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Abstract

Large amounts of efforts have been devoted
into learning counterfactual treatment out-
come under various settings, including bi-
nary/continuous/multiple treatments. Most of
these literature aims to minimize the estimation er-
ror of counterfactual outcome for the whole treat-
ment space. However, in most scenarios when the
counterfactual prediction model is utilized to as-
sist decision-making, people are only concerned
with the small fraction of treatments that can po-
tentially induce superior outcome (i.e. outcome-
oriented treatments). This gap of objective is even
more severe when the number of possible treat-
ments is large, for example under the continuous
treatment setting. To overcome it, we establish a
new objective of optimizing counterfactual pre-
diction on outcome-oriented treatments, propose
a novel Outcome-Oriented Sample Re-weighting
(OOSR) method to make the predictive model
concentrate more on outcome-oriented treatments,
and theoretically analyze that our method can im-
prove treatment selection towards the optimal one.
Extensive experimental results on both synthetic
datasets and semi-synthetic datasets demonstrate
the effectiveness of our method.

1. Introduction
In many fields, such as healthcare (Bica et al., 2020b;a)
and marketing (Charles et al., 2013; Xu et al., 2022), it is
beneficial for decision-makers to accurately forecast indi-
vidual outcome given different treatments. The randomized
control trials (RCT) (Booth & Tannock, 2014), which is the
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Figure 1. An example plot of two estimated outcome curves (red
and blue dashed lines) and the ground truth (green solid line)
for one fixed sample. The treatment value t1, t2 represent the
pseudo-optimal treatment of the estimated outcome curve 1 and 2
respectively, and t∗ represents the true-optimal treatment.

golden standard to answer this question in causal inference,
is expensive in time/resource (Kohavi & Longbotham, 2011)
and even can be impossible (Charles et al., 2013; Kuang
et al., 2017). Fortunately, the accumulation of observational
data offers an opportunity to learn individual outcome of
counterfactual treatments from the observational study.

An important challenge in counterfactual prediction is the
selection bias from confounding (Hassanpour & Greiner,
2019; Assaad et al., 2021) which indicates that the treat-
ments are assigned not randomly, but with some ex-
plicit/implicit assignment policy manifested as correlations
with some other covariates called confounders. Therefore,
vanilla machine learning methods may suffer from system-
atic bias when predicting the outcome for the treatments
assigned with a different assignment policy from the one in
the training dataset. A large amount of literature in causal
inference field has attempted to resolve this problem. Some
literature (Johansson et al., 2016; Shalit et al., 2017; Bica
et al., 2020a; Yao et al., 2018) introduces the idea of treat-
ment invariant representation learning borrowed from do-
main adaptation field (Ganin & Lempitsky, 2015; Bousmalis
et al., 2016). As an alternative method, sample re-weighting
method (Hassanpour & Greiner, 2020; Assaad et al., 2021;
Lim et al., 2018) adjusts the joint distribution of treatments
and confounders to make them independent. In addition,
some approaches (Yoon et al., 2018; Bica et al., 2020b;
Qian et al., 2021) model the data distribution to impute the
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counterfactual outcome and augment the biased dataset. Al-
though targeting various settings (e.g. different types of
treatments, static or longitudinal data), the main target of
these works is to minimize the estimation error of counter-
factual outcome over the whole treatment space (Yoon et al.,
2018; Bica et al., 2020b; Schwab et al., 2020).

In many application scenarios, however, when the re-
searchers utilize the counterfactual prediction model to
assist decision-making, they are only concerned with the
treatments that can potentially induce better outcome (i.e.
outcome-oriented treatments). It has also been acknowl-
edged for long in the management science literature that
better overall outcome predictions on all treatments may not
result in better decisions (den Boer & Sierag, 2021; Besbes
& Zeevi, 2015; Fernández-Lorı́a & Provost, 2022). In these
circumstances, the focus of counterfactual prediction models
can be put more on minimizing the estimation error of coun-
terfactual outcome over the outcome-oriented treatments
(rather than solely the whole treatment space as in previous
methods). But in real cases, we can hardly attain the true
outcome of a counterfactual treatment to judge whether it
is an outcome-oriented treatment. To remedy this, here we
focus on the setting of continuous treatments, and assume
a smooth outcome curve over treatments. In this way, we
can reasonably use the optimal treatment derived from the
counterfactual prediction model as a pseudo-optimal treat-
ment, and regard the treatments around the pseudo-optimal
treatment as outcome-oriented treatments.

We present a motivating example in Figure 1 (den Boer &
Sierag, 2021). The figure presents the true outcome curve
and two estimated curves for a continuous treatment. We
can observe that curve 1 achieves smaller predictive error
on the entire treatment space, while curve 2 reports smaller
errors on the outcome-oriented treatments. It is obvious that
the pseudo-optimal treatment t2 of curve 2 is closer to the
true optimal treatment t∗ than that of curve 1 t1, and the
true outcome of t2 is better than t1.

Theoretical analysis can also reveal that the treatment selec-
tion performance of model, which is characterized as the
average outcome gap between true-optimal treatment and
pseudo-optimal treatment over the population, is connected
to the predictive error on small fraction of treatments instead
of average error over the whole treatment space.

Inspired by the motivation and theoretical analysis above,
for making counterfactual learning more favorable to treat-
ment selection, we propose Outcome-Oriented Sample Re-
weighting (OOSR) algorithm. Specifically, it iteratively
identifies the outcome-oriented treatments based on the
current model and strengthen the outcome prediction on
them, while ensuring the prediction over the whole treat-
ment space.

Contribution Starting from improving treatment selection
of counterfactual prediction model, we briefly define treat-
ment selection regret (Fernández-Lorı́a & Provost, 2022) as
the performance metric and theoretically analyze that this
optimization target is highly related to the outcome predic-
tion error on the true/pseudo-optimal treatments instead of
the average prediction error over the whole treatment space.
To enhance the treatment selection performance, we derive a
computationally tractable approximation of the regret bound
as the objective function and give an easy-to-implement al-
gorithm to minimize it. Specifically, we borrow the idea of
sample re-weighting to simultaneously remove the original
correlation between treatments and confounders in dataset
and make the counterfactual learning concentrated on the
outcome-oriented treatments. Extensive experimental re-
sults on both synthetic datasets and semi-synthetic datasets
report that our method outperforms the existing methods in
achieving smaller treatment selection regret.

2. Related Works
The related works consist of three parts, which are respec-
tively counterfactual prediction, offline policy learning, and
targeted maximum likelihood learning.

