out” change are expected for a
promising local editing.

as shown in Figure 4. Figure 5b shows that the MSE of
LowRankGAN is far better than the other two methods.
When it comes to Figure 5c and Figure 5d, the MSE of
StyleSpace in the eye region is small, while LowRankGAN
gets the largest MSE again. Hence, our method could better
control the specific region since the change in the region
is large while the change in the remaining region is small
compared to the state-of-the-art methods.

4.4. Discussion

We have demonstrated the impressive ability of our method
in local control, but there are still some limitations. For
example, our approach would fail to control extremely
small regions embedded in large area of holistically uniform
textures (e.g., one tooth), or regions with multiple similar
components in the image (e.g., a single nostril) very well.
It also shares a common limitation as existing methods in
editing only one object of a symmetric pair (e.g., one eye
of a human face). Meanwhile, it is hard to discover the
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global semantic directions in StyleGAN (e.g., face pose),
even choosing a sufficiently large region. Future research
will focus on how to generalize our region-based semantic
factorization on more fine-grained regions as well as how to
unify global and local semantic exploration within the same
algorithm.

5. Conclusion
In this work, we propose a simple algorithm to factorize
the semantics learned by GANs regarding some particular
regions. We re-examine the task of local editing and take the
manipulation model into account for semantic discovery. By
appropriately formulating this process as a dual-objective
optimization problem, we enable an efficient and robust
algorithm to find region-based variation factors without
relying on any annotations or training.
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Appendix

A. Overview
This paper proposed ReSeFa to precisely control the local regions of the synthesized images on pre-trained GANs. This
appendix is organized as follows. First, we give some proofs of the equations in the main paper in Appendix B. Second, we
provide more qualitative results in Appendix C to demonstrate the effectiveness of our method.

B. Proof
The proof of Equation (7)→ Equation (8) is listed as follows.

According to the Rayleigh-Ritz quotient method (Ghojogh et al., 2019), the optimization problem in Equation (7) can be
cast as {

argmaxn nTJT
f Jfn,

s.t. nTJT
b Jbn = 1.

(13)

Hence, the Lagrangian (Boyd & Vandenberghe, 2004) is

L = nTJT
f Jfn− λ(nTJT

b Jbn− 1), (14)

where λ is the Lagrange multiplier. Performing the derivatives of Equation (14) on n, we can get

∂L
∂n

= 2JT
f Jfn− 2λJT

b Jbn (15)

Setting Equation (15) equals to zero, we have

JT
f Jfn = λJT

b Jbn. (16)

The deduction of Eq. (8)→ Eq. (9) is outlined as follows.

Substituting JT
b Jb = LLT into Eq. (8), we have

JT
f Jfn = λLLTn. (17)

Multiplying both sides with L−1 results in

L−1JT
f Jfn = λLTn. (18)

We can further write

L−1JT
f Jf (L

−1)TLTn = λLTn. (19)

Letting ñ = LTn delivers Eq. (9).

C. Additional Results
Figure A1 gives some extra attributes on the church and car except for those shown in the main paper. Figure A2 shows the
comparison results with the baselines on wearing lipstick and changing the nose size. Recall that our attribute vectors are
found by solving an eigen-decomposition problem. Namely, the eigenvectors corresponding to larger eigenvalues are the
attribute vectors we need. Thus, there exists a bunch of meaningful edits using different eigenvectors. Here we show some
edits using different eigenvectors from the same region. Specifically, Figure A3, Figure A4, Figure A5, and Figure A6 show
the various semantics found in one image in the regions of the nose, eyes, eyebrow, and mouth, respectively. Figure A7
shows the editing results on the car wheels, Figure A8 shows the editing results on the church, and Figure A9 shows the
editing results on the bedroom floor.
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Figure A1. Versatile local semantics found by our algorithm using the StyleGAN2 models (Karras et al., 2020b) trained on various
datasets, including LSUN churches (indoor scene) and LSUN cars (general object) (Yu et al., 2015).
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Figure A2. Qualitative comparison between different local editing approaches on face synthesis model (Karras et al., 2020b), including
StyleSpace (Wu et al., 2021), LowRankGAN (Zhu et al., 2021), and ReSeFa. Our approach produces more realistic results and suggests
more precise controllability in maintaining the image contents beyond the region of interests, i.e., mouth and nose.
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Figure A3. Visualization results of the first seven principal directions on the nose region of the human faces. The numbers asides the
pictures are the eigenvalues corresponding to each direction. The green mask on the top left image is the region of interest used to
compute the directions.
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Figure A4. Visualization results of the first seven principal directions on the eyes region of the human faces. The numbers asides the
pictures are the eigenvalues corresponding to each direction. The green mask on the top left image is the region of interest used to
compute the directions.
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Figure A5. Visualization results of the first seven principal directions on eyebrows region of the human faces. The numbers asides the
pictures are the eigenvalues corresponding to each direction. The green mask on the top left image is the region of interest used to
compute the directions.
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Figure A6. Visualization results of the first seven principal directions on the mouth region of the human faces. The numbers asides the
pictures are the eigenvalues corresponding to each direction. The green mask on the top left image is the region of interest used to
compute the directions.
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Figure A7. Visualization results of the first ten principal directions on the wheel region of the car. The numbers asides the pictures are the
eigenvalues corresponding to each direction. The green mask on the top left image is the region of interest used to compute the directions.



Region-Based Semantic Factorization in GANs

In
pu
t

− + − + − +

80
.1
2

38
.2
8

29
.8
8

25
.8
5

20
.5
3

19
.5
6

17
.4
9

Figure A8. Visualization results of the first seven principal directions on the church. The numbers asides the pictures are the eigenvalues
corresponding to each direction. The green mask on the top left image is the region of interest used to compute the directions.
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Figure A9. Visualization results of the first seven principal directions on the floor region of the bedroom. The numbers asides the pictures
are the eigenvalues corresponding to each direction. The green mask on the top left image is the region of interest used to compute the
directions.