2.1. Counterfactual Prediction

A large amount of previous literature about counterfactual
prediction focuses on the setting without unobserved con-
founders. The main idea of them is to remove the correlation
between treatments and confounders in the observational
dataset and achieve precise counterfactual outcome predic-
tion on arbitrary treatments.

To realize this target, some works (Johansson et al., 2016;
Shalit et al., 2017; Tanimoto et al., 2021; Bica et al., 2020a)
characterize the undesired correlation as the distribution
imbalance of confounders between the different treatment
populations. Then it introduces the idea from domain invari-
ant learning (Tzeng et al., 2014; Ganin & Lempitsky, 2015;
Zhang et al., 2021) to learn the treatment invariant transfor-
mation of confounders, which is of the balanced distribution
across treatment populations, and predict the outcome based
on the transformed representation and treatment variable.

Besides the treatment invariant representation learning, sam-
ple re-weighting is an alternative method. Assaad et al.
(2021) claims that over-enforcing the balancing property of
representation may harm the predictive power while sam-
ple re-weighting schema can avoid it. Hence, some works
(Hassanpour & Greiner, 2019; 2020; Johansson et al., 2018)
calculate the sample weights based on the trained propen-
sity score model or directly learn the weights by distribution
balance.

Yoon et al. (2018) propose to train an auxiliary model to
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model the data distribution and generate the counterfactual
data points. By augmenting the observational dataset with
these counterfactual data points, the selection bias can be re-
moved. There is also some literature (Alaa & van der Schaar,
2018; 2017; Zhang et al., 2020) which introduces gaussian
process to model the data distribution and minimize the
variance of counterfactual outcome prediction.

To deal with more complex treatments (e.g. continuous
treatments, multiple treatments), some literature extends the
strategies above. Arbour et al. (2021); Zou et al. (2020) ap-
plies density ratio estimation (Qin, 1998; Bickel et al., 2007;
Sugiyama et al., 2012) between the original data distribution
and designed target distribution to calculate sample weights.
Tanimoto et al. (2021) propose to learn representation of
both treatments and confounders which are independent.
Bica et al. (2020b); Qian et al. (2021) propose the data aug-
mentation methods for continuous treatment and multiple
treatments.

As presented above, a large amount of works achieve ac-
curate counterfactual prediction over the whole treatment
space. However, lower outcome prediction error over the
whole treatment space does not exactly mean better decision-
making (Fernández-Lorı́a & Provost, 2022). Tanimoto et al.
(2021) also realize this gap and propose a regularizer to re-
solve the problem. However, the model is mainly designed
for multi-dimensional binary treatment setting and the pro-
posed regularizer aims for reducing the classification loss
of whether the treatment outcome is larger than the average
outcome. It can only help identify relatively good treatments
(i.e. treatments with outcomes superior to a baseline value).
In this work, we focus on the continuous treatment setting
where the number of treatments is infinite and target the best
treatment selection.

2.2. Offline Policy Learning

The paradigm of offline policy learning methods is typically
defining a class of policy functions, which take confounders
as input and output the treatment (distribution), and select
the policy with the optimal estimated utility.

The class of policy function is usually defined as a parame-
terized model, for example, linear models (Swaminathan &
Joachims, 2015a) and deep neural networks (Joachims et al.,
2018). The objective function for optimizing the parameters
is the utility estimated by offline policy evaluation methods.
There have been many estimators proposed in the previous
literature for accurate policy evaluation. The direct methods
(Wang et al., 2019) learn an outcome predictive model from
datasets and use the predicted result to estimate the utility.
The sample re-weighting based methods, such as inverse
propensity score (IPS) estimator (Swaminathan & Joachims,
2015a; Zhao et al., 2012), self-normalized estimator (Swami-
nathan & Joachims, 2015b; Joachims et al., 2018), attempt

to balance the joint distribution of confounders and treat-
ments between behavior policy and target policy to calculate
the re-weighted outcome as utility. When the propensity
score is unknown, the weights can be estimated by density
ratio estimation (Sondhi et al., 2020) or directly balancing
the distribution (Kallus, 2018). Some literature (Wang et al.,
2017; Thomas & Brunskill, 2016; Dudı́k et al., 2011; Su
et al., 2019) further combines the above two strategies to
take both the advantages of them to obtain more accurate
evaluation. To the best of our knowledge, this branch of
literature mainly focuses on the finite sample property of
estimators, such as the trade-off of bias and variance for
precise evaluation. However, less attention has been paid
to building counterfactual prediction model based on the
rapidly developing machine learning for directly selecting
treatments to minimize regret and bypass offline policy eval-
uation. Although Wang et al. (2019) also involves learning
predictive model with sample re-weighting for policy learn-
ing, it only targets to minimize the evaluation error of the
utility of the policy while neglecting the relationship be-
tween regret (i.e. the final goal of treatment selection) and
the learned model.

2.3. Targeted Maximum Likelihood Learning

Our idea is potentially related to targeted maximum like-
lihood learning (TMLE) (Van Der Laan & Rubin, 2006),
which is a framework in semi-parametric inference family. It
proposes to learn an empirical density estimator which mini-
mizes the estimation error of a target estimand. Although its
application on some specific estimands (e.g. average treat-
ment effect (ATE) estimation) is well-developed, making
TMLE framework applicable to the problem in this paper is
still worthy of study to the best of our knowledge.

3. Notations and Problem Formulation
We define X ∈ X ⊆ Rd as the observed confounder vari-
ables, t ∈ T = [a, b] ⊆ R as continuous treatment assigned
to each individual and y ∈ R as outcome determined by
the confounders and treatment. Hence, the observational
dataset can be denoted as {(xi, ti, yi)}1≤i≤n, which is in-
dependently sampled from the joint distribution p(X, t,y).
The number n is the sample size.

We follow the potential outcome framework (Rosenbaum &
Rubin, 1983; Rubin, 1984) in causal inference and assume
there exists potential outcome function YX(t) denoting the
potential outcome when assigned treatment t for samples
with confounder X. We aim to learn a model f : X × T →
R that predicts potential outcome for the individual based
on confounders and treatment. Since we can only observe
the factual outcome yi corresponding to the treatment ti, we
assume the following standard assumptions (Rosenbaum &
Rubin, 1983) to make the model f identifiable:
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Assumption 3.1. Stable Unit Treatment Value The poten-
tial outcome of one sample is independent of the treatment
assignments on the other samples.
Assumption 3.2. Unconfoundedness The assigned treat-
ments and potential outcomes are independent conditional
on observed covariates. Formally, t ⊥ {YX(t′)|t′ ∈ T }|X.
Assumption 3.3. Overlap For arbitrary X ∈ X that satis-
fies p(X) > 0, we have p(t|X) > 0 for each t ∈ T .

To characterize the treatment selection performance of a
model f , we briefly define the treatment selection regret
metric borrowed from decision theory (Fernández-Lorı́a &
Provost, 2022) as following:

Regret(f) = EX

[
YX(ρ∗(X))− YX(ρf (X))

]
, (1)

where ρ∗(·) and ρf (·) are respectively the true-optimal treat-
ment function and the pseudo-optimal treatment function
derived from predictive model f(X, t). Formally,

ρ∗(X) = argmax
t

YX(t), (2)

ρf (X) = argmax
t

f(X, t). (3)

In this work, we assume larger outcome is preferred, for
example, gross merchandise volume (GMV) in marketing.
When smaller outcome is preferred in some applications,
the regret metric, and the algorithm/analysis below can be
obtained in a similar manner.

4. OOSR: The Proposed Method
In this section, we firstly analyze the treatment selection
regret, that is the optimization target of this problem and
give an upper bound of it. Then inspired by the analysis, we
give a computationally tractable approximation of the bound
as the loss function and our Outcome-Oriented Sample Re-
weighting (OOSR) method for training model. Finally, the
detailed implementation of our algorithm is presented.

4.1. Theoretical Analysis on the Regret

We present that the treatment selection regret can be con-
trolled by the outcome prediction error on two treatment
points rather than the whole treatment space of each sample.
The detailed relationship between the regret and predictive
error is as following:
Proposition 4.1. With the confounders X, treatments t, po-
tential outcome function YX(t) defined as above, the treat-
ment selection regret (i.e. Equation 1) of counterfactual
prediction model f satisfies the following inequality:

Regret(f) ≤
√

EX[(YX(ρf (X))− f(X, ρf (X)))2]

+
√

EX[(YX(ρ∗(X))− f(X, ρ∗(X)))2] (4)

The proof can be found in the appendix. From the result
in Propostion 4.1, it can be concluded that if the outcome
prediction error on the true optimal treatment ρ∗(X) and
pseudo-optimal treatment ρf (X) are optimized to zero, we
can achieve perfect treatment selection.

The first term of the r.h.s in Equation 4 can be calculated
by the inverse propensity weighting (IPW) (Swaminathan &
Joachims, 2015a) estimator as following:

EX[(YX(ρf (X))− f(X, ρf (X)))2]

= EX,t∼p(X,t)

[
δρf (X)(t)

p(t|X)
(YX(t)− f(X, t))2

]
,(5)

where δρf (X)(t) is Dirac delta function. The empirical
version of the estimator in Equation 5 can be written as

1

n

n∑
i=1

δρf (xi)(ti)

p(ti|xi)
(yi − f(xi, ti))

2. (6)

It is an unbiased estimator if the denominator p(ti|xi) is true
value (Strehl et al., 2010). However, under the continuous
treatment setting, the empirical result of Equation 6 can
easily be 0 since p(ti = ρf (xi)) = 0 for each unit. To
make the estimator more practical, we utilize the result
in Kallus & Zhou (2018) and approximate Equation 6 as
following:

1

n

n∑
i=1

K
(
(ρf (xi)− ti)/τ

)
τp(ti|xi)

(yi − f(xi, ti))
2, (7)

where K(·) is the kernel function that smooth δρf (xi)(ti).
There are several candidate functions for K(·), for example
Epanechnikov kernel and Gaussian kernel. In this work, we
choose K(u) = 1√

2π
· e−u2

2 . For the sake of conciseness,
we denote the estimator in Equation 7 as A(f).
Remark 4.2. We can perceive the estimator A(f) con-
centrate on the outcome-oriented treatment region around
ρf (xi) rather than the single point. The hyper-parameter τ
control the strength of concentration. When τ approaches 0,
Equation 7 degenerates to Equation 6.
Remark 4.3. The approximation in Equation 7 relies on
that the error curve (YX(t) − f(X, t))2 is smooth, which
is also implied by previous literature (Kallus & Zhou, 2018;
Hansen, 2009). When the outcome curve is non-smooth,
the error curve will also be non-smooth and the estimation
result of Equation 7 will suffer from large approximation
error. It may bring damage to performance of our method.
More detailed discuss can be found in appendix.

The second term of the r.h.s in Equation 4 represents the out-
come prediction error on the true-optimal treatment. Unlike
ρf (X), ρ∗(X) is intractable and can be arbitrary value in T
in general. Hence, in order to reduce the predictive error of
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YX(ρ∗(X)), we resort to minimizing the mean predictive
error over the treatment space T , which is also the origi-
nal optimization target of counterfactual prediction. Under
some mild conditions, the predictive error of YX(ρ∗(X))
can be upper bounded by the mean predictive error over T
plus a constant.
Proposition 4.4. Given the treatment space T = [a, b], if
we assume the predictive loss function G(X, t) = (YX(t)−
f(X, t))2 is L-Lipschitz on t, then we have:

EX

[
(YX(ρ∗(X))− f(X, ρ∗(X)))2

]
≤ EX

[
1

b− a

∫ b

t=a

G(X, t)dt

]
+ L · b− a

2

= EX,t∼p(X,t)

[
G(X, t)

(b− a)p(t|X)

]
+ L · b− a

2

≈ 1

n

n∑
i=1

(yi − f(xi, ti))
2

(b− a)p(ti|xi)
+ L · b− a

2
(8)

We also denote the last estimator in Equation 8 as B(f)
for conciseness. There is much research space in dealing
with the second term of the r.h.s in Equation 4, for example
reducing the scope of ρ∗(X) by some extra assumption and
domain knowledge, or building the relationship between
ρ∗(X) and ρf (X). We will leave it to future work.

4.2. Objective Function

With the assumptions and conclusions above, we can ap-
proximate the upper bound of treatment selection regret
as

√
A(f) +

√
B(f). We attempt to reduce the regret by

training counterfactual prediction model f to minimize the
approximated upper bound.

For the stability of training process, we adopt to minimize
the weighted combination γA(f) + B(f).
Proposition 4.5. Assuming the function is parameterized by
θ, that is fθ, and the functions A(fθ) and B(fθ) are differ-
entiable and strictly convex on θ, θ∗ is the global minimum
point of

√
A(fθ)+

√
B(fθ), then there exists γ ∈ R+ such

that
θ∗ = argmin

θ
γA(fθ) + B(fθ) (9)

Remark 4.6. The minimization objective γA(fθ) + B(fθ)
demonstrate that our algorithm strengthen the outcome pre-
diction on the outcome-oriented treatment region (i.e. the
treatment region around ρf (X)), while simultaneously en-
sure the global predictive performance over the whole treat-
ment space to some extent.

Therefore, the final loss function to optimize is as following:

min
θ

1

n

n∑
i=1

1+λK((ρfθ (xi)−ti)/τ)
(b−a)p(ti|xi)

· (yi − fθ(xi, ti))
2, (10)

where λ = (b − a)γ/τ . We set λ and τ to be the hyper-
parameters of our loss function for training model fθ.

4.3. Implementation

We successively introduce the components in our methods.

Inverse Propensity Score Estimation The direct estima-
tion of p(ti|xi) usually requires to assume the type of condi-
tional distribution. For example, the conditional distribution
p(ti|xi) can be assumed to be a gaussian distribution, for-
mally p(ti|xi) = N (µ(xi), σ(xi)). However, the assump-
tion may be incorrect in many applications.

To reduce dependency on the assumption of p(ti|xi), we
resort to density ratio estimation (Qin, 1998; Bickel et al.,
2007; Sugiyama et al., 2012) by solving a binary classifi-
cation problem. Specifically, we define a uniform target
distribution pu(X, t) = p(X)pu(t|X), where pu(t|X) is a
uniform distribution on T and equals 1

b−a in this problem.
Therefore, the inverse of propensity score becomes

1

p(t|X)
=

(b− a)pu(t|X)

p(t|X)
=

(b− a)pu(X, t)

p(X, t)
. (11)

To estimate the density ratio between p(X, t) and
pu(X, t), we label the samples in observational dataset
{(xi, ti)}1≤i≤n as positive samples (L = 1) and uniformly
sample treatments t′i ∼ Unif(a, b) to generate samples
{(xi, t

′
i)}1≤i≤n with negative label (L = 0). Then we

can get the density ratio as following:

pu(X, t)

p(X, t)
=

p(X, t|L = 0)

p(X, t|L = 1)
=

p(L = 1)

p(L = 0)
· p(L = 0|X, t)

p(L = 1|X, t)

With deep neural network based classifer trained on these
data points, the term p(L|X, t) can be estimated by the out-
put of classifer p̂(L|X, t). Considering the ratio p(L=1)

p(L=0) = 1

for all the samples, the inverse propensity score can be esti-
mated by:

1

p̂(t|X)
=

(b− a)p̂(L = 0|X, t)

p̂(L = 1|X, t)

Outcome-Oriented Re-weighting Since we do not have
knowledge about ρfθ (X) initially, we can divide the the
training process of model fθ into two stages. In the first
stage, we train the model with sample weights w

(0)
i =

1
(b−a)p̂(ti|xi)

which removes the correlation between treat-

ments and confounders in data, and get the model f (0)
θ .

In the second stage, we alternately update the sample
weights and model parameters θ for m rounds. For the
jth round, we calculate the sample weights w(j) based on
the predictive model of the previous round f

(j−1)
θ

w
(j)
i =

1 + λK
(
(ρf

(j−1)
θ (xj)− tj)/τ

)
(b− a)p̂(tj |xj)
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Table 1. The experimental results on synthetic datasets with the sample size n varying. The metrics are Mean±STD over 10 repeated
experiments. The best performance is marked bold.

Linear setting: Fix the degree of selection bias α = 6.0, varying the sample size n

n n = 4000 n = 6000 n = 8000 n = 10000

Methods Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S.

MLP 0.914±0.133 0.929±0.131 0.887±0.160 0.895±0.160 0.804±0.236 0.811±0.239 0.833±0.207 0.849±0.208
SCIGAN 0.156±0.002 0.166±0.002 0.140±0.002 0.146±0.003 0.126±0.002 0.132±0.002 0.130±0.003 0.136±0.002
RMNet 0.343±0.285 0.347±0.290 0.286±0.241 0.287±0.244 0.181±0.098 0.178±0.096 0.192±0.136 0.193±0.137

IPS-BanditNet 0.125±0.021 0.130±0.022 0.105±0.018 0.109±0.019 0.104±0.014 0.108±0.015 0.103±0.019 0.107±0.020
BCRI 0.199±0.046 0.204±0.047 0.172±0.035 0.175±0.035 0.150±0.026 0.154±0.027 0.137±0.015 0.139±0.014

MLP-Debias 0.100±0.048 0.107±0.051 0.081±0.057 0.083±0.058 0.074±0.047 0.073±0.047 0.053±0.029 0.055±0.030
OOSR 0.040±0.018 0.043±0.020 0.034±0.023 0.046±0.024 0.020±0.011 0.037±0.011 0.015±0.010 0.016±0.010

Exponential setting: Fix the degree of selection bias α = 5.0, varying the sample size n

n n = 4000 n = 6000 n = 8000 n = 10000

Methods Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S.

MLP 0.699±0.190 0.716±0.196 0.829±0.109 0.847±0.114 0.769±0.156 0.787±0.161 0.754±0.157 0.772±0.161
SCIGAN 0.210±0.132 0.220±0.135 0.219±0.137 0.229±0.142 0.279±0.101 0.295±0.103 0.114±0.063 0.119±0.067
RMNet 0.320±0.307 0.326±0.313 0.325±0.231 0.331±0.228 0.233±0.170 0.234±0.173 0.092±0.054 0.094±0.053

IPS-BanditNet 0.066±0.011 0.069±0.013 0.047±0.010 0.050±0.011 0.060±0.026 0.063±0.026 0.103±0.102 0.122±0.105
BCRI 0.145±0.039 0.147±0.040 0.144±0.041 0.147±0.043 0.115±0.015 0.116±0.014 0.129±0.018 0.129±0.017

MLP-Debias 0.221±0.092 0.224±0.093 0.171±0.060 0.174±0.059 0.250±0.101 0.253±0.100 0.264±0.099 0.266±0.099
OOSR 0.053±0.035 0.053±0.034 0.068±0.020 0.069±0.020 0.085±0.061 0.085±0.062 0.099±0.077 0.098±0.078

Logit setting: Fix the degree of selection bias α = 5.0, varying the sample size n

n n = 4000 n = 6000 n = 8000 n = 10000

Methods Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S.

MLP 0.639±0.020 0.648±0.021 0.626±0.035 0.634±0.036 0.628±0.034 0.636±0.036 0.609±0.047 0.616±0.048
SCIGAN 0.279±0.119 0.277±0.124 0.297±0.130 0.300±0.132 0.236±0.069 0.237±0.072 0.212±0.038 0.210±0.037
RMNet 0.211±0.057 0.212±0.057 0.151±0.125 0.152±0.125 0.162±0.144 0.163±0.145 0.110±0.066 0.109±0.065

IPS-BanditNet 0.075±0.002 0.071±0.002 0.060±0.003 0.059±0.003 0.060±0.010 0.061±0.011 0.054±0.008 0.055±0.008
BCRI 0.114±0.015 0.115±0.015 0.106±0.012 0.107±0.012 0.104±0.011 0.104±0.011 0.088±0.010 0.089±0.010

MLP-Debias 0.148±0.059 0.146±0.058 0.114±0.051 0.113±0.050 0.120±0.040 0.120±0.039 0.112±0.045 0.111±0.044
OOSR 0.041±0.021 0.042±0.022 0.025±0.004 0.023±0.004 0.022±0.006 0.022±0.007 0.050±0.034 0.049±0.033

and then update the parameters of model θ based on the
sample weights w(j) for a number of iterations to obtain
model f (j)

θ .

Outcome Predictive Model With the sample weights w(j),
the loss function at the jth round is as following:

L(j) =
1

n

n∑
i=1

w
(j)
i · (f

(j)
θ (xi, ti)− yi)

2.

Specifically, because of the potential nonlinear relationship
between outcomes y and the combination of confounders
X and treatment t, we apply deep neural networks with
parameters θ as the predictive model fθ. The pseudo-code
of the whole algorithm can be found in appendix.

5. Empirical Results
Due to the lack of the observation of counterfactual out-
comes in real-world datasets, we evaluate our proposed
method on both synthetic datasets and semi-synthetic

datasets.

5.1. Experimental Setup

Baselines To demonstrate the advantage of our method, we
compare it with the following approaches:

• Standard multilayer perceptron (MLP): It directly
trains a predictive model on the observational dataset.
The model takes the concatenation of confounder vec-
tor X and treatment variable t as input and output the
corresponding outcome.

• MLP trained on debiased dataset (MLP-Debias): The
sample weights are computed by density ratio estima-
tion described above to remove the correlation between
treatment and confounders in data. Then the predictive
model is trained on the re-weighted dataset.

• SCIGAN (Bica et al., 2020a): It use generative adver-
sarial networks to impute the outcome of counterfac-
tual treatment of the samples and augment the dataset.
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Figure 2. Simulation results (out-of-sample setting, the results under within-sample setting is similar and thus omitted) under different
settings where the degree of selection bias α is varied. The curves present the mean value of regret in 10 repeated experiments. The
shaded region presents the interval [mean− std,mean + std] of the regret.

Then it trains the predictive model on the augmented
dataset. The original model is designed for the com-
bination of multi-level treatment and continuous treat-
ment. Therefore, we constrain the number of multi-
level treatment to be one for the compatibility with our
setting.

• RMNet (Tanimoto et al., 2021): It learns the balanced
representation of confounders and treatment to remove
the correlation between treatment and confounders in
data. Furthermore, it minimizes the classification error
of whether or not the treatment in dataset is relatively
good for each sample. We use the model version that
is designed based on Wasserstein distance. The orig-
inal model is designed for multi-dimensional binary
treatment, we extend it to continuous treatment.

• IPS-BanditNet (Joachims et al., 2018) We use deep
neural networks consisting of fully-connected layers as
the parameterized policy πθ, which takes confounders
as input and output the treatment. The objective func-
tion is the standard estimator in Kallus & Zhou (2018).

• BCRI (Wang et al., 2019) We implement the policy πθ

of the softmax version with the deep neural networks
based predictive model.

Evaluation Metric We evaluate the treatment selection per-
formance under two different settings (Shalit et al., 2017).
One is within-sample, where the metric is the average
regret of the samples in the observational dataset. Formally,
Regretin = 1

n

∑n
i=1

(
Yxi(ρ

∗(xi))− Yxi(ρ
f (xi))

)
for methods which directly selects treatments
based on predictive model and Regretin =
1
n

∑n
i=1

(
Yxi

(ρ∗(xi))− Et∼πθ(t|xi)[Yxi
(t)]

)
for policy-

based methods. Conversely, the other setting is out-of-
sample, where the metric is averaged over the new samples
{xtes

i }1≤i≤ntes for which no factual outcome is observed.

The results of ρf (X) and some ρ∗(X) do not have closed-
form solution. To numerically compute it, we sample q
points consecutively with equal intervals in [a, b] and select
the one with largest true or predicted outcome. Formally,

ρf (X) = argmax
t∈{a,a+ b−a

q−1 ,...,b}
f(X, t). (12)

We set the number of search points q = 1001.

5.2. Synthetic Dataset

Data Generation We generate the synthetic datasets un-
der different settings. We first generate the confounders
X = (x1, x2, ..., xd), where each element is generated by
uj

iid∼ N (0, 1), xj = |uj |. To generate outcome, we set
two parameter vectors v1 ∈ Rd×1 and v2 ∈ Rd×1. They
are sampled by firstly sampling each element of ui ∈ Rd×1

from Unif(0, 1), then setting vi = ui/||ui||, where || · || is
Euclidean norm. Mimicking the demand curve in marketing
(Besbes & Zeevi, 2015), we define the potential outcome
to be YX(t) = g(X, t) · t, where the function g(X, t) is of
the forms as following:

• Linear: g(X, t) = max(−vT
2X · t + 1.8vT

1X, 0),
where ρ∗(X) = min(0.9vT

1X/vT
2X, r)

• Exponential: g(X, t) = e−vT
2X·t+vT

1X,

where ρ∗(X) = min(1/vT
2X, r)

• Logit: g(X, t) = 2/(1 + ev
T
2X·t−vT

1X), where ρ∗(X)
is numerically calculate by Equation 12.

We assign treatment for each sample with a similar policy
as in Bica et al. (2020b). Specifically, we sample ti from
a beta distribution. Supposed the treatment space is [0, r],
the treatment follows ti

r ∼ Beta(α, β). α ≥ 1 controls the
degree of selection bias. When α = 1, it is a uniform distri-
bution. β = α−1

ρ∗(xi)/2r
+ 2− α guarantees that the mode of
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treatment assignment distribution is ρ∗(xi)/2. After sam-
pling the treatment, the factual outcome is the corresponding
potential outcome yi = Yxi(ti) = g(xi, ti) · ti.

In the simulations, we set the dimension of confounders
d = 5 and the treatment boundary r = 2.0 for Linear
setting and r = 3.0 for Exponential and Logit settings. A
sample set of size 10000 is randomly generated as held-out
test-set to compute the out-of-sample metric.

Results We conduct experiments under different settings.
For each setting, we repeated the experiments and train each
models for 10 times. Then we calculate the mean value and
standard deviation of the treatment selection regrets. The
results of experiments where the sample size is varied are
presented in Table 1. And the results of experiments with
varying degree of selection bias is shown in Figure 2.

The overall trend is that with the sample size increasing
the treatment selection regret become smaller. And with
more severe selection bias (i.e. larger α), the regret be-
comes larger. Among the different methods, we can observe
that directly trained MLP suffers from the selection bias in
observational data and results in large treatment selection
regret. The MLP-Debias method eliminates the correlation
between treatments and confounders and achieves lower re-
gret than vanilla MLP method. SCIGAN imputes the coun-
terfactual outcome and augments the observational dataset
to remove selection bias. The predictive model trained on
the augmented dataset can achieve improved regret. The
RMNet is designed for multi-dimensional binary treatment
setting, however, after adapted to the continuous treatment
setting, it still has competitive performance under different
settings. The policy-based methods also perform well in
the experiments. Since the policy in BCRI is defined to be
stochastic, it results in sub-optimal performance compared
to our method. Our method fits the outcome curve based on
the outcome-oriented sample weights and outperforms the
other methods.
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Figure 3. Parameter analysis on λ and τ . We conduct experiments
under Logit setting, while fixing α = 5.0 and n = 4000.

Parameter Analysis The hyper-parameters are set to be
λ = 10.0 and τ = 0.2 in the experiments above. We
also analyze the influence of parameter λ and τ on regret

measured under the out-of-sample setting. The results are
presented in Figure 3. From the results, we can observe
that larger λ contributes to better performance. Because
it strengthens the local outcome prediction on outcome-
oriented treatments. When λ > 10.0, the regret is stable
and does not change much. The regret becomes smaller
with τ increasing at first, since extremely small τ makes
the loss function less smooth. When τ increases further,
the performance significantly drops. This is because the
strength of outcome prediction optimization on the outcome-
oriented treatments becomes weak.
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Figure 4. Comparison of outcome prediction on ρf (X) and ρ∗(X).
We conduct experiments under Logit setting, while fixing n =
4000 and varying α.

Abalation study We measure the outcome prediction error
(i.e. RMSE) on the treatment ρf (X) and ρ∗(X) (i.e. the two
term in Equation 4) under Logit setting. From the results in
Figure 4, we can observe that the outcome prediction error
on ρf (X) is the domination of the r.h.s in Equation 4 and our
method significantly reduces it. And the outcome prediction
error on treatment ρ∗(X) is also suppressed to some extent.
This phenomenon means the necessity of setting large λ and
is consistent with the observation in parameter analysis.

5.3. Semi-synthetic Dataset

Data Generation The confounder feature is obtained from
a real-world dataset TCGA (Weinstein et al., 2013). We
choose the 10 columns with largest variance in the raw
TCGA dataset as the confounder matrix X. In semi-
synthetic datasets, we set the treatment boundary as r = 1.0.
To generate the treatments and outcomes, we sample three
vectors v1,v2,v3 as in synthetic datasets. The outcome
generation process is similar to that in Bica et al. (2020b).
The two simulated outcome curve is listed below:

• YX(t) = vT
1X+(12vT

2X−2) · t− (12vT
3X−2) · t2,

where ρ∗(X) =min((12vT
2X− 2)/(24vT

3X− 4), 1.0)

• YX(t) = vT
1X+ 12t ·

(
t− 0.75

vT
2X

vT
3X

)2

,

where ρ∗(X) =


vT
2X

vT
3X

/4
vT
2X

vT
3X
≥ 1.0

1.0
vT
2X

vT
3X

< 1.0
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Table 2. The experimental results on semi-synthetic datasets of different methods. The metrics are Mean±STD over 10 repeated
experiments. The best performance is marked bold.

Setting 1: Varying the degree of selection bias α

α α = 6.0 α = 6.5 α = 7.0 α = 7.5

Methods Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S.

MLP 1.547±0.001 1.532±0.001 1.547±0.001 1.532±0.001 1.547±0.001 1.532±0.001 1.547±0.001 1.532±0.001
SCIGAN 0.251±0.006 0.254±0.006 0.387±0.008 0.392±0.008 0.551±0.010 0.556±0.009 0.785±0.013 0.792±0.013
RMNet 0.546±0.360 0.550±0.363 0.545±0.440 0.548±0.445 0.686±0.542 0.685±0.537 0.551±0.250 0.549±0.249

IPS-BanditNet 0.260±0.030 0.259±0.030 0.265±0.052 0.266±0.053 0.272±0.030 0.275±0.030 0.288±0.037 0.291±0.037
BCRI 0.091±0.063 0.093±0.061 0.121±0.088 0.124±0.090 0.186±0.039 0.187±0.038 0.502±0.176 0.499±0.171

MLP-Debias 0.040±0.014 0.039±0.014 0.202±0.071 0.204±0.071 0.276±0.083 0.278±0.086 0.346±0.090 0.352±0.093
OOSR 0.016±0.005 0.015±0.005 0.096±0.051 0.097±0.051 0.125±0.042 0.127±0.041 0.187±0.052 0.190±0.053

Setting 2: Varying the degree of selection bias α

α α = 4.0 α = 4.5 α = 5.0 α = 5.5

Methods Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S.

MLP 0.100±0.064 0.098±0.058 0.210±0.058 0.195±0.054 0.192±0.068 0.182±0.063 0.279±0.073 0.266±0.071
SCIGAN 0.064±0.037 0.066±0.040 0.139±0.082 0.143±0.082 0.148±0.057 0.154±0.056 0.209±0.095 0.212±0.089
RMNet 0.154±0.064 0.159±0.065 0.145±0.068 0.149±0.070 0.165±0.129 0.169±0.128 0.189±0.080 0.192±0.075

IPS-BanditNet 0.509±0.044 0.496±0.045 0.491±0.033 0.473±0.034 0.580±0.125 0.569±0.133 0.623±0.156 0.608±0.155
BCRI 0.132±0.034 0.152±0.036 0.243±0.139 0.254±0.135 0.267±0.141 0.279±0.132 0.313±0.107 0.320±0.106

MLP-Debias 0.028±0.019 0.028±0.020 0.122±0.073 0.113±0.065 0.112±0.089 0.107±0.086 0.171±0.072 0.160±0.067
OOSR 0.015±0.014 0.016±0.015 0.105±0.079 0.100±0.071 0.098±0.096 0.095±0.093 0.154±0.066 0.143±0.062

As in the synthetic datasets, we assign treatment for each
sample from a beta distribution. The treatment follows
ti ∼ Beta(α, β). α ≥ 1 controls the degree of selection
bias and β = α−1

ρ∗(xi)/2
+2−α. After assigning the treatment

to each sample, the factual outcome is the corresponding
potential outcome.

We randomly split 33% of the sample as the held-out test-set
to compute out-of-sample metric.

Results We vary the degree of selection bias α and repeat-
edly conduct experiments for 10 times for each setting. The
results are reported in Table 2.

The overall results is quitely consistent with the simulations.
The directly trained MLP is prone to selection bias and re-
sults in large regret. The MLP-Debias, SCIGAN, RMNet,
BCRI improve the performance based on the vanilla MLP
in different degree. Under the setting 2, the performance of
IPS-BanditNet significantly declines. The reason may be
that for many samples, the optimal treatment is at bound-
ary (i.e. ρ∗(X) = 1.0) where less treatments is sampled
in the observational dataset. Our proposed OOSR method
attempts to optimize the outcome prediction further on the
outcome-oriented treatments and achieves the best perfor-
mance among the different methods.

6. Conclusion
In this paper, we study the problem of learning counterfac-
tual outcome for treatment selection. Under the continuous
treatment setting, we theoretically analyze that the treat-
ment selection regret is connected to prediction error on

two treatment points, which are true/pseudo-optimal treat-
ments rather than the whole treatment space. To improve
treatment selection, we propose Outcome-Oriented Sample
Re-weighting (OOSR) method which strengthens the out-
come prediction on the outcome-oriented treatment region
to optimize the upper bound of regret. Extensive experi-
mental results on the synthetic datasets and semi-synthetic
datasets reveal the effectiveness of our method. The inter-
esting direction of future work can be the more delicate
analysis of the upper bound of regret and the optimization
algorithm of the objective function.
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A. Proof
In this section, we give the proof of the proposition in the main paper.

Proposition A.1. (Restated) With the confounders X, treatments t, potential outcome function YX(t) defined as above, the
treatment selection regret (i.e. Equation 1) of counterfactual prediction model f satisfies the following inequality:

Regret ≤
√
EX[(YX(ρf (X))− f(X, ρf (X)))2] +

√
EX[(YX(ρ∗(X))− f(X, ρ∗(X)))2]

Proof. According to the definition of ρf (X), we have f(X, ρf (X)) ≥ f(X, ρ∗(X)). Then,

Regret = EX

[
YX(ρ∗(X))− YX(ρf (X))

]
≤ EX

[
YX(ρ∗(X))− YX(ρf (X)) + f(X, ρf (X))− f(X, ρ∗(X))

]
= EX [YX(ρ∗(X))− f(X, ρ∗(X))] + EX

[
f(X, ρf (X))− YX(ρf (X))

]
Based on mean-value inequality, we have

EX [YX(ρ∗(X))− f(X, ρ∗(X))] + EX

[
f(X, ρf (X))− YX(ρf (X))

]
≤

√
EX

[
(YX(ρ∗(X))− f(X, ρ∗(X)))

2
]
+

√
EX

[
(f(X, ρf (X))− YX(ρf (X)))

2
]

Proposition A.2. (Restated) Given the treatment space T = [a, b], if we assume the predictive loss function G(X, t) =
(YX(t)− f(X, t))2 is L-Lipschitz on t, then we have:

EX

[
(YX(ρ∗(X))− f(X, ρ∗(X)))2

]
≤ EX

[
1

b− a

∫ b

t=a

G(X, t)dt

]
+ L · b− a

2

= EX,t∼p(X,t)

[
G(X, t)

(b− a)p(t|X)

]
+ L · b− a

2
≈ 1

n

n∑
i=1

(yi − f(xi, ti))
2

(b− a)p(ti|xi)
+ L · b− a

2

Proof. Because G(X, t) is L-Lipschitz, G(X, ρ∗(X)) ≤ G(X, t) + L · |ρ∗(X)− t|. Therefore, we have∫ b

t=a

G(X, ρ∗(X))dt ≤
∫ b

t=a

G(X, t) + L · |ρ∗(X)− t|dt

⇒ (b− a)G(X, ρ∗(X)) ≤
∫ b

t=a

G(X, t) +
L

2
(b− a)2

⇒ EX

[
(YX(ρ∗(X))− f(X, ρ∗(X)))2

]
≤ EX

[
1

b− a

∫ b

t=a

G(X, t)dt

]
+ L · b− a

2

Additionally,

EX

[
1

b− a

∫ b

t=a

G(X, t)dt

]
= EX

[∫ b

t=a

p(t|X)
G(X, t)

(b− a)p(t|X)
dt

]
= EX,t∼p(X,t)

[
G(X, t)

(b− a)p(t|X)

]
.

Since the observational data {(xi, ti)}1≤i≤n is sampled from p(X, t), EX,t∼p(X,t)

[
G(X,t)

(b−a)p(t|X)

]
can be approximated by

1
n

∑n
i=1

(yi−f(xi,ti))
2

(b−a)p(ti|xi)
.

Proposition A.3. (Restated) Assume the function is parameterized by θ, that is fθ, and the functions A(fθ) and B(fθ) are
differentiable and strictly convex on θ, θ∗ is the global minimum point of

√
A(fθ) +

√
B(fθ), then there exists γ ∈ R+

such that
θ∗ = argmin

θ
γA(fθ) + B(fθ)
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Proof. Since θ∗ is the global minimum point of
√
A(fθ) +

√
B(fθ), we have

∂
√
A(fθ) +

√
B(fθ)

∂θ

∣∣∣
θ=θ∗

= 0⇒
√
B(fθ∗)√
A(fθ∗)

∂A(fθ)
∂θ

+
∂B(fθ)
∂θ

∣∣∣
θ=θ∗

= 0,

Letting γ =

√
B(fθ∗ )√
A(fθ∗ )

,

∂γA(fθ) + B(fθ)
∂θ

∣∣∣
θ=θ∗

= 0.

Because the functions A(fθ) and B(fθ) are differentiable and strictly convex on θ, θ∗ is also the global minimum point of
γA(fθ) + B(fθ).

B. Experimental Details
To allow for fair comparison, we ensure the different methods share the same backbone of predictive models. The predictive
model is a neural networks with two hidden layers of size 20. The policy networks in IPS-BanditNet is of the same
architecture. We use the ELU activation function. The predictive models are trained by SGD optimizer for 60000 iterations
in synthetic experiments, 100000 iterations in setting 1 of semi-synthetic experiments and 300000 iterations in setting 2 of
semi-synthetic experiments. The policy networks are trained for 4000 epochs. For our algorithm, in each experiment, the
length of the first stage is 40% of the training process, and the length of each round in the second stage is 5% of the training
process. Since the treatment space is bounded in the experiments, we truncate and normalize the kernel as in Kallus & Zhou
(2018).

Since validation is a difficult problem in counterfactual prediction task, we select hyper-parameter in an indirect way. Firstly,
we train a neural network h(X, t) using the re-weighted dataset which is removed selection bias. Then we treat h(X, t) as
the ground truth of potential outcome and update the dataset y′i = h(xi, ti). Using the updated dataset {(xi, ti, y

′
i)}1≤i≤n

and ”ground truth” h(X, t), we select hyper-parameters by grid searching. We choose λ = 10.0 and τ = 0.2.

C. Smoothness of Outcome Curve
We define error term E(X, t) = (YX(t) − f(X, t))2. Then the approximation target of Equation 5 can be written as
EX[E(X, ρf (X))]. We can have the following results on the bias of estimator in Equation 7.

Proposition C.1. The estimation bias of Equation 7 is Bias(A(f)) = κ2(K)τ2

2 EX

[
∂2

∂t2 E(X, ρf (X))
]
+ O(τ2), where

κ2(K) =
∫
u
K(u)u2du.

Proof. Following the proof in Theorem 1 of Kallus & Zhou (2018), we have

E(X, t) = E(X, ρf (X)) + (t− ρf (X))
(

∂
∂tE(X, ρf (X))

)
+ (t−ρf (X))2

2

(
∂2

∂t2 E(X, ρf (X))
)
+O((t− ρf (X))2).

E [A(f)] = EX

[∫
t

p(t|X)
K((ρf (X)− t)/τ)

τp(t|X)
E(X, t)dt

]
= EX

[∫
t

K((ρf (X)− t)/τ)

τ
E(X, t)dt

]
. (13)

Letting u = (t− ρf (X))/τ , we have

E [A(f)] = EX

[∫
u

K(u)E(X, ρf (X) + τu)du

]
= EX

[∫
u

K(u)

(
E(X, ρf (X)) + uτ

∂

∂t
E(X, ρf (X)) +

(uτ)2

2

(
∂2

∂t2
E(X, ρf (X))

)
+O(τ2)

)
du

]
=

∫
u

K(u)duEX[E(X, ρf (X))] +

∫
u

K(u)udu · EX[τ
∂

∂t
E(X, ρf (X))]

+
κ2(K)τ2

2
EX

[
∂2

∂t2
E(X, ρf (X))

]
+O(τ2)

= EX[E(X, ρf (X))] +
κ2(K)τ2

2
EX

[
∂2

∂t2
E(X, ρf (X))

]
+O(τ2).
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Table 3. The experimental results on synthetic datasets of OOSR methods. We set the sample size n = 4000 and α = 6.0.

Varying the intercept constant h.

h h = 0.05 h = 0.10 h = 0.15 h = 0.20

Methods Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S. Within-S. Out-of-S.

OOSR 0.058±0.024 0.063±0.027 0.171±0.208 0.159±0.210 0.396±0.372 0.405±0.376 0.646±0.364 0.659±0.366

From the results in C.1, we can see that the smoothness of error curve (i.e. ∂2

∂t2 E(X, ρf (X))) is highly related to the
approximation error. When the slope of the outcome curve changes substantially even the outcome curve is discontinuous,
the error curve also suffers from the same problem. Then our objective function can not approximate the regret upper bound
well, and this may affect the effectiveness of our method. To empirically demonstrate it, we modify the outcome curve in the
Linear setting of synthetic datasets as following:

YX(t) =

{
max(−vT

2X · t+ 1.8vT
1X, 0) · t− h t < 0.8ρ∗(X)

max(−vT
2X · t+ 1.8vT

1X, 0) · t t ≥ 0.8ρ∗(X)

The other mechanisms keep unchanged. Therefore, the true optimal treatments and corresponding treatment outcomes also
keep unchanged. We evaluate the performance of our method varying the intercept constant h. The results shown in Table 3
reveal that larger h makes the performance of our method worse.

D. Pseudo-code for Our Algorithm

Algorithm 1 Outcome-Oriented Sample Re-weighting(OOSR)
Input: observational dataset {(xi, ti, yi)}1≤i≤n, learning rate η, the number of iterations T1 in the first stage, the number
of iterations T2 ∗m in the second stage.
Output: the predictive model f (m)

θ

Estimate the inverse propensity score 1
p̂(ti|xi)

based on density ratio estimation.

Initialize the sample weights w(0)
i ← 1

(b−a)p̂(ti|xi)
and parameters of model θ(0)

for i = 1 to T1 do
Sample batch B = {(xB

i , t
B
i , y

B
i )}1≤i≤|B|

L(0) ← 1
n

∑|B|
i=1 w

(0)

iB
· (f (0)

θ (xB
i , t

B
i )− yBi )2

Update θ(0) ← θ(0) − η ∂L(0)

∂θ(0)

end for // The first stage finishes
for j = 1 to m do

Update weights w(j)
i ←

1+λK

(
(ρf

(j−1)
θ (xj)−tj)/τ

)
(b−a)p̂(tj |xj)

Initialize θ(j) ← θ(j−1)

for i = 1 to T2 do
Sample batch B = {(xB

i , t
B
i , y

B
i )}1≤i≤|B|

L(j) ← 1
n

∑|B|
i=1 w

(j)

iB
· (f (j)

θ (xB
i , t

B
i )− yBi )2

Update θ(j) ← θ(j) − η ∂L(j)

∂θ(j)

end for
end for // The second stage finishes
return the predictive model f (m)

θ


